forked from lhoyer/MIC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathteacher.py
51 lines (41 loc) · 1.54 KB
/
teacher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from collections import OrderedDict
import torch
from timm.models.layers import DropPath
from torch import nn
from torch.nn.modules.dropout import _DropoutNd
class EMATeacher(nn.Module):
def __init__(self, model, alpha):
super(EMATeacher, self).__init__()
self.ema_model = model
self.alpha = alpha
def _init_ema_weights(self, model):
self.ema_model.load_state_dict(model.state_dict())
def _update_ema(self, model, iter):
student_model_dict = model.state_dict()
new_teacher_dict = OrderedDict()
for key, value in self.ema_model.state_dict().items():
if key in student_model_dict.keys():
new_teacher_dict[key] = (
student_model_dict[key] *
(1 - self.alpha) + value * self.alpha
)
else:
raise Exception("{} is not found in student model".format(key))
self.ema_model.load_state_dict(new_teacher_dict)
def update_weights(self, model, iter):
# Init/update ema model
if iter == 0:
self._init_ema_weights(model)
if iter > 0:
self._update_ema(model, iter)
@torch.no_grad()
def forward(self, target_img):
# Generate pseudo-label
for m in self.ema_model.modules():
if isinstance(m, _DropoutNd):
m.training = False
if isinstance(m, DropPath):
m.training = False
m.training = False
logits = self.ema_model(target_img)
return logits