-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_attack_pre_trained.py
78 lines (64 loc) · 3.49 KB
/
run_attack_pre_trained.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import mlflow.pytorch
import argparse
import torch
import numpy as np
from time import time
from utils import *
from plot import *
from model import *
from data import *
import logging
import sys
import hashlib
def main():
with mlflow.start_run(run_name=run_name):
# initialize torch and numpy rng
torch.manual_seed(args.s)
np.random.seed(args.s)
logger.info('Load model...')
# load pre-trained model
with open(args.m, 'rb') as model_file:
model = torch.load(model_file)
logger.info('Done!')
# model identifier for logs and plots
model_identifier = 'pre-trained'
logger.info('Prepare dataset...')
# load training and test data, download data first if necessary
x_training, y_training, x_test, y_test = load_data(args.d)
# get target-remaining split of training data and the indices of the data points
x_target, y_target, target_indices, x_remaining, y_remaining, remaining_indices = split_into_remaining_and_target_data(x_training, y_training, args.t, args.p)
# log data set split as well as metric and artifacts for the pre-trained model
log_artifact(target_indices.numpy(), 'target_data_indices', '', run_name, args.o)
log_artifact(remaining_indices.numpy(), 'remaining_data_indices', '', run_name, args.o)
logger.info('Done!')
logger.info('Log metrics and artifacts for the pre-trained model...')
metrics_and_artifacts = log_metrics_and_artifacts(model, x_training, y_training, x_test, y_test, x_remaining, y_remaining, x_target, y_target, model_identifier, 10, run_name, args.o,
attack_pre_trained=True, compute_efficacy=True)
logger.info('Done!')
# plot membership inference probabilities
plot_membership_inference_probabilities(metrics_and_artifacts['membership_inference_probabilities'], model_identifier, run_name, args.o)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Attack pre-trained model.')
parser.add_argument('-s', '-seed', type=int, required=True, help='Random seed.')
parser.add_argument('-m', '-model', type=str, required=True, help='Path to pre-trained model.')
parser.add_argument('-d', '-dataset', type=str, required=True, help='Dataset: mnist or cifar10.')
parser.add_argument('-t', '-target', type=int, required=True, help='Target class to forget. -1 for mixed targets.')
parser.add_argument('-p', '-percentage', type=float, required=True, help='Percentage of target data. Note: Percentage of whole training dataset for mixed targets.')
parser.add_argument('-o', '-output', type=str, required=False, default='.', help='Output directory for artifacts, plots and models')
args = parser.parse_args()
m = hashlib.sha1(args.m.encode("utf-8")).hexdigest()
run_name = f'attack_s_{args.s}_d_{args.d}_t_{args.t}_p_{str(args.p).replace(".", "")}_m_{m}'
logger = logging.getLogger()
logger.setLevel(logging.INFO)
handler = logging.StreamHandler(sys.stdout)
handler.setLevel(logging.INFO)
logger.addHandler(handler)
logger.info('Attack pre-trained model with parameters:')
logger.info(f'Seed: {args.s}')
logger.info(f'Model: {args.m}')
logger.info(f'Dataset: {args.d}')
logger.info(f'Target: {args.t}')
logger.info(f'Percentage: {args.p}')
if run_exists(run_name, args.o):
raise RuntimeError(f'Run with name/configuration {run_name} already exists!')
main()