-
Notifications
You must be signed in to change notification settings - Fork 648
/
Copy pathstatic_model.py
executable file
·134 lines (110 loc) · 4.72 KB
/
static_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import paddle
from net import WideDeepLayer
class StaticModel():
def __init__(self, config):
self.cost = None
self.config = config
self._init_hyper_parameters()
self.sync_mode = config.get("runner.sync_mode")
def _init_hyper_parameters(self):
self.is_distributed = False
self.distributed_embedding = False
if self.config.get("hyper_parameters.distributed_embedding", 0) == 1:
self.distributed_embedding = True
self.sparse_feature_number = self.config.get(
"hyper_parameters.sparse_feature_number")
self.sparse_feature_dim = self.config.get(
"hyper_parameters.sparse_feature_dim")
self.sparse_inputs_slots = self.config.get(
"hyper_parameters.sparse_inputs_slots")
self.dense_input_dim = self.config.get(
"hyper_parameters.dense_input_dim")
self.learning_rate = self.config.get(
"hyper_parameters.optimizer.learning_rate")
self.fc_sizes = self.config.get("hyper_parameters.fc_sizes")
def create_feeds(self, is_infer=False):
dense_input = paddle.static.data(
name="dense_input",
shape=[None, self.dense_input_dim],
dtype="float32")
# sparse_input_ids = [
# paddle.static.data(
# name="C" + str(i), shape=[None, 1], dtype="int64")
# for i in range(1, self.sparse_inputs_slots)
# ]
sparse_input_ids = [
paddle.static.data(
name=str(i), shape=[None, 1], dtype="int64")
for i in range(1, self.sparse_inputs_slots)
]
label = paddle.static.data(
name="label", shape=[None, 1], dtype="int64")
self._sparse_data_var = [label] + sparse_input_ids
self._dense_data_var = [dense_input]
feeds_list = [label] + sparse_input_ids + [dense_input]
return feeds_list
def net(self, input, is_infer=False):
self.label_input = input[0]
self.sparse_inputs = input[1:self.sparse_inputs_slots]
self.dense_input = input[-1]
sparse_number = self.sparse_inputs_slots - 1
wide_deep_model = WideDeepLayer(
self.sparse_feature_number,
self.sparse_feature_dim,
self.dense_input_dim,
sparse_number,
self.fc_sizes,
sync_mode=self.sync_mode)
self.cast_label = paddle.cast(self.label_input, dtype='float32')
ones = paddle.full_like(
self.label_input, fill_value=1, dtype="float32")
show_click = paddle.cast(
paddle.concat(
[ones, self.cast_label], axis=1), dtype='float32')
show_click.stop_gradient = True
pred = wide_deep_model.forward(self.sparse_inputs, self.dense_input,
show_click)
predict_2d = paddle.concat(x=[1 - pred, pred], axis=1)
self.predict = predict_2d
auc, batch_auc, [
self.batch_stat_pos, self.batch_stat_neg, self.stat_pos,
self.stat_neg
] = paddle.static.auc(input=self.predict,
label=self.label_input,
num_thresholds=2**12,
slide_steps=20)
auc = paddle.cast(auc, "float32")
self.inference_target_var = auc
if is_infer:
fetch_dict = {'auc': auc}
return fetch_dict
cost = paddle.nn.functional.log_loss(
input=pred, label=paddle.cast(
self.label_input, dtype="float32"))
avg_cost = paddle.mean(x=cost)
self._cost = avg_cost
fetch_dict = {'cost': avg_cost, 'auc': auc}
return fetch_dict
def create_optimizer(self, strategy=None):
optimizer = paddle.optimizer.Adam(
learning_rate=self.learning_rate, lazy_mode=True)
if strategy != None:
import paddle.distributed.fleet as fleet
optimizer = fleet.distributed_optimizer(optimizer, strategy)
optimizer.minimize(self._cost)
def infer_net(self, input):
return self.net(input, is_infer=True)