-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMIAMI_test_on_adult.py
267 lines (193 loc) · 10.3 KB
/
MIAMI_test_on_adult.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# -*- coding: utf-8 -*-
"""
Created on Mon April 29 13:25:11 2020
@author: rfuchs
"""
import os
os.chdir('C:/Users/rfuchs/Documents/GitHub/M1DGMM')
import pandas as pd
from copy import deepcopy
from gower import gower_matrix
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder
from miami import MIAMI
from init_params import dim_reduce_init
from data_preprocessing import compute_nj
import autograd.numpy as np
#from table_evaluator import TableEvaluator
#import seaborn as sns
###############################################################################
###################### Adult data ############################
###############################################################################
res_folder = 'C:/Users/rfuchs/Documents/These/Stats/MIAMI/Results/Adult/'
#===========================================#
# Model Hyper-parameters
#===========================================#
n_clusters = 4
r = np.array([2, 1])
k = [4]
seed = 1
init_seed = 2
# !!! Changed eps
eps = 1E-02
it = 4
maxstep = 100
var_distrib = np.array(['continuous', 'categorical', 'continuous',\
'ordinal', 'categorical', 'categorical', 'categorical',\
'categorical', 'bernoulli', 'ordinal', 'ordinal',\
'continuous', 'categorical', 'bernoulli'])
# Plotting utilities
varnames = np.array(['age', 'workclass', 'fnlwgt',\
'education.num', 'marital.status', 'occupation', 'relationship',\
'race', 'sex', 'capital.gain', 'capital.loss',\
'hours.per.week', 'native.country', 'income'])
dtypes_dict = {'continuous': float, 'categorical': str, 'ordinal': int,\
'bernoulli': int, 'binomial': int}
#===========================================#
# Importing data
#===========================================#
os.chdir('C:/Users/rfuchs/Documents/These/Stats/MIAMI/Datasets/Adult/')
experiment_designs = ['Absent', 'Unbalanced']
sub_designs = ['bivarié', 'trivarié']#, 'quadrivarié']
nb_files_per_design = 10
inf_nb = 1E12
nb_pobs = 200
'''
design = experiment_designs[0]
filenum = 1
sub_design = 'trivarié'
prefix = design[:3] + '_'
'''
acceptance_rate = dict(zip(experiment_designs, [[],[]]))
for design in experiment_designs:
prefix = design[:3] + '_'
for sub_design in sub_designs:
#filenum = 1
for filenum in range(2, nb_files_per_design + 1):# !!! Reput 1 here
# Will store
le_dict = {}
train_filepath = design + '/' + sub_design + '/' + prefix +\
'Train_' + str(filenum) + '.csv'
train = pd.read_csv(train_filepath, sep = ';')
train = train.infer_objects()
# Delete the missing values
train = train.loc[~(train == '?').any(1)]
numobs = len(train)
# !!! Hack to remove
del(train['education'])
p = train.shape[1]
#***************************************************************************
# Invert the order of the columns so that age is no more the first bernoulli
#***************************************************************************
'''
train[['age', 'workclass', 'fnlwgt', 'education.num', 'marital.status',
'occupation', 'relationship', 'race', 'capital.gain',
'capital.loss', 'hours.per.week', 'native.country', 'income', 'sex']]
var_distrib = np.array(['continuous', 'categorical', 'continuous',\
'ordinal', 'categorical', 'categorical', 'categorical',\
'categorical', 'ordinal', 'ordinal',\
'continuous', 'categorical', 'bernoulli', 'bernoulli'])
'''
p_new = len(var_distrib)
cat_features = np.logical_or(var_distrib == 'categorical', var_distrib == 'ordinal')
#*****************************************************************
# Formating the data
#*****************************************************************
# Encode categorical datas
for col_idx, colname in enumerate(train.columns):
if var_distrib[col_idx] == 'categorical':
le = LabelEncoder()
# Convert them into numerical values
train[colname] = le.fit_transform(train[colname])
le_dict[colname] = deepcopy(le)
# Encode binary data
for col_idx, colname in enumerate(train.columns):
le = LabelEncoder()
if var_distrib[col_idx] == 'bernoulli':
train[colname] = le.fit_transform(train[colname])
le_dict[colname] = deepcopy(le)
# Encode ordinal data, modalities have been sorted (at best)
ord_le = LabelEncoder()
train['education.num'] = ord_le.fit_transform(train['education.num'])
le_dict['education.num'] = deepcopy(ord_le)
# Encode capital.gain and capital.loss and capital.gain as ordinal variables
for col in ['capital.gain', 'capital.loss']:
le = LabelEncoder()
train[col] = le.fit_transform(train[col])
le_dict[col] = deepcopy(le)
nj, nj_bin, nj_ord, nj_categ = compute_nj(train, var_distrib)
nb_cont = np.sum(var_distrib == 'continuous')
# Feature category (cf)
dtype = {train.columns[j]: dtypes_dict[var_distrib[j]] for j in range(p)}
train = train.astype(dtype, copy=True)
numobs = len(train)
# Defining distances over the features
dm = gower_matrix(train, cat_features = cat_features)
#*****************************************************************
# Sampling rules
#*****************************************************************
authorized_ranges = np.expand_dims(np.stack([[-np.inf,np.inf] for var in var_distrib]).T, 1)
if sub_design == 'bivarié':
# Want to sample only women of more than 60 years old
authorized_ranges[:,0, 0] = [60, 100] # Of more than 60 years old
# Keep only women
sex_idx = np.argmax(varnames == 'sex')
women_idx = np.argmax(le_dict['sex'].classes_ == 'Female')
authorized_ranges[:,0, sex_idx] = [women_idx, women_idx] # Only women
elif sub_design == 'trivarié':
# Want to sample only women of more than 60 years old that are widowed
authorized_ranges[:,0, 0] = [60, 100] # Of more than 60 years old
# Keep only women
sex_idx = np.argmax(varnames == 'sex')
women_idx = np.argmax(le_dict['sex'].classes_ == 'Female')
authorized_ranges[:,0, sex_idx] = [women_idx, women_idx] # Only women
# Keep only widows
marital_idx = np.argmax(varnames == 'marital.status')
widowed_idx = np.argmax(le_dict['marital.status'].classes_ == 'Widowed')
authorized_ranges[:,0, marital_idx] = [widowed_idx, widowed_idx] # Only widowed
else:
raise RuntimeError('Not implemented yet')
#*****************************************************************
# Run MIAMI
#*****************************************************************
init = dim_reduce_init(train, n_clusters, k, r, nj, var_distrib, seed = None,\
use_famd=True)
out = MIAMI(train, n_clusters, r, k, init, var_distrib, nj, authorized_ranges, nb_pobs, it,\
eps, maxstep, seed, perform_selec = False, dm = dm, max_patience = 0)
print('MIAMI has kept one observation over', round(1 / out['share_kept_pseudo_obs']),\
'observations generated')
acceptance_rate[design].append(out['share_kept_pseudo_obs'])
pred = pd.DataFrame(out['y_all'], columns = train.columns)
#================================================================
# Inverse transform the datasets
#================================================================
for j, colname in enumerate(train.columns):
if colname in le_dict.keys():
pred[colname] = le_dict[colname].inverse_transform(pred[colname].astype(int))
pred.loc[:, var_distrib == 'continuous'] = pred.loc[:, var_distrib == 'continuous'].round(0)
# Store the predictions
pred.to_csv(res_folder + design + '/' + sub_design + '/' + 'preds' + str(filenum) + '.csv',\
index = False)
#break
acceptance_rate = pd.DataFrame(acceptance_rate)
acceptance_rate.to_csv('pseudo_adult/acceptance_rate.csv')
acceptance_rate[['Unbalanced', 'Absent']].astype(float).boxplot()
plt.title('Acceptance rate of MIAMI in the Absent and Unbalanced designs')
plt.ylabel('Acceptance rate')
plt.xlabel('Design')
z2 = np.vstack([zzz for zzz in zz if len(zzz) >0])
plt.scatter(z2[:,0], z2[:,1])
x1,y1 = polygon.exterior.xy
plt.plot(x1,y1)
# Compare woman, 60+ y.o and people presenting both modalities
zz = np.concatenate(out['zz'])
woman_idx = train['sex'] == 0
age_idx = train['age'] >= 60
bivariate_idx = woman_idx & age_idx
fig, ax = plt.subplots(figsize = (9, 9))
ax.scatter(out['Ez.y'][woman_idx,0], out['Ez.y'][woman_idx,1], c='blue', label = '(Train set) women')
ax.scatter(out['Ez.y'][age_idx,0], out['Ez.y'][age_idx,1], c='red', label = '(Train set) 60+ years old')
ax.scatter(zz[:,0], zz[:,1], c='darkgreen', label = '(MIAMI) women 60+ y.o.')
#plt.title('Latent representation of women and 60+ y.o. individuals from the train set and generated by MIAMI')
plt.legend()
plt.show()