-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnumeric_stability.py
164 lines (140 loc) · 5.94 KB
/
numeric_stability.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# -*- coding: utf-8 -*-
"""
Created on Mon Jun 8 08:58:04 2020
@author: rfuchs
"""
import sys
from copy import deepcopy
import autograd.numpy as np
from autograd.numpy.linalg import cholesky, LinAlgError
from autograd.numpy.linalg import multi_dot, eigh
def make_symm(X):
''' Ensures that a matric is symmetric by setting the over-diagonal
coefficients as the transposed under-diagonal coefficients.
In our case, it keeps matrices robustly symmetric to rounding errors.
X (2d-array): A matrix
----------------------------------------------------------------------
returns (2d-array): The "symmetrized" matrix
'''
return np.tril(X, k = -1) + np.tril(X).T
def make_positive_definite(m, tol = None):
''' Computes a matrix close to the original matrix m that is positive definite.
This function is just a transcript of R' make.positive.definite function.
m (2d array): A matrix that is not necessary psd.
tol (int): A tolerence level controlling how "different" the psd matrice
can be from the original matrix
---------------------------------------------------------------
returns (2d array): A psd matrix
'''
d = m.shape[0]
if (m.shape[1] != d):
raise RuntimeError("Input matrix is not square!")
eigvalues, eigvect = eigh(m)
# Sort the eigen values
idx = eigvalues.argsort()[::-1]
eigvalues = eigvalues[idx]
eigvect = eigvect[:,idx]
if (tol == None):
tol = d * np.max(np.abs(eigvalues)) * sys.float_info.epsilon
delta = 2 * tol
tau = np.maximum(0, delta - eigvalues)
dm = multi_dot([eigvect, np.diag(tau), eigvect.T])
return(m + dm)
def ensure_psd(mtx_list):
''' Checks the positive-definiteness (psd) of a list of matrix.
If a matrix is not psd it is replaced by a "similar" positive-definite matrix.
mtx_list (list of 2d-array/3d-arrays): The list of matrices to check
---------------------------------------------------------------------
returns (list of 2d-array/3d-arrays): A list of matrices that are all psd.
'''
L = len(mtx_list)
for l in range(L):
for idx, X in enumerate(mtx_list[l]):
try:
cholesky(X)
except LinAlgError:
mtx_list[l][idx] = make_positive_definite(make_symm(X), tol = 10E-5)
return mtx_list
def log_1plusexp(eta_):
''' Numerically stable version np.log(1 + np.exp(eta))
eta_ (nd-array): An ndarray that potentially contains high values that
will overflow while taking the exponential
-----------------------------------------------------------------------
returns (nd-array): log(1 + exp(eta_))
'''
eta_original = deepcopy(eta_)
eta_ = np.where(eta_ >= np.log(sys.float_info.max), np.log(sys.float_info.max) - 1, eta_)
return np.where(eta_ >= 50, eta_original, np.log1p(np.exp(eta_)))
def expit(eta_):
''' Numerically stable version of 1/(1 + exp(eta_))
eta_ (nd-array): An ndarray that potentially contains high absolute values
that will overflow while taking the exponential.
-----------------------------------------------------------------------
returns (nd-array): 1/(1 + exp(eta_))
'''
max_value_handled = np.log(np.sqrt(sys.float_info.max) - 1)
eta_ = np.where(eta_ <= - max_value_handled + 3, - max_value_handled + 3, eta_)
eta_ = np.where(eta_ >= max_value_handled - 3, np.log(sys.float_info.max) - 3, eta_)
return np.where(eta_ <= -50, np.exp(eta_), 1/(1 + np.exp(-eta_)))
def logsumexp(a, axis=None, keepdims=False):
"""Modified from scipy :
Compute the log of the sum of exponentials of input elements.
Parameters
----------
a : array_like
Input array.
axis : None or int or tuple of ints, optional
Axis or axes over which the sum is taken. By default `axis` is None,
and all elements are summed.
.. versionadded:: 0.11.0
keepdims : bool, optional
If this is set to True, the axes which are reduced are left in the
result as dimensions with size one. With this option, the result
will broadcast correctly against the original array.
.. versionadded:: 0.15.0
Returns
-------
res : ndarray
The result, ``np.log(np.sum(np.exp(a)))`` calculated in a numerically
more stable way. If `b` is given then ``np.log(np.sum(b*np.exp(a)))``
is returned.
sgn : ndarray
If return_sign is True, this will be an array of floating-point
numbers matching res and +1, 0, or -1 depending on the sign
of the result. If False, only one result is returned.
"""
a_max = np.amax(a, axis=axis, keepdims=True)
# Cutting the max if infinite
a_max = np.where(~np.isfinite(a_max), 0, a_max)
assert np.sum(~np.isfinite(a_max)) == 0
tmp = np.exp(a - a_max)
# suppress warnings about log of zero
with np.errstate(divide='ignore'):
s = np.sum(tmp, axis=axis, keepdims=keepdims)
out = np.log(s)
if not keepdims:
a_max = np.squeeze(a_max, axis=axis)
out += a_max
return out
def softmax_(x, axis=None):
r""" Softmax function from the scipy package
The softmax function transforms each element of a collection by
computing the exponential of each element divided by the sum of the
exponentials of all the elements. That is, if `x` is a one-dimensional
numpy array::
softmax(x) = np.exp(x)/sum(np.exp(x))
Parameters
----------
x : array_like
Input array.
axis : int or tuple of ints, optional
Axis to compute values along. Default is None and softmax will be
computed over the entire array `x`.
Returns
-------
s : ndarray
An array the same shape as `x`. The result will sum to 1 along the
specified axis.
"""
# compute in log space for numerical stability
return np.exp(x - logsumexp(x, axis=axis, keepdims=True))