-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPPO.py
197 lines (158 loc) · 6.71 KB
/
PPO.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import os
import numpy as np
import torch as T
import torch.nn as nn
import torch.optim as optim
from torch.distributions.categorical import Categorical
class PPOMemory:
def __init__(self, batch_size):
self.states = []
self.probs = []
self.vals = []
self.actions = []
self.rewards = []
self.dones = []
self.batch_size = batch_size
def generate_batches(self):
n_states = len(self.states)
batch_start = np.arange(0, n_states, self.batch_size)
indices = np.arange(n_states, dtype=np.int64)
np.random.shuffle(indices)
batches = [indices[i:i+self.batch_size] for i in batch_start]
return np.array(self.states),\
np.array(self.actions),\
np.array(self.probs),\
np.array(self.vals),\
np.array(self.rewards),\
np.array(self.dones),\
batches
def store_memory(self, state, action, probs, vals, reward, done):
self.states.append(state)
self.actions.append(action)
self.probs.append(probs)
self.vals.append(vals)
self.rewards.append(reward)
self.dones.append(done)
def clear_memory(self):
self.states = []
self.probs = []
self.actions = []
self.rewards = []
self.dones = []
self.vals = []
class ActorNetwork(nn.Module):
def __init__(self, n_actions, input_dims, alpha,
fc1_dims=256, fc2_dims=256, chkpt_dir='tmp/ppo'):
super(ActorNetwork, self).__init__()
self.checkpoint_file = os.path.join(chkpt_dir, 'actor_torch_ppo')
self.actor = nn.Sequential(
nn.Linear(*input_dims, fc1_dims),
nn.ReLU(),
nn.Linear(fc1_dims, fc2_dims),
nn.ReLU(),
nn.Linear(fc2_dims, n_actions),
nn.Softmax(dim=-1)
)
self.optimizer = optim.Adam(self.parameters(), lr=alpha)
self.device = T.device('cuda:0' if T.cuda.is_available() else 'cpu')
self.to(self.device)
def forward(self, state):
dist = self.actor(state)
dist = Categorical(dist)
return dist
def save_checkpoint(self):
T.save(self.state_dict(), self.checkpoint_file)
def load_checkpoint(self):
self.load_state_dict(T.load(self.checkpoint_file))
class CriticNetwork(nn.Module):
def __init__(self, input_dims, alpha, fc1_dims=256, fc2_dims=256,
chkpt_dir='tmp/ppo'):
super(CriticNetwork, self).__init__()
self.checkpoint_file = os.path.join(chkpt_dir, 'critic_torch_ppo')
self.critic = nn.Sequential(
nn.Linear(*input_dims, fc1_dims),
nn.ReLU(),
nn.Linear(fc1_dims, fc2_dims),
nn.ReLU(),
nn.Linear(fc2_dims, 1)
)
self.optimizer = optim.Adam(self.parameters(), lr=alpha)
self.device = T.device('cuda:0' if T.cuda.is_available() else 'cpu')
self.to(self.device)
def forward(self, state):
value = self.critic(state)
return value
def save_checkpoint(self):
T.save(self.state_dict(), self.checkpoint_file)
def load_checkpoint(self):
self.load_state_dict(T.load(self.checkpoint_file))
class Agent:
def __init__(self, n_actions, input_dims, gamma=0.99, alpha=0.0003, gae_lambda=0.95,
policy_clip=0.2, batch_size=64, n_epochs=10):
self.gamma = gamma
self.policy_clip = policy_clip
self.n_epochs = n_epochs
self.gae_lambda = gae_lambda
self.actor = ActorNetwork(n_actions, input_dims, alpha)
self.critic = CriticNetwork(input_dims, alpha)
self.memory = PPOMemory(batch_size)
def remember(self, state, action, probs, vals, reward, done):
self.memory.store_memory(state, action, probs, vals, reward, done)
def save_models(self):
print('... saving models ...')
self.actor.save_checkpoint()
self.critic.save_checkpoint()
def load_models(self):
print('... loading models ...')
self.actor.load_checkpoint()
self.critic.load_checkpoint()
def choose_action(self, observation):
state = T.tensor([observation], dtype=T.float).to(self.actor.device)
dist = self.actor(state)
value = self.critic(state)
action = dist.sample()
probs = T.squeeze(dist.log_prob(action)).item()
action = T.squeeze(action).item()
value = T.squeeze(value).item()
return action, probs, value
def learn(self):
for _ in range(self.n_epochs):
state_arr, action_arr, old_prob_arr, vals_arr,\
reward_arr, dones_arr, batches = \
self.memory.generate_batches()
values = vals_arr
advantage = np.zeros(len(reward_arr), dtype=np.float32)
for t in range(len(reward_arr)-1):
discount = 1
a_t = 0
for k in range(t, len(reward_arr)-1):
a_t += discount*(reward_arr[k] + self.gamma*values[k+1]*\
(1-int(dones_arr[k])) - values[k])
discount *= self.gamma*self.gae_lambda
advantage[t] = a_t
advantage = T.tensor(advantage).to(self.actor.device)
values = T.tensor(values).to(self.actor.device)
for batch in batches:
states = T.tensor(state_arr[batch], dtype=T.float).to(self.actor.device)
old_probs = T.tensor(old_prob_arr[batch]).to(self.actor.device)
actions = T.tensor(action_arr[batch]).to(self.actor.device)
dist = self.actor(states)
critic_value = self.critic(states)
critic_value = T.squeeze(critic_value)
new_probs = dist.log_prob(actions)
prob_ratio = new_probs.exp() / old_probs.exp()
#prob_ratio = (new_probs - old_probs).exp()
weighted_probs = advantage[batch] * prob_ratio
weighted_clipped_probs = T.clamp(prob_ratio, 1-self.policy_clip,
1+self.policy_clip)*advantage[batch]
actor_loss = -T.min(weighted_probs, weighted_clipped_probs).mean()
returns = advantage[batch] + values[batch]
critic_loss = (returns-critic_value)**2
critic_loss = critic_loss.mean()
total_loss = actor_loss + 0.5*critic_loss
self.actor.optimizer.zero_grad()
self.critic.optimizer.zero_grad()
total_loss.backward()
self.actor.optimizer.step()
self.critic.optimizer.step()
self.memory.clear_memory()