-
Notifications
You must be signed in to change notification settings - Fork 88
/
Copy pathtest.py
208 lines (174 loc) · 8.77 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
from segment_anything import sam_model_registry
import torch.nn as nn
import torch
import argparse
import os
from utils import FocalDiceloss_IoULoss, generate_point, save_masks
from torch.utils.data import DataLoader
from DataLoader import TestingDataset
from metrics import SegMetrics
import time
from tqdm import tqdm
import numpy as np
from torch.nn import functional as F
import logging
import datetime
import cv2
import random
import csv
import json
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--work_dir", type=str, default="workdir", help="work dir")
parser.add_argument("--run_name", type=str, default="sammed", help="run model name")
parser.add_argument("--batch_size", type=int, default=1, help="batch size")
parser.add_argument("--image_size", type=int, default=256, help="image_size")
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument("--data_path", type=str, default="data_demo", help="train data path")
parser.add_argument("--metrics", nargs='+', default=['iou', 'dice'], help="metrics")
parser.add_argument("--model_type", type=str, default="vit_b", help="sam model_type")
parser.add_argument("--sam_checkpoint", type=str, default="pretrain_model/sam-med2d_b.pth", help="sam checkpoint")
parser.add_argument("--boxes_prompt", type=bool, default=True, help="use boxes prompt")
parser.add_argument("--point_num", type=int, default=1, help="point num")
parser.add_argument("--iter_point", type=int, default=1, help="iter num")
parser.add_argument("--multimask", type=bool, default=True, help="ouput multimask")
parser.add_argument("--encoder_adapter", type=bool, default=True, help="use adapter")
parser.add_argument("--prompt_path", type=str, default=None, help="fix prompt path")
parser.add_argument("--save_pred", type=bool, default=False, help="save reslut")
args = parser.parse_args()
if args.iter_point > 1:
args.point_num = 1
return args
def to_device(batch_input, device):
device_input = {}
for key, value in batch_input.items():
if value is not None:
if key=='image' or key=='label':
device_input[key] = value.float().to(device)
elif type(value) is list or type(value) is torch.Size:
device_input[key] = value
else:
device_input[key] = value.to(device)
else:
device_input[key] = value
return device_input
def postprocess_masks(low_res_masks, image_size, original_size):
ori_h, ori_w = original_size
masks = F.interpolate(
low_res_masks,
(image_size, image_size),
mode="bilinear",
align_corners=False,
)
if ori_h < image_size and ori_w < image_size:
top = torch.div((image_size - ori_h), 2, rounding_mode='trunc') #(image_size - ori_h) // 2
left = torch.div((image_size - ori_w), 2, rounding_mode='trunc') #(image_size - ori_w) // 2
masks = masks[..., top : ori_h + top, left : ori_w + left]
pad = (top, left)
else:
masks = F.interpolate(masks, original_size, mode="bilinear", align_corners=False)
pad = None
return masks, pad
def prompt_and_decoder(args, batched_input, ddp_model, image_embeddings):
if batched_input["point_coords"] is not None:
points = (batched_input["point_coords"], batched_input["point_labels"])
else:
points = None
with torch.no_grad():
sparse_embeddings, dense_embeddings = ddp_model.prompt_encoder(
points=points,
boxes=batched_input.get("boxes", None),
masks=batched_input.get("mask_inputs", None),
)
low_res_masks, iou_predictions = ddp_model.mask_decoder(
image_embeddings = image_embeddings,
image_pe = ddp_model.prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
multimask_output=args.multimask,
)
if args.multimask:
max_values, max_indexs = torch.max(iou_predictions, dim=1)
max_values = max_values.unsqueeze(1)
iou_predictions = max_values
low_res = []
for i, idx in enumerate(max_indexs):
low_res.append(low_res_masks[i:i+1, idx])
low_res_masks = torch.stack(low_res, 0)
masks = F.interpolate(low_res_masks,(args.image_size, args.image_size), mode="bilinear", align_corners=False,)
return masks, low_res_masks, iou_predictions
def is_not_saved(save_path, mask_name):
masks_path = os.path.join(save_path, f"{mask_name}")
if os.path.exists(masks_path):
return False
else:
return True
def main(args):
print('*'*100)
for key, value in vars(args).items():
print(key + ': ' + str(value))
print('*'*100)
model = sam_model_registry[args.model_type](args).to(args.device)
criterion = FocalDiceloss_IoULoss()
test_dataset = TestingDataset(data_path=args.data_path, image_size=args.image_size, mode='test', requires_name=True, point_num=args.point_num, return_ori_mask=True, prompt_path=args.prompt_path)
test_loader = DataLoader(dataset=test_dataset, batch_size=1, shuffle=False, num_workers=4)
print('Test data:', len(test_loader))
test_pbar = tqdm(test_loader)
l = len(test_loader)
model.eval()
test_loss = []
test_iter_metrics = [0] * len(args.metrics)
test_metrics = {}
prompt_dict = {}
for i, batched_input in enumerate(test_pbar):
batched_input = to_device(batched_input, args.device)
ori_labels = batched_input["ori_label"]
original_size = batched_input["original_size"]
labels = batched_input["label"]
img_name = batched_input['name'][0]
if args.prompt_path is None:
prompt_dict[img_name] = {
"boxes": batched_input["boxes"].squeeze(1).cpu().numpy().tolist(),
"point_coords": batched_input["point_coords"].squeeze(1).cpu().numpy().tolist(),
"point_labels": batched_input["point_labels"].squeeze(1).cpu().numpy().tolist()
}
with torch.no_grad():
image_embeddings = model.image_encoder(batched_input["image"])
if args.boxes_prompt:
save_path = os.path.join(args.work_dir, args.run_name, "boxes_prompt")
batched_input["point_coords"], batched_input["point_labels"] = None, None
masks, low_res_masks, iou_predictions = prompt_and_decoder(args, batched_input, model, image_embeddings)
points_show = None
else:
save_path = os.path.join(f"{args.work_dir}", args.run_name, f"iter{args.iter_point if args.iter_point > 1 else args.point_num}_prompt")
batched_input["boxes"] = None
point_coords, point_labels = [batched_input["point_coords"]], [batched_input["point_labels"]]
for iter in range(args.iter_point):
masks, low_res_masks, iou_predictions = prompt_and_decoder(args, batched_input, model, image_embeddings)
if iter != args.iter_point-1:
batched_input = generate_point(masks, labels, low_res_masks, batched_input, args.point_num)
batched_input = to_device(batched_input, args.device)
point_coords.append(batched_input["point_coords"])
point_labels.append(batched_input["point_labels"])
batched_input["point_coords"] = torch.concat(point_coords,dim=1)
batched_input["point_labels"] = torch.concat(point_labels, dim=1)
points_show = (torch.concat(point_coords, dim=1), torch.concat(point_labels, dim=1))
masks, pad = postprocess_masks(low_res_masks, args.image_size, original_size)
if args.save_pred:
save_masks(masks, save_path, img_name, args.image_size, original_size, pad, batched_input.get("boxes", None), points_show)
loss = criterion(masks, ori_labels, iou_predictions)
test_loss.append(loss.item())
test_batch_metrics = SegMetrics(masks, ori_labels, args.metrics)
test_batch_metrics = [float('{:.4f}'.format(metric)) for metric in test_batch_metrics]
for j in range(len(args.metrics)):
test_iter_metrics[j] += test_batch_metrics[j]
test_iter_metrics = [metric / l for metric in test_iter_metrics]
test_metrics = {args.metrics[i]: '{:.4f}'.format(test_iter_metrics[i]) for i in range(len(test_iter_metrics))}
average_loss = np.mean(test_loss)
if args.prompt_path is None:
with open(os.path.join(args.work_dir,f'{args.image_size}_prompt.json'), 'w') as f:
json.dump(prompt_dict, f, indent=2)
print(f"Test loss: {average_loss:.4f}, metrics: {test_metrics}")
if __name__ == '__main__':
args = parse_args()
main(args)