-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathmain.py
executable file
·245 lines (218 loc) · 10.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import numpy as np
import torch
import math
import pandas as pd
import torch.nn as nn
import torch.optim as optim
from pathlib import Path
import argparse
import os
from utils import multi_relation_load, save_node_pred, save_link_pred
from model.model import Classification, LinkPrediction, TIMME, TIMMEhierarchical, TIMMEsingle
from model.embedding import PartlyLearnableEmbedding, FixedFeature
from task import ClassificationTask, LinkPred_BatchTask, TIMMEManager
import random
import math
import time
import warnings
warnings.filterwarnings("ignore") # ignore the warnings
parser = argparse.ArgumentParser()
parser.add_argument('-e','--epochs', type=int, default=300,
help='Number of epochs to train. (default: 300)')
parser.add_argument('--optimizer', type=str, default="Adam", choices=["Adagrad", "Adam"],
help='The optimizer to use. (default: Adam)')
parser.add_argument('--lr', type=float, default=0.01,
help='Initial learning rate. (default: 0.01)')
parser.add_argument('--lr_decay', type=float, default=1e-3,
help='Learning rate decay. (default: 1e-3)')
parser.add_argument('--min_lr', type=float, default=1e-5,
help='Minimum learning rate. (default: 1e-5)')
parser.add_argument('--weight_decay', type=float, default=1e-5,
help='Weight decay (L2 loss on parameters). (default: 1e-5)')
parser.add_argument('--hidden', type=int, default=100,
help='Number of hidden units. (default: 100)')
parser.add_argument('--single_relation', type=int, default=0,
help='The single-relation task to be run by single-relation. (default: 0)')
parser.add_argument('-frd','--fixed_random_seed', default=False, action='store_true',
help='if random seed is fixed, we will use the fixed random seed (default: false)')
parser.add_argument('--dropout', type=float, default=0.1,
help='Dropout rate (default: 0.1).')
parser.add_argument('-d','--data', type=str, default='PureP',
choices=["PureP", "P50", "P_20_50", "P_all"],
help='Dataset to use. (default: PureP)')
parser.add_argument('-r', '--relations', type=str, default=['retweet_list.csv', 'mention_list.csv', 'friend_list.csv', 'reply_list.csv', 'favorite_list.csv'], action='append',
help='Relations to use. (default: [\'retweet_list.csv\', \'mention_list.csv\', \'friend_list.csv\', \'reply_list.csv\', \'favorite_list.csv\'])')
parser.add_argument('-t', '--task', type=str, default="Classification", choices=["Classification", "LinkPrediction", "TIMME_SingleLink", "TIMME", "TIMME_hierarchical"],
help='The type of task to run with (default: Classification)')
parser.add_argument('--skip_mode', type=str, default="add", choices=["none", "add", "concat"],
help='Not using skip connection, using skip-connection by adding the layers layer output, or skip-connection by conactenate layers. (default: add; but not much difference if we disable it)')
parser.add_argument('-att','--attention_mode', type=str, default="self", choices=["none", "naive", "self"],
help='Which attention mode to use. None is none; naive is not the real-attention, but trained weight; "self" option is attention (default: self)')
parser.add_argument('-lrs','--lr_scheduler', type=str, default="none", choices=["Step", "ESL", "none"],
help='Which learning rate scheduler to use. (default: Step)')
parser.add_argument('-f', '--feature', type=str, default="one_hot",
choices=["tweets_average", "description", "status", "one_hot", "random"],
help='The feature to use. (default: one_hot)')
parser.add_argument("--regularization_classification", type=float, default=None,
help="The regularization weight for node classification. (default: None)")
parser.add_argument("--regularization", type=float, default=0.01,
help="The regularization weight for link prediction. (default: 0.01)")
parser.add_argument("--n_batches", type=int, default=10,
help="The number of batches for training link prediction task. (default: 10)")
parser.add_argument("--maximum_negative_rate", type=float, default=1.5,
help="The maximum negative sampling rate for training link prediction task")
parser.add_argument('--freeze_feature', default=False, action='store_true',
help='To freeze the feature as encoder input or not. (default: False)')
args = parser.parse_args()
CUDA = torch.cuda.is_available()
print("using cuda" if CUDA else "not using cuda")
data_path = os.path.join("../data/", args.data)
DATA = Path(data_path)
# setting random seed is not necessarily needed after we get all experiments done
# for now we are simply keeping this to simplify debugging process
if args.fixed_random_seed:
rd_seed = 36
np.random.seed(rd_seed)
random.seed(rd_seed)
torch.manual_seed(rd_seed)
if CUDA:
torch.cuda.manual_seed(rd_seed)
task_with_links = ["LinkPrediction", "TIMME_hierarchical", "TIMME", "TIMME_SingleLink"]
split_links=args.task in task_with_links
feature_file_table = {
"tweets_average": "tweet_features.npz",
"description": "features.npz",
"status": "features.npz",
"one_hot": None,
"random": None
}
assert args.feature in feature_file_table.keys(), "We don't know how to get feature {}".format(args.feature)
adjs, features, labels_info, trainable, mask, link_info, (label_map, all_id_list) = multi_relation_load(DATA, files=args.relations, \
feature_data=args.feature, feature_file=feature_file_table[args.feature], freeze_feature=args.freeze_feature, split_links=split_links)
idx_train, idx_val, idx_test, labels = labels_info
if CUDA:
adjs = [i.cuda(0) for i in adjs]
labels = labels.cuda(0)
idx_train = idx_train.cuda(0)
idx_val = idx_val.cuda(0)
idx_test = idx_test.cuda(0)
labels_info = (idx_train, idx_val, idx_test, labels)
num_relations = len(args.relations)
num_adjs = len(adjs)
relations = [r.split("_")[0] for r in args.relations]
if trainable is None:
# if features are fixed
feature_dimension = features.shape[1]
num_entities = features.shape[0]
feature_generator = FixedFeature(features, cuda=CUDA)
else:
feature_dimension = features.embedding_dim
num_entities = features.weight.shape[0]
feature_generator = PartlyLearnableEmbedding(features.num_embeddings, features, trainable, mask, cuda=CUDA)
hidden_size = args.hidden
num_classes = labels.max().item() + 1
if args.task == "Classification":
model = Classification(num_relations,
num_entities,
num_adjs,
feature_dimension,
hidden_size,
num_classes,
args.dropout,
regularization=args.regularization_classification,
skip_mode=args.skip_mode,
attention_mode=args.attention_mode,
trainable_features=trainable)
elif args.task == "LinkPrediction":
model = LinkPrediction(num_relations,
num_entities,
num_adjs,
feature_dimension,
hidden_size,
args.dropout,
relations,
regularization=args.regularization,
skip_mode=args.skip_mode,
attention_mode=args.attention_mode,
trainable_features=trainable)
elif args.task == "TIMME_hierarchical":
model = TIMMEhierarchical(num_relations,
num_entities,
num_adjs,
feature_dimension,
hidden_size,
num_classes,
args.dropout,
relations,
regularization=args.regularization,
skip_mode=args.skip_mode,
attention_mode=args.attention_mode,
trainable_features=trainable)
elif args.task == "TIMME":
model = TIMME(num_relations,
num_entities,
num_adjs,
feature_dimension,
hidden_size,
num_classes,
args.dropout,
relations,
regularization=args.regularization,
skip_mode=args.skip_mode,
attention_mode=args.attention_mode,
trainable_features=trainable)
elif args.task == "TIMME_SingleLink":
model = TIMMEsingle(num_relations,
num_entities,
num_adjs,
feature_dimension,
hidden_size,
num_classes,
args.dropout,
relations,
regularization=args.regularization,
skip_mode=args.skip_mode,
attention_mode=args.attention_mode,
trainable_features=trainable,
relation_id=args.single_relation)
else:
print("Fatal Error: Task {} not implemented yet".format(args.task))
exit(0)
cnt = 0
for i in model.parameters():
cnt+=1
if args.optimizer == "Adagrad":
optimizer = optim.Adagrad(model.parameters(),
lr=args.lr, weight_decay=args.weight_decay,
lr_decay=args.lr_decay)
elif args.optimizer == "Adam":
optimizer = optim.Adam(model.parameters(),
lr=args.lr, weight_decay=args.weight_decay)
else:
print("Fatal Error: Optimizer {} not recognized.".format(args.optimizer))
exit(0)
if CUDA:
model.gcn.cuda()
model.cuda()
if args.task == "Classification":
task = ClassificationTask(model, feature_generator, adjs, args.lr, args.weight_decay, lr_scheduler=args.lr_scheduler, min_lr=args.min_lr, epochs=args.epochs)
task.load_data(*labels_info)
task.process_data()
task.run(args.epochs)
all_pred = task.get_pred()
save_node_pred(all_pred, args.data, label_map, all_id_list, task="classification")
elif args.task == "LinkPrediction": # This option is somewhat multi-task
task = LinkPred_BatchTask(model, feature_generator, adjs, args.lr, args.weight_decay, lr_scheduler=args.lr_scheduler, min_lr=args.min_lr, epochs=args.epochs, n_batches=args.n_batches, cuda=CUDA, negative_rate = args.maximum_negative_rate, max_epochs=args.epochs)
task.load_data(*link_info)
task.process_data()
task.run(args.epochs)
elif args.task in ["TIMME", "TIMME_hierarchical", "TIMME_SingleLink"]:
task = TIMMEManager(model, feature_generator, adjs, args.lr, args.weight_decay, lr_scheduler=args.lr_scheduler, min_lr=args.min_lr, epochs=args.epochs, n_batches=args.n_batches, cuda=CUDA, negative_rate = args.maximum_negative_rate, max_epochs=args.epochs)
task.load_data(*labels_info, *link_info)
task.run(args.epochs)
all_pred = task.get_pred()
node_pred, link_pred = all_pred
save_node_pred(node_pred, args.data, label_map, all_id_list, task=args.task)
save_link_pred(link_pred, args.data, relations, all_id_list, task=args.task)
if args.task in ["TIMME_hierarchical"]:
print("Architecture 2, lambda value: {} for relations: {}".format(model.attention_weight, " ".join(relations)))