-
Notifications
You must be signed in to change notification settings - Fork 646
/
Copy pathstatic_model.py
103 lines (90 loc) · 3.92 KB
/
static_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from net import TiSASRecLayer
class StaticModel():
def __init__(self, config):
self.cost = None
self.config = config
self._init_hyper_parameters()
def _init_hyper_parameters(self):
self.num_users = self.config.get("hyper_parameters.num_users")
self.num_items = self.config.get("hyper_parameters.num_items")
self.hidden_units = self.config.get("hyper_parameters.hidden_units")
self.maxlen = self.config.get("hyper_parameters.maxlen")
self.time_span = self.config.get("hyper_parameters.time_span")
self.num_blocks = self.config.get("hyper_parameters.num_blocks")
self.num_heads = self.config.get("hyper_parameters.num_heads")
self.learning_rate = self.config.get(
"hyper_parameters.optimizer.learning_rate")
def create_feeds(self, is_infer=False):
log_seqs = paddle.static.data(
name="log_seqs", shape=[-1, 50], dtype='int64')
time_matrices = paddle.static.data(
name="time_matrices", shape=[-1, 50, 50], dtype='int64')
item_indices = paddle.static.data(
name="item_indices", shape=[-1, 50, 50], dtype='int64')
pos_seqs = paddle.static.data(
name="pos_seqs", shape=[-1, 50], dtype='int64')
neg_seqs = paddle.static.data(
name="neg_seqs", shape=[-1, 50], dtype='int64')
if is_infer:
return log_seqs, time_matrices, item_indices
return log_seqs, time_matrices, pos_seqs, neg_seqs
def net(self, input, is_infer=False):
model = TiSASRecLayer(self.num_users, self.num_items,
self.hidden_units, self.maxlen, self.time_span,
self.num_blocks, self.num_heads)
if is_infer:
prediction = model(*input)
else:
prediction = model(
input[0], input[1], pos_seqs=input[2], neg_seqs=input[3])
self.inference_target_var = prediction
if is_infer:
fetch_dict = {
"user": input[0],
'prediction': prediction,
}
return fetch_dict
mask = input[3] != 0
avg_cost = self.create_loss(prediction, mask)
# print(avg_cost)
self._cost = avg_cost
fetch_dict = {'Loss': avg_cost}
return fetch_dict
def create_optimizer(self, strategy=None):
optimizer = paddle.optimizer.Adam(
learning_rate=self.learning_rate, lazy_mode=True)
if strategy != None:
import paddle.distributed.fleet as fleet
optimizer = fleet.distributed_optimizer(optimizer, strategy)
optimizer.minimize(self._cost)
def infer_net(self, input):
return self.net(input, is_infer=True)
def create_loss(self, prediction, mask):
loss_fct = paddle.nn.BCEWithLogitsLoss()
pos_logits, neg_logits = prediction
pos_labels, neg_labels = paddle.ones_like(
pos_logits), paddle.zeros_like(neg_logits)
loss = loss_fct(
paddle.masked_select(pos_logits, mask),
paddle.masked_select(pos_labels, mask))
loss += loss_fct(
paddle.masked_select(neg_logits, mask),
paddle.masked_select(neg_labels, mask))
return loss