-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdebug.py
264 lines (190 loc) · 8.08 KB
/
debug.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# -*- coding: utf-8 -*-
"""
Created on Mon Jan 10 14:24:43 2022
@author: rfuchs
"""
import os
os.chdir('C:/Users/rfuchs/Documents/GitHub/M1DGMM')
import pandas as pd
from copy import deepcopy
from gower import gower_matrix
import matplotlib .pyplot as plt
from sklearn.preprocessing import LabelEncoder
from mi2ami import MI2AMI
from init_params import dim_reduce_init
from utilities import vars_contributions
from data_preprocessing import compute_nj#, data_processing
from sklearn.metrics.pairwise import cosine_similarity
from dython.nominal import associations, compute_associations
import autograd.numpy as np
res = 'C:/Users/rfuchs/Documents/These/Stats/MIAMI/Missing_data/MI2AMI/'
from oversample import stat_cont, stat_bin, stat_categ, stat_ord
###############################################################################
############### Contraceptive vizualisation #######################
###############################################################################
dtypes_dict = {'continuous': float, 'categorical': str, 'ordinal': float,\
'bernoulli': int, 'binomial': int}
#===========================================#
# Importing data
#===========================================#
os.chdir('C:/Users/rfuchs/Documents/These/Stats/MIAMI/Missing_data/Data')
full_contra = pd.read_csv('cmc2.csv', sep = ';')
var_distrib = np.array(['continuous', 'ordinal', 'ordinal', 'continuous',\
'bernoulli', 'bernoulli', 'categorical', 'ordinal',\
'bernoulli', 'categorical'])
#===========================================#
# Formating the data
#===========================================#
#le_dict = {}
nan_mask = full_contra.isnull()
# Encode categorical datas
for col_idx, colname in enumerate(full_contra.columns):
if var_distrib[col_idx] == 'categorical':
le = LabelEncoder()
full_contra[colname] = le.fit_transform(full_contra[colname])
#le_dict[colname] = deepcopy(le)
# Encode binary data
for col_idx, colname in enumerate(full_contra.columns):
if var_distrib[col_idx] == 'bernoulli':
le = LabelEncoder()
full_contra[colname] = le.fit_transform(full_contra[colname])
#le_dict[colname] = deepcopy(le)
# Encode ordinal data
for col_idx, colname in enumerate(full_contra.columns):
if var_distrib[col_idx] == 'ordinal':
le = LabelEncoder()
full_contra[colname] = le.fit_transform(full_contra[colname])
#le_dict[colname] = deepcopy(le)
#y = y.where(~nan_mask, np.nan)
nj, nj_bin, nj_ord, nj_categ = compute_nj(full_contra, var_distrib)
nb_cont = np.sum(var_distrib == 'continuous')
p_new = full_contra.shape[1]
# Feature category (cf)
dtype = {full_contra.columns[j]: dtypes_dict[var_distrib[j]] for j in range(p_new)}
full_contra = full_contra.astype(dtype, copy=True)
# Feature category (cf)
cat_features = var_distrib == 'categorical'
# Defining distance matrix
dm3 = gower_matrix(full_contra, cat_features = cat_features)
#===========================================#
# Hyperparameters
#===========================================#
n_clusters = 2
nb_pobs = 100 # Target for pseudo observations
r = np.array([2, 1])
numobs = len(full_contra)
k = [n_clusters]
seed = 1
init_seed = 2
eps = 1E-05
it = 10
maxstep = 100
#===========================================#
# MI2AMI initialisation
#===========================================#
init_full = dim_reduce_init(full_contra, n_clusters, k, r, nj, var_distrib, seed = None,\
use_famd=True)
out_full = MI2AMI(full_contra.astype(float), n_clusters, r, k, init_full, var_distrib, nj, nan_mask,\
nb_pobs, it, eps, maxstep, seed, dm = dm3, perform_selec = False)
completed_y3 = pd.DataFrame(out_full['completed_y'].round(0), columns = full_contra.columns)
#===========================================#
# Comparison
#===========================================#
#======================================
# mu_s
#======================================
out['mu'][0]
out2['mu'][0]
out_full['mu'][0]
#======================================
# Lambda
#======================================
out['lambda_cont']
out2['lambda_cont']
out_full['lambda_cont']
#======================================
# Mu @ lambda continuous
#======================================
for i in range(k[0]):
print([stat_cont(out2['lambda_cont'], out2['mu'][0][i].T) *\
completed_y2.iloc[:, var_distrib == "continuous"].std()])
for i in range(k[0]):
print(stat_bin(out2['lambda_bin'], out2['mu'][0][i].T, nj_bin))
print(stat_cont(out['lambda_cont'], np.array([[40.0, 0.0]])) *\
complete_y.iloc[:, var_distrib == "continuous"].std())
stat_cont(out_full['lambda_cont'], out_full['mu'][0][0].T) * full_contra.iloc[:, var_distrib == "continuous"].std()
stat_cont(out_full['lambda_cont'], out_full['mu'][0][1].T) * full_contra.iloc[:, var_distrib == "continuous"].std()
# Verification par groupe
for group in [0,1]:
print(complete_y.loc[out['classes'] == group, 'WifeAge'].mean())
for group in [0,1]:
print(completed_y2.loc[out2['classes'] == group, 'NbChild'].mean())
for group in [0,1,2, 3]:
print(full_contra.loc[out_full['classes'] == group, 'NbChild'].mean())
#======================================
# Mu @ lambda binomial
#======================================
stat_bin(out['lambda_bin'], out['mu'][0][0].T, nj_bin)[0]
stat_bin(out['lambda_bin'], out['mu'][0][1].T, nj_bin)[0]
#======================================
# Variables contribution
#======================================
# !!! TO DO: A comparer avec la vraie matrice d'association
# Vars contributions
vc = vars_contributions(complete_y, out['Ez.y'], assoc_thr = 0.0, \
title = 'Contribution of the variables to the latent dimensions',\
storage_path = None)
s = cosine_similarity(vc, dense_output=True)
vc2 = vars_contributions(completed_y2, out2['Ez.y'], assoc_thr = 0.0, \
title = 'Contribution of the variables to the latent dimensions',\
storage_path = None)
s2 = cosine_similarity(vc2, dense_output=True)
vc_full = vars_contributions(full_contra, out_full['Ez.y'], assoc_thr = 0.0, \
title = 'Contribution of the variables to the latent dimensions',\
storage_path = None)
s_full = cosine_similarity(vc_full, dense_output=True)
# Compare the representation between full and complete
idx = 0
fig, ax = plt.subplots(figsize = (4,4))
ax.scatter(s2[idx], s_full[idx])
plt.title(full_contra.columns[idx])
for i, txt in enumerate(full_contra.columns):
ax.annotate(txt, (s2[idx][i], s_full[idx][i]))
ax.set_xlim([-1,1])
ax.set_ylim([-1,1])
# Compare the representation between completed cosine similarity and original associations
associations(complete_y.astype(float), nominal_columns = cat_features)
associations(completed_y.astype(float), nominal_columns = cat_features)
associations(full_contra.astype(float), nominal_columns = cat_features)
assoc = compute_associations(full_contra.astype(float), nominal_columns = cat_features).values
idx = 0
fig, ax = plt.subplots(figsize = (4,4))
ax.scatter(assoc[idx], s_full[idx])
plt.title(full_contra.columns[idx])
for i, txt in enumerate(full_contra.columns):
ax.annotate(txt, (assoc[idx][i], s_full[idx][i]))
ax.set_xlim([-1,1])
ax.set_ylim([-1,1])
#======================================
# Ez.y
#======================================
var = 'WifeAge'
plt.scatter(out['Ez.y'][:,0], out['Ez.y'][:,1], c=complete_y[var].astype(float), cmap='viridis')
plt.colorbar()
plt.title(var + ' init')
plt.show()
plt.scatter(out2['Ez.y'][:,0], out2['Ez.y'][:,1], c=full_contra[var].astype(float), cmap='viridis')
plt.colorbar()
plt.title(var + ' completed')
plt.show()
plt.scatter(out_full['Ez.y'][:,0], out_full['Ez.y'][:,1], c=full_contra[var].astype(float), cmap='viridis')
plt.title(var + ' full')
plt.colorbar()
plt.show()
#==================================
# Ez.y per class
#==================================
plt.scatter(out2['Ez.y'][:,0], out2['Ez.y'][:,1], c=out2['classes'])
plt.colorbar()
plt.title(var + ' completed')
plt.show()