-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcopilot.py
84 lines (67 loc) · 2.53 KB
/
copilot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# Can you generate a simple deep learning example using Pytorch?
import torch
import torch.nn as nn # Neural Network
import torch.nn.functional as F # Neural Network Functions
import torch.optim as optim # Optimization
# Define the Neural Network
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# 1 input image channel, 6 output channels, 3x3 square convolution
# kernel
self.conv1 = nn.Conv2d(1, 6, 3)
self.conv2 = nn.Conv2d(6, 16, 3)
# an affine operation: y = Wx + b
self.fc1 = nn.Linear(16 * 6 * 6, 120) # 6*6 from image dimension
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
# Max pooling over a (2, 2) window
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
# If the size is a square you can only specify a single number
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = x.view(-1, self.num_flat_features(x))
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def num_flat_features(self, x):
size = x.size()[1:] # all dimensions except the batch dimension
num_features = 1
for s in size:
num_features *= s
return num_features
net = Net()
print(net)
# Define the Loss Function
criterion = nn.CrossEntropyLoss()
# Define the Optimizer
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
# Train the Network
for epoch in range(2): # loop over the dataset multiple times
running_loss = 0.0 # Initialize the loss
for i, data in enumerate(trainloader, 0): # Loop over the data
# Get the inputs
inputs, labels = data
# Zero the parameter gradients
optimizer.zero_grad()
# Forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
# Update the weights
optimizer.step()
# Print statistics
running_loss += loss.item()
model.eval()
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % ( 100 * correct / total))
# Save the model
PATH = './cifar_net.pth'
torch.save(net.state_dict(), PATH)