-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsam.py
67 lines (51 loc) · 2.38 KB
/
sam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# This script batch segments pictures in <source> directory using SAM(Segment Anything).
# And save the semantic pictures in <source_semantic> for colored versions,
# and <source_semanticB> for binary versions
# Author: Qihan Zhao
# Prerequisite:
# 1. download this script in directory `SAM`
# 2. download SAM weights in directory `SAM`
# 3. add <source> file in directory `SAM`
import numpy as np
import torch
import matplotlib.pyplot as plt
import cv2
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry
import argparse
parser = argparse.ArgumentParser("enlighten-anything")
parser.add_argument('--source_dir', type=str, default='data/LOL/test15/low', help='directory of data to be segmented')
args = parser.parse_args()
sam_checkpoint = "./segment_anything/sam_vit_h_4b8939.pth"
model_type = "vit_h"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
sam.to(device=device)
mask_generator = SamAutomaticMaskGenerator(sam)
import os
sourcedir = args.source_dir
for i, filename in enumerate(os.listdir(sourcedir)):
if filename.endswith('.jpg') or filename.endswith('.png'):
print(f'{i}th pic: {filename}')
# read image
img_path = os.path.join(sourcedir, filename)
image = cv2.imread(img_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# segment
masks = mask_generator.generate(image)
# save semantic
img = np.ones((masks[0]['segmentation'].shape[0], masks[0]['segmentation'].shape[1], 4))
img[:,:,3] = 0
# Binary
os.makedirs(f'{sourcedir}_semanticB', exist_ok=True)
for i, mask in enumerate(masks):
save_path = os.path.join(f'{sourcedir}_semanticB', f'{os.path.splitext(filename)[0]}_semanticB_{i}.png')
cv2.imwrite(save_path, np.uint8(mask["segmentation"]) * 255)
#Color
os.makedirs(f'{sourcedir}_semantic', exist_ok=True)
save_path = os.path.join(f'{sourcedir}_semantic', f'{os.path.splitext(filename)[0]}_semantic.png')
print(save_path)
for i, mask in enumerate(masks):
mask_bool = mask['segmentation']
color_mask = np.concatenate([np.random.random(3), [0.35]])
img[mask_bool] = color_mask
cv2.imwrite(save_path, np.uint8(img * 255))