Adatapted from SMARTAgent on May 24th 2021
A closed-loop neuronal network model that senses dynamic visual information from the AIgame enviroment and learns to produce actions that maximize game reward through spike-timing dependent reinforcement learning.
This project is related to the paper:
Training spiking neuronal networks to perform motor control using reinforcement and evolutionary learning
Hasegan D, Deible M, Earl C, D'Onofrio D, Hazan H, Anwar H, Neymotin SA.
bioRxiv: https://doi.org/10.1101/2021.11.20.469405
Published in: TODO
-
config.json
the current configuration that we will work with. This gets picked by default -
requirements.txt
the pip packages needed for installation -
notebooks/
folder with jupyter notebooks that are used for exploration and data analysis before translating into tools -
results/
default place for storing the resulting trained models -
neurosim/
the codemain.py
main extry point to the code (run training, evaluation, contiuation)sim.py
the NetPyNE model setup and runcritic.py
the critic in the actor-critic model for RL (provides reward/punishment)aigame.py
wrapper for OpenAI gymgame_interface.py
simple interface between the game and firing rates or receptive fieldsconf.py
utility for configuration filesutils/
folder for helper functionstools/
folder of evaluation toolscells/
folder for defined cells
-
mod/
the NEURON objects that will get compiled bynvrnivmodl
-
x86_64/
the compiled NEURON objects
install python >3.7 (previous versions might not work)
install ffmpeg
brew install ffmpeg
create a virtual environment
virtualenv -p python3 venv
activate the environment
source ./venv/bin/activate
export PYTHONPATH="`pwd`"
install all dependencies:
pip install -r requirements.txt
Compile mod files
nrnivmodl mod
Running this on a VM on gcloud
EMAIL="..."
ssh-keygen -t ed25519 -C $EMAIL
cat .ssh/id_ed25519.pub
# Copy the pub key here: https://github.com/settings/keys
git clone [email protected]:NathanKlineInstitute/netpyne-STDP.git
cd netpyne-STDP/
then run the whole script below
git config --global alias.co checkout
git config --global alias.br branch
git config --global alias.ci commit
git config --global alias.st status
git config --global user.name "$USER"
git config --global user.email $EMAIL
# install pacakges
sudo apt-get update
yes | sudo apt-get install python3.7 python3.7-distutils cmake build-essential libz-dev ffmpeg
# install pip and create the environment
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
python3.7 get-pip.py
python3.7 -m pip install virtualenv
python3.7 -m virtualenv venv
# activate
source ./venv/bin/activate
export PYTHONPATH="`pwd`"
alias py=python3
# install requirements
pip install -r requirements.txt
# compile neuron
nrnivmodl mod
Then run commands with screen to avoid network disconnecting
screen -L -Logfile logfile.log ...
python3 neurosim/main.py run
Check notebooks:
jupyter notebook
Run tests:
pytest tests
python3 neurosim/train_es.py train
Or continue training model
python3 neurosim/train_es.py continue results/20210907-ES1500it --iterations 500
Evaluate the model before and after training:
WDIR=results/20210707
py neurosim/main.py eval $WDIR --resume_tidx=0
py neurosim/main.py eval $WDIR --resume_tidx=-1 --duration 250
# To evaluate and use for poster/presentation:
py neurosim/main.py eval $WDIR --resume_tidx=-1 \
--env-seed 42 \
--eps-duration 105 \
--save-data
# To evaluate one specific episode over and over again
# for EPISODE_ID in 74 68 77 55 31 50 32 10 19 59 22
for EPISODE_ID in 74 68 77 55 31 50 32 10 19 59 22
do
py neurosim/main.py eval $WDIR --resume_tidx=-1 \
--env-seed 42 \
--eps-duration 25 \
--save-data \
--saveEnvObs \
--rerun-episode ${EPISODE_ID}
done
# To display the model run
py neurosim/main.py eval $WDIR --resume_tidx=-1 --display --env-seed 42 \
--eps-duration 105
Optional: Maybe evaluate in depth
py neurosim/main.py eval $WDIR --resume_best_training --env-seed 42 \
--eps-duration 105
for ((i=8;i>=0;i-=1)); do
echo "Evaluating at $i"
py neurosim/main.py eval $WDIR --resume_tidx=$i --env-seed 42 \
--eps-duration 105 \
--save-data
done
Evaluate how the model is responding to one neuron firing:
py neurosim/main.py eval $WDIR --resume_tidx=-1 --eps-duration 2 \
--mock-env
# For a more comprehensive approach to run on all steps
mkdir $WDIR/evalmockAllStates
STEPS=20
for ((i=0;i<$STEPS;i+=1)); do
echo "Evaluating Step $i / $STEPS"
py neurosim/main.py eval $WDIR --resume_tidx=-1 --eps-duration 1 \
--mock-env 2 \
--duration 1300 \
--mock_curr_step $i \
--mock_total_steps $STEPS \
--outdir $WDIR/evalmockAllStates/step_${i}
done
Run all evaluation:
WDIR=results/20210907
py neurosim/tools/evaluate.py medians $WDIR
py neurosim/tools/evaluate.py rewards $WDIR
py neurosim/tools/evaluate.py rewards-vals $WDIR
py neurosim/tools/evaluate.py eval-motor $WDIR
py neurosim/tools/evaluate.py eval-moves $WDIR --unk_moves
py neurosim/tools/evaluate.py eval-moves $WDIR --abs_move_diff
py neurosim/tools/evaluate.py weights-adj $WDIR
py neurosim/tools/evaluate.py weights-adj $WDIR --index 0
py neurosim/tools/evaluate.py weights-diffs $WDIR
py neurosim/tools/evaluate.py weights-diffs $WDIR --relative
py neurosim/tools/evaluate.py weights-ch $WDIR
py neurosim/tools/evaluate.py weights-ch $WDIR --separate_movement True
py neurosim/tools/evaluate.py frequency $WDIR --timestep 10000
py neurosim/tools/evaluate.py variance $WDIR
py neurosim/tools/evaluate.py boxplot $WDIR
py neurosim/tools/evaluate.py perf $WDIR
Continue training from a already trained model:
WDIR=results/...
py neurosim/main.py continue $WDIR --duration 5000
# note: this script needs more care on how to integrate with different/new params
# more detailed example:
py neurosim/main.py continue results/20210801-1000it-1eps/ \
--copy-from-config config.json \
--copy-fields critic,sim,STDP-RL \
--duration 100 \
--index=3
py neurosim/tools/critic.py eval \
--best-wdir results/20210801-1000it-1eps/500s-evaluation_10 \
--critic-config results/20210801-1000it-1eps/backupcfg_sim.json \
--verbose
py neurosim/tools/critic.py eval \
--best-wdir results/20210801-1000it-1eps/500s-evaluation_10 \
--critic-config config.json \
--verbose
py neurosim/tools/critic.py hpsearch \
--best-wdir results/20210801-1000it-1eps/500s-evaluation_10 \
--critic-config config.json
WDIR=results/seedrun_m1-2022-01-16
mkdir $WDIR
python3 neurosim/main.py seedrun $WDIR --conn-seed 2542033
for ((i=0;i<20;i+=1)); do
echo "Running $i th seed"
python3 neurosim/main.py seedrun $WDIR --fnjson $WDIR/config.json
done
Evaluate seedrun:
python3 neurosim/tools/eval_seedrun.py analyze $WDIR
Continue seedrun:
cp results/hpsearch-2022-01-11/best/1_run_2371/backupcfg_sim.json results/seedrun_m1-2022-01-16/config2.json
py neurosim/main.py cont_seedrun $WDIR/run_seed1139028 $WDIR/config2.json
Change hpsearch_config.json
to the needed params
WDIR=results/hpsearch-2021-09-13
# Just for setup:
py neurosim/hpsearch.py sample $WDIR --just-init
# run one sample
py neurosim/hpsearch.py sample $WDIR
# run 100 samples
for ((i=0;i<100;i+=1)); do
echo "Sampling $i th run"
time py neurosim/hpsearch.py sample $WDIR
done
Alternatively you can run HPSearch with random networks instead:
# run one sample with a random initialization
py neurosim/hpsearch.py sample $WDIR --random_network
# run 100 samples
for ((i=0;i<100;i+=1)); do
echo "Sampling $i th run"
time py neurosim/hpsearch.py sample $WDIR --random_network
done
Results are posted in $WDIR/results.tsv
, then you can analyze with:
py neurosim/tools/eval_hpsearch.py analyze $WDIR
py neurosim/tools/eval_hpsearch.py combine $WDIR
STDP model process:
WDIR=results/hpsearch-2021-09-01/run_106756
WDIR=results/hpsearch-2021-09-04/best/1_run_2703
WDIR=results/hpsearch-2021-09-06/best/1_run_168
ES model:
WDIR=results/20210907-ES1500it
Use this on the latest step of the model
py neurosim/tools/eval_multimodel.py trace $WDIR
Beware: this specific code was used for previous versions.
New and updated plot-generation scripts are found in the logs of the individual seedruns: seedrun_m1-2022-01-16
and seedrun_evol-2022-02-20
.
BSTDP_WDIR=results/hpsearch-2021-09-06/best/1_run_168
BEVOL_WDIR=results/20210907-ES1500it
BCOMB_WDIR=results/evol-stdp-rl
BEFORE_CONF="Before Training:${BEVOL_WDIR}:0"
BSTDP_CONF="After STDP-RL Training:${BSTDP_WDIR}:-1"
BEVOL_CONF="After EVOL Training:${BEVOL_WDIR}:-1"
BCOMB_CONF="After EVOL+STDP-RL Training:${BCOMB_WDIR}:-1"
OUTDIR=results/final-results-2021-09
py neurosim/tools/eval_multimodel.py boxplot "${BEFORE_CONF},${BSTDP_CONF},${BEVOL_CONF},${BCOMB_CONF}" --outdir=$OUTDIR
py neurosim/tools/evaluate.py frequency ${BSTDP_WDIR}/evaluation_8 --timestep 10000
py neurosim/tools/evaluate.py frequency ${BEVOL_WDIR}/evaluation_15 --timestep 10000
py neurosim/tools/evaluate.py frequency ${BEVOL_WDIR}/evaluation_0 --timestep 10000
py neurosim/tools/evaluate.py variance ${BSTDP_WDIR}/evaluation_8
py neurosim/tools/evaluate.py variance ${BEVOL_WDIR}/evaluation_15
py neurosim/tools/evaluate.py variance ${BEVOL_WDIR}/evaluation_0
py neurosim/tools/eval_multimodel.py spk-freq "${BEFORE_CONF},${BSTDP_CONF},${BEVOL_CONF}" --outdir=$OUTDIR
py neurosim/tools/eval_multimodel.py train-perf $BSTDP_WDIR --wdir-name "STDP-RL Model" --outdir=$OUTDIR
py neurosim/tools/eval_multimodel.py train-perf $BEVOL_WDIR --wdir-name "ES Model" --outdir=$OUTDIR
py neurosim/tools/eval_multimodel.py train-perf $BEVOL_WDIR --wdir-name "ES Model" --outdir=$OUTDIR --merge-es
py neurosim/tools/eval_multimodel.py train-perf-comb "${BSTDP_CONF},${BEVOL_CONF}" --outdir=$OUTDIR
py neurosim/tools/eval_multimodel.py train-unk-moves "${BSTDP_CONF},${BEVOL_CONF}" --outdir=$OUTDIR
py neurosim/tools/eval_multimodel.py select-eps \
${BSTDP_WDIR}/evaluation_8,${BEVOL_WDIR}/evaluation_15
py neurosim/tools/eval_multimodel.py eval-selected-eps \
${BSTDP_CONF},${BEVOL_CONF},${BCOMB_CONF} \
--outdir=$OUTDIR \
--sort-by "68,74,10,19,55,32,31,22,77"
# Weights:
py neurosim/tools/eval_multimodel_weights.py changes \
"${BSTDP_CONF},${BEVOL_CONF}" --outdir=$OUTDIR
# Observation Space Receptive Fields
py neurosim/tools/eval_obsspace.py rf $OUTDIR