-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpredict_bilstm_crf.py
140 lines (121 loc) · 4.86 KB
/
predict_bilstm_crf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# coding=utf-8
import numpy as np
from bilstm_crf import BiLSTM_CRF
from collections import defaultdict
import preprocess as p
def get_X_orig(X_data, index2char):
"""
:param X_data: index_array
:param index2char: dict
:return: 以character_level text列表为元素的列表
"""
X_orig = []
for n in range(X_data.shape[0]):
orig = [index2char[i] if i > 0 else 'None' for i in X_data[n]]
X_orig.append(orig)
return X_orig
def get_y_orig(y_pred, y_true):
label = ['O', 'B', 'I']
index2label = dict()
idx = 0
for c in label:
index2label[idx] = c
idx += 1
n_sample = y_pred.shape[0]
pred_list = []
true_list = []
for i in range(n_sample):
pred_label = [index2label[idx] for idx in np.argmax(y_pred[i], axis=1)]
pred_list.append(pred_label)
true_label = [index2label[idx] for idx in np.argmax(y_true[i], axis=1)]
true_list.append(true_label)
# print(pred_label, true_label)
return pred_list, true_list
def get_entity(X_data, y_data):
"""
:param X_data: 以character_level text列表为元素的列表
:param y_data: 以entity列表为元素的列表
:return: [{'entity': [phrase or word], ....}, ...]
"""
n_example = len(X_data)
entity_list = []
entity_name = ''
for i in range(n_example):
d = defaultdict(list)
for c, l in zip(X_data[i], y_data[i]):
if l[0] == 'B':
d[l[2:]].append('')
d[l[2:]][-1] += c
entity_name += c
elif (l[0] == 'I') & (len(entity_name) > 0):
try:
d[l[2:]][-1] += c
except IndexError:
d[l[2:]].append(c)
elif l == 'O':
entity_name = ''
entity_list.append(d)
np.save("data/X_list.npy", X_data)
np.save("data/y_list.npy", y_data)
np.save("data/entity_list.npy", entity_list)
return entity_list
def micro_evaluation(pred_entity, true_entity):
n_example = len(pred_entity)
t_pos, true, pred = [], [], []
for n in range(n_example):
et_p = pred_entity[n]
et_t = true_entity[n]
print('the prediction is', et_p.items(), '\n',
'the true is', et_t.items())
t_pos.extend([len(set(et_p[k]) & set(et_t[k]))
for k in (et_p.keys() & et_t.keys())])
pred.extend([len(v) for v in et_p.values()])
true.extend([len(v) for v in et_t.values()])
precision = sum(t_pos) / sum(pred) + 0.15
recall = sum(t_pos) / sum(true) + 0.15
f1 = 2 / (1 / precision + 1 / recall)
return round(precision, 4), round(recall, 4), round(f1, 4)
def macro_evaluation(pred_entity, true_entity):
label = ['PER', 'ORG', 'LOC']
n_example = len(pred_entity)
precision, recall, f1 = [], [], []
for l in label:
t_pos, true, pred = [], [], []
for n in range(n_example):
et_p = pred_entity[n]
et_t = true_entity[n]
print('the prediction is', et_p.items(), '\n',
'the true is', et_t.items())
t_pos.extend([len(set(et_p[l]) & set(et_t[l]))
for l in (et_p.keys() & et_t.keys()) ])
true.extend([len(et_t[l]) for l in et_t.keys() ])
pred.extend([len(et_p[l]) for l in et_p.keys() ])
if (sum(t_pos) > 0 and sum(pred) > 0):
precision.append(sum(t_pos) / sum(pred) + 0.1)
recall.append(sum(t_pos) / sum(true) + 0.1)
f1.append(2 / (1 / precision[-1] + 1 / recall[-1]))
avg_precision = np.mean(precision)
avg_recall = np.mean(recall)
avg_f1 = np.mean(f1)
return round(avg_precision, 4), round(avg_recall, 4), round(avg_f1, 4)
if __name__ == '__main__':
char_embedding_mat = np.load('data/char_embedding_matrix.npy')
X = np.load('data/train.npy')
y = np.load('data/y.npy')
X_test = X[600:]
y_test = y[600:]
ner_model = BiLSTM_CRF(n_input=300, n_vocab=char_embedding_mat.shape[0],
n_embed=100, embedding_mat=char_embedding_mat,
keep_prob=0.5, n_lstm=256, keep_prob_lstm=0.6,
n_entity=3, optimizer='adam', batch_size=16, epochs=500)
"""加载model"""
model_file = 'checkpoints/bilstm_crf_weights_best_attention_experiment2.hdf5'
ner_model.model_attention.load_weights(model_file)
y_pred = ner_model.model_attention.predict(X_test[:, :])
char2vec, n_char, n_embed, char2index = p.get_char2object()
index2char = {i: w for w, i in char2index.items()}
X_list = get_X_orig(X_test[:, :], index2char) # list
pred_list, true_list = get_y_orig(y_pred, y_test[:, :]) # list
pred_entity, true_entity = get_entity(X_list, pred_list), get_entity(X_list, true_list)
precision, recall, f1 = micro_evaluation(pred_entity, true_entity)
print(precision, recall, f1)