-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathReal.py
126 lines (100 loc) · 3.51 KB
/
Real.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
# encoding: utf-8
import networkx as nx
# import matplotlib.pyplot as plt
import random
import os
import csv
import Greedy
import Replacement
class Real:
def College(self):
file_name = "CollegeMsg.txt"
G = nx.read_edgelist(file_name, create_using=nx.DiGraph()) # directed graphs
# print G.nodes
return G
def output_3(self, heu):
datas_greedy = [['Real1']]
datas_R1 = [['Real1']]
datas_R2 = [['Real1']]
# 'Max':
for d in range(0, 50):
avg_greedy = 0.0
avg_R1 = 0.0
avg_R2 = 0.0
for i in range(0, 5):
G = self.College()
g = Greedy.Greedy(G, d, 1, 2, heu)
g.run()
avg_greedy += len(g.D1)
r1 = Replacement.ReplacementA(G, d, 1, 2, heu)
r1.run()
avg_R1 += len(r1.D1)
r2 = Replacement.ReplacementB(G, d, 1, 2, heu)
r2.run()
avg_R2 += len(r2.D1)
print(i)
avg_greedy = avg_greedy / 10
avg_R1 = avg_R1 / 10
avg_R2 = avg_R2 / 10
datas_greedy.append(avg_greedy)
datas_R1.append(avg_R1)
datas_R2.append(avg_R2)
with open('greedy_' + heu + '.csv', 'w', newline='') as f:
writer = csv.writer(f)
for row in datas_greedy:
writer.writerow(row)
with open('r1_' + heu + '.csv', 'w', newline='') as f:
writer = csv.writer(f)
for row in datas_R1:
writer.writerow(row)
with open('r2_' + heu + '.csv', 'w', newline='') as f:
writer = csv.writer(f)
for row in datas_R2:
writer.writerow(row)
def output_4(self, heu): # fix d
datas_greedy = [['Real1']]
datas_R1 = [['Real1']]
datas_R2 = [['Real1']]
d = 10
for rho1 in range (1,11):
for rho2 in range(1, 11):
avg_greedy = 0.0
avg_R1 = 0.0
avg_R2 = 0.0
for i in range(0, 5):
G = self.College()
g = Greedy.Greedy(G, d, rho1, rho2, heu)
g.run()
avg_greedy += len(g.D1)
r1 = Replacement.ReplacementA(G, d, rho1, rho2, heu)
r1.run()
avg_R1 += len(r1.D1)
r2 = Replacement.ReplacementB(G, d, rho1, rho2, heu)
r2.run()
avg_R2 += len(r2.D1)
print(i)
avg_greedy = avg_greedy / 10
avg_R1 = avg_R1 / 10
avg_R2 = avg_R2 / 10
datas_greedy.append(avg_greedy)
datas_R1.append(avg_R1)
datas_R2.append(avg_R2)
with open('2_greedy_' + heu + '.csv', 'w', newline='') as f:
writer = csv.writer(f)
for row in datas_greedy:
writer.writerow(row)
with open('2_r1_' + heu + '.csv', 'w', newline='') as f:
writer = csv.writer(f)
for row in datas_R1:
writer.writerow(row)
with open('2_r2_' + heu + '.csv', 'w', newline='') as f:
writer = csv.writer(f)
for row in datas_R2:
writer.writerow(row)
gen = Real()
gen.output_3('Max')
gen.output_3('Btw')
gen.output_3('Min')
gen.output_4('Max')
gen.output_4('Btw')
gen.output_4('Min')