-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathBoolean_model.py
214 lines (192 loc) · 8.17 KB
/
Boolean_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import numpy as np
import time
import string
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk.stem import WordNetLemmatizer
import psri.structures as st
class Boolean_model():
""" Boolean model for unranked information retrieval """
# or -> ||
# and -> &&
# not -> !!
stop_words = list(set(stopwords.words("english"))) # nltk stopwords
lemmatizer = WordNetLemmatizer() # nltk lemmatizer
lemmatizer.lemmatize('', pos ='v') # initialize the lemmatizer (because of the lazy load)
def __init__(self, collection= 'cranfield'):
self.start_time = time.time()
self.collection = st.datasets[collection]
self.collection.load_files()
if not self.collection.loaded_metadata:
self.collection.process_docs()
self.collection.load_files()
def query(self, query_text, ranking=30):
"""
Query the indexed documents using a boolean model
"""
start_time = time.time()
# Tokenize query
query_tokens = self.tokenize_query(query_text)
if len(query_tokens) == 0:
return []
if '&&' in query_tokens or '||' in query_tokens or '!!' in query_tokens:
# Parse the query
query_vector = self.parse_query(query_tokens)
# Evaluate query against already processed documents as a boolean query
ranked_docs = self.evaluate_bool_query(query_vector)
else:
query_tf = self.tf_query(query_tokens)
# Evaluate query against already processed documents as a special query
ranked_docs = self.evaluate_query(query_tokens, query_tf)
# Return only non-0-relevance docs
i = 0
while i < len(ranked_docs.values()) and list(ranked_docs.values())[i] > 0:
i+=1
if i >=ranking: break
if i < ranking: ranking = i
index_list = list(ranked_docs.keys())[0:ranking]
docs_to_print = self.collection.docs_ranking(ranking, index_list)
return docs_to_print
def tokenize_query(self, query):
"""
Preprocesses the query given as input.
Converts to lower case, removes the punctuations, splits on whitespaces and removes stopwords.
"""
# q = "t1 && t2 && t3 || t1 && t2 && !! t4"
text = query.lower()
# Remove numbers
text = text.translate(str.maketrans('', '', string.digits))
# remove punctuation
text = text.translate(str.maketrans(st.Collection.punctuations(boolean=True), ' '*len(st.Collection.punctuations(boolean=True))))
# parse the !, &, |
text = self.check_punct(text)
# split on whitespaces to generate tokens
word_tokens = text.split()
# remove stopwords function
filtered_text = [word for word in word_tokens if word not in Boolean_model.stop_words]
# lemmatize string
lemmas = [Boolean_model.lemmatizer.lemmatize(word, pos ='v') for word in filtered_text]
return lemmas
def check_punct(self, text):
result = ''
i=0
while i < len(text) and i>=0:
if i == len(text) - 1:
if text[i] == '!' or text[i] == '&' or text[i] == '|':
result += ' '
else:result += text[i]
else:
if text[i] == '!':
if not text[i+1] == '!':
result += ' '
else:
result += '!!'
i+=1
elif text[i] == '&':
if not text[i+1] == '&':
result += ' '
else:
result += '&&'
i+=1
elif text[i] == '|':
if not text[i+1] == '|':
result += ' '
else:
result += '||'
i+=1
else:
result += text[i]
i+=1
return result
def tf_query(self, query_tokens):
unique = list(set(query_tokens))
tf_dict = {}
for i in range(len(unique)):
tf_dict[unique[i]] = query_tokens.count(unique[i])
max_freq = np.array(list(tf_dict.values())).max()
if max_freq == 0:
return tf_dict
for i in tf_dict:
tf_dict[i] = tf_dict[i] / max_freq
return tf_dict
def parse_query(self, query_tokens):
vector = []
cc = []
# parsing the query into a list of conjunctive components
i=0
while i < len(query_tokens) and i>=0:
if i == 0:
if query_tokens[i] == '&&' or query_tokens[i] == '||' :
print('wrong query')
return
if (i == len(query_tokens) - 1):
if query_tokens[i] == '&&' or query_tokens[i] == '||' or query_tokens[i] == '!!' :
print('wrong query')
return
cc.append(st.Bool_node(query_tokens[i]))
vector.append(cc)
i+=1
else:
if query_tokens[i] == '||':
if query_tokens[i+1] == '&&' or query_tokens[i+1] == '||':
print('wrong query')
return
vector.append(cc)
cc = []
elif query_tokens[i] == '!!':
if query_tokens[i+1] == '&&' or query_tokens[i+1] == '||' or query_tokens[i+1] == '!!' :
print('wrong query')
return
cc.append(st.Bool_Not_node(query_tokens[i+1]))
i+=1
if (i == len(query_tokens) - 1):
vector.append(cc)
elif query_tokens[i] == '&&':
if query_tokens[i+1] == '&&' or query_tokens[i+1] == '||':
print('wrong query')
return
else:
cc.append(st.Bool_node(query_tokens[i]))
i+=1
return vector
def evaluate_bool_query(self, query_cc_list):
"""
Evaluates the query against the corpus
"""
doc_likehood = {d.id:0 for d in self.collection.documents_list}
for d in range(1,len(self.collection.documents_list)+1):
# for every document check if it has any whole conjunctive component
for cc in query_cc_list:
rel = True
for t in cc:
ds = self.collection.terms_dict.get(t.node_value())
if ds:
if type(t) == st.Bool_Not_node: # negative literal
if d in ds:
rel = False
else: # positive literal
if not d in ds:
rel = False
else: # term not in collection
rel = False
if not rel:
break # if it lacks a term, it won't be relevant ( 0 and x = 0)
doc_likehood[d] = int(rel) #if True:1, if False:0
if rel:
break # if it's already relevant don't check the others cc ( 1 or x = 1)
ranked_doc = dict(sorted(doc_likehood.items(), key=lambda item: item[1], reverse=True))
return ranked_doc
def evaluate_query(self, query_tokens, query_tf):
"""
Evaluates the query against the corpus
"""
doc_likehood = {d.id:0 for d in self.collection.documents_list}
for t in query_tokens: # intersection of relevant documents per term
term_value = query_tf.get(t)
if not term_value: term_value = 0
ds = self.collection.terms_dict.get(t)
if ds:
for d in ds:
doc_likehood[d] += term_value
ranked_doc = dict(sorted(doc_likehood.items(), key=lambda item: item[1], reverse=True))
return ranked_doc