-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMIAMI_associations_competitors.py
165 lines (119 loc) · 5.68 KB
/
MIAMI_associations_competitors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# -*- coding: utf-8 -*-
"""
Created on Fri Jan 21 15:33:43 2022
@author: rfuchs
"""
import os
import re
os.chdir('C:/Users/rfuchs/Documents/GitHub/M1DGMM')
import pandas as pd
from copy import deepcopy
from gower import gower_matrix
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder
from miami import MIAMI
from init_params import dim_reduce_init
from data_preprocessing import compute_nj
import autograd.numpy as np
from dython.nominal import associations
#from table_evaluator import TableEvaluator
from pandas.errors import ParserError
#import seaborn as sns
import seaborn as sns
###############################################################################
###################### Adult data ############################
###############################################################################
data_folder = 'C:/Users/rfuchs/Documents/These/Stats/MIAMI/Datasets/Adult/'
res_folder = 'C:/Users/rfuchs/Documents/These/Stats/MIAMI/Results/Adult data/'
var_distrib = np.array(['continuous', 'categorical', 'continuous',\
'ordinal', 'categorical', 'categorical', 'categorical',\
'categorical', 'bernoulli', 'ordinal', 'ordinal',\
'continuous', 'categorical', 'bernoulli'])
# Plotting utilities
varnames = np.array(['age', 'workclass', 'fnlwgt',\
'education.num', 'marital.status', 'occupation', 'relationship',\
'race', 'sex', 'capital.gain', 'capital.loss',\
'hours.per.week', 'native.country', 'income'])
p = len(varnames)
dtypes_dict = {'continuous': float, 'categorical': str, 'ordinal': float,\
'bernoulli': str, 'binomial': int}
cat_features = np.logical_or(var_distrib == 'categorical', var_distrib == 'bernoulli')
#=====================================
# Select the design
#=====================================
design = 'Absent'
filenum = 1
sub_design = 'trivarié'
prefix = design[:3] + '_'
nb_files_per_design = 10
nb_pobs = 200
sub_aliases = {'bivarié': 'bivariate','trivarié': 'trivariate'}
#=====================================
# Import the train and test sets
#=====================================
train = pd.read_csv(data_folder + design + '/' + sub_design + '/' + prefix + 'Train_' +\
str(filenum) + '.csv', sep = ';')
test = pd.read_csv(data_folder + design + '/' + sub_design + '/' + prefix + 'Test_F_' +\
str(filenum) + '.csv', sep = ';')
del(train['education'])
del(test['education'])
dtype = {train.columns[j]: dtypes_dict[var_distrib[j]] for j in range(p)}
# Keep the observations that present the desired modalities
if sub_design == 'bivarié':
test = test[(test['age'] > 60) & (test['sex'] == 'Female')]
elif sub_design == 'trivarié':
test = test[(test['age'] > 60) & (test['sex'] == 'Female') &\
(test['marital.status'] == 'Widowed')]
# Keep only the modalities existing in the train
for j, col in enumerate(train.columns):
if not(var_distrib[j] in ['continuous', 'binomial']):
train_modalities = list(set(train[col]))
test = test[test[col].isin(train_modalities)]
test['capital.loss'] = [float(re.sub(',', '.', aa)) for aa in test['capital.loss']]
test['capital.gain'] = [float(re.sub(',', '.', aa)) for aa in test['capital.gain']]
train['capital.loss'] = [float(re.sub(',', '.', aa)) for aa in train['capital.loss']]
train['capital.gain'] = [float(re.sub(',', '.', aa)) for aa in train['capital.gain']]
#=====================================
# Select the test set
#=====================================
competitors = os.listdir(res_folder + design + '/' + sub_design)
assocs = {}
assoc_test = associations(test.astype(dtype), nominal_columns = list(test.columns[cat_features]),\
plot = False)['corr']
#ax = axs[0], cbar = False, annot = False
assocs['Test'] = assoc_test
for c_idx, competitor in enumerate(competitors):
try:
preds = pd.read_csv(res_folder + design + '/' + sub_design + '/' + competitor\
+ '/preds' + str(filenum) + '.csv', sep = ',')
if preds.shape[1] == 1:
preds = pd.read_csv(res_folder + design + '/' + sub_design + '/' + competitor\
+ '/preds' + str(filenum) + '.csv', sep = ';')
#if preds.shape[1] == p + 1:
#preds = preds.iloc[:, 1:]
except ParserError:
preds = pd.read_csv(res_folder + design + '/' + sub_design + '/' + competitor\
+ '/preds' + str(filenum) + '.csv', sep = ';')
except FileNotFoundError:
print(competitor + ' has no results')
continue
if 'Y' in preds.columns:
del(preds['Y'])
if preds.shape[1] == p + 1:
del(preds['education'])
assert preds.shape[0] == 200
assert preds.shape[1] == p
preds = preds[test.columns]
#assert (preds.columns == test.columns).all()
preds['capital.loss'] = [float(re.sub(',', '.', str(aa))) for aa in preds['capital.loss']]
preds['capital.gain'] = [float(re.sub(',', '.', str(aa))) for aa in preds['capital.gain']]
assoc_preds = associations(preds.astype(dtype), nominal_columns = list(preds.columns[cat_features]),\
plot = False, num_num_assoc = 'kendall')['corr']
assocs[competitor] = assoc_preds
for c_idx, competitor in enumerate(assocs.keys()):
sns.heatmap(assocs[competitor], vmin = 0, annot = False)
plt.title(competitor)
plt.tight_layout()
#plt.savefig('C:/Users/rfuchs/Documents/These/Stats/MIAMI/plots/Adult/' +\
#design + '/' + sub_design + '/' + competitor + '.png')
plt.show()