-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path04_aggregate_sdms.jl
99 lines (88 loc) · 3.4 KB
/
04_aggregate_sdms.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#### Aggregate SDMs ####
include("A0_required.jl");
# Option to run for CAN
# CAN = true
if (@isdefined CAN) && CAN == true
ref_path = joinpath("data", "input", "canada_ref_2.tif");
sdm_path = joinpath("data", "sdms");
@info "Running for Canada at 2.5 arcmin resolution"
else
ref_path = joinpath("data", "input", "quebec_ref_10.tif");
sdm_path = joinpath("xtras", "sdms");
@info "Running for Quebec at 10 arcmin resolution"
end
## Probabilistic distributions
# Define reference layer
reference_layer = read_geotiff(ref_path, SimpleSDMResponse)
spatialrange = boundingbox(reference_layer)
# Divide sites if using job array
if (@isdefined JOBARRAY) && JOBARRAY == true
# Get infos on the job array
_jobid = parse(Int64, get(ENV, "SLURM_ARRAY_TASK_ID", "1"))
if @isdefined(TOTAL_JOBS) && !isnothing(TOTAL_JOBS)
_jobcount = TOTAL_JOBS
else
_jobcont = parse(Int64, get(ENV, "SLURM_ARRAY_TASK_COUNT", "10"))
end
# Assign sites to all tasks
_ntot = length(reference_layer)
_nsites = ceil(Int64, _ntot/_jobcount)
_jobsites = repeat(1:_jobcount; inner=_nsites)
# Set values to nothing for sites that are NOT for the current task
_outsites = findall(!=(_jobid), _jobsites)
filter!(<=(_ntot), _outsites) # make sure we don't go over the total
_outkeys = keys(reference_layer)[_outsites]
reference_layer[_outkeys] = fill(nothing, length(_outkeys))
end
# Select files to load
sdm_files = readdir(sdm_path; join=true)
filter!(!contains(".gitkeep"), sdm_files)
if iszero(length(sdm_files))
prev = "03_generate_sdms.jl"
@warn "Missing necessary files. Attempting to re-run previous script $prev"
include(prev)
sdm_files = readdir(sdm_path; join=true)
filter!(!contains(".gitkeep"), sdm_files)
end
# Load predictions mean & variance layers
μ = Dict{String,SimpleSDMPredictor}()
σ = Dict{String,SimpleSDMPredictor}()
p = Progress(length(sdm_files), "Loading SDMs")
for map_file in sdm_files
sp_name = @chain map_file begin
basename
replace("_error.tif" => "")
replace("_model.tif" => "")
replace("_" => " ")
end
if contains(map_file, "error.tif")
σ[sp_name] = read_geotiff(map_file, SimpleSDMPredictor; spatialrange...)
σ[sp_name] = mask(reference_layer, σ[sp_name])
else
μ[sp_name] = read_geotiff(map_file, SimpleSDMPredictor; spatialrange...)
μ[sp_name] = mask(reference_layer, μ[sp_name])
end
if !(@isdefined quiet) || quiet == false
# Print progress bar
next!(p)
end
end
# We need a few zero types for distributions, which will allow to use them in cell of layers
Base.zero(::Type{Normal{T}}) where T = Normal(zero(T), zero(T))
Base.zero(::Type{Bernoulli{T}}) where {T} = Bernoulli(zero(T))
Base.zero(::Type{Truncated{Normal{T}, Continuous, T, T, T}}) where {T} = Truncated(zero(Normal{T}), zero(T), one(T))
# Create layers of Truncated Normal distributions given the mean & variance
D = Dict{String, SimpleSDMResponse}()
p = Progress(length(μ), "Assembling distributions")
for sp in String.(keys(μ))
_t = similar(μ[sp], Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64})
for site in keys(μ[sp])
_t[site] = Truncated(Normal(Float64(μ[sp][site]), Float64(σ[sp][site])), 0.0, 1.0)
end
D[sp] = _t
if !(@isdefined quiet) || quiet == false
# Print progress bar
next!(p)
end
end
GC.gc()