-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_on_aus_credit.py
243 lines (174 loc) · 6.94 KB
/
test_on_aus_credit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# -*- coding: utf-8 -*-
"""
Created on Mon Jun 8 13:25:11 2020
@author: rfuchs
"""
import os
os.chdir('C:/Users/rfuchs/Documents/GitHub/M1DGMM')
from copy import deepcopy
from sklearn.metrics import precision_score
from sklearn.metrics import confusion_matrix
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder
from gower import gower_matrix
from sklearn.metrics import silhouette_score
import pandas as pd
from m1dgmm import M1DGMM
from init_params import dim_reduce_init
from metrics import misc, cluster_purity
from data_preprocessing import gen_categ_as_bin_dataset, \
compute_nj
import autograd.numpy as np
from numpy.random import uniform
###############################################################################
######################## Credit data vizualisation #########################
###############################################################################
#===========================================#
# Importing data
#===========================================#
os.chdir('C:/Users/rfuchs/Documents/These/Stats/mixed_dgmm/datasets')
credit = pd.read_csv('australian_credit/australian.csv', sep = ' ', header = None)
y = credit.iloc[:,:-1]
labels = credit.iloc[:,-1]
y = y.infer_objects()
numobs = len(y)
n_clusters = len(np.unique(labels))
p = y.shape[1]
#===========================================#
# Formating the data
#===========================================#
var_distrib = np.array(['bernoulli', 'continuous', 'continuous', 'categorical',\
'categorical', 'categorical', 'continuous', 'bernoulli',\
'bernoulli', 'continuous', 'bernoulli', 'categorical',\
'continuous', 'continuous'])
# No ordinal data
y_categ_non_enc = deepcopy(y)
vd_categ_non_enc = deepcopy(var_distrib)
# Encode categorical datas
le = LabelEncoder()
for col_idx, colname in enumerate(y.columns):
if var_distrib[col_idx] == 'categorical':
y[colname] = le.fit_transform(y[colname])
# No binary data
enc = OneHotEncoder(sparse = False, drop = 'first')
labels_oh = enc.fit_transform(np.array(labels).reshape(-1,1)).flatten()
nj, nj_bin, nj_ord, nj_categ = compute_nj(y, var_distrib)
y_np = y.values
nb_cont = np.sum(var_distrib == 'continuous')
p_new = y.shape[1]
# Feature category (cf)
cf_non_enc = np.logical_or(vd_categ_non_enc == 'categorical', vd_categ_non_enc == 'bernoulli')
# Non encoded version of the dataset:
y_nenc_typed = y_categ_non_enc.astype(object)
y_np_nenc = y_nenc_typed.values
# Defining distances over the non encoded features
dm = gower_matrix(y_nenc_typed, cat_features = cf_non_enc)
dtype = {y.columns[j]: np.float64 if (var_distrib[j] != 'bernoulli') and \
(var_distrib[j] != 'categorical') else np.str for j in range(p_new)}
y = y.astype(dtype, copy=True)
#===========================================#
# Running the algorithm
#===========================================#
r = np.array([2, 1])
numobs = len(y)
k = [n_clusters]
seed = 1
init_seed = 2
eps = 1E-05
it = 20
maxstep = 100
prince_init = dim_reduce_init(y, n_clusters, k, r, nj, var_distrib, seed = None,\
use_famd=True)
m, pred = misc(labels_oh, prince_init['classes'], True)
print(m)
print(confusion_matrix(labels_oh, pred))
print(silhouette_score(dm, pred, metric = 'precomputed'))
out = M1DGMM(y_np, n_clusters, r, k, prince_init, var_distrib, nj, it, eps, maxstep, seed)
m, pred = misc(labels_oh, out['classes'], True)
print(m)
print(confusion_matrix(labels_oh, pred))
print(silhouette_score(dm, pred, metric = 'precomputed'))
# Plot the final groups
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
colors = ['green','red']
fig = plt.figure(figsize=(8,8))
plt.scatter(out["z"][:, 0], out["z"][:, 1], c=pred,\
cmap=matplotlib.colors.ListedColormap(colors))
cb = plt.colorbar()
cb.ax.get_yaxis().set_ticks([])
for j, lab in enumerate(['0','1']):
cb.ax.text(.5, (2 * j + 1) / 4.0, lab, ha='center', va='center', rotation=90)
cb.ax.get_yaxis().labelpad = 15
#=========================================================================
# Performance measure : Finding the best specification for init and DDGMM
#=========================================================================
res_folder = 'C:/Users/rfuchs/Documents/These/Experiences/mixed_algos/aus_credit'
# Init
# Best one r = (2,1)
numobs = len(y)
k = [n_clusters]
nb_trials= 30
mca_res = pd.DataFrame(columns = ['it_id', 'r', 'micro', 'macro', 'purity'])
for r1 in range(2, 9):
print(r1)
r = np.array([r1, 1])
for i in range(nb_trials):
# Prince init
prince_init = dim_reduce_init(y, n_clusters, k, r, nj, var_distrib, seed = None)
m, pred = misc(labels_oh, prince_init['classes'], True)
cm = confusion_matrix(labels_oh, pred)
purity = cluster_purity(cm)
micro = precision_score(labels_oh, pred, average = 'micro')
macro = precision_score(labels_oh, pred, average = 'macro')
#print(micro)
#print(macro)
mca_res = mca_res.append({'it_id': i + 1, 'r': str(r), 'micro': micro, 'macro': macro, \
'purity': purity}, ignore_index=True)
mca_res.groupby('r').mean()
mca_res.groupby('r').std()
mca_res.to_csv(res_folder + '/mca_res.csv')
# MDGMM. Thresholds use: 0.25 and 0.10
# r = [5, 3, 2]
# k = [3, 2]
r = np.array([5, 4, 3])
numobs = len(y)
k = [4, n_clusters]
eps = 1E-05
it = 2
maxstep = 100
prince_init = dim_reduce_init(y, n_clusters, k, r, nj, var_distrib, \
seed = None, use_famd = True)
out = M1DGMM(y_np, n_clusters, r, k, prince_init, var_distrib, nj, it, eps,\
maxstep, seed = None)
r = out['best_r']
numobs = len(y)
k = out['best_k']
eps = 1E-05
it = 30
maxstep = 100
nb_trials= 30
m1dgmm_res = pd.DataFrame(columns = ['it_id', 'micro', 'macro', 'silhouette'])
for i in range(nb_trials):
print(i)
# Prince init
prince_init = dim_reduce_init(y, n_clusters, k, r, nj, var_distrib,\
seed = None, use_famd = True)
try:
out = M1DGMM(y_np, n_clusters, r, k, prince_init, var_distrib, nj, it,\
eps, maxstep, seed = None, perform_selec = False)
m, pred = misc(labels_oh, out['classes'], True)
sil = silhouette_score(dm, pred, metric = 'precomputed')
micro = precision_score(labels_oh, pred, average = 'micro')
macro = precision_score(labels_oh, pred, average = 'macro')
print(micro)
print(macro)
m1dgmm_res = m1dgmm_res.append({'it_id': i + 1, 'micro': micro, 'macro': macro, \
'silhouette': sil}, ignore_index=True)
except:
m1dgmm_res = m1dgmm_res.append({'it_id': i + 1, 'micro': np.nan, 'macro': np.nan, \
'silhouette': np.nan}, ignore_index=True)
m1dgmm_res.mean()
m1dgmm_res.std()
m1dgmm_res.to_csv(res_folder + '/m1dgmm_res_famd.csv')