-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathProjectDatasetFlex.py
218 lines (186 loc) · 8.36 KB
/
ProjectDatasetFlex.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import os
import argparse
import ast
import importlib
import json
try:
import AnnotationVLM.Projection as pj
except:
import Projection as pj
importlib.reload(pj)
def parse_organs_arg(organs_str):
# Check if the string starts with '[' and ends with ']'
if organs_str.startswith('[') and organs_str.endswith(']'):
# Remove the square brackets and split the string by commas
organs_list = organs_str[1:-1].split(',')
# Strip any extra spaces from the organ names
organs_list = [organ.strip() for organ in organs_list]
return organs_list
# Return as a single element list if it's not a list format
return None
def main():
parser = argparse.ArgumentParser(description='Process paths for data projection and composition.')
# Arguments with defaults
parser.add_argument('--good_folder', default='/mnt/sdc/pedro/ErrorDetection/revised_cropped/',
help='Path to the good samples directory (revised_cropped_projection).')
parser.add_argument('--bad_folder', default='/mnt/sdc/pedro/ErrorDetection/cropped_nnunet_results_250Epch/',
help='Path to the first bad samples directory.')
parser.add_argument('--output_dir1', default='compose_nnUnet_ProGT',
help='Output directory for the first composite dataset.')
parser.add_argument('--good_folder_mask', default=None, help='Path to masks for good folder.')
parser.add_argument('--bad_folder_mask', default=None, help='Path to masks for bad folder.')
parser.add_argument('--organ', default='none')
parser.add_argument('--device', default='cpu')
parser.add_argument('--num_processes', default='10')
parser.add_argument('--file_list', default=None)
parser.add_argument('--restart', action='store_true',default=False)
parser.add_argument('--no_composite_images', action='store_true',default=False)
parser.add_argument('--axis', default=1,type=int)
args = parser.parse_args()
good_folder = args.good_folder
bad_folder = args.bad_folder
output_dir1 = args.output_dir1
if args.good_folder_mask is not None:
good_folder_mask = args.good_folder_mask
else:
good_folder_mask = good_folder
if args.bad_folder_mask is not None:
bad_folder_mask = args.bad_folder_mask
else:
bad_folder_mask = bad_folder
#print(os.listdir(bad_folder))
organs=parse_organs_arg(args.organ)
if organs is None:
if args.organ=='kidneys':
organs=['kidney_left','kidney_right']
elif '00' in os.listdir(bad_folder_mask)[0]:
if args.organ=='none':
if 'segmentations' in os.listdir(bad_folder_mask+'/'+os.listdir(bad_folder_mask)[0]):
organs=[item[:item.rfind('.nii.gz')] for item in os.listdir(bad_folder_mask+'/'+os.listdir(bad_folder_mask)[0]+'/segmentations')]
elif 'predictions' in os.listdir(bad_folder_mask+'/'+os.listdir(bad_folder_mask)[0]):
organs=[item[:item.rfind('.nii.gz')] for item in os.listdir(bad_folder_mask+'/'+os.listdir(bad_folder_mask)[0]+'/predictions')]
else:
organs=[args.organ]
else:
organs=os.listdir(bad_folder_mask)
print('Organs:',organs)
if args.file_list is not None:
with open(args.file_list, 'r') as file:
file_list_loaded = json.load(file)
file_list={}
for organ in organs:
if '00' in os.listdir(bad_folder_mask)[0]:
#file_list[organ]=os.listdir(bad_folder_mask)
pth=bad_folder_mask
else:
#file_list[organ]=os.listdir(os.path.join(bad_folder_mask,organ))
pth=os.path.join(bad_folder_mask,organ)
file_list[organ]=[f for f in os.listdir(pth) if (os.path.isdir(os.path.join(pth, f,'segmentations')))]
file_list[organ]=[f for f in file_list[organ] \
if (os.path.isfile(os.path.join(pth, f,'segmentations',organ+'.nii.gz')) or \
os.path.isfile(os.path.join(pth, f,'predictions',organ+'.nii.gz')))]
if '00' in os.listdir(bad_folder_mask)[0]:
#file_list[organ]=os.listdir(bad_folder_mask)
pth=good_folder_mask
else:
#file_list[organ]=os.listdir(os.path.join(bad_folder_mask,organ))
pth=os.path.join(good_folder_mask,organ)
file_list[organ]=[f for f in file_list[organ] if (os.path.isdir(os.path.join(pth, f,'segmentations')))]
file_list[organ]=[f for f in file_list[organ] \
if (os.path.isfile(os.path.join(pth, f,'segmentations',organ+'.nii.gz')) or \
os.path.isfile(os.path.join(pth, f,'predictions',organ+'.nii.gz')))]
#print(organ,len(file_list[organ]))
#get intersection between file list and file_list_loaded
if args.file_list is not None:
for organ in organs:
file_list[organ]=list(set(file_list[organ])&set(file_list_loaded[organ]))
for organ in organs:
if 'right' in organ:
file_list[organ]=list(set(file_list[organ]+file_list[organ.replace('right','left')]))
if 'left' in organ:
file_list[organ]=list(set(file_list[organ]+file_list[organ.replace('left','right')]))
# Define projection paths
good_projection_path = good_folder_mask.rstrip('/') + '_projection'
bad_projection_path = bad_folder_mask.rstrip('/') + '_projection'
print(file_list)
# Ensure projection directories exist
try:
os.makedirs(good_projection_path, exist_ok=True)
except:
good_projection_path ='./'+good_projection_path[good_projection_path.rfind('/')+1:]
os.makedirs(good_projection_path, exist_ok=True)
try:
os.makedirs(bad_projection_path, exist_ok=True)
except:
bad_projection_path ='./'+bad_projection_path[bad_projection_path.rfind('/')+1:]
os.makedirs(bad_projection_path, exist_ok=True)
# Project files
for organ in organs:
if 'all_classes' in organ:
continue
#print(file_list[organ])
if organ != 'none':
if '00' not in os.listdir(bad_folder_mask)[0]:
src_ct = os.path.join(good_folder, organ)
src_mask = os.path.join(good_folder_mask, organ)
else:
src_ct = good_folder
src_mask = good_folder_mask
destination = os.path.join(good_projection_path, organ)
else:
src = good_folder
destination = good_projection_path
print(src_mask, destination)
pj.project_files(
ct_pth=src_ct,
mask_pth=src_mask,
destin=destination,
file_list=file_list[organ],
organ=organ,
device=args.device,
num_processes=int(args.num_processes),
skip_existing=(not args.restart),
axis=args.axis
)
if organ != 'none':
if '00' not in os.listdir(bad_folder_mask)[0]:
src_ct = os.path.join(bad_folder, organ)
src_mask = os.path.join(bad_folder_mask, organ)
else:
src_ct = bad_folder
src_mask = bad_folder_mask
destination = os.path.join(bad_projection_path, organ)
else:
src = bad_folder
destination = bad_projection_path
pj.project_files(
ct_pth=src_ct,
mask_pth=src_mask,
destin=destination,
file_list=file_list[organ],
organ=organ,
device=args.device,
num_processes=int(args.num_processes),
skip_existing=(not args.restart),
axis=args.axis
)
# Composite datasets
pj.composite_dataset(
output_dir=output_dir1,
good_path=good_projection_path,
bad_path=bad_projection_path,
organ=organ,
fast= args.no_composite_images,
file_list=file_list,
axis=args.axis
)
# Join left and right datasets
for organ in organs:
if 'left' in organ:
pj.join_left_and_right_dataset(
os.path.join(output_dir1, organ),
os.path.join(output_dir1, organ.replace('left', 'right')),
os.path.join(output_dir1, organ.replace('_left', 's'))
)
if __name__ == '__main__':
main()