-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcreate_gwas_sig_file.py
74 lines (61 loc) · 3.07 KB
/
create_gwas_sig_file.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
#!/usr/bin/env python3
__author__ = 'konradk'
import argparse
from pprint import pprint
from gnomad.utils import *
from ukbb_common import *
threshold: float = 1e-6
gwas_sig_threshold = 5e-8
def main(args):
hl.init(log='/create_gwas_sig.log')
if args.create_gwas_sig_file:
hts = []
for sex in ('both_sexes', 'female', 'male'):
mt = hl.read_matrix_table(get_ukb_sumstats_mt_path(sex=sex))
entry_fields = list(mt.entry)
col_fields = list(mt.col)
mt = mt.filter_entries((mt.pval <= threshold) & ~mt.low_confidence_variant)
hts.append(mt.entries().annotate(sex=sex).naive_coalesce(1000).persist())
ht = hts[0].union(*hts[1:]).key_by()
# TODO: fix key, add biomarker data
ht = ht.select(chrom=ht.locus.contig, pos=ht.locus.position, ref=ht.alleles[0], alt=ht.alleles[1], rsid=ht.rsid,
sex=ht.sex, AF=ht.AF, consequence=ht.consequence, info=ht.info,
**{f: ht[f] for f in entry_fields}, **{f: ht[f] for f in col_fields})
ht = ht.checkpoint(get_gwas_sig_path(), overwrite=args.overwrite)
ht.export(get_gwas_sig_path('tsv.bgz'))
ht.drop('PHESANT_transformation', 'notes', 'ytx', 'tstat', 'rsid').export('/tmp/data.tsv.bgz')
if args.create_top_p_file:
hts = []
for sex in ('both_sexes', 'female', 'male'):
mt = hl.read_matrix_table(get_ukb_sumstats_mt_path(sex=sex))
mt = mt.filter_entries(~mt.low_confidence_variant)
ht = get_top_p_from_mt(mt, -hl.abs(mt.tstat)).annotate(sex=sex)
hts.append(ht.filter(hl.is_defined(ht.pval)).naive_coalesce(1000).persist())
ht = hts[0].union(*hts[1:])
ht = ht.checkpoint(get_top_p_path(), overwrite=args.overwrite)
row_fields = list(ht.row)
ht = ht.key_by()
ht = ht.select(chrom=ht.locus.contig, pos=ht.locus.position, ref=ht.alleles[0], alt=ht.alleles[1], *row_fields)
ht.export(get_top_p_path('tsv.bgz'))
ht = hl.read_table(get_top_p_path())
print(f'Found {ht.aggregate(hl.agg.count_where((ht.pval < 5e-8) & (ht.sex == "both_sexes")))} significant hits '
f'out of {int(ht.count() / 3)} variants.')
ht = hl.read_table(get_gwas_sig_path())
ht = ht.filter(ht.pval < gwas_sig_threshold)
pprint(ht.aggregate(hl.struct(
total_associations=hl.agg.count(),
unique_phenos=hl.len(hl.agg.collect_as_set(ht.phenotype))
)))
ht = ht.group_by(ht.phenotype).aggregate(n_sig=hl.agg.count())
ht.order_by(-ht.n_sig).show()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--overwrite', help='Overwrite everything', action='store_true')
parser.add_argument('--create_gwas_sig_file', action='store_true')
parser.add_argument('--create_top_p_file', action='store_true')
parser.add_argument('--slack_channel', help='Send message to Slack channel/user', default='@konradjk')
args = parser.parse_args()
if args.slack_channel:
try_slack(args.slack_channel, main, args)
else:
main(args)