-
-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathPy_Pi_Day_2017.py
833 lines (546 loc) · 41.6 KB
/
Py_Pi_Day_2017.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
# coding: utf-8
# # Table of Contents
# <p><div class="lev1 toc-item"><a href="#Python-Pi-Day-2017" data-toc-modified-id="Python-Pi-Day-2017-1"><span class="toc-item-num">1 </span>Python Pi Day 2017</a></div><div class="lev1 toc-item"><a href="#Computing-a-lot-of-digits-of-$\pi$?" data-toc-modified-id="Computing-a-lot-of-digits-of-$\pi$?-2"><span class="toc-item-num">2 </span>Computing a lot of digits of <span class="MathJax_Preview" style="color: inherit;"></span><span class="MathJax" id="MathJax-Element-388-Frame" tabindex="0" style="position: relative;" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&#x03C0;</mi></math>" role="presentation"><nobr aria-hidden="true"><span class="math" id="MathJax-Span-2745" role="math" style="width: 0.702em; display: inline-block;"><span style="display: inline-block; position: relative; width: 0.554em; height: 0px; font-size: 125%;"><span style="position: absolute; clip: rect(1.941em, 1000.55em, 2.572em, -1000em); top: -2.462em; left: 0em;"><span class="mrow" id="MathJax-Span-2746"><span class="mi" id="MathJax-Span-2747" style="font-family: STIXMathJax_Main; font-style: italic;">π<span style="display: inline-block; overflow: hidden; height: 1px; width: 0.032em;"></span></span></span><span style="display: inline-block; width: 0px; height: 2.462em;"></span></span></span><span style="display: inline-block; overflow: hidden; vertical-align: -0.061em; border-left: 0px solid; width: 0px; height: 0.634em;"></span></span></nobr><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>π</mi></math></span></span><script type="math/tex" id="MathJax-Element-388">\pi</script>?</a></div><div class="lev2 toc-item"><a href="#Two-simple-methods-for-finding-the-first-digits-of-$\pi$" data-toc-modified-id="Two-simple-methods-for-finding-the-first-digits-of-$\pi$-21"><span class="toc-item-num">2.1 </span>Two simple methods for finding the first digits of <span class="MathJax_Preview" style="color: inherit;"></span><span class="MathJax" id="MathJax-Element-391-Frame" tabindex="0" style="position: relative;" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&#x03C0;</mi></math>" role="presentation"><nobr aria-hidden="true"><span class="math" id="MathJax-Span-2754" role="math" style="width: 0.693em; display: inline-block;"><span style="display: inline-block; position: relative; width: 0.541em; height: 0px; font-size: 126%;"><span style="position: absolute; clip: rect(1.953em, 1000.54em, 2.615em, -1000em); top: -2.489em; left: 0em;"><span class="mrow" id="MathJax-Span-2755"><span class="mi" id="MathJax-Span-2756" style="font-family: STIXMathJax_Main; font-style: italic;">π<span style="display: inline-block; overflow: hidden; height: 1px; width: 0.032em;"></span></span></span><span style="display: inline-block; width: 0px; height: 2.489em;"></span></span></span><span style="display: inline-block; overflow: hidden; vertical-align: -0.068em; border-left: 0px solid; width: 0px; height: 0.653em;"></span></span></nobr><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>π</mi></math></span></span><script type="math/tex" id="MathJax-Element-391">\pi</script></a></div><div class="lev3 toc-item"><a href="#Fraction-approximations,-and-$\pi$-imported-from-the-math-module" data-toc-modified-id="Fraction-approximations,-and-$\pi$-imported-from-the-math-module-211"><span class="toc-item-num">2.1.1 </span>Fraction approximations, and <span class="MathJax_Preview" style="color: inherit;"></span><span class="MathJax" id="MathJax-Element-392-Frame" tabindex="0" style="position: relative;" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&#x03C0;</mi></math>" role="presentation"><nobr aria-hidden="true"><span class="math" id="MathJax-Span-2757" role="math" style="width: 0.736em; display: inline-block;"><span style="display: inline-block; position: relative; width: 0.56em; height: 0px; font-size: 129%;"><span style="position: absolute; clip: rect(1.898em, 1000.56em, 2.602em, -1000em); top: -2.455em; left: 0em;"><span class="mrow" id="MathJax-Span-2758"><span class="mi" id="MathJax-Span-2759" style="font-family: STIXMathJax_Main; font-style: italic;">π<span style="display: inline-block; overflow: hidden; height: 1px; width: 0.032em;"></span></span></span><span style="display: inline-block; width: 0px; height: 2.455em;"></span></span></span><span style="display: inline-block; overflow: hidden; vertical-align: -0.079em; border-left: 0px solid; width: 0px; height: 0.686em;"></span></span></nobr><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>π</mi></math></span></span><script type="math/tex" id="MathJax-Element-392">\pi</script> imported from the <code>math</code> module</a></div><div class="lev3 toc-item"><a href="#A-simple-Monte-Carlo-method" data-toc-modified-id="A-simple-Monte-Carlo-method-212"><span class="toc-item-num">2.1.2 </span>A simple <a href="https://en.wikipedia.org/wiki/Pi#Monte_Carlo_methods" target="_blank">Monte-Carlo method</a></a></div><div class="lev2 toc-item"><a href="#$100$-first-digits-of-$\pi$" data-toc-modified-id="$100$-first-digits-of-$\pi$-22"><span class="toc-item-num">2.2 </span><span class="MathJax_Preview" style="color: inherit;"></span><span class="MathJax" id="MathJax-Element-397-Frame" tabindex="0" style="position: relative;" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn></math>" role="presentation"><nobr aria-hidden="true"><span class="math" id="MathJax-Span-2778" role="math" style="width: 1.92em; display: inline-block;"><span style="display: inline-block; position: relative; width: 1.515em; height: 0px; font-size: 126%;"><span style="position: absolute; clip: rect(1.885em, 1001.49em, 2.792em, -1000em); top: -2.67em; left: 0em;"><span class="mrow" id="MathJax-Span-2779"><span class="mn" id="MathJax-Span-2780" style="font-family: STIXMathJax_Main;">100</span></span><span style="display: inline-block; width: 0px; height: 2.67em;"></span></span></span><span style="display: inline-block; overflow: hidden; vertical-align: -0.063em; border-left: 0px solid; width: 0px; height: 0.96em;"></span></span></nobr><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn></math></span></span><script type="math/tex" id="MathJax-Element-397">100</script> first digits of <span class="MathJax_Preview" style="color: inherit;"></span><span class="MathJax" id="MathJax-Element-398-Frame" tabindex="0" style="position: relative;" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&#x03C0;</mi></math>" role="presentation"><nobr aria-hidden="true"><span class="math" id="MathJax-Span-2781" role="math" style="width: 0.693em; display: inline-block;"><span style="display: inline-block; position: relative; width: 0.541em; height: 0px; font-size: 126%;"><span style="position: absolute; clip: rect(1.953em, 1000.54em, 2.615em, -1000em); top: -2.489em; left: 0em;"><span class="mrow" id="MathJax-Span-2782"><span class="mi" id="MathJax-Span-2783" style="font-family: STIXMathJax_Main; font-style: italic;">π<span style="display: inline-block; overflow: hidden; height: 1px; width: 0.032em;"></span></span></span><span style="display: inline-block; width: 0px; height: 2.489em;"></span></span></span><span style="display: inline-block; overflow: hidden; vertical-align: -0.068em; border-left: 0px solid; width: 0px; height: 0.653em;"></span></span></nobr><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>π</mi></math></span></span><script type="math/tex" id="MathJax-Element-398">\pi</script></a></div><div class="lev2 toc-item"><a href="#Using-mpmath" data-toc-modified-id="Using-mpmath-23"><span class="toc-item-num">2.3 </span>Using <a href="http://mpmath.org/" target="_blank"><code>mpmath</code></a></a></div><div class="lev2 toc-item"><a href="#The-Gauss–Legendre-iterative-algorithm" data-toc-modified-id="The-Gauss–Legendre-iterative-algorithm-24"><span class="toc-item-num">2.4 </span>The Gauss–Legendre iterative algorithm</a></div><div class="lev3 toc-item"><a href="#Using-float-numbers" data-toc-modified-id="Using-float-numbers-241"><span class="toc-item-num">2.4.1 </span>Using float numbers</a></div><div class="lev3 toc-item"><a href="#Using-decimal.Decimal-to-improve-precision" data-toc-modified-id="Using-decimal.Decimal-to-improve-precision-242"><span class="toc-item-num">2.4.2 </span>Using <code>decimal.Decimal</code> to improve precision</a></div><div class="lev2 toc-item"><a href="#Methods-based-on-a-convergent-series" data-toc-modified-id="Methods-based-on-a-convergent-series-25"><span class="toc-item-num">2.5 </span>Methods based on a convergent series</a></div><div class="lev3 toc-item"><a href="#A-Leibniz-formula-(easy):" data-toc-modified-id="A-Leibniz-formula-(easy):-251"><span class="toc-item-num">2.5.1 </span><a href="https://en.wikipedia.org/wiki/Leibniz_formula_for_pi" target="_blank">A Leibniz formula</a> (<em>easy</em>):</a></div><div class="lev3 toc-item"><a href="#Bailey-Borwein-Plouffe-series-(medium):" data-toc-modified-id="Bailey-Borwein-Plouffe-series-(medium):-252"><span class="toc-item-num">2.5.2 </span><a href="https://en.wikipedia.org/wiki/Bailey%E2%80%93Borwein%E2%80%93Plouffe_formula" target="_blank">Bailey-Borwein-Plouffe series</a> (<em>medium</em>):</a></div><div class="lev3 toc-item"><a href="#Bellard's-formula-(hard):" data-toc-modified-id="Bellard's-formula-(hard):-253"><span class="toc-item-num">2.5.3 </span><a href="https://en.wikipedia.org/wiki/Bellard%27s_formula" target="_blank">Bellard's formula</a> (<em>hard</em>):</a></div><div class="lev3 toc-item"><a href="#One-Ramanujan's-formula-(hard):" data-toc-modified-id="One-Ramanujan's-formula-(hard):-254"><span class="toc-item-num">2.5.4 </span>One <a href="https://en.wikipedia.org/wiki/Approximations_of_%CF%80#Efficient_methods" target="_blank">Ramanujan's formula</a> (<em>hard</em>):</a></div><div class="lev3 toc-item"><a href="#Chudnovsky-brothers'-formula-(hard):" data-toc-modified-id="Chudnovsky-brothers'-formula-(hard):-255"><span class="toc-item-num">2.5.5 </span><a href="https://en.wikipedia.org/wiki/Chudnovsky_algorithm" target="_blank">Chudnovsky brothers' formula</a> (<em>hard</em>):</a></div><div class="lev2 toc-item"><a href="#Other-methods" data-toc-modified-id="Other-methods-26"><span class="toc-item-num">2.6 </span>Other methods</a></div><div class="lev3 toc-item"><a href="#Trigonometric-methods-(hard)" data-toc-modified-id="Trigonometric-methods-(hard)-261"><span class="toc-item-num">2.6.1 </span>Trigonometric methods (<em>hard</em>)</a></div><div class="lev4 toc-item"><a href="#High-precision-arccot-computation" data-toc-modified-id="High-precision-arccot-computation-2611"><span class="toc-item-num">2.6.1.1 </span><a href="http://en.literateprograms.org/Pi_with_Machin%27s_formula_%28Python%29#High-precision_arccot_computation" target="_blank">High-precision arccot computation</a></a></div><div class="lev4 toc-item"><a href="#Applying-Machin's-formula" data-toc-modified-id="Applying-Machin's-formula-2612"><span class="toc-item-num">2.6.1.2 </span>Applying Machin's formula</a></div><div class="lev4 toc-item"><a href="#Trying-to-solve-my-question!" data-toc-modified-id="Trying-to-solve-my-question!-2613"><span class="toc-item-num">2.6.1.3 </span>Trying to solve my question!</a></div><div class="lev4 toc-item"><a href="#Conclusion" data-toc-modified-id="Conclusion-2614"><span class="toc-item-num">2.6.1.4 </span>Conclusion</a></div><div class="lev3 toc-item"><a href="#(hard)-Unbounded-Spigot-Algorithm" data-toc-modified-id="(hard)-Unbounded-Spigot-Algorithm-262"><span class="toc-item-num">2.6.2 </span>(<em>hard</em>) <a href="http://www.cs.ox.ac.uk/people/jeremy.gibbons/publications/spigot.pdf" target="_blank">Unbounded Spigot Algorithm</a></a></div><div class="lev3 toc-item"><a href="#(hard)-Borwein's-algorithm" data-toc-modified-id="(hard)-Borwein's-algorithm-263"><span class="toc-item-num">2.6.3 </span>(<em>hard</em>) <a href="https://en.wikipedia.org/wiki/Borwein%27s_algorithm#Nonic_convergence" target="_blank">Borwein's algorithm</a></a></div><div class="lev2 toc-item"><a href="#Examples-and-references" data-toc-modified-id="Examples-and-references-27"><span class="toc-item-num">2.7 </span>Examples and references</a></div><div class="lev3 toc-item"><a href="#Links" data-toc-modified-id="Links-271"><span class="toc-item-num">2.7.1 </span>Links</a></div><div class="lev3 toc-item"><a href="#Pie-!" data-toc-modified-id="Pie-!-272"><span class="toc-item-num">2.7.2 </span>Pie !</a></div>
# # Python Pi Day 2017
# > This is heavily inspired by what I did two years ago, see this page [cs101/hackhaton/14_03/2015](http://perso.crans.org/besson/cs101/hackathon/14_03_2015) on my website.
#
# Today is [Pi Day 2017](http://www.piday.org/), the day celebrating the number $\pi$.
# For more details on this number, see [this Wikipedia page](https://en.wikipedia.org/wiki/Pi).
#
# ----
#
# Let us use this occasion to showcase a few different approaches to compute the digits of the number $\pi$.
# I will use the [Python](https://www.python.org/) programming language, and you are reading a [Jupyter notebook](https://www.jupyter.org/).
#
# [![made-with-jupyter](https://img.shields.io/badge/Made%20with-Jupyter-1f425f.svg)](http://jupyter.org/)[![made-with-python](https://img.shields.io/badge/Made%20with-Python-1f425f.svg)](https://www.python.org/)
# # Computing a lot of digits of $\pi$?
#
# - **What to do ?** I will present and implement some methods that can be used to compute the first digits of the irrational number $\pi$.
# - **How ?** One method is based on random numbers, but all the other are simple (or not so simple) iterative algorithm: the more steps you compute, the more digits you will have!
# - **How to compare / assess the result ?** It is simple: the more digits you got, the better. We will also test the different methods implemented, and for the most efficient, see how fast it is to go up-to $140000$ digits.
#
# The simple goal is to write a *small* function that computes digits of pi, as fast as possible, and find the 10 digits from position 140317 to 140327!
# (that's the challenge I posted on Facebook)
# ----
# ## Two simple methods for finding the first digits of $\pi$
# ### Fraction approximations, and $\pi$ imported from the `math` module
# Three approximations, using fractions, were known from a very long time (Aristote used $\frac{355}{113}$ !).
# The first three approximations of pi are:
# In[3]:
print(" pi ~= 3.14 (two first digits).")
print(" pi ~= 22/7 = {} (two first digits).".format(22.0 / 7.0))
print(" pi ~= 355/113 = {} (six first digits).".format(355.0 / 113.0))
# This method is extremely limited, and will not give you more than 13 correct digits, as `math.pi` is stored as a *float* number (limited precision).
# In[4]:
def mathpi():
from math import pi
return pi
print("First method: using math.pi gives pi ~= {:.17f} (17 digits are displayed here).".format(mathpi()))
# If we know the digits, we can directly print them:
# In[5]:
from decimal import Decimal
bigpi = Decimal('3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679')
print("The first 100 digits of pi are {}.".format(bigpi))
# ### A simple [Monte-Carlo method](https://en.wikipedia.org/wiki/Pi#Monte_Carlo_methods)
# A simple Monte Carlo method for computing $\pi$ is to draw a circle inscribed in a square, and randomly place dots in the square.
# The ratio of dots inside the circle to the total number of dots will approximately equal $\pi / 4$, which is also the ratio of the area of the circle by the area of the square:
#
# ![Example of a random simulation of this Monte-Carlo method](https://upload.wikimedia.org/wikipedia/commons/8/84/Pi_30K.gif "Example of a random simulation of this Monte-Carlo method")
#
# In Python, such simulation can basically be implemented like this:
# In[6]:
from random import uniform
def montecarlo_pi(nbPoints=10000):
"""Returns a probabilist estimate of pi, as a float number."""
nbInside = 0
# we pick a certain number of points (nbPoints)
for i in range(nbPoints):
x = uniform(0, 1)
y = uniform(0, 1)
# (x, y) is now a random point in the square [0, 1] × [0, 1]
if (x**2 + y**2) < 1:
# This point (x, y) is inside the circle C(0, 1)
nbInside += 1
return 4 * float(nbInside) / floor(nbPoints)
# In[9]:
print("The simple Monte-Carlo method with {} random points gave pi = {}".format(10000, montecarlo_pi(10000)))
# It is an interesting method, but it is just too limited for approximating digits of $\pi$.
#
#
# The previous two methods are quite limited, and not efficient enough if you want more than 13 digits (resp. 4 digits for the Monte-Carlo method).
# ## $100$ first digits of $\pi$
# $\pi \simeq 3.1415926535 ~ 8979323846 ~ 2643383279 ~ 5028841971 \\\\ 6939937510 ~ 5820974944 ~ 5923078164 ~ 9862803482 ~ 53421170679$ when computed to the first $100$ digits.
#
# Can you compute up to $1000$ digits? Up to $10000$ digits? Up to $100000$ digits? **Up to 1 million digits?**
# ## Using [`mpmath`](http://mpmath.org/)
# This is a simple and lazy method, using the [`mpmath`](http://mpmath.org/) module.
# MPmath is a Python library for arbitrary-precision floating-point arithmetic (Multi-Precision), and it has a builtin highly-optimized algorithm to compute digits of $\pi$.
#
# It works really fine up-to 1000000 digits (56 ms), from 1 million digits to be printed, printing them starts to get too time consuming (the IDE or the system might freeze).
# In[10]:
import mpmath
# from sympy import mpmath # on older sympy versions
mp = mpmath.mp
# We can [arbitrarily set the precision](http://docs.sympy.org/dev/modules/mpmath/basics.html#setting-the-precision), with the constant `mp.dps` (digit numbers).
# In[11]:
mp.dps = 1000 # number of digits
my_pi = mp.pi # Gives pi to a thousand places
print("A lazy method using the mpmath module:\npi is approximatly {} (with {} digits).".format(my_pi, mp.dps))
# Let save it for further comparison of simpler methods.
# In[87]:
mp.dps = 100000 # number of digits
len(str(mp.pi))
mpmath_pi = Decimal(str(mp.pi))
# We can solve the initial challenge easily:
# In[86]:
mp.dps = 140330
print(str(mp.pi)[2:][140317:140317+10])
# And it will most probably be the quickest method presented here:
# In[14]:
get_ipython().run_line_magic('timeit', 'mp.dps=140330;print(str(mp.pi)[2:][140317:140317+10])')
# Asking for $10$ times more digits take about $100$ more of time (that's a bad news).
# In[43]:
get_ipython().run_line_magic('timeit', 'mp.dps=1403230;print(str(mp.pi)[2:][1403217:1403217+10])')
# ## The Gauss–Legendre iterative algorithm
# > More details can be found on [this page](https://en.wikipedia.org/wiki/Gauss%E2%80%93Legendre_algorithm).
#
# The first method given here is explained in detail.
# This algorithm is called the [Gauss-Legendre method](https://en.wikipedia.org/wiki/Gauss%E2%80%93Legendre_algorithm), and for example it was used to compute the first $206 158 430 000$ decimal digits of $\pi$ on September 18th to 20th, $1999$.
#
# It is a very simply **iterative algorithm** (ie. step by step, you update the variables, as long as you want):
#
# 1. First, start with 4 variables $a_0, b_0, t_0, p_0$, and their initial values are $a_0 = 1, b_0 = 1/\sqrt{2}, t_0 = 1/4, p_0 = 1$.
#
# 2. Then, update the variables (or create 4 new ones $a_{n+1}, b_{n+1}, t_{n+1}, p_{n+1}$) by repeating the following instructions (in this order) until the difference of $a_{n}$ and $b_{n}$, is within the desired accuracy:
# - $a_{n+1} = \frac{a_n + b_n}{2}$,
# - $b_{n+1} = \sqrt{a_n \times b_n}$,
# - $t_{n+1} = t_n - p_n (a_n - a_{n+1})^2$,
# - $p_{n+1} = 2 p_n$.
#
# 3. Finally, the desired approximation of $\pi$ is: $$\pi \simeq \frac{(a_{n+1} + b_{n+1})^2}{4 t_{n+1}}.$$
# ### Using float numbers
# The first three iterations give (approximations given up to and including the first incorrect digit):
#
# 3.140 …
# 3.14159264 …
# 3.1415926535897932382 …
#
# The algorithm has **second-order convergent nature**, which essentially means that the number of correct digits doubles with each step of the algorithm.
# Try to see how far it can go in less than 120 seconds (print the approximation of $\pi$ after every step, and stop/kill the program after 2 minutes).
#
# > This method is based on [computing the limits of the arithmetic–geometric mean](https://en.wikipedia.org/wiki/Arithmetic%E2%80%93geometric_mean) of some well-chosen number ([see on Wikipédia for more mathematical details](https://en.wikipedia.org/wiki/Gauss%E2%80%93Legendre_algorithm#Mathematical_background)).
# In[17]:
import math
def gauss_legendre_1(max_step):
"""Float number implementation of the Gauss-Legendre algorithm, for max_step steps."""
a = 1.
b = 1./math.sqrt(2)
t = 1./4.0
p = 1.
for i in range(max_step):
at = (a + b) / 2.0
bt = math.sqrt(a*b)
tt = t - p*(a-at)**2
pt = 2.0 * p
a, b, t, p = at, bt, tt, pt
my_pi = ((a+b)**2)/(4.0*t)
return my_pi
# In[89]:
my_pi = gauss_legendre_1(4)
my_pi
print("pi is approximately: {:.15f} (as a float number, precision is limited).".format(my_pi))
accuracy = 100*abs(math.pi - my_pi)/math.pi
print("Accuracy % with math.pi: {:.4g}".format(accuracy))
accuracy = 100*abs(float(mpmath_pi) - my_pi)/float(mpmath_pi)
print("Accuracy % with mpmath_pi: {:.4g}".format(accuracy))
# In[90]:
my_pi = gauss_legendre_1(40)
my_pi
print("pi is approximately: {:.15f} (as a float number, precision is limited).".format(my_pi))
accuracy = 100*abs(math.pi - my_pi)/math.pi
print("Accuracy % with math.pi: {:.4g}".format(accuracy))
accuracy = 100*abs(float(mpmath_pi) - my_pi)/float(mpmath_pi)
print("Accuracy % with mpmath_pi: {:.4g}".format(accuracy))
# This first implementation of the Gauss-Legendre algorithm is limited to a precision of 13 or 14 digits. But it converges quickly ! (4 steps here).
# ### Using `decimal.Decimal` to improve precision
# The limitation of this first algorithm came from using simple *float* numbers.
# Let us now use [`Decimal`](https://docs.python.org/3/library/decimal.html) numbers to keep as many digits after the decimal as we need.
# In[24]:
from decimal import Decimal, getcontext
# In[25]:
def gauss_legendre_2(max_step):
"""Decimal number implementation of the Gauss-Legendre algorithm, for max_step steps."""
# trick to improve precision
getcontext().prec = 3 + 2**(max_step + 2)
cst_2 = Decimal(2.0)
cst_4 = Decimal(4.0)
a = Decimal(1.0)
b = Decimal(0.5).sqrt()
t = Decimal(0.25)
p = Decimal(1.0)
for i in range(max_step):
new_a = (a+b)/cst_2
new_b = (a*b).sqrt()
new_t = Decimal(t - p*(a - new_a)**2)
new_p = cst_2*p
a, b, t, p = new_a, new_b, new_t, new_p
my_pi = Decimal(((a+b)**2)/(cst_4*t))
return my_pi
# In[91]:
my_pi = gauss_legendre_2(5)
print("pi is approximately: {}.".format(my_pi.to_eng_string()[:2**(5+1)]))
accuracy = 100*abs(Decimal(math.pi) - my_pi)/Decimal(math.pi)
print("Accuracy % with math.pi: {:.4g}".format(accuracy))
accuracy = 100*abs(mpmath_pi - my_pi)/mpmath_pi
print("Accuracy % with mpmath_pi: {:.4g}".format(accuracy))
# The second implementation of the Gauss-Legendre algorithm is now working better (when we adapt the precision). And it converges quickly ! (8 steps give a precision upto the 697th digits).
#
# How much did we lost in term of performance by using decimal numbers? About a factor $1000$, but that's normal as the second solution stores a lot of digits. They don't even compute the same response.
# In[92]:
get_ipython().run_line_magic('timeit', 'gauss_legendre_1(8)')
get_ipython().run_line_magic('timeit', 'gauss_legendre_2(8)')
# ## Methods based on a convergent series
# For the following formulae, you can try to write a program that computes the partial sum of the series, up to a certain number of term ($N \geq 1$).
# Basically, the bigger the $N$, the more digits you get (but the longer the program will run).
#
# Some methods might be really efficient, only needing a few number of steps (a small $N$) for computing many digits.
# Try to implement and compare at least two of these methods.
# You can use the function `sum` (or `math.fsum`) to compute the sum, or a simple `while`/`for` loop.
#
# All these partial sums are written up to an integer $N \geq 1$.
# ### [A Leibniz formula](https://en.wikipedia.org/wiki/Leibniz_formula_for_pi) (*easy*):
# It has a number of digits sub-linear in the number $N$ of terms in the sum: we need $10$ times more terms to win just one digit.
# $$\pi \simeq 4\sum_{n=0}^{N} \cfrac {(-1)^n}{2n+1}. $$
# In[30]:
def leibniz(max_step):
""" Computing an approximation of pi with Leibniz series."""
my_pi = Decimal(0)
for k in range(max_step):
my_pi += Decimal((-1)**k) / Decimal(2*k+1)
return Decimal(4) * my_pi
# In[98]:
getcontext().prec = 20 # trick to improve precision
my_pi = leibniz(1000)
my_pi
accuracy = 100*abs(mpmath_pi - my_pi)/mpmath_pi
print("Accuracy % with mpmath_pi: {:.4g}".format(accuracy))
# In[99]:
getcontext().prec = 20 # trick to improve precision
my_pi = leibniz(10000)
my_pi
accuracy = 100*abs(mpmath_pi - my_pi)/mpmath_pi
print("Accuracy % with mpmath_pi: {:.4g}".format(accuracy))
# This first formula is very inefficient!
# ### [Bailey-Borwein-Plouffe series](https://en.wikipedia.org/wiki/Bailey%E2%80%93Borwein%E2%80%93Plouffe_formula) (*medium*):
# It also has a number of digits linear in the number $N$ of terms in the sum.
# $$\pi \simeq \sum_{n = 1}^{N} \left( \frac{1}{16^{n}} \left( \frac{4}{8n+1} - \frac{2}{8n+4} - \frac{1}{8n+5} - \frac{1}{8n+6} \right) \right). $$
# In[100]:
def bbp(max_step):
""" Computing an approximation of pi with Bailey-Borwein-Plouffe series."""
my_pi = Decimal(0)
for k in range(max_step):
my_pi += (Decimal(1)/(16**k))*((Decimal(4)/(8*k+1))-(Decimal(2)/(8*k+4))-(Decimal(1)/(8*k+5))-(Decimal(1)/(8*k+6)))
return my_pi
# In[101]:
getcontext().prec = 20 # trick to improve precision
my_pi = bbp(10)
my_pi
accuracy = 100*abs(mpmath_pi - my_pi)/mpmath_pi
print("Accuracy % with mpmath_pi: {:.4g}".format(accuracy))
# That's pretty impressive, in only $10$ steps!
# But that algorithm is highly dependent on the precision we ask, and on the number of terms in the sum.
# In[102]:
getcontext().prec = 200 # trick to improve precision
my_pi = bbp(200)
my_pi
accuracy = 100*abs(mpmath_pi - my_pi)/mpmath_pi
print("Accuracy % with mpmath_pi: {:.4g}".format(accuracy))
# In[103]:
getcontext().prec = 500 # trick to improve precision
my_pi = bbp(500)
my_pi
accuracy = 100*abs(mpmath_pi - my_pi)/mpmath_pi
print("Accuracy % with mpmath_pi: {:.4g}".format(accuracy))
# It is, of course, slower than the optimized algorithm from `mpmath`.
# And it does not scale well with the precision:
# In[104]:
getcontext().prec = 10 + 1000 # trick to improve precision
get_ipython().run_line_magic('timeit', 'bbp(1000)')
getcontext().prec = 10 + 2000 # trick to improve precision
get_ipython().run_line_magic('timeit', 'bbp(2000)')
# ### [Bellard's formula](https://en.wikipedia.org/wiki/Bellard%27s_formula) (*hard*):
# It is a more efficient formula.
# $$\pi \simeq \frac1{2^6} \sum_{n=0}^N \frac{(-1)^n}{2^{10n}} \, \left(-\frac{2^5}{4n+1} - \frac1{4n+3} + \frac{2^8}{10n+1} - \frac{2^6}{10n+3} - \frac{2^2}{10n+5} - \frac{2^2}{10n+7} + \frac1{10n+9} \right). $$
# In[105]:
def bellard(max_step):
""" Computing an approximation of pi with Bellard series."""
my_pi = Decimal(0)
for k in range(max_step):
my_pi += (Decimal(-1)**k/(1024**k))*( Decimal(256)/(10*k+1) + Decimal(1)/(10*k+9) - Decimal(64)/(10*k+3) - Decimal(32)/(4*k+1) - Decimal(4)/(10*k+5) - Decimal(4)/(10*k+7) -Decimal(1)/(4*k+3))
return my_pi * Decimal(1.0/(2**6))
# In[106]:
getcontext().prec = 40 # trick to improve precision
my_pi = bellard(10)
my_pi
accuracy = 100*abs(mpmath_pi - my_pi)/mpmath_pi
print("Accuracy % with mpmath_pi: {:.4g}".format(accuracy))
# That's pretty impressive, in only $10$ steps!
# But that algorithm is again highly dependent on the precision we ask, and on the number of terms in the sum.
# In[107]:
getcontext().prec = 800 # trick to improve precision
my_pi = bellard(200)
my_pi
accuracy = 100*abs(mpmath_pi - my_pi)/mpmath_pi
print("Accuracy % with mpmath_pi: {:.4g}".format(accuracy))
# It is, of course, slower than the optimized algorithm from `mpmath`.
# And it does not scale well with the precision:
# In[73]:
getcontext().prec = 10 + 1000 # trick to improve precision
get_ipython().run_line_magic('timeit', 'bellard(1000)')
getcontext().prec = 10 + 2000 # trick to improve precision
get_ipython().run_line_magic('timeit', 'bellard(2000)')
# It is also slower than BBP formula.
# ### One [Ramanujan's formula](https://en.wikipedia.org/wiki/Approximations_of_%CF%80#Efficient_methods) (*hard*):
# It is efficient but harder to compute easily with high precision, due to the factorial.
# But hopefully, the function `math.factorial` works with Python *integers*, of arbitrary size, so this won't be an issue.
#
# $$\frac{1}{\pi} \simeq \frac{2\sqrt{2}}{9801} \sum_{n=0}^N \frac{(4n)!(1103+26390n)}{(n!)^4 396^{4n}}. $$
#
# *Remark:* This method and the next one compute approximation of $\frac{1}{\pi}$, not $\pi$.
#
# This method has a quadratic precision (the number of correct digits is of the order $\mathcal{O}(N^2)$.
# In[123]:
from math import factorial
def ramanujan(max_step):
""" Computing an approximation of pi with a Ramanujan's formula."""
my_pi = Decimal(0)
d_1103 = Decimal(1103)
d_26390 = Decimal(26390)
d_396 = Decimal(396)
for k in range(max_step):
my_pi += ((Decimal(factorial(4 * k))) * (d_1103 + d_26390 * Decimal(k))) / ( (Decimal(factorial(k)))**4 * (d_396**(4*k)))
my_pi = my_pi * 2 * Decimal(2).sqrt() / Decimal(9801)
my_pi = my_pi**(-1)
return my_pi
# In[124]:
getcontext().prec = 40 # trick to improve precision
my_pi = ramanujan(4)
my_pi
accuracy = 100*abs(mpmath_pi - my_pi)/mpmath_pi
print("Accuracy % with mpmath_pi: {:.4g}".format(accuracy))
# In[125]:
getcontext().prec = 400 # trick to improve precision
my_pi = ramanujan(40)
my_pi
accuracy = 100*abs(mpmath_pi - my_pi)/mpmath_pi
print("Accuracy % with mpmath_pi: {:.4g}".format(accuracy))
# In[126]:
getcontext().prec = 2000 # trick to improve precision
my_pi = ramanujan(200)
my_pi
accuracy = 100*abs(mpmath_pi - my_pi)/mpmath_pi
print("Accuracy % with mpmath_pi: {:.4g}".format(accuracy))
# $1595$ correct digits with $200$ terms, that's quite good!!
# In[127]:
getcontext().prec = 10 + 2000 # trick to improve precision
get_ipython().run_line_magic('timeit', 'ramanujan(200)')
getcontext().prec = 10 + 5000 # trick to improve precision
get_ipython().run_line_magic('timeit', 'ramanujan(400)')
# Let's try to answer my initial question, using this naive implementation.
# In[128]:
get_ipython().run_cell_magic('time', '', 'getcontext().prec = 140350 # trick to improve precision\ni = 140317\nmy_pi = ramanujan(10000)\nprint(str(my_pi)[2:][i:i+10])\n\nmp.dps=140330\nprint(str(mp.pi)[2:][i:i+10])')
# ... It was too slow!
# ### [Chudnovsky brothers' formula](https://en.wikipedia.org/wiki/Chudnovsky_algorithm) (*hard*):
# $$\frac{1}{\pi} \simeq 12 \sum_{n=0}^N \frac {(-1)^{n}(6n)!(545140134n+13591409)}{(3n)!(n!)^{3}640320^{{3n+3/2}}}. $$
# In 2015, the best method is still the Chudnovsky brothers's formula.
#
# > Be careful when you use these formulae, *check carefully* the constants you wrote (545140134 will work well, 545140135 might not work as well!).
#
# > This formula is used as the logo of the [French agrégation of Mathematics](https://en.wikipedia.org/wiki/Agr%C3%A9gation) [website `agreg.org`](http://agreg.org/) :
# > ![http://agreg.org/LogoAgreg.gif](http://agreg.org/LogoAgreg.gif)
# In[129]:
from math import factorial
def chudnovsky(max_step):
""" Computing an approximation of pi with Bellard series."""
my_pi = Decimal(0)
for k in range(max_step):
my_pi += (Decimal(-1)**k)*(Decimal(factorial(6*k))/((factorial(k)**3)*(factorial(3*k)))* (13591409+545140134*k)/(640320**(3*k)))
my_pi = my_pi * Decimal(10005).sqrt()/4270934400
my_pi = my_pi**(-1)
return my_pi
# It is very efficient, as Ramanujan's formula.
# In[131]:
getcontext().prec = 3000 # trick to improve precision
my_pi = chudnovsky(200)
my_pi
accuracy = 100*abs(mpmath_pi - my_pi)/mpmath_pi
print("Accuracy % with mpmath_pi: {:.4g}".format(accuracy))
# It gets $2834$ correct numbers in $200$ steps!
# It is more efficient that Ramanujan's formula, but slower to compute.
# In[134]:
getcontext().prec = 6000 # trick to improve precision
my_pi = chudnovsky(400)
accuracy = 100*abs(mpmath_pi - my_pi)/mpmath_pi
print("Accuracy % with mpmath_pi: {:.4g}".format(accuracy))
# In[135]:
getcontext().prec = 3000 # trick to improve precision
get_ipython().run_line_magic('timeit', 'chudnovsky(200)')
getcontext().prec = 6000 # trick to improve precision
get_ipython().run_line_magic('timeit', 'chudnovsky(400)')
# About $2$ seconds to find correctly the first $5671$ digits? That's slow! But hey, it's Python (dynamic typing etc).
# ----
# ## Other methods
# ### Trigonometric methods (*hard*)
# Some methods are based on the $\mathrm{arccot}$ or $\arctan$ functions, and use the appropriate Taylor series to approximate these functions.
# The best example is [Machin's formula](http://en.literateprograms.org/Pi_with_Machin%27s_formula_%28Python%29):
# $$\pi = 16 \;\mathrm{arccot}(5) - 4 \;\mathrm{arccot}(239).$$
#
# And we use the Taylor series to approximate $\mathrm{arccot}(x)$:
# $$\mathrm{arccot}(x) = \frac{1}{x} - \frac{1}{3x^3} + \frac{1}{5x^5} - \frac{1}{7x^7} + \dots = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1) x^{2n+1}} .$$
#
# This method is also explained here with some details.
# In order to obtain $n$ digits, we will use *fixed-point* arithmetic to compute $\pi \times 10^n$ as a Python `long` integer.
# #### [High-precision arccot computation](http://en.literateprograms.org/Pi_with_Machin%27s_formula_%28Python%29#High-precision_arccot_computation)
# To calculate $\mathrm{arccot}$ of an argument $x$, we start by dividing the number $1$ (represented by $10^n$, which we provide as the argument `unity`) by $x$ to obtain the first term.
#
# We then repeatedly divide by $x^2$ and a counter value that runs over $3$, $5$, $7$ etc, to obtain each next term.
# The summation is stopped at the first zero `term`, which in this *fixed-point* representation corresponds to a real value less than $10^{-n}$:
#
# ```python
# def arccot(x, unity):
# xpower = unity / x
# sum = xpower
# n = 3
# sign = -1
# while True:
# xpower = xpower / (x*x)
# term = xpower / n
# if term == 0:
# break # we are done
# sum += sign * term
# sign = -sign
# n += 2
# return sum
# ```
# Adapting it to use Decimal numbers is easy:
# In[171]:
def arccot(x, unity):
"""Compute arccot(x) with a certain level of precision."""
x = Decimal(x)
unity = Decimal(unity)
mysum = xpower = unity / x
n = 3
sign = -1
while True:
xpower = xpower / (x*x)
term = xpower / n
if not term:
break
mysum += sign * term
sign = -sign # we alternate the sign
n += 2
return mysum
# #### Applying Machin's formula
# Finally, the main function uses Machin's formula to compute $\pi$ using the necessary level of precision, by using this high precision $\mathrm{arccot}$ function:
# $$\pi = 16 \;\mathrm{arccot}(5) - 4 \;\mathrm{arccot}(239).$$
#
# ```python
# def machin(digits):
# unity = 10**(digits + 10)
# pi = 4 * (4*arccot(5, unity) - arccot(239, unity))
# return pi / unity
# ```
#
# To avoid rounding errors in the result, we use 10 guard digits internally during the calculation.
# We may now reproduce the historical result obtained by [Machin in 1706](https://en.wikipedia.org/wiki/John_Machin).
# In[172]:
def machin(digits):
"""Compute pi with Machin's formula, with precision at least digits."""
unity = 10**(digits + 10)
my_pi = Decimal(4) * (Decimal(4)*arccot(5, unity) - arccot(239, unity))
return my_pi / Decimal(unity)
# In[173]:
getcontext().prec = 10000 # trick to improve precision
my_pi = machin(100)
accuracy = 100*abs(mpmath_pi - my_pi)/mpmath_pi
print("Accuracy % with mpmath_pi: {:.4g}".format(accuracy))
# So we got the first $9995$ digits correctly... in $45$ seconds.
# That will still be too slow to have the digits at position $130317$.
# In[174]:
getcontext().prec = 5000 # trick to improve precision
get_ipython().run_line_magic('timeit', 'machin(50)')
getcontext().prec = 10000 # trick to improve precision
get_ipython().run_line_magic('timeit', 'machin(100)')
# The program can be used to compute tens of thousands of digits in just a few seconds on a modern computer.
# Typical implementation will be in highly efficient compiled language; like C or maybe Julia.
#
# Many [Machin-like formulas](https://en.wikipedia.org/wiki/Machin-like_formula) also exist, like:
# $$\pi = 4\arctan\left(\frac{1}{2}\right) + 4 \arctan\left(\frac{1}{3}\right).$$
# #### Trying to solve my question!
# The important parameter to tune is not the precision given to `machin()` but the `Decimal.prec` precision.
# In[179]:
get_ipython().run_cell_magic('time', '', 'i = 14031\ngetcontext().prec = i + 20 # trick to improve precision\nmp.dps = i + 20\nprint(str(mp.pi)[2:][i:i+10])\n\nmy_pi = machin(11)\nprint(str(my_pi)[2:][i:i+10])')
# In[180]:
get_ipython().run_cell_magic('time', '', 'i = 140317\ngetcontext().prec = i + 20 # trick to improve precision\nmp.dps = i + 20\nprint(str(mp.pi)[2:][i:i+10])\n\nmy_pi = machin(50)\nprint(str(my_pi)[2:][i:i+10])')
# It was too slow too! But at least it worked!
#
# My manual implementation of Machin's formula took about $10$ minutes, on an old laptop with $1$ core running Python 3.5, to find the $10$ digits of $\pi$ at index $140317$.
#
# #### Conclusion
# $\implies$ To the question "What are the $10$ digits of $\pi$ at index $140317..140326$", the answer is $9341076406$.
# For more, see http://fredrikj.net/blog/2011/03/100-mpmath-one-liners-for-pi/.
# ### (*hard*) [Unbounded Spigot Algorithm](http://www.cs.ox.ac.uk/people/jeremy.gibbons/publications/spigot.pdf)
# This algorithm is quite efficient, but not easy to explain. Go check on-line if you want.
#
# See this page (http://codepad.org/3yDnw0n9) for a 1-line C program that uses a simpler Spigot algorithm for computing the first 15000 digits
#
# A nice method, with a generator yielding the next digit each time, comes from http://stackoverflow.com/a/9005163.
# It uses only integer, so no need to do any `Decimal` trick here.
# In[149]:
def next_pi_digit(max_step):
q, r, t, k, m, x = 1, 0, 1, 1, 3, 3
for j in range(max_step):
if 4 * q + r - t < m * t:
yield m
# More details on Python generators can be found here http://stackoverflow.com/a/231855
q, r, t, k, m, x = 10*q, 10*(r-m*t), t, k, (10*(3*q+r))//t - 10*m, x
else:
q, r, t, k, m, x = q*k, (2*q+r)*x, t*x, k+1, (q*(7*k+2)+r*x)//(t*x), x+2
# In[161]:
def generator_pi(max_step):
big_str = ''.join(str(d) for d in next_pi_digit(max_step))
return Decimal(big_str[0] + '.' + big_str[1:])
# It does not use `Decimal` numbers.
# In[164]:
getcontext().prec = 50 # trick to improve precision
generator_pi(1000)
# In[165]:
getcontext().prec = 5000 # trick to improve precision
generator_pi(1000)
# ### (*hard*) [Borwein's algorithm](https://en.wikipedia.org/wiki/Borwein%27s_algorithm#Nonic_convergence)
# It has several versions, one with a cubic convergence (each new step multiplies by $3$ the number of digits), one with a nonic convergence (of order $9$) etc.
# They are not so easy to explain either.
# Please check on-line, here [en.WikiPedia.org/wiki/Borwein's_algorithm](https://en.wikipedia.org/wiki/Borwein%27s_algorithm).
#
# The cubic method is similar to the Gauss-Legendre algorithm:
#
# 1. Start with $a_0 = 1/3$, and $s_0 = \frac{\sqrt{3}-1}{2}$,
# 2. And then iterate, as much as you want, by defining $r_{k+1} = \frac{3}{1+2(1-s_k^3)^{1/3}}$, and updating $s_{k+1} = \frac{r_{k+1}-1}{2}$ and $a_{k+1} = r_{k+1}^2 a_k - 3^k (r_{k+1}^2 - 1)$.
#
# Then the numbers $a_k$ will converge to $\frac{1}{\pi}$.
# ----
# ## Examples and references
# ### Links
# - [en.WikiPedia.org/wiki/Pi#Modern_quest_for_more_digits](https://en.wikipedia.org/wiki/Pi#Modern_quest_for_more_digits),
# - [www.JoyOfPi.com/pi.html](http://www.joyofpi.com/pi.html) and [www.JoyOfPi.com/pilinks.html](http://www.joyofpi.com/pilinks.html),
# - [www.EveAndersson.com/pi/digits/](http://www.eveandersson.com/pi/digits/) has great interactive tools,
# - more crazy stuff [MathWorld.Wolfram.com/PiDigits.html](http://mathworld.wolfram.com/PiDigits.html), or [MathWorld.Wolfram.com/Pi.html](http://mathworld.wolfram.com/Pi.html),
# - [one idea with Fibonacci numbers](http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibpi.html#section2),
# - [and this incredibly long list of digits](http://piworld.calico.jp/estart.html) at [PiWorld.calico.jp/estart.html](http://piworld.calico.jp/estart.html).
# - http://bellard.org/pi/ by Francois Bellard (and http://bellard.org/pi/pi_n2/pi_n2.html)
# > That's it for today! Happy Pi Day!
# ----
# ### Pie !
# ![](https://upload.wikimedia.org/wikipedia/commons/thumb/4/4b/Apple_pie.jpg/600px-Apple_pie.jpg)
#
# ----