-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathovhelper.py
576 lines (504 loc) · 22.3 KB
/
ovhelper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
#!/usr/bin/python3
# import openvino.runtime as ov
import numpy as np
from graphviz import Digraph, Source
import ctypes, re
# print Model in readable text
def generate_str(model, show_rt_info = False):
out2name = {}
nameid = 1
simpleconst_node2vstr = {}
ilist = [i.get_node().get_name() for i in model.inputs]
result = []
def get_rt_info(n):
return {k:str(v) for k,v in n.get_rt_info().items()}
result.append("model({}):".format(",".join(ilist)))
for k, v in model.get_rt_info().items():
result.append(" {}={}".format(k,v))
for n in model.get_ordered_ops():
# collect output and also allocate output names
rt_info = get_rt_info(n)
if "reginfo" in rt_info or "effectiveAddress" in rt_info:
if "reginfo" in rt_info:
varname = "vmm{}".format(rt_info["reginfo"])
else:
varname = "t{}".format(nameid)
nameid += 1
str_output = varname
args = []
if "effectiveAddress" in rt_info:
args.append("[r{}]".format(rt_info["effectiveAddress"]))
for i in n.inputs():
r2 = get_rt_info(i.get_source_output().get_node())
if "reginfo" in r2:
args.append("vmm{}".format(r2["reginfo"]))
else:
args.append(out2name[i.get_source_output()])
for k, out in enumerate(n.outputs()):
out2name[out] = varname if num_out == 1 else "{}[{}]".format(varname, k)
else:
out_types = []
varname = "t{}".format(nameid)
nameid += 1
num_out = len(n.outputs())
for k, out in enumerate(n.outputs()):
out_types.append("Tensor<{}x{}>".format(
"x".join([str(s) for s in out.get_shape()]),
out.get_element_type().get_type_name()))
out2name[out] = varname if num_out == 1 else "{}[{}]".format(varname, k)
#out_types
str_out_types = out_types[0] if len(out_types)==1 else "tuple({})".format(",".join(out_types))
str_output = "{} {}".format(str_out_types, varname)
# collect source output names of corresponding inputs
args = []
for i in n.inputs():
o = i.get_source_output()
if o in simpleconst_node2vstr:
args.append(simpleconst_node2vstr[o])
else:
args.append(out2name[o])
# generate psuedo code
type_name = n.get_type_name()
friendly_name = n.get_friendly_name()
rt_info = n.get_rt_info()
if type_name == "ExecutionNode" and "layerType" in rt_info:
type_name = str(rt_info["layerType"])
attrs = ["{}={}".format(k, v) for k,v in n.get_attributes().items()]
rtinfo = ["{}={}".format(k, v) for k,v in rt_info.items()]
comment = friendly_name
comment = "" if len(comment)==0 else " # {}".format(comment)
if type_name.startswith("Constant"):
vstr = n.get_value_strings()
if len(vstr) <= 8:
simpleconst_node2vstr[n.outputs()[0]] = "[{}]".format(",".join(vstr))
else:
result.append(" {} = {}([{}]) {}".format(
str_output,
type_name,
",".join(vstr[:16]) + (",..." if len(vstr)>16 else ""),
comment))
else:
result.append(" {} = {}({}{}) {}".format(
str_output,
type_name,
",".join(args),
"" if len(attrs) == 0 else ("," if len(args)>0 else "") + (",".join(attrs)),
comment ))
if (show_rt_info and rtinfo):
result.append("\t\t\t#rt_info:\n\t\t\t#\t{}\n".format("\n\t\t\t#\t".join(rtinfo)))
olist = [out2name[i] for i in model.outputs]
result.append(" return {}".format(",".join(olist)))
return "\n".join(result)
def print_model(model, show_rt_info = False):
print(generate_str(model, show_rt_info))
def generate_graph(model, fontsize=12, graph_name="", detailed_label=False):
# create all nodes before edges
g = Digraph(graph_name, graph_attr={"outputorder":"edgesfirst"})
node2name = {}
name2node = {}
data_map = {}
data_color = {}
precision2ctype = {
"I8":ctypes.c_int8,
"U8":ctypes.c_uint8,
"I32": ctypes.c_int32,
"FP32":ctypes.c_float
}
def gen_rand_color():
if not hasattr(gen_rand_color, "color_hue"):
gen_rand_color.color_hue = 0
gen_rand_color.color_hue = (gen_rand_color.color_hue + 5/8) % 1
return "{:.3f} 1 0.7".format(gen_rand_color.color_hue)
def strings2label(strings, nlimit = 20, line_limit = 1):
r = ""
line = 0
prev_cnt = 0
for s in strings:
if len(r) + len(s) - prev_cnt > nlimit:
r += "\\n"
prev_cnt = len(r)
line += 1
if line >= line_limit:
r += "..."
break
r += s + ","
return r.rstrip(",")
op2color = {"Parameter":"gold", "Result":"deeppink", "Constant":"gray", "Const":"gray"}
inode2index = {input.node:k for k,input in enumerate(model.inputs)}
def name_normalize(n):
name = n.get_friendly_name()
# add input id if it's input node of the model
if n in inode2index:
name += "_#{}".format(inode2index[n])
name = name.replace("<","(").replace(">",")").replace(":","_")
if len(graph_name):
return '{}'.format(graph_name, name)
return '{}'.format(name)
# statistics on execTime
execTimeMcs_total = 0
execTimeMcs_by_type = {}
execTimeMcs_by_node = {}
for n in model.get_ordered_ops():
friendly_name = name_normalize(n)
rt_info = n.get_rt_info()
type_name = n.get_type_name()
if type_name == "ExecutionNode" and "layerType" in rt_info:
type_name = str(rt_info["layerType"])
if "primitiveType" in rt_info:
type_name += "({})".format(rt_info["primitiveType"])
execTimeMcs = 0
if ("execTimeMcs" in rt_info):
execTimeMcs = rt_info["execTimeMcs"]
try:
execTimeMcs = int(execTimeMcs)
except:
execTimeMcs = 0
execTimeMcs_by_node[n] = execTimeMcs
execTimeMcs_total += execTimeMcs
if type_name in execTimeMcs_by_type:
execTimeMcs_by_type[type_name] += execTimeMcs
else:
execTimeMcs_by_type[type_name] = execTimeMcs
if execTimeMcs_total > 0:
num_limit = 10
sort_execTimeMcs_by_type = []
acc_percentage = 0
for (type_name, t) in sorted(execTimeMcs_by_type.items(), key=lambda x: x[1], reverse=True):
percentage = t*100/execTimeMcs_total
acc_percentage += percentage
sort_execTimeMcs_by_type.append("{:>10} {:.1f}% accumulated:{:.1f}%".format(type_name, percentage, acc_percentage))
if acc_percentage >= 90 and len(sort_execTimeMcs_by_type) >= num_limit:
break
sort_execTimeMcs_by_name = []
acc_percentage = 0
for (n, t) in sorted(execTimeMcs_by_node.items(), key=lambda x: x[1], reverse=True):
friendly_name = name_normalize(n)
type_name = n.get_type_name()
rt_info = n.get_rt_info()
if type_name == "ExecutionNode" and "layerType" in rt_info:
type_name = str(rt_info["layerType"])
percentage = t*100/execTimeMcs_total
acc_percentage += percentage
sort_execTimeMcs_by_name.append("{:>10}({}) {:.1f}% accumulated:{:.1f}%".format(friendly_name, type_name, percentage, acc_percentage))
if acc_percentage >= 90 and len(sort_execTimeMcs_by_name) >= num_limit:
break
kwargs = {"shape":'box',
"style":'filled',
"fillcolor":"gold",
"fontsize":str(fontsize + 2),
"margin":"0,0","width":"0","height":"0",
"tooltip":"\n".join(sort_execTimeMcs_by_type)}
g.node(name="ProfileSummary_ByType",
label="ProfileSummary\\nByType",
**kwargs)
kwargs = {"shape":'box',
"style":'filled',
"fillcolor":"gold",
"fontsize":str(fontsize + 2),
"margin":"0,0","width":"0","height":"0",
"tooltip":"\n".join(sort_execTimeMcs_by_name)}
g.node(name="ProfileSummary_ByName",
label="ProfileSummary\\nByName",
**kwargs)
for nindex, n in enumerate(model.get_ordered_ops()):
friendly_name = name_normalize(n)
rt_info = n.get_rt_info()
type_name = n.get_type_name()
if friendly_name in name2node:
print("WARNNING: {} (type {}) already exist as {}, skipped!".format(
friendly_name, type_name,
name2node[friendly_name].get_type_name()))
continue
# ExecutionNode is fake wrapper of runtime node
# and this type name gives less information than friendly_name
if type_name == "ExecutionNode" and "layerType" in rt_info:
type_name = str(rt_info["layerType"])
attrs = ["{}={}".format(k, v) for k,v in n.get_attributes().items()]
def rtinfo2string(k, v):
if k == "originalLayersNames":
v = "\n " + str(v).replace(",","\n ")
return "{}={}".format(k, v)
rtinfo = [rtinfo2string(k, v) for k,v in rt_info.items()]
# originalLayersNames gives mapping between runtime nodes and orginal nodes
fsize = fontsize
if type_name == "Constant":
vstr = n.get_value_strings()
label = strings2label(vstr)
fsize = fontsize - 2
elif "fusedTypes" in rt_info:
label = "{" + rt_info['fusedTypes'].replace(",","|") +"}"
else:
label = "{}\\n({}{})".format(type_name, friendly_name[:20], "..." if len(friendly_name)>20 else "")
allinfo = "{} / #{}".format(friendly_name, nindex)
if (execTimeMcs_by_node[n] > 0):
allinfo += "\n----execTime of the node {:.2f}%".format(execTimeMcs_by_node[n]*100/execTimeMcs_total)
if (attrs):
allinfo += "\n----attributes----\n{}".format("\n".join(attrs))
if (rt_info):
allinfo += "\n----rt_info----\n{}".format("\n".join(rtinfo))
#if type_name.startswith("Constant"):
# allinfo += "\n----values----\n{}".format(",".join(n.get_value_strings()[:32]))
color = op2color[type_name] if type_name in op2color else "cyan"
if type_name == "Subgraph":
submodel = rt_info["body"]
allinfo += "\n----model-----\n{}".format(generate_str(submodel))
data_map[friendly_name] = submodel
if detailed_label:
label = allinfo.replace("\n", "\\n")
allinfo = label.replace("\\n", "\n")
kwargs = {"shape":'Mrecord',
"style":'filled,rounded',
"fillcolor":color,
"fontsize":str(fsize),
"margin":"0,0","width":"0","height":"0",
"tooltip":allinfo}
g.node(name=friendly_name,
label=label,
**kwargs)
assert(friendly_name not in name2node) # make sure the name is uinque
name2node[friendly_name] = n
node2name[n] = friendly_name
# generate color table for in-place mem
for n in model.get_ordered_ops():
for i in n.inputs():
mem_rt_info = i.get_source_output().get_rt_info()
if "Data" in mem_rt_info:
Data = mem_rt_info["Data"]
if not Data in data_color:
# single non-inplace color is black
data_color[Data] = "black"
elif data_color[Data] == "black":
# replace in-place color with non-black
data_color[Data] = gen_rand_color()
max_act_sz = 0
for n in model.get_ordered_ops():
for i in n.inputs():
act_sz = np.prod(np.array(i.get_shape()))
if (max_act_sz < act_sz):
max_act_sz = act_sz
for n in model.get_ordered_ops():
for i in n.inputs():
src_out = i.get_source_output()
tail_name = name_normalize(src_out.get_node())
head_name = name_normalize(n)
if (len(src_out.get_target_inputs()) > 4 or len(src_out.get_node().outputs()) > 4):
found_ki = False
for ki, si in enumerate(src_out.get_target_inputs()):
if si.get_node() is n:
found_ki = True
break
assert(found_ki)
tail_name += ".out{}.{}".format(src_out.get_index(), ki)
act_sz = np.prod(np.array(i.get_shape()))
str_shape = ",".join([str(s) for s in i.get_shape()])
str_ele_type = i.get_element_type().get_type_name()
src_rt_info = i.get_source_output().get_node().get_rt_info()
mem_rt_info = i.get_source_output().get_rt_info()
label = '[{}]'.format(str_shape)
layout_fmt = None
if "Format" in mem_rt_info:
layout_fmt = mem_rt_info["Format"]
elif "outputLayouts" in src_rt_info:
layout_fmt = src_rt_info["outputLayouts"]
if layout_fmt not in ("a","ab","abc","abcd","abcde","abcdef",None):
label += "\n" + layout_fmt
precision = None
if "Precision" in mem_rt_info:
precision = mem_rt_info["Precision"]
elif "outputPrecisions" in src_rt_info:
precision = src_rt_info["outputPrecisions"]
else:
precision = str_ele_type
if precision not in ("FP32","float","float32",None):
label += "\n" + precision
color = "black"
if "Data" in mem_rt_info:
Data = mem_rt_info["Data"]
#label += "\n0x{:X}".format(Data)
try:
# build a numpy array and return
p=ctypes.c_void_p(Data)
c_type = precision2ctype[mem_rt_info["Precision"]]
pf = ctypes.cast(p, ctypes.POINTER(c_type))
cnt = mem_rt_info["MaxMemSize"]//ctypes.sizeof(c_type)
base_array = np.ctypeslib.as_array(pf, shape=(cnt,))
part_array = base_array[mem_rt_info["OffsetPadding"]:]
BlockDims = mem_rt_info["BlockDims"]
OffsetPaddingToData = mem_rt_info["OffsetPaddingToData"]
Strides = mem_rt_info["Strides"]
total_shape = np.array(BlockDims) + np.array(OffsetPaddingToData)
total_cnt = np.prod(total_shape)
new_array = part_array[:total_cnt].reshape(total_shape)
nd_strides = np.array(new_array.strides)//ctypes.sizeof(c_type)
if (nd_strides != np.array(Strides)).any():
# TODO new_array = part_array.reshape(np.array(Strides))
label += "\n(strided)"
color = data_color[Data]
if not Data in data_map:
data_map[Data] = []
data_map[Data].append(new_array)
except Exception as e:
print("edge '{}->{}' with Data but failed to parse:\n{}".format(
tail_name, head_name, e
))
raise e
labeltooltip = []
for k,v in mem_rt_info.items():
if k == "Data" or k == "Ptr":
value = "0x{:X}".format(mem_rt_info[k])
else:
value = str(v)
labeltooltip.append("{}={}".format(k, value))
penwidth = act_sz*4.5/max_act_sz + 0.5
g.edge(
tail_name,
head_name,
label=label,
edgetooltip="{}:{}->{}:{}".format(tail_name, i.get_source_output().get_index(), head_name, i.get_index()),
labeltooltip="\n".join(labeltooltip),
headURL="head",
headtooltip="headtooltip",
tailtooltip="tailtooltip",
color=color,
penwidth = "{:.3f}".format(penwidth),
fontsize=str(fontsize*8//10))
return g, data_map
def visualize_model(model, fontsize=12, filename=None, detailed_label=False):
g, data_map = generate_graph(model, fontsize, detailed_label=detailed_label)
graph_src = Source(g.source, format="svg")
if filename:
svg = graph_src.pipe().decode('utf-8')
if filename.endswith(".html"):
import dot_svg_html
output_src = dot_svg_html.dot_to_html(svg)
else:
output_src = svg
htmlfile = open(filename,'w')
htmlfile.write(output_src)
htmlfile.close()
return
return graph_src, data_map
# for measuring CPU usage in separate process
import psutil, time
from multiprocessing import Process, Pipe
def worker_process(conn, percpu):
cpu_usage = []
while (not conn.poll()):
time.sleep(0.1)
cpu_usage.append(psutil.cpu_percent(percpu=percpu))
conn.recv()
conn.send(cpu_usage)
conn.close()
class CPUUsage:
def __init__(self) -> None:
self.parent_conn, self.child_conn = Pipe()
def start(self, percpu=False):
self.p = Process(target=worker_process, args=(self.child_conn,percpu))
self.p.start()
def end(self):
self.parent_conn.send("finish")
cpu_usage = self.parent_conn.recv()
self.p.join()
return cpu_usage
# helper to dump model
from openvino.runtime.passes import Manager
import openvino.runtime as ov
def serialize_model(self, model_path):
weight_path = model_path[:model_path.find(".xml")] + ".bin"
pass_manager = Manager()
pass_manager.register_pass("Serialize", model_path, weight_path)
pass_manager.run_passes(self)
return model_path, weight_path
# https://stackoverflow.com/questions/47797661/python-types-methodtype
# add serialize method
ov.Model.serialize = serialize_model
ov.Model.print = print_model
ov.Model.visualize = visualize_model
from openvino.runtime.utils.types import get_dtype
def fill_tensors_with_random(input, alpha=0):
dtype = get_dtype(input.get_element_type())
rand_min, rand_max = (0, 1) if dtype == np.bool else (np.iinfo(np.uint8).min, np.iinfo(np.uint8).max)
# np.random.uniform excludes high: add 1 to have it generated
if np.dtype(dtype).kind in ['i', 'u', 'b']:
rand_max += 1
rs = np.random.RandomState(np.random.MT19937(np.random.SeedSequence(0)))
shape = input.get_shape()
a = rs.uniform(rand_min, rand_max, list(shape)).astype(dtype)
return ov.Tensor(a)
def test_infer_queue(compiled_model, num_request, num_infer, time_limit=60):
infer_queue = ov.AsyncInferQueue(compiled_model, num_request)
latency_list = []
prof_list = []
def callback(request, userdata):
latency_list.append(request.latency)
prof_list.append(request.profiling_info)
infer_queue.set_callback(callback)
all_input = {}
for port, input in enumerate(compiled_model.inputs):
print("input[{}] {:<10} {} {}".format(port, input.get_any_name(), input.get_element_type(), input.get_shape()))
all_input[port] = fill_tensors_with_random(input)
for i in range(num_request):
infer_queue.start_async(all_input, userdata=i)
t0 = time.time()
for i in range(num_infer):
wtime = time.time() - t0
if time_limit and (wtime > time_limit):
break
infer_queue.start_async(None, userdata=i)
infer_queue.wait_all()
fps = i/wtime
return latency_list, prof_list, fps, wtime
if __name__ == "__main__":
#test222()
#test_visualize()
import openvino.runtime as ov
import numpy as np
import sys, os
core = ov.Core()
model_path = sys.argv[1]
model = core.read_model(model_path)
#model.visualize(filename="{}.dot".format(model_path))
#model.print()
if "OPT_LINENUM" in os.environ:
OPT_LINENUM = os.environ["OPT_LINENUM"]
else:
OPT_LINENUM = ""
device = "CPU"
NUM_STREAMS = 1
INFERENCE_NUM_THREADS = 1
dev_prop = {"PERF_COUNT": "YES",
"AFFINITY": "CORE",
"PERFORMANCE_HINT_NUM_REQUESTS":0,
"PERFORMANCE_HINT":""}
if (NUM_STREAMS):
dev_prop["NUM_STREAMS"] = NUM_STREAMS
if (INFERENCE_NUM_THREADS):
dev_prop["INFERENCE_NUM_THREADS"] = INFERENCE_NUM_THREADS
core.set_property(device, dev_prop)
if False:
dest_file = filename="{}_org.html".format(model_path)
print("saving {} ...".format(dest_file))
model.visualize(filename=dest_file)
print("{} is saved!".format(dest_file))
#model.reshape(ov.PartialShape([2,512]))
compiled_model = core.compile_model(model, "CPU")
def test_infer():
req = compiled_model.create_infer_request()
for i in range(1):
all_input = {}
for input in compiled_model.inputs:
print("{:<10} {} {}".format(input.get_any_name(), input.get_element_type(), input.get_shape()))
all_input[input] = fill_tensors_with_random(input)
req.infer(inputs=all_input)
print(req.output_tensors)
#from PIL import Image
#im = Image.fromarray(req.output_tensors[0].data.squeeze().astype(np.uint8))
#im.save("your_file_{}.png".format(a))
sys.exit(0)
#test_infer()
latency_list, prof_list, fps, wtime = test_infer_queue(compiled_model, 2, 20000, time_limit=10)
print(f"test_infer_queue FPS:{fps:.1f}")
dest_file = filename="{}_{}_{}.html".format(model_path, device, OPT_LINENUM)
print("saving {} ...".format(dest_file))
compiled_model.get_runtime_model().visualize(filename=dest_file)
print("{} is saved!".format(dest_file))