diff --git a/R/ZIPLNfit-S3methods.R b/R/ZIPLNfit-S3methods.R index df9e916d..a158c241 100644 --- a/R/ZIPLNfit-S3methods.R +++ b/R/ZIPLNfit-S3methods.R @@ -122,10 +122,9 @@ isZIPLNfit_sparse <- function(Robject) {inherits(Robject, "ZIPLNfit_sparse")} #' @examples #' data(trichoptera) #' trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate) -#' fits <- ZIPLN(Abundance ~ 1, data = trichoptera, control = ZIPLN_param(penalty = 0.1)) -#' myNet <- getBestModel(fits) +#' fit <- ZIPLN(Abundance ~ 1, data = trichoptera, control = ZIPLN_param(penalty = 0.1)) #' \dontrun{ -#' plot(myNet) +#' plot(fit) #' } #' @export plot.ZIPLNfit_sparse <- diff --git a/R/ZIPLNfit-class.R b/R/ZIPLNfit-class.R index 8b63ec50..2151f9d3 100644 --- a/R/ZIPLNfit-class.R +++ b/R/ZIPLNfit-class.R @@ -730,9 +730,10 @@ ZIPLNfit_fixed <- R6Class( #' # See other examples in function ZIPLN #' data(trichoptera) #' trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate) -#' myPLN <- ZIPLN(Abundance ~ 1, data = trichoptera, control= ZIPLN_param(penalty = 0.2)) +#' myPLN <- ZIPLN(Abundance ~ 1, data = trichoptera, control= ZIPLN_param(penalty = 1)) #' class(myPLN) #' print(myPLN) +#' plot(myPLN) #' } ZIPLNfit_sparse <- R6Class( classname = "ZIPLNfit_sparse",