forked from lhoyer/HRDA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgtaHR2csHR_hrda.py
93 lines (91 loc) · 3.64 KB
/
gtaHR2csHR_hrda.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# ---------------------------------------------------------------
# Copyright (c) 2022 ETH Zurich, Lukas Hoyer. All rights reserved.
# Licensed under the Apache License, Version 2.0
# ---------------------------------------------------------------
# Default HRDA Configuration for GTA->Cityscapes
_base_ = [
'../_base_/default_runtime.py',
# DAFormer Network Architecture
'../_base_/models/daformer_sepaspp_mitb5.py',
# GTA->Cityscapes High-Resolution Data Loading
'../_base_/datasets/uda_gtaHR_to_cityscapesHR_1024x1024.py',
# DAFormer Self-Training
'../_base_/uda/dacs_a999_fdthings.py',
# AdamW Optimizer
'../_base_/schedules/adamw.py',
# Linear Learning Rate Warmup with Subsequent Linear Decay
'../_base_/schedules/poly10warm.py'
]
# Random Seed
seed = 1
# HRDA Configuration
model = dict(
type='HRDAEncoderDecoder',
decode_head=dict(
type='HRDAHead',
# Use the DAFormer decoder for each scale.
single_scale_head='DAFormerHead',
# Learn a scale attention for each class channel of the prediction.
attention_classwise=True,
# Set the detail loss weight $\lambda_d=0.1$.
hr_loss_weight=0.1),
# Use the full resolution for the detail crop and half the resolution for
# the context crop.
scales=[1, 0.5],
# Use a relative crop size of 0.5 (=512/1024) for the detail crop.
hr_crop_size=[512, 512],
# Use LR features for the Feature Distance as in the original DAFormer.
feature_scale=0.5,
# Make the crop coordinates divisible by 8 (output stride = 4,
# downscale factor = 2) to ensure alignment during fusion.
crop_coord_divisible=8,
# Use overlapping slide inference for detail crops for pseudo-labels.
hr_slide_inference=True,
# Use overlapping slide inference for fused crops during test time.
test_cfg=dict(
mode='slide',
batched_slide=True,
stride=[512, 512],
crop_size=[1024, 1024]))
data = dict(
train=dict(
# Rare Class Sampling
# min_crop_ratio=2.0 for HRDA instead of min_crop_ratio=0.5 for
# DAFormer as HRDA is trained with twice the input resolution, which
# means that the inputs have 4 times more pixels.
rare_class_sampling=dict(
min_pixels=3000, class_temp=0.01, min_crop_ratio=2.0),
# Pseudo-Label Cropping v2:
# Generate mask of the pseudo-label margins in the data loader before
# the image itself is cropped to ensure that the pseudo-label margins
# are only masked out if the training crop is at the periphery of the
# image.
target=dict(crop_pseudo_margins=[30, 240, 30, 30]),
),
# Use one separate thread/worker for data loading.
workers_per_gpu=1)
# Optimizer Hyperparameters
optimizer_config = None
optimizer = dict(
lr=6e-05,
paramwise_cfg=dict(
custom_keys=dict(
head=dict(lr_mult=10.0),
pos_block=dict(decay_mult=0.0),
norm=dict(decay_mult=0.0))))
n_gpus = 1
gpu_model = 'NVIDIATITANRTX'
runner = dict(type='IterBasedRunner', max_iters=40000)
# Logging Configuration
checkpoint_config = dict(by_epoch=False, interval=40000, max_keep_ckpts=1)
evaluation = dict(interval=4000, metric='mIoU')
# Meta Information for Result Analysis
name = 'gtaHR2csHR_hrda_s1'
exp = 'basic'
name_dataset = 'gtaHR2cityscapesHR_1024x1024'
name_architecture = 'hrda1-512-0.1_daformer_sepaspp_sl_mitb5'
name_encoder = 'mitb5'
name_decoder = 'hrda1-512-0.1_daformer_sepaspp_sl'
name_uda = 'dacs_a999_fdthings_rcs0.01-2.0_cpl2'
name_opt = 'adamw_6e-05_pmTrue_poly10warm_1x2_40k'
# For the other configurations used in the paper, please refer to experiment.py