diff --git a/tests/test_sdba/test_loess.py b/tests/test_sdba/test_loess.py index fb802f3fa..c2d8ff5ec 100644 --- a/tests/test_sdba/test_loess.py +++ b/tests/test_sdba/test_loess.py @@ -1,7 +1,6 @@ +# ruff: noqa: E241 from __future__ import annotations -import logging - import numpy as np import pandas as pd import pytest @@ -13,7 +12,7 @@ _linear_regression, # noqa _loess_nb, # noqa _tricube_weighting, # noqa - loess_smoothing, + loess_smoothing, # noqa ) @@ -74,7 +73,22 @@ def test_loess_smoothing(use_dask, open_dataset): @pytest.mark.parametrize("use_dask", [True, False]) def test_loess_smoothing_nan(use_dask): # create data with one axis full of nan - data = np.random.randn(2, 2, 10) + # (random array taken from np.random.randn) + # fmt: off + data = np.array( + [ + -0.993, -0.980, -0.452, -0.076, 0.447, + 0.389, 2.408, 0.966, -0.793, 0.090, + -0.173, 1.713, -1.579, 0.454, -0.272, + -0.005, -0.926, -2.022, -1.661, -0.493, + -0.643, 0.891, 0.194, 0.086, 0.983, + -1.048, 2.032, 1.174, -0.441, -0.204, + -1.126, 0.933, 1.987, 0.638, 0.789, + 0.767, 0.676, -1.028, 1.422, 0.453, + ] + ) + # fmt: on + data = data.reshape(2, 2, 10) # pylint: disable=too-many-function-args data[0, 0] = [np.nan] * 10 da = xr.DataArray( data, @@ -86,11 +100,4 @@ def test_loess_smoothing_nan(use_dask): assert out.dims == da.dims # check that the output is all nan on the axis with nan in the input - try: - assert np.isnan(out.values[0, 0]).all() - except np.linalg.LinAlgError: - msg = ( - "This has roughly a 1/50,000,000 chance of occurring. Buy a lottery ticket!" - ) - logging.error(msg) - pass + assert np.isnan(out.values[0, 0]).all()