-
Notifications
You must be signed in to change notification settings - Fork 727
/
Copy pathstatic_model.py
102 lines (90 loc) · 4.18 KB
/
static_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import paddle
from net import MatchPyramidLayer
class StaticModel():
def __init__(self, config):
self.cost = None
self.config = config
self._init_hyper_parameters()
def _init_hyper_parameters(self):
self.emb_path = self.config.get("hyper_parameters.emb_path")
self.sentence_left_size = self.config.get(
"hyper_parameters.sentence_left_size")
self.sentence_right_size = self.config.get(
"hyper_parameters.sentence_right_size")
self.vocab_size = self.config.get("hyper_parameters.vocab_size")
self.emb_size = self.config.get("hyper_parameters.emb_size")
self.kernel_num = self.config.get("hyper_parameters.kernel_num")
self.hidden_size = self.config.get("hyper_parameters.hidden_size")
self.hidden_act = self.config.get("hyper_parameters.hidden_act")
self.out_size = self.config.get("hyper_parameters.out_size")
self.channels = self.config.get("hyper_parameters.channels")
self.conv_filter = self.config.get("hyper_parameters.conv_filter")
self.conv_act = self.config.get("hyper_parameters.conv_act")
self.pool_size = self.config.get("hyper_parameters.pool_size")
self.pool_stride = self.config.get("hyper_parameters.pool_stride")
self.pool_type = self.config.get("hyper_parameters.pool_type")
self.pool_padding = self.config.get("hyper_parameters.pool_padding")
self.learning_rate = self.config.get(
"hyper_parameters.optimizer.learning_rate")
def create_feeds(self, is_infer=False):
sentence_left = paddle.static.data(
name="sentence_left",
shape=[-1, self.sentence_left_size],
dtype='int64')
sentence_right = paddle.static.data(
name="sentence_right",
shape=[-1, self.sentence_right_size],
dtype='int64')
feeds_list = [sentence_left, sentence_right]
return feeds_list
def net(self, input, is_infer=False):
pyramid_model = MatchPyramidLayer(
self.emb_path, self.vocab_size, self.emb_size, self.kernel_num,
self.conv_filter, self.conv_act, self.hidden_size, self.out_size,
self.pool_size, self.pool_stride, self.pool_padding,
self.pool_type, self.hidden_act)
prediction = pyramid_model.forward(input)
if is_infer:
fetch_dict = {'prediction': prediction}
return fetch_dict
# calculate hinge loss
pos = paddle.slice(
prediction, axes=[0, 1], starts=[0, 0], ends=[64, 1])
neg = paddle.slice(
prediction, axes=[0, 1], starts=[64, 0], ends=[128, 1])
loss_part1 = paddle.subtract(
paddle.full(
shape=[64, 1], fill_value=1.0, dtype='float32'), pos)
loss_part2 = paddle.add(loss_part1, neg)
loss_part3 = paddle.maximum(
paddle.full(
shape=[64, 1], fill_value=0.0, dtype='float32'),
loss_part2)
avg_cost = paddle.mean(loss_part3)
self.inference_target_var = avg_cost
self._cost = avg_cost
fetch_dict = {'cost': avg_cost}
return fetch_dict
def create_optimizer(self, strategy=None):
optimizer = paddle.optimizer.Adam(
learning_rate=self.learning_rate, lazy_mode=True)
if strategy != None:
import paddle.distributed.fleet as fleet
optimizer = fleet.distributed_optimizer(optimizer, strategy)
optimizer.minimize(self._cost)
def infer_net(self, input):
return self.net(input, is_infer=True)