-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgenerate_base_eset.Rmd
400 lines (331 loc) · 16.3 KB
/
generate_base_eset.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
---
title: "ImmuneSignatures2: Generating Base ExpressionSet from ImmuneSpace Data"
author: "Evan Henrich and Helen Miller"
output:
html_document:
toc: true
toc_float: true
df_print: paged
params:
outputDir: "/share/files/HIPC/IS2/@files/data/html_outputs"
dataCacheDir: "/share/files/HIPC/IS2/@files/data"
timestamp: ""
---
# Overview
The purpose of this vignette is to generate a base expressionSet object with transcriptomic and immune response data for a number of studies from the ImmuneSpace portal, www.immunespace.org.
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE, include = TRUE)
suppressPackageStartupMessages({
library(ImmuneSignatures2) # vaccine map loaded as `vaccines`
library(ImmuneSpaceR)
library(Rlabkey)
library(Biobase)
library(data.table)
library(limma)
library(dplyr)
})
# Output variables
outputDir <- params$outputDir
dataCacheDir <- params$dataCacheDir
if (!dir.exists(outputDir)) dir.create(outputDir, recursive = TRUE)
if (!dir.exists(dataCacheDir)) dir.create(dataCacheDir)
timeStamp <- params$timestamp
```
The ImmuneSignatures group selected a number of studies based on the diseases studied, study design and data availability. For some studies there were cohorts that were excluded due to different vaccination methods, lack of stimulation, or different cell types.
```{r global-variables}
# Set up list for keeping track of consort numbers
consort_numbers <- data.table(
step = c("immunespace total transcriptomic samples",
"immunespace curated dataset",
"drop cohorts",
"drop samples due to difference in time design",
"remove subjects without baseline",
"QC (remove saline samples)",
"Normalize: remove studies without young cohort",
"Young adult dataset",
"Older adult dataset"),
studies_remaining = as.numeric(NA),
studies_affected = as.numeric(NA),
studies_dropped = as.numeric(NA),
cohorts_remaining = as.numeric(NA),
cohorts_affected = as.numeric(NA),
cohorts_dropped = as.numeric(NA),
subjects_remaining = as.numeric(NA),
subjects_affected = as.numeric(NA),
subjects_dropped = as.numeric(NA),
samples_remaining = as.numeric(NA),
samples_affected = as.numeric(NA),
samples_dropped = as.numeric(NA)
)
summarizeEset <- function(eset) {
d <- pData(eset)
study_count <- length(unique(d$study_accession))
arm_count <- length(unique(d$arm_accession))
cohort_count <- length(unique(d$cohort))
cohort_count <- max(arm_count, cohort_count)
# subject_count <- length(unique(gsub("\\.\\d+", "", d$participant_id)))
subject_count <- length(unique(d$participant_id))
sample_count <- length(unique(d$biosample_accession))
summary_dataset <- data.table(
studies = study_count,
cohorts = cohort_count,
subjects = subject_count,
samples = sample_count)
return(summary_dataset)
}
summarizeEsetList <- function(esetList, con) {
pdList <- lapply(esetList, pData)
d <- rbindlist(pdList)
if (!"arm_accession" %in% names(d)) {
gef <- con$getDataset("gene_expression_files", original_view = TRUE)
d <- merge(d, unique(gef[, .(participant_id, arm_accession, study_accession)]), all.x = TRUE, all.y = FALSE)
}
study_count <- length(unique(d$study_accession))
cohort_count <- length(unique(d$arm_accession))
# subject_count <- length(unique(gsub("\\.\\d+", "", d$participant_id)))
subject_count <- length(unique(d$participant_id))
sample_count <- length(unique(d$biosample_accession))
summary_dataset <- data.table(
studies = study_count,
cohorts = cohort_count,
subjects = subject_count,
samples = sample_count)
return(summary_dataset)
}
con <- CreateConnection("IS2", onTest = FALSE)
```
```{r get-total-numbers}
con_all <- CreateConnection("", onTest = FALSE)
gef <- con_all$getDataset("gene_expression_files", original_view = TRUE)
consort_numbers[step == "immunespace total transcriptomic samples",
`:=`(
studies_remaining = length(unique(gef$study_accession)),
cohorts_remaining = length(unique(gef$arm_accession)),
subjects_remaining = length(unique(gef$participant_id)),
samples_remaining = length(unique(gef$biosample_accession))
)]
rm(con_all, gef)
```
```{r load-esets}
geMatrices <- con$cache$GE_matrices
esets <- readRDS(file.path(dataCacheDir, paste0(timeStamp, "IS2_esets.rds")))
```
```{r load-immdata-and-metadata}
immdata_all <- readRDS( file.path(dataCacheDir, paste0(timeStamp, "immdata_all.rds")) )
sharedMetaData <- readRDS( file.path(dataCacheDir, paste0(timeStamp, "sharedMetaData.rds")) )
demographics <- con$getDataset("demographics")
geneExpressionFiles <- con$getDataset("gene_expression_files", original_view = TRUE)
featureAnnotationMap <- getTable(con, "microarray", "fasMap", showHidden = TRUE)
featureAnnotation <- getTable(con, "microarray", "FeatureAnnotationSet", showHidden = TRUE)
```
Full dataset:
```{r summarize-all}
full_summary <- summarizeEsetList(c(esets), con)
consort_numbers[step == "immunespace curated dataset",
`:=`(studies_remaining = full_summary$studies,
cohorts_remaining = full_summary$cohorts,
subjects_remaining = full_summary$subjects,
samples_remaining = full_summary$samples)]
```
Analysis cohorts:
```{r summarize-kept}
remaining_summary <- summarizeEsetList(esets, con)
consort_numbers[step == "drop cohorts",
`:=`(studies_remaining = remaining_summary$studies,
cohorts_remaining = remaining_summary$cohorts,
subjects_remaining = remaining_summary$subjects,
samples_remaining = remaining_summary$samples,
studies_dropped = full_summary$studies - remaining_summary$studies,
cohorts_dropped = full_summary$cohorts - remaining_summary$cohorts,
subjects_dropped = full_summary$subjects - remaining_summary$subjects,
samples_dropped = full_summary$samples - remaining_summary$samples)]
remaining_summary
```
# Fix problem samples due to difference in time design
There are some samples that are removed prior to the summarization of the transcriptomic data from the probe level to the gene symbol level. The reason for removal is noted for each study.
```{r remove-unused-samples-from-esets-pre-summarization}
esets <- lapply(esets, function(eset){
pData(eset) <- addStudy(pData(eset))
return(eset)
})
esets_pre <- esets
# SDY1325 - Day 35, 7 days post booster but no day 28 data to create new baseline
esets <- removeTimepointFromEset(esets, "SDY1325", 35)
# SDY1293 - Day 0, using last vaccination on Day 60 as new Day 0
esets <- removeTimepointFromEset(esets, "SDY1293", 0)
# SDY180 - Hourly data generates non-matching duplicates for early timepoints
esets <- removeTimepointFromEset(esets, "SDY180", "Hours")
# Study authors of SDY212 cannot explain why one sample is missing some data
esets <- removeSDY212MissingSample(esets)
esets <- lapply(esets, function(eset){
pd <- pData(eset)
pd <- correctHrs(pd)
pd <- addTimePostLastVax(pd)
pData(eset) <- pd
return(eset)
})
result_summary <- summarizeEsetList(esets, con)
result_summary
# Get subjects affected
pdata_pre <- rbindlist(lapply(esets_pre, pData))
pdata_post <- rbindlist(lapply(esets, pData))
subject_counts_pre <- pdata_pre[, .(n_pre = .N), participant_id]
subject_counts_post <- pdata_post[, .(n_post = .N), .(participant_id, study_accession)]
subject_counts <- merge(subject_counts_pre, subject_counts_post)
subject_counts <- merge(subject_counts, geneExpressionFiles[, .(arm_accession, participant_id)])
consort_numbers[step == "drop samples due to difference in time design",
`:=`(studies_remaining = result_summary$studies,
cohorts_remaining = result_summary$cohorts,
subjects_remaining = result_summary$subjects,
samples_remaining = result_summary$samples,
studies_affected = 4,
cohorts_affected = nrow(subject_counts[n_pre != n_post][, .N, arm_accession]),
subjects_affected = unique(subject_counts[n_pre != n_post])[, .N],
samples_affected = remaining_summary$samples - result_summary$samples,
studies_dropped = remaining_summary$studies - result_summary$studies,
cohorts_dropped = remaining_summary$cohorts - result_summary$cohorts,
subjects_dropped = remaining_summary$subjects - result_summary$subjects,
samples_dropped = remaining_summary$samples - result_summary$samples)]
rm(esets_pre)
```
```{r prepare-gene-expression-meta-data}
phenoDataSets <- lapply(esets, pData)
phenoDataSets <- addMatrixRelatedFields(phenoDataSets, geMatrices)
geMetaData <- rbindlist(phenoDataSets)
# Adds vaccine and age_imputed
# First remove "Old" vs "Young" cohort name from sharedMetaData
geMetaData <- merge(geMetaData, sharedMetaData[, -"cohort"],
by = c("participant_id", "study_accession"))
geMetaData <- addFeatureAnnotationSetName(geMetaData, featureAnnotationMap)
geMetaData <- addFeatureAnnotationSetVendor(geMetaData, featureAnnotation)
geMetaData <- addCoalescedFeatureSetName(geMetaData)
geMetaData <- addGSMAccessions(geMetaData, geneExpressionFiles)
geMetaData <- createUniqueIdColumn(geMetaData)
geMetaData <- addAnalysisVariables(geMetaData)
geMetaData <- subsetToOnlyNeededColumns(geMetaData)
```
A subset of studies created by HIPC collaborators at Yale University have "study_time_collected" values that do not align with the intended "visit_day" value. These are manually corrected here.
```{r fix-yale-studies-study-time-collected}
geMetaData$time_post_last_vax <- as.numeric(geMetaData$time_post_last_vax)
geMetaData <- updateStudyTimepoints(geMetaData, c("SDY400", "SDY404", "SDY520", "SDY63", "SDY640"), 24, 28)
geMetaData <- updateStudyTimepoints(geMetaData, c("SDY400", "SDY404", "SDY520"), 3, 2)
geMetaData <- updateStudyTimepoints(geMetaData, c("SDY400", "SDY404", "SDY520"), 8, 7)
geMetaData <- updateStudyTimepoints(geMetaData, c("SDY400", "SDY404", "SDY520"), 9, 7)
geMetaData <- updateStudyTimepoints(geMetaData, c("SDY63"), 5, 4)
```
```{r test-ge-metadata-pre-summarization}
metaDataResults <- testGEMetaDataPreSummarization(geMetaData)
if(!metaDataResults){
stop("Not all pre-summarization checks are passing!")
}
```
# Create expressionset
Gene expression data is summarized from the probe level (for microarray data) and gene-alias level (RNAseq) to the canonical Gene-Symbol level using mappings from the Human Gene Ontology Network (HUGO). The probes / gene-aliases are summarized by selecting the probe or gene-alias with the maximum mean value (no log transformation) across all samples within the matrix (cohort * cell_type).
```{r summarize-gene-expression-data-by-gene-symbol}
summarizedEsets <- summarizeByGeneSymbol(esets)
allGE <- Reduce(f = function(x, y){ merge(x, y, by = "gs", all = TRUE)},
summarizedEsets)
gs <- allGE$gs
allGE[, gs := NULL ]
```
```{r match-ge-and-metadata}
geMetaData <- geMetaData[ order(match(geMetaData$biosample_accession, colnames(allGE))), ]
if (!all.equal(geMetaData$biosample_accession, colnames(allGE))) {
stop("biosample accessions do NOT match for expression data and meta-data!")
}
colnames(allGE) <- c(geMetaData$uid)
allGE[, rn := gs ]
```
```{r pre-norm-gene-expression-tests}
exprDataResults <- testAllGEMatrixPreNorm(allGE)
metaDataResults <- testAllGEMetaDataPreNorm(geMetaData)
if(!all(unlist(c(exprDataResults, metaDataResults)))){
stop("Not all pre-norm checks are passing!")
}
```
```{r create-initial-expression-set}
geMetaData <- as.data.frame(geMetaData)
rownames(geMetaData) <- geMetaData$uid
noNormEset <- new("ExpressionSet",
exprs = as.matrix(allGE, rownames = "rn"),
phenoData = new('AnnotatedDataFrame',
geMetaData))
summarizeEset(noNormEset)
```
Remove subjects without baseline
```{r remove-subjects-without-baseline}
pd <- pData(noNormEset)
pdata_pre <- data.table(pd)
allPids <- unique(pd$participant_id)
pidsWithBaseline <- unique(pd$participant_id[ pd$time_post_last_vax >= -7 & pd$time_post_last_vax <= 0 ])
pidsToRm <- setdiff(allPids, pidsWithBaseline)
noNormEset <- noNormEset[ , !noNormEset$participant_id %in% pidsToRm ]
# Add consort numbers
post_baseline_summary <- summarizeEset(noNormEset)
pdata_post <- data.table(pData(noNormEset))
arm_counts_pre <- pdata_pre[, .(n_pre = .N), .(study_accession, arm_accession)]
arm_counts_post <- pdata_post[, .(n_post = .N), .(study_accession, arm_accession)]
arm_counts <- merge(arm_counts_pre, arm_counts_post,
by = c("study_accession", "arm_accession"),
all = TRUE)
consort_numbers[step == "remove subjects without baseline",
`:=`(studies_remaining = post_baseline_summary$studies,
cohorts_remaining = post_baseline_summary$cohorts,
subjects_remaining = post_baseline_summary$subjects,
samples_remaining = post_baseline_summary$samples,
studies_affected = nrow(unique(arm_counts[n_pre != n_post])[, .N, study_accession]),
cohorts_affected = unique(arm_counts[n_pre != n_post])[, .N],
subjects_affected = result_summary$subjects - post_baseline_summary$subjects,
samples_affected = result_summary$samples - post_baseline_summary$samples,
studies_dropped = result_summary$studies - post_baseline_summary$studies,
cohorts_dropped = result_summary$cohorts - post_baseline_summary$cohorts,
subjects_dropped = result_summary$subjects - post_baseline_summary$subjects,
samples_dropped = result_summary$samples - post_baseline_summary$samples)]
```
# Y-chromosome imputation
Y-chromosome imputation is performed by using Y-Chromosome associated genes to cluster each cohort into two groups and then assigning groups to either y-chromosome positive or negative based on the positive group having a higher mean expression value for selected genes. Due to some outliers with extreme values, the Y-chromosome gene expression values are mapped to a lower two-dimensional representation first before clustering.
```{r ychrom-imputation}
allMatricesPlot <- qualityControl.genderByMatrix(noNormEset)
pdf(file = file.path(outputDir, paste0(timeStamp, "baseEset_preYchromImpute.pdf")),
width = 8.5,
height = 11)
allMatricesPlot
dev.off()
# The following code assigns probable y chromosome presence based on clustering
# of samples given expression values for 13 Y-Chromosome genes.
noNormEset <- imputeYchrom.useAllTimepoints(noNormEset)
# Flag additional problem samples
# Specific samples for SDY1370 were determined to be problematic by
# looking at the coordination of y_chrom_present by timepoint
problemSamples <- c("SUB192192.1370,","SUB192199.1370")
noNormEset$failedYchromQC[ noNormEset$participant_id %in% problemSamples] <- TRUE
failedYchromQC <- qualityControl.failedYchromQC(noNormEset)
pdf(file = file.path(outputDir, paste0(timeStamp, "baseEset_failedYchromQCAllSubjects.pdf")),
width = 8.5,
height = 11)
failedYchromQC
dev.off()
problemSamples <- noNormEset[ , noNormEset$failedYchromQC]
problemSubjectsPlot <- qualityControl.yChromPresentByMatrix(problemSamples,
returnObject = "probSubjects")
pdf(file = file.path(outputDir, paste0(timeStamp, "baseEset_failedYchromQCproblemSubjects.pdf")),
width = 8.5,
height = 11)
problemSubjectsPlot
dev.off()
probStudiesBySubjectTbl <- qualityControl.createSubjectsByStudyTable(problemSamples$participant_id)
data.frame(probStudiesBySubjectTbl)
```
```{r test-non-normalized-expression-set}
res <- testNoNormEset(noNormEset)
if(!all(unlist(res))){
warning("noNormEset does not meet expectations")
}
saveRDS(consort_numbers, file.path(dataCacheDir, "consort_numbers.rds"))
saveRDS(noNormEset, file = file.path(dataCacheDir, paste0(timeStamp, "noNormEset.rds")))
write_data_metadata(file.path(dataCacheDir, "dataset_metadata.csv"),
dataset_name = "noNormEset.rds",
data_path = file.path(dataCacheDir, paste0(timeStamp, "noNormEset.rds")),
data = noNormEset,
include_counts = TRUE)
```