-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdraw_samples_TNS_TR.m
152 lines (137 loc) · 5.44 KB
/
draw_samples_TNS_TR.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
function [samples, sqrt_probs] = draw_samples_TNS_TR(G, n, J2)
%draw_samples_TNS_TR Draws samples for TR design matrix as discussed in our
%paper
%
%[samples, sqrt_probs] = draw_samples_TNS_TR(G, sketch, n, no_samp) returns
%no_samp samples organized into a no_samp by N matrix, where N is the
%number of modes of the tensor being decomposed, and a vector sqrt_probs
%which contains the square root of the probability of drawing each of the
%sampled rows. The cell G should contain all the TR core tensors in
%standard order, and the n-th core is the one being solved for. The n-th
%column of samples will just be NaN, since that index is not being sampled.
%
%Note that this function requires some files from the tr-als-sampled
%repo which is available at: https://github.com/OsmanMalik/tr-als-sampled.
%
%This is an adaption of the function draw_samples_TR.m in the repo at
%https://github.com/OsmanMalik/TD-ALS-ES, which is the repo associated with
%the paper [Mal22].
%
%REFERENCES:
% [Mal22] O. A. Malik, More Efficient Sampling for Tensor Decomposition
% With Worst-Case Guarantees. ICML, 2022.
N = length(G);
% Precompute the two terms in Eq (38) in paper [Mal22], but reshaped into
% tensors according to the discussion in Remark 20 of the paper
C1 = cell(1,N);
C1_unf = cell(1,N);
C2 = cell(1,N);
C2_vec = cell(1,N);
for j = 1:N
[R0, I1, R1] = size(G{j});
if j ~= n
% Appropriate tensorization of first term
G_2 = mode_unfolding(G{j}, 2);
temp = khatrirao(G_2.', G_2.');
temp = reshape(temp, R1, R0, R1, R0, I1);
temp = permute(temp, [2 4 5 1 3]);
C1{j} = reshape(temp, R0^2, I1, R1^2);
C1_unf{j} = classical_mode_unfolding(C1{j}, 2);
% Appropriate tensorization of second term
temp = G_2.' * G_2;
temp = reshape(temp, R1, R0, R1, R0);
temp = permute(temp, [2 4 1 3]);
C2{j} = reshape(temp, R0^2, R1^2);
C2_vec{j} = C2{j}(:).';
end
end
% Precompute vectors with order in which to multiply cores.
% For some reason, reinitializing the vector below ends up taking some
% non-negligible amount of time if it's done inside the main loop below, so
% predefining them here instead to avoid that.
idx_order = cell(N,1);
for m = 1:N
idx_order{m} = [m+1:N 1:m-1];
end
% Compute the Phi matrix, appropriately reshape it, and store in
% C2{j}---this is along the same lines as what draw_samples_TR.m does, but
% inside of the 1st for loop above. I.e., we store permuted Phi in with
% (G_[2]^(j))^T G_[2]^(j) matrices.
AmTAm = C2{idx_order{n}(1)};
for j = 2:N-1
AmTAm = AmTAm * C2{idx_order{n}(j)};
end % After loop, AmTAm is (R_n*R_n) by (R_{n-1}*R_{n-1}) in size.
[R0, ~, R1] = size(G{n});
AmTAm = reshape(AmTAm, R1, R1, R0, R0);
AmTAm = permute(AmTAm, [3 1 4 2]);
AmTAm = reshape(AmTAm, R0*R1, R0*R1); % At this point, the quantity AmTAm is equal to what we call A^{\neq m \top} A^{\neq m} in the paper.
Phi = pinv(AmTAm);
temp = reshape(Phi, R0, R1, R0, R1);
temp = permute(temp, [1 3 2 4]);
C2{n} = reshape(temp, R0^2, R1^2);
samples = nan(J2, N); % Each row is a realization (i_j)_{j \neq n}
sqrt_probs = ones(J2, 1); % To store the square root of the probability of each drawn sample
if n == 1
first_idx = 2;
else
first_idx = 1;
end
first_idx_flag = true;
% Main loop for drawing all samples
for samp = 1:J2
% Compute P(i_m | (i_j)_{j < m, ~= n}) for each m (~=n) and draw i_m
for m = first_idx:N
if m == first_idx && ~first_idx_flag
continue
end
if m ~= n
% Compute conditional probability vector
idx = idx_order{m};
if idx(1) >= m || idx(1) == n
M = C2{idx(1)};
else
sz = size(C1{idx(1)}, 1:3);
M = reshape(C1{idx(1)}(:, samples(samp,idx(1)), :), sz(1), sz(3));
end
for j = 2:length(idx)
if idx(j) >= m || idx(j) == n
M = M * C2{idx(j)};
else
sz = size(C1{idx(j)}, 1:3);
M = M * reshape(C1{idx(j)}(:, samples(samp,idx(j)), :), sz(1), sz(3));
end
end
common_terms = M';
common_terms_vec = common_terms(:);
%const = C2_vec{m} * common_terms_vec;
%common_terms_vec = common_terms_vec / const;
prob_m = C1_unf{m} * common_terms_vec;
prob_m = prob_m / sum(prob_m);
if first_idx_flag
% Draw from the vector
if min(prob_m)<0
prob_m = max(prob_m, 0);
end
if sum(isnan(prob_m))>0
error("Probability vector contains NaN")
end
samples(:, m) = randsample(length(prob_m), J2, true, prob_m);
% Update probability vector
sqrt_probs = sqrt(prob_m(samples(:, m)));
first_idx_flag = false;
else
% Draw from the vector
if min(prob_m)<0
prob_m = max(prob_m, 0);
end
if sum(isnan(prob_m))>0
error("Probability vector contains NaN")
end
samples(samp, m) = mt19937ar(prob_m);
% Update probability vector
sqrt_probs(samp) = sqrt_probs(samp) * sqrt(prob_m(samples(samp,m)));
end
end
end
end
end