-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathFood_Energy_NLCEQ.gms
executable file
·422 lines (337 loc) · 12.1 KB
/
Food_Energy_NLCEQ.gms
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
*----------------------------------------------------------------------
* This program solves the dynamic stochastic model of food and clean energy using NLCEQ
*
* Author: Yongyang Cai, University of Chicago and Hoover Institution
*
* If using material from this code, the user should cite the following paper:
* Cai, Y., K.L. Judd, and J. Steinbuks (2016). A nonlinear certainty equivalent* approximation method for dynamic stochastic problems. Quantitative Economics (forthcoming).
*----------------------------------------------------------------------
Set j land types: "1" = Food "2" = Biofuels /1*2/;
scalars
beta0 discount rate /0.95/
alpha biofuels cost share /0.5/
delta polution decay /0.001/
mu oil emissions factor relative to biofuels /0.25/
rhoe energy CES function parameter /0.5/
gamma intertemporal elasticity of substitution /0.5/
Be relative weight for energy production /0.5/
Bo relative weight for other goods /0.5/
BM relative weight for pollution disutility / 1 /
ae technology parameter for energy /1/
psio1 unit cost of oil extraction {psi^{o}_1} /0.4/
psio2 cost of oil extraction parameter {psi^{o}_2} /1/
eta parameter of disutility of pollution {eta} /4/
X0 Oil reserves in time 1 /1/
M0 Accumulated pollution in time 1 /1/
Lbar Total land amount /1/
target Pollution target /1.06/
gammahat utility parameter
epsilon a small number / 0.000001 /
;
gammahat = 1-(1/gamma);
Parameters
c(j) unit costs of food and biofuels {psi^{f} and psi^{Be}}
;
c("1") = 0.3;
c("2") = 0.5;
set n index of yields of food /1*2/;
alias(n, n2, n3, n4);
parameter foodYield(n);
foodYield('1') = 1;
foodYield('2') = 0.9;
parameter p21 probability of tipping in one year / 0.0034 /;
parameter tranProbs(n,n2);
tranProbs(n,n2) = 0;
tranProbs('1','1') = 1-p21;
tranProbs('2','1') = p21;
tranProbs('1','2') = 0;
tranProbs('2','2') = 1;
*----------------------------------------------------------------------
* Step 1: Define the transformed deterministic model
set t time /1*201/;
parameters
beta(t) discount rate
foodYieldPath(t)
probs(t,n)
;
beta(t) = beta0**(ord(t) - 1);
probs(t,n) = 0;
probs('1','1') = 1;
foodYieldPath(t) = 1;
loop(t$(ord(t)<card(t)),
probs(t+1,n) = sum(n2, tranProbs(n,n2) * probs(t,n2));
foodYieldPath(t+1) = sum(n2, probs(t+1,n2)*foodYield(n2));
);
Variables
obj objective criterion
u(t) utility
termU
;
Positive variables
M(t) pollution stock
X(t) oil stock
dx(t) oil extracted
ye(t) energy
yeTerm
yo(t) other goods
yoTerm
L(j,t) land allocation
;
Equations
tland(t) land constraint
energy(t) energy production function
energyTerm
othergoods(t) other goods
othergoodsTerm
oilextr(t) oil extraction function
pollution(t) pollution accumulation function
util(t) utility function
utilTerm
obj1 objective function
;
tland(t) .. sum(j, L(j,t)) =l= Lbar;
energy(t)$(ord(t) lt card(t))..
ye(t) =e= ae*( alpha * ( L("2",t) )**rhoe + (1-alpha) * (dx(t)+epsilon)**rhoe )**(1/rhoe);
energyTerm..
yeTerm =e= ae*( alpha * ( sum(t$(ord(t)=card(t)),L("2",t)) )**rhoe + (1-alpha) * (sum(t$(ord(t)=card(t)),0.01*X(t))+epsilon)**rhoe )**(1/rhoe);
oilextr(t)$(ord(t) lt card(t))..
X(t+1) =e= X(t) - dx(t);
pollution(t)$(ord(t) lt card(t))..
M(t+1) =e= (1-delta)*M(t) + mu*dx(t);
othergoods(t)$(ord(t) lt card(t))..
yo(t) =e= 1 - sum(j, c(j)*L(j,t)) - psio1*dx(t)/((X(t) + epsilon)**psio2);
othergoodsTerm..
yoTerm =e= 1 - sum(j, c(j)*sum(t$(ord(t)=card(t)),L(j,t))) - psio1*0.01*sum(t$(ord(t)=card(t)),X(t)/((X(t) + epsilon)**psio2));
util(t)$(ord(t) lt card(t)) ..
u(t) =e= ((foodYieldPath(t)*L("1",t))**gammahat)/gammahat
+ Be * (ye(t)**gammahat)/gammahat + Bo * (yo(t)**gammahat)/gammahat
- BM * M(t)**eta;
utilTerm ..
termU =e= ((sum(t$(ord(t)=card(t)),foodYieldPath(t)*L("1",t)))**gammahat)/gammahat
+ Be * (yeTerm**gammahat)/gammahat + Bo * (yoTerm**gammahat)/gammahat
- BM * (sum(t$(ord(t)=card(t)),M(t)))**eta;
obj1 .. obj =e= sum(t$(ord(t) lt card(t)), beta(t)*(u(t))) + sum(t$(ord(t)=card(t)), beta(t))*termU/(1-beta0);
* bound constraints
L.up(j,t) = Lbar;
M.up(t) = target;
L.lo(j,t) = epsilon;
yo.lo(t) = epsilon;
ye.lo(t) = epsilon;
M.lo(t) = epsilon;
yoTerm.lo = epsilon;
yeTerm.lo = epsilon;
* Initial Guess
L.l("1",t) = 0.5;
L.l("2",t) = Lbar - L.l("1",t);
X.l('1') = X0;
dx.l(t) = X.l(t)/card(t);
loop (t,
X.l(t+1) = X.l(t) - dx.l(t);
);
ye.l(t) = ae*( alpha * ( L.l("2",t) )**rhoe + (1-alpha) * (dx.l(t)+epsilon)**rhoe )**(1/rhoe);
yeTerm.l = ae*( alpha * ( sum(t$(ord(t)=card(t)),L.l("2",t)) )**rhoe + (1-alpha) * (sum(t$(ord(t)=card(t)),0.01*X.l(t))+epsilon)**rhoe )**(1/rhoe);
yo.l(t) = 1 - sum(j, c(j)*L.l(j,t)) - psio1*dx.l(t)/((X.l(t) + epsilon)**psio2);
yoTerm.l = 1 - sum(j, c(j)*sum(t$(ord(t)=card(t)),L.l(j,t))) - psio1*0.01*sum(t$(ord(t)=card(t)),X.l(t)/((X.l(t) + epsilon)**psio2));
M.l('1') = M0;
loop (t,
M.l(t+1) = (1-delta)*M.l(t) + mu*dx.l(t);
);
u.l(t)$(ord(t) lt card(t)) =((foodYieldPath(t)*L.l("1",t))**gammahat)/gammahat
+ Be * (ye.l(t)**gammahat)/gammahat + Bo * (yo.l(t)**gammahat)/gammahat
- BM * M.l(t)**eta;
termU.l = ((sum(t$(ord(t)=card(t)),foodYieldPath(t)*L.l("1",t)))**gammahat)/gammahat
+ Be * (yeTerm.l**gammahat)/gammahat + Bo * (yoTerm.l**gammahat)/gammahat
- BM * (sum(t$(ord(t)=card(t)),M.l(t)))**eta;
obj.l = sum(t$(ord(t) lt card(t)), beta(t)*(u.l(t))) + sum(t$(ord(t)=card(t)), beta(t))*termU.l/(1-beta0);
model land / all /;
Option limrow=0,limcol=0,solprint=off;
option decimals = 7;
OPTION ITERLIM = 500000;
OPTION RESLIM = 500000;
OPTION DOMLIM = 1000;
OPTION NLP= conopt;
*----------------------------------------------------------------------
* Step 2: Optimization step
set v1 grid space / 1*21/;
alias(v1,v2,d1,d2);
Parameters
Xmin lower bound of X / 0.01 /
Xmax upper bound of X / 1 /
pmin lower bound of M / 1 /
pmax upper bound of M / 1.06 /
Xinit(v1) Grid: Oil stock
Minit(v2) Grid: Pollution stock
;
* Chebyshev parameters
parameters zx(v1)
zp(v2)
extx
extp
extxmin
extpmin
extxmax
extpmax
dzx
dzp
;
zx(v1) = - cos((2*ord(v1)-1)/(2*card(v1))*pi);
zp(v2) = - cos((2*ord(v2)-1)/(2*card(v2))*pi);
extx = -(zx('1')+1)*(Xmax-Xmin)/2/zx('1');
extp = -(zp('1')+1)*(pmax-pmin)/2/zp('1');
extxmin = Xmin - extx;
extpmin = pmin - extp;
extxmax = Xmax + extx;
extpmax = pmax + extp;
dzx = 2/(extxmax-extxmin);
dzp = 2/(extpmax-extpmin);
Xinit(v1) = extxmin + (1+zx(v1))/dzx;
Minit(v2) = extpmin + (1+zp(v2))/dzp;
Parameters
valf(v1,v2,n) value function
Lfsol(v1,v2,n)
Lbsol(v1,v2,n)
dxsol(v1,v2,n)
;
loop ((v1,v2,n),
X.fx(t)$(ord(t) eq 1) = Xinit(v1);
M.fx(t)$(ord(t) eq 1) = Minit(v2);
foodYieldPath('1') = foodYield(n);
probs(t,n3) = 0;
probs('1',n) = 1;
loop(t$(ord(t)<card(t)),
probs(t+1,n3) = sum(n2, tranProbs(n3,n2) * probs(t,n2));
foodYieldPath(t+1) = sum(n3, probs(t+1,n3)*foodYield(n3));
);
solve land using nlp maximizing obj;
valf(v1,v2,n) = obj.l;
Lfsol(v1,v2,n) = L.l('1','1');
Lbsol(v1,v2,n) = L.l('2','1');
dxsol(v1,v2,n) = dx.l('1');
);
*----------------------------------------------------------------------
* Step 3: Approximation step
parameters TTx(v1,d1)
TTp(v2,d2)
;
TTx(v1,'1') = 1;
TTx(v1,'2') = zx(v1);
loop(d1$(ord(d1)>=2 and ord(d1)<card(d1)),
TTx(v1,d1+1) = 2*zx(v1)*TTx(v1,d1) - TTx(v1,d1-1);
);
TTp(v2,'1') = 1;
TTp(v2,'2') = zp(v2);
loop(d2$(ord(d2)>=2 and ord(d2)<card(d2)),
TTp(v2,d2+1) = 2*zp(v2)*TTp(v2,d2) - TTp(v2,d2-1);
);
parameter coefs(d1,d2,n) approximation coefficients;
parameter coefsLf(d1,d2,n) approximation coefficients;
parameter coefsLb(d1,d2,n) approximation coefficients;
parameter coefsdx(d1,d2,n) approximation coefficients;
coefs(d1,d2,n) = 0;
coefs(d1,d2,n)$(ord(d1)+ord(d2)<=card(d1)+1) =
4*sum((v1,v2), TTx(v1,d1)*TTp(v2,d2)*valf(v1,v2,n)) / (card(v1)*card(v2));
coefs('1',d2,n) = coefs('1',d2,n)/2;
coefs(d1,'1',n) = coefs(d1,'1',n)/2;
coefsLf(d1,d2,n) = 0;
coefsLf(d1,d2,n)$(ord(d1)+ord(d2)<=card(d1)+1) =
4*sum((v1,v2), TTx(v1,d1)*TTp(v2,d2)*Lfsol(v1,v2,n)) / (card(v1)*card(v2));
coefsLf('1',d2,n)= coefsLf('1',d2,n)/2;
coefsLf(d1,'1',n) = coefsLf(d1,'1',n)/2;
coefsLb(d1,d2,n) = 0;
coefsLb(d1,d2,n)$(ord(d1)+ord(d2)<=card(d1)+1) =
4*sum((v1,v2), TTx(v1,d1)*TTp(v2,d2)*Lbsol(v1,v2,n)) / (card(v1)*card(v2));
coefsLb('1',d2,n)= coefsLb('1',d2,n)/2;
coefsLb(d1,'1',n) = coefsLb(d1,'1',n)/2;
coefsdx(d1,d2,n) = 0;
coefsdx(d1,d2,n)$(ord(d1)+ord(d2)<=card(d1)+1) =
4*sum((v1,v2), TTx(v1,d1)*TTp(v2,d2)*dxsol(v1,v2,n)) / (card(v1)*card(v2));
coefsdx('1',d2,n)= coefsdx('1',d2,n)/2;
coefsdx(d1,'1',n) = coefsdx(d1,'1',n)/2;
display coefs;
*----------------------------------------------------------------------
* Step 4: Output solutions for error checking
set k1 /1*100/;
alias(k1, k2);
Parameters
valf1(k1,k2,n) value function
Lfsol1(k1,k2,n)
Lbsol1(k1,k2,n)
dxsol1(k1,k2,n)
X1(k1) Grid: Oil stock
p1(k2) Grid: Pollution stock
;
X1(k1) = Xmin + (Xmax-Xmin)*(ord(k1)-1) / (card(k1)-1);
p1(k2) = pmin + (pmax-pmin)*(ord(k2)-1) / (card(k2)-1);
valf1(k1,k2,n) = sum( (d1,d2)$(ord(d1)+ord(d2)<=card(d1)+1),
coefs(d1,d2,n)*cos((ord(d1)-1)*arccos(dzx*(X1(k1)-extxmin)-1)) * cos((ord(d2)-1)*arccos(dzp*(p1(k2)-extpmin)-1)) );
Lfsol1(k1,k2,n) = sum( (d1,d2)$(ord(d1)+ord(d2)<=card(d1)+1),
coefsLf(d1,d2,n)*cos((ord(d1)-1)*arccos(dzx*(X1(k1)-extxmin)-1)) * cos((ord(d2)-1)*arccos(dzp*(p1(k2)-extpmin)-1)) );
Lbsol1(k1,k2,n) = sum( (d1,d2)$(ord(d1)+ord(d2)<=card(d1)+1),
coefsLb(d1,d2,n)*cos((ord(d1)-1)*arccos(dzx*(X1(k1)-extxmin)-1)) * cos((ord(d2)-1)*arccos(dzp*(p1(k2)-extpmin)-1)) );
dxsol1(k1,k2,n) = sum( (d1,d2)$(ord(d1)+ord(d2)<=card(d1)+1),
coefsdx(d1,d2,n)*cos((ord(d1)-1)*arccos(dzx*(X1(k1)-extxmin)-1)) * cos((ord(d2)-1)*arccos(dzp*(p1(k2)-extpmin)-1)) );
File modeloutput /sol_cf.csv/;
modeloutput.nw=18;
modeloutput.nr=2;
modeloutput.nz=1e-15;
Put modeloutput;
Put "FoodYield, OilStock, Pollution, LandFood, LandBiofuel, OilExtraction, V" /;
modeloutput.pc=5;
*modeloutput.pw=4000;
loop((n,k1,k2),
put foodYield(n):14:6;
put X1(k1):14:6;
put p1(k2):14:6;
put Lfsol1(k1,k2,n):14:6;
put Lbsol1(k1,k2,n):14:6;
put dxsol1(k1,k2,n):14:6;
put valf1(k1,k2,n):14:6;
put /;
);
*----------------------------------------------------------------------
* Step 5: Output solutions over a path for plotting figures
set k4 /1*201/;
Parameters
aaM(k4,n)
aaX(k4,n)
aavalf(k4,n) value function
aaLfsol(k4,n)
aaLbsol(k4,n)
aadxsol(k4,n)
;
aaM('1',n) = M0;
aaX('1',n) = X0;
loop((k4,n)$(ord(k4)<card(k4)),
aavalf(k4,n) = sum( (d1,d2)$(ord(d1)+ord(d2)<=card(d1)+1),
coefs(d1,d2,n)*cos((ord(d1)-1)*arccos(dzx*(aaX(k4,n)-extxmin)-1)) * cos((ord(d2)-1)*arccos(dzp*(aaM(k4,n)-extpmin)-1)) );
aaLfsol(k4,n) = sum( (d1,d2)$(ord(d1)+ord(d2)<=card(d1)+1),
coefsLf(d1,d2,n)*cos((ord(d1)-1)*arccos(dzx*(aaX(k4,n)-extxmin)-1)) * cos((ord(d2)-1)*arccos(dzp*(aaM(k4,n)-extpmin)-1)) );
aaLbsol(k4,n) = sum( (d1,d2)$(ord(d1)+ord(d2)<=card(d1)+1),
coefsLb(d1,d2,n)*cos((ord(d1)-1)*arccos(dzx*(aaX(k4,n)-extxmin)-1)) * cos((ord(d2)-1)*arccos(dzp*(aaM(k4,n)-extpmin)-1)) );
aadxsol(k4,n) = sum( (d1,d2)$(ord(d1)+ord(d2)<=card(d1)+1),
coefsdx(d1,d2,n)*cos((ord(d1)-1)*arccos(dzx*(aaX(k4,n)-extxmin)-1)) * cos((ord(d2)-1)*arccos(dzp*(aaM(k4,n)-extpmin)-1)) );
* it has some small approximation errors so that aaM could be slightly bigger than its upper bound,
* and then in the next period the arccos function in the approximation will not be well defined,
* so here we adjust it to not exceed its upper bound in order to proceed in next periods
aaM(k4+1,n) = min(target, (1-delta)*aaM(k4,n) + mu*aadxsol(k4,n));
aaX(k4+1,n) = aaX(k4,n) - aadxsol(k4,n);
);
File modeloutput3 /sol_cf_path.csv/;
modeloutput3.nw=18;
modeloutput3.nr=2;
modeloutput3.nz=1e-15;
Put modeloutput3;
Put "FoodYield, OilStock, Pollution, LandFood, LandBiofuel, OilExtraction, V" /;
modeloutput3.pc=5;
*modeloutput3.pw=4000;
loop((n,k4),
put foodYield(n):14:6;
put aaX(k4,n):14:6;
put aaM(k4,n):14:6;
put aaLfsol(k4,n):14:6;
put aaLbsol(k4,n):14:6;
put aadxsol(k4,n):14:6;
put aavalf(k4,n):14:6;
put /;
);