-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathCreateNetwork.py
64 lines (53 loc) · 2.27 KB
/
CreateNetwork.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import pandas as pd
import ast
import networkx as nx
import datetime
from joblib import Parallel, delayed
from tqdm.auto import tqdm
import numpy as np
# settings (define the path to the tweets dataset)
delta = 15
path_to_tweets = "./first_week.csv"
n_jobs = 8
'''
Function to compute the edges on a slice of the tweets dataframe.
Returns the corresponding list of edges
'''
def edges_subset(split_df, delta=15):
# filter by time
edges = []
for _, post in split_df.iterrows():
sub_df = df.loc[((df["time"]) > post["time"] - datetime.timedelta(minutes=delta)) &
(df["time"] < post["time"])].copy(deep=True)
sub_df["connected"] = sub_df["hashtag"].apply(lambda x: len(set(x).intersection(post["hashtag"])))
sub_df = sub_df.loc[sub_df["connected"] > 0]
edges = edges + [(row["id"], post["id"], row["connected"]) for _, row in sub_df.iterrows()]
return edges
# LOAD DATA
df = pd.read_csv(path_to_tweets, lineterminator='\n')
df["hashtag"] = df["hashtag"].apply(lambda x: list(set(ast.literal_eval(x))))
df["time"] = pd.to_datetime(df["time"])
# COMPUTE EDGES using Parallel jobs. It works on dataframe splits
all_edges = Parallel(n_jobs=n_jobs)(delayed(edges_subset)(split_df, delta=delta) for split_df in tqdm(np.array_split(df, 100)))
all_edges = [y for x in all_edges for y in x]
# CREATE GRAPH
graph = nx.Graph()
# add weighted edges
graph.add_weighted_edges_from(all_edges)
# add isolated nodes
isolated = set(df["id"]).difference(list(graph.nodes))
graph.add_nodes_from(isolated)
# add node attributes
nx.set_node_attributes(graph, df.loc[df["id"].isin(list(graph.nodes))].set_index("id").to_dict(orient="index"))
print("NODES:", len(graph.nodes))
print("EDGES:", len(graph.edges))
print("DENSITY:", nx.density(graph))
print("NUM CONNECTED COMPONENTS:", len([len(c) for c in sorted(nx.connected_components(graph), key=len, reverse=True)]))
print("MAX CONNECTED COMPONENT:", max([len(c) for c in sorted(nx.connected_components(graph), key=len, reverse=True)]))
# check
if "/" in path_to_tweets:
filename = path_to_tweets.split("/")[-1].split(".")[0]
else:
filename = path_to_tweets.split("\\")[-1].split(".")[0]
# protocol=4 ensures compatibility with older Python versions
nx.write_gpickle(graph, "network_tweets.pickle", protocol=4)