-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathroberta_prune.py
115 lines (106 loc) · 6.52 KB
/
roberta_prune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
"""
RoBERTa with LAMA probing
Imp points:
1. Change [MASK] to <mask> before tokenization
2. add_prefix_space=True while initialization tokenizer as it adds a whitespace for everything except the first word
If we don't add whitespace, actual -> 'Paris' and predicted -> ' Paris'
"""
import torch
import sys
from transformers import AutoTokenizer, AutoModelForMaskedLM
from torch.utils.data import DataLoader
from transformers import DataCollatorWithPadding
from utils import oLMpics_encoder_inference, remove_duplicates, extract_dataset, inference, local_pruning, instantiate_model, global_pruning, instantiate_all_linear_layers, bert_instantiate_model
import torch.nn.utils.prune as prune
from torch import nn
from transformers.utils import logging
import os
logging.set_verbosity(40)
torch.manual_seed(40)
os.environ["CUDA_VISIBLE_DEVICES"]="0"
def tokenize_function(example):
input_sentence = example['masked_sentence']
# Replace [MASK] with <mask> for RoBERTa pretraining objective
roberta_input_sentence = [s.replace("[MASK]", "<mask>") for s in input_sentence]
tokenized_text = tokenizer(roberta_input_sentence, truncation=True,
padding='max_length', max_length=128)
tokenized_labels = tokenizer(example['obj_label'], truncation=True, padding='max_length', max_length=8)
tokenized_data = {
"input_ids": tokenized_text['input_ids'],
"attention_mask": tokenized_text['attention_mask'],
"output_labels": tokenized_labels['input_ids']
}
return tokenized_data
if __name__ == '__main__':
dataset_name_list = ['squad', 'trex', 'conceptnet', 'google_re']
checkpoint = str(sys.argv[1])
prune_type = str(sys.argv[2])
if checkpoint == 'roberta-base':
no_of_layers = 12
else:
no_of_layers = 24
batch_size=512
for dataset_name in dataset_name_list:
# Extract the preprocessed dataset with BERTnesia codebase
raw_dataset = extract_dataset(dataset_name)
tokenizer = AutoTokenizer.from_pretrained(checkpoint, add_prefix_space=True)
print(f"Fast tokenizer is available: {tokenizer.is_fast}")
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
tokenize_dataset = raw_dataset.map(tokenize_function, batched=True)
# Remove the duplicates
tokenize_dataset = remove_duplicates(tokenize_dataset)
# Remove columns and set it to Pytorch format
tokenize_dataset = tokenize_dataset.remove_columns([col for col in tokenize_dataset['train'].column_names
if col not in ['input_ids', 'attention_mask', 'output_labels', 'token_type_ids']])
tokenize_dataset.set_format(type='torch')
# Dataloader with shuffle true
train_dataloader = DataLoader(tokenize_dataset['train'], batch_size=batch_size, shuffle=True, collate_fn=data_collator)
prune_percentage_list = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
for prune_percentage in prune_percentage_list:
if prune_percentage == 0 and prune_type == 'baseline':
model = AutoModelForMaskedLM.from_pretrained(checkpoint)
model.to(device)
inference(model, tokenizer, device, train_dataloader, dataset_name, prune_type, prune_percentage, -1)
if prune_percentage != 0:
if prune_type == 'overall_global_pruning':
model = AutoModelForMaskedLM.from_pretrained(checkpoint)
linear_layers_list = instantiate_all_linear_layers(model)
# Global pruning
global_pruning(linear_layers_list, prune_percentage=prune_percentage)
model.to(device)
inference(model, tokenizer, device, train_dataloader, dataset_name, prune_type, prune_percentage, -1)
if prune_type == 'attention_only_global_pruning':
attention_layers_list = []
for i in range(no_of_layers):
attention_layers_list.append(f'roberta.encoder.layer.{i}.attention.self.query')
attention_layers_list.append(f'roberta.encoder.layer.{i}.attention.self.key')
attention_layers_list.append(f'roberta.encoder.layer.{i}.attention.self.value')
model = AutoModelForMaskedLM.from_pretrained(checkpoint)
linear_layers_list = instantiate_model(model, attention_layers_list)
global_pruning(linear_layers_list, prune_percentage=prune_percentage)
model.to(device)
inference(model, tokenizer, device, train_dataloader, dataset_name, prune_type, prune_percentage, -1)
if prune_type == 'output_only_global_pruning':
output_layers_list = ['RobertaOutput', 'RobertaSelfOutput', 'RobertaIntermediate']
model = AutoModelForMaskedLM.from_pretrained(checkpoint)
linear_layers_list = bert_instantiate_model(model, output_layers_list)
print(linear_layers_list)
global_pruning(linear_layers_list, prune_percentage=prune_percentage)
model.to(device)
inference(model, tokenizer, device, train_dataloader, dataset_name, prune_type, prune_percentage, -1)
if prune_type == 'local_pruning':
local_prune_type_list = ['l1_unstructured', 'random_unstructured', 'random_structured', 'ln_structured']
for local_prune_type in local_prune_type_list:
selective_layers = []
selective_layers.append('lm_head.decoder')
for layer_index in range(len(selective_layers)):
# Incase we want some stats on no of parameters
# get_total_parameters(model)
model = AutoModelForMaskedLM.from_pretrained(checkpoint)
linear_layers_list = instantiate_model(model, selective_layers)
print(linear_layers_list)
# Local pruning
local_pruning(model, linear_layers_list, layer_index, prune_percentage=prune_percentage, prune_type=local_prune_type,n=1)
model.to(device)
inference(model, tokenizer, device, train_dataloader, dataset_name, local_prune_type, prune_percentage, layer_index)