forked from kaka-lin/stock-price-predict
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathseq2seq_attention_2.py
208 lines (164 loc) · 7.31 KB
/
seq2seq_attention_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
''' LSTM 預測未來5天
此為用 LSTM many-to-many 架構
預測未來5天的收盤價
'''
import sys
import csv
import math
import numpy as np
import matplotlib.pyplot as plt
from keras import backend as K
from keras.models import Sequential, load_model, Model
from keras.layers import LSTM, Dense, Activation, TimeDistributed, Dropout, Lambda, RepeatVector, Input, Reshape, Concatenate, Dot
from keras.callbacks import ModelCheckpoint
from sklearn.preprocessing import MinMaxScaler
from utils import *
def TBrain_loss(y_true, y_pred):
err_1 = K.mean(K.square(y_true[:,0,3] - y_pred[:,0,3]), axis=-1)
err_2 = K.mean(K.square(y_true[:,1,3] - y_pred[:,1,3]), axis=-1)
err_3 = K.mean(K.square(y_true[:,2,3] - y_pred[:,2,3]), axis=-1)
err_4 = K.mean(K.square(y_true[:,3,3] - y_pred[:,3,3]), axis=-1)
err_5 = K.mean(K.square(y_true[:,4,3] - y_pred[:,4,3]), axis=-1)
return (50 * err_1 + 30 * err_3 + 20 * err_5)
def load_data(data, time_step=20, after_day=1, validate_percent=0.67):
seq_length = time_step + after_day
result = []
for index in range(len(data) - seq_length + 1):
result.append(data[index: index + seq_length])
result = np.array(result)
print('total data: ', result.shape)
train_size = int(len(result) * validate_percent)
train = result[:train_size, :]
validate = result[train_size:, :]
x_train = train[:, :time_step]
y_train = train[:, time_step:]
x_validate = validate[:, :time_step]
y_validate = validate[:, time_step:]
return [x_train, y_train, x_validate, y_validate]
def softmax(x, axis=1):
"""Softmax activation function.
# Arguments
x : Tensor.
axis: Integer, axis along which the softmax normalization is applied.
# Returns
Tensor, output of softmax transformation.
# Raises
ValueError: In case `dim(x) == 1`.
"""
ndim = K.ndim(x)
if ndim == 2:
return K.softmax(x)
elif ndim > 2:
e = K.exp(x - K.max(x, axis=axis, keepdims=True))
s = K.sum(e, axis=axis, keepdims=True)
return e / s
else:
raise ValueError('Cannot apply softmax to a tensor that is 1D')
def one_step_attention(a, s_prev, repeator, concatenator, densor, activator, dotor):
s_prev = repeator(s_prev)
concat = concatenator([s_prev, a])
e = densor(concat)
alphas = activator(e)
context = dotor([alphas, a])
return context
def seq2seq_attention(feature_len=1, after_day=1, input_shape=(20, 1), time_step=20):
# Define the inputs of your model with a shape (Tx, feature)
X = Input(shape=input_shape)
# Initialize empty list of outputs
all_outputs = []
# Encoder: pre-attention LSTM
encoder = LSTM(units=100, return_state=True, return_sequences=True, name='encoder')
# Decoder: post-attention LSTM
decoder = LSTM(units=100, return_state=True, name='decoder')
# Output
decoder_output = Dense(units=feature_len, activation='linear', name='output')
model_output = Reshape((1, feature_len))
# Attention
repeator = RepeatVector(time_step)
concatenator = Concatenate(axis=-1)
densor = Dense(1, activation = "relu")
activator = Activation(softmax, name='attention_weights')
dotor = Dot(axes = 1)
encoder_outputs, s, c = encoder(X)
for t in range(after_day):
context = one_step_attention(encoder_outputs, s, repeator, concatenator, densor, activator, dotor)
a, s, c = decoder(context, initial_state=[s, c])
outputs = decoder_output(a)
outputs = model_output(outputs)
all_outputs.append(outputs)
all_outputs = Lambda(lambda x: K.concatenate(x, axis=1))(all_outputs)
model = Model(inputs=X, outputs=all_outputs)
return model
if __name__ == '__main__':
class_list = ['50', '51', '52', '53', '54', '55', '56', '57', '58',
'59', '6201', '6203', '6204', '6208', '690', '692', '701', '713']
scaler = MinMaxScaler(feature_range=(0, 1))
validate_percent = 0.8
time_step = 60
after_day = 5
batch_size = 60
epochs = 100
output = []
model_name = sys.argv[0].replace(".py", "")
for index in range(len(class_list)):
_class = class_list[2]
print('******************************************* class 00{} *******************************************'.format(_class))
# read data from csv, return data: (Samples, feature)
data = file_processing(
'data/20180504_process/20180504_{}.csv'.format(_class))
feature_len = data.shape[1]
# normalize data
data = normalize_data(data, scaler, feature_len)
# test data
x_test = data[-time_step:]
x_test = np.reshape(x_test, (1, x_test.shape[0], x_test.shape[1]))
# get train and validate data
x_train, y_train, x_validate, y_validate = load_data(
data, time_step=time_step, after_day=after_day, validate_percent=validate_percent)
print('train data: ', x_train.shape, y_train.shape)
print('validate data: ', x_validate.shape, y_validate.shape)
# model complie
input_shape = (time_step, feature_len)
model = seq2seq_attention(feature_len, after_day, input_shape, time_step)
model.compile(loss=TBrain_loss, optimizer='adam')
model.summary()
plot_model_architecture(model, model_name=model_name)
history = model.fit(
x_train, y_train,
batch_size=batch_size, epochs=epochs,
validation_data=(x_validate, y_validate))
model_class_name = model_name + '_00{}'.format(_class)
save_model(model, model_name=model_class_name)
print('-' * 100)
train_score = model.evaluate(x_train, y_train, batch_size=batch_size, verbose=0)
print('Train Score: %.8f MSE (%.8f RMSE)' % (train_score, math.sqrt(train_score)))
validate_score = model.evaluate(x_validate, y_validate, batch_size=batch_size, verbose=0)
print('Test Score: %.8f MSE (%.8f RMSE)' % (validate_score, math.sqrt(validate_score)))
train_predict = model.predict(x_train)
validate_predict = model.predict(x_validate)
test_predict = model.predict(x_test)
# 回復預測資料值為原始數據的規模
train_predict = inverse_normalize_data(train_predict, scaler)
y_train = inverse_normalize_data(y_train, scaler)
validate_predict = inverse_normalize_data(validate_predict, scaler)
y_validate = inverse_normalize_data(y_validate, scaler)
test_predict = inverse_normalize_data(test_predict, scaler)
'''
#print('-' * 100)
#print("last y_validate: \n", y_validate[-1])
#print("last y_predict: \n", validate_predict[-1])
#print("test: \n", test_predict)
'''
# 3 or 0: close 的位置, 0:5為五天
ans = np.append(y_validate[-1, -1, 3], test_predict[-1, 0:5, 3])
output.append(ans)
#print("output: \n", output)
# plot predict situation (save in images/result)
file_name = 'result_' + model_name + '_00{}'.format(_class)
plot_predict(y_validate, validate_predict, file_name=file_name)
# plot loss (save in images/loss)
file_name = 'loss_' + model_name + '_00{}'.format(_class)
plot_loss(history, file_name)
output = np.array(output)
print(output)
generate_output(output, model_name=model_name, class_list=class_list)