-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjointtrainer.py
350 lines (318 loc) · 17.1 KB
/
jointtrainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
"""
This file contains a Trainer class which handles the training and evaluation of SOC.
"""
import math
import sys
import os
from os import path
import shutil
import random
import numpy as np
import wandb
import torch
from torch.nn.parallel import DistributedDataParallel as DDP
import torch.distributed as dist
import torch.cuda.amp as amp
from PIL import Image
from tqdm import tqdm
import gc
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
from metrics import calculate_precision_at_k_and_iou_metrics
from utils import create_output_dir, create_checkpoint_dir, flatten_temporal_batch_dims, cosine_lr
from datasets import build_dataset
from torch.utils.data import DataLoader, DistributedSampler
from torch.optim.lr_scheduler import MultiStepLR
import misc as utils
from models import build_model
from models.video_swin_transformer import compute_mask
import json
class Trainer:
def __init__(self, config, process_id, device_id, num_processes):
self.config = config
self.world_size = num_processes
self.distributed = num_processes > 1
self.process_id = process_id
self.is_main_process = process_id == 0
self.device = init_process_group_and_set_device(num_processes, process_id, device_id, config)
# fix the seed for reproducibility
seed = config.seed + config.rank
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
model, criterion, postprocessor = build_model(config)
model.to(self.device)
model_without_ddp = model
if config.distributed:
model = DDP(model, device_ids=[device_id])
model_without_ddp = model.module
self.model = model
self.backbone_name = config.backbone
self.criterion = criterion
self.postprocessor = postprocessor
n_parameters = sum(p.numel() for p in self.model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
self.dataset_name = config.dataset_name
self.evaluate = self.evaluate_refer_youtube_vos #jointing training only eval referyoutube
dataset_train, collator = build_dataset(image_set='train', dataset_file=self.dataset_name, **vars(config))
dataset_val = build_dataset(image_set='test', dataset_file="ref_youtube_vos", **vars(config))
if self.distributed:
self.sampler_train = DistributedSampler(dataset_train, num_replicas=config.world_size, rank=config.rank,
shuffle=True, seed=config.seed, drop_last=False)
else:
self.sampler_train = None
self.data_loader_train = DataLoader(dataset_train, batch_size=config.batch_size, sampler=self.sampler_train,
collate_fn=collator, num_workers=config.num_workers,
pin_memory=True, shuffle=self.sampler_train is None)
if self.distributed:
sampler_val = DistributedSampler(dataset_val, num_replicas=config.world_size, rank=config.rank, shuffle=False)
else:
sampler_val = None
eval_batch_size = config.eval_batch_size
self.data_loader_val = DataLoader(dataset_val, eval_batch_size, sampler=sampler_val, drop_last=False,
collate_fn=dataset_val.collator, num_workers=config.num_workers,
pin_memory=True)
# Optimizer, LR-Scheduler, AMP Grad Scaler:
param_dicts = [
{"params": [p for n, p in model_without_ddp.named_parameters()
if "backbone" not in n and "text_encoder" not in n and p.requires_grad or "VLA" in n]},
{"params": [p for n, p in model_without_ddp.named_parameters() if "backbone" in n and p.requires_grad and "VLA" not in n],
"lr": config.lr_backbone},
{"params": [p for n, p in model_without_ddp.named_parameters() if "text_encoder" in n and p.requires_grad],
"lr": config.text_encoder_lr},
]
self.optimizer = torch.optim.AdamW(param_dicts, lr=config.lr, weight_decay=config.weight_decay)
self.num_batches_per_epoch = len(self.data_loader_train)
self.lr_scheduler = MultiStepLR(self.optimizer, milestones=config.lr_drop, gamma=0.1, verbose=True)
self.grad_scaler = amp.GradScaler(enabled=config.enable_amp)
self.max_norm = config.clip_max_norm
if self.is_main_process:
self.output_dir_path = create_output_dir(config)
self.checkpoint_dir_path = create_checkpoint_dir(self.output_dir_path)
if config.wandb_mode == 'online':
wandb.init(project='RefVOS', config=config, mode=config.wandb_mode, name='SOC_VOC')
print(config)
else:
self.output_dir_path = ''
if self.distributed:
# sync the newly created output dir among all processes:
output_dir_sync_list = [None for _ in range(self.world_size)]
dist.all_gather_object(output_dir_sync_list, self.output_dir_path)
self.output_dir_path = output_dir_sync_list[0]
self.total_epochs = config.epochs
self.epoch = 0
self.iteration = 0
self.best_mAP = 0
self.best_loss = math.inf
def train(self):
print("Training started...")
for self.epoch in tqdm(range(self.epoch, self.total_epochs), disable=not self.is_main_process):
self.model.train()
self.criterion.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(self.epoch)
print_freq = 10
if self.distributed:
self.sampler_train.set_epoch(self.epoch)
total_epoch_loss = 0
loss_sums_dict = {k: 0 for k in self.criterion.weight_dict.keys()}
for i, batch_dict in enumerate(tqdm(self.data_loader_train, disable=not utils.is_main_process())):
samples = batch_dict['samples'].to(self.device)
targets = to_device(batch_dict['targets'], self.device)
text_queries = batch_dict['text_queries']
# keep only the valid targets (targets of frames which are annotated). for example, in a2d-sentences
# only the center frame in each window is annotated.
valid_indices = None
with amp.autocast(enabled=self.config.enable_amp):
outputs = self.model(samples, valid_indices, text_queries, targets)
loss_dict = self.criterion(outputs, targets)
weight_dict = self.criterion.weight_dict
losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
# reduce losses over all GPUs for logging purposes
loss_dict_reduced = utils.reduce_dict(loss_dict)
loss_dict_reduced_scaled = {k: v * weight_dict[k] for k, v in loss_dict_reduced.items() if
k in weight_dict}
total_loss_reduced = sum(loss_dict_reduced_scaled.values()).item()
if not math.isfinite(total_loss_reduced):
print("Loss is {}, stopping training".format(total_loss_reduced))
print(loss_dict_reduced)
sys.exit(1)
self.optimizer.zero_grad()
self.grad_scaler.scale(losses).backward()
if self.max_norm > 0:
self.grad_scaler.unscale_(self.optimizer) # gradients must be unscaled before clipping
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.max_norm, error_if_nonfinite=False)
self.grad_scaler.step(self.optimizer)
self.grad_scaler.update()
metric_logger.update(loss=total_loss_reduced, **loss_dict_reduced_scaled,)
metric_logger.update(lr=self.optimizer.param_groups[0]["lr"])
# if self.is_main_process:
# wandb.log({'total_iteration_loss': total_loss_reduced})
self.iteration += 1
total_epoch_loss += total_loss_reduced
for k in loss_sums_dict.keys():
loss_sums_dict[k] += loss_dict_reduced_scaled.get(k, torch.zeros(1)).item()
#use warmups
# step = self.num_batches_per_epoch * self.epoch + i
# self.lr_scheduler(step)
metric_logger.synchronize_between_processes()
train_stats = {k: meter.global_avg for k, meter in metric_logger.meters.items()}
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': self.epoch}
# if self.dataset_name == 'a2d_sentences':
# self.lr_scheduler.step()
# else: # refer-youtube-vos
# self.lr_scheduler.step(total_epoch_loss) # note that this loss is synced across all processes
self.lr_scheduler.step()
# evaluation:
# run gc collection before starting evaluation to avoid possible OOM errors due to swin-T caching:
self.clear_memory()
if self.epoch >= 0:
eval_metrics = self.evaluate()
for key, value in eval_metrics.items():
log_stats['evaluate' + key] = value
if self.is_main_process:
self.save_checkpoint(total_epoch_loss)
# eval_metrics.update({'epoch': self.epoch, 'epoch_loss': total_epoch_loss})
# eval_metrics.update(loss_sums_dict)
if self.config.wandb_mode == 'online':
wandb.log(log_stats)
with open(os.path.join(self.output_dir_path,'log.txt'), 'a')as f:
f.write(json.dumps(log_stats) + "\n")
# wandb.log({'main_model_learning_rate': self.optimizer.param_groups[0]['lr']})
# run gc collection before starting a new epoch to avoid possible OOM errors due to swinT caching :
self.clear_memory()
if self.distributed:
dist.barrier()
@torch.no_grad()
def evaluate_refer_youtube_vos(self):
self.model.eval()
predictions = []
for batch_dict in tqdm(self.data_loader_val, disable=not self.is_main_process):
samples = batch_dict['samples'].to(self.device)
# valid_indices = torch.arange(len(samples.tensors)).to(self.device)
targets = to_device(batch_dict['targets'], self.device)
valid_indices = None
text_queries = batch_dict['text_queries']
outputs = self.model(samples, valid_indices, text_queries, targets)
videos_metadata = batch_dict['videos_metadata']
sample_shape_with_padding = samples.tensors.shape[-2:]
preds_by_video = self.postprocessor(outputs, videos_metadata, sample_shape_with_padding)
predictions.extend(preds_by_video)
# next, save the predictions
validation_output_dir = path.join(self.output_dir_path, 'validation_outputs')
epoch_validation_output_dir = path.join(validation_output_dir, f'epoch_{self.epoch}')
annotations_dir = path.join(epoch_validation_output_dir, 'Annotations')
print('saving predictions...')
for p in tqdm(predictions, disable=not self.is_main_process):
pred_dir_path = path.join(annotations_dir, p['video_id'], p['exp_id'])
os.makedirs(pred_dir_path, exist_ok=True)
for f_mask, f_idx in zip(p['pred_masks'], p['frame_indices']):
pred_mask_path = path.join(pred_dir_path, f'{f_idx}.png')
pred_mask = Image.fromarray((255 * f_mask.squeeze()).numpy())
pred_mask.save(pred_mask_path)
if self.distributed:
dist.barrier() # make sure all processes finished saving their predictions before creating the zip file
if self.is_main_process:
print('creating a zip file with the predictions...')
# create zip file to be submitted to refer-youtube-vos validation server:
zip_file_path = path.join(validation_output_dir, f'submission_epoch_{self.epoch}')
shutil.make_archive(zip_file_path, 'zip', root_dir=epoch_validation_output_dir, base_dir='Annotations')
print('a zip file was successfully created.')
shutil.rmtree(epoch_validation_output_dir) # remove the uncompressed annotations for memory efficiency
if self.distributed:
dist.barrier() # sync all processes before starting a new epoch or exiting
#self.model.module.backbone.running_mode = self.config.running_mode
return {} # return an empty metrics dict as all validation metrics will be computed on the server later
def to_device(self, sample):
if isinstance(sample, torch.Tensor):
sample = sample.to(self.device)
elif isinstance(sample, tuple) or isinstance(sample, list):
sample = [self.to_device(s) for s in sample]
return sample
def load_checkpoint(self, checkpoint_path, total_epoch=None):
checkpoint = torch.load(checkpoint_path, map_location=self.device)
self.epoch = checkpoint['epoch'] + 1 # the epoch after the one saved is about to begin
if total_epoch == None:
self.total_epochs = checkpoint['total_epochs']
else:
self.total_epochs = total_epoch
if self.dataset_name == 'a2d_sentences':
self.best_mAP = checkpoint['best_mAP']
else: # refer-youtube-vos
self.best_loss = checkpoint['best_loss']
model_without_ddp = self.model.module if isinstance(self.model, DDP) else self.model
model_without_ddp.load_state_dict(checkpoint['model_state_dict'])
self.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
self.lr_scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
self.grad_scaler.load_state_dict(checkpoint['grad_scaler_state_dict'])
def save_checkpoint(self, epoch_score):
if not self.is_main_process:
return
is_best = False
model_without_ddp = self.model.module if isinstance(self.model, DDP) else self.model
checkpoint_dict = {
'epoch': self.epoch,
'total_epochs': self.total_epochs,
'model_state_dict': model_without_ddp.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict(),
'scheduler_state_dict': self.lr_scheduler.state_dict(),
'grad_scaler_state_dict': self.grad_scaler.state_dict()
}
is_best_loss = epoch_score < self.best_loss
if is_best_loss:
self.best_loss = epoch_score
is_best = True
checkpoint_dict['best_loss'] = self.best_loss
filename = self.get_checkpoint_filename()
torch.save(checkpoint_dict, filename)
print(f'saved checkpoint: {filename}')
if is_best:
best_filename = self.get_checkpoint_filename(is_best=True)
shutil.copyfile(filename, best_filename)
self.remove_extra_checkpoints()
def get_checkpoint_filename(self, is_best=False):
basename = 'best' if is_best else f'{self.epoch:02d}'
return os.path.join(self.checkpoint_dir_path, f'{basename}.pth.tar')
def remove_extra_checkpoints(self):
filenames = sorted(os.listdir(self.checkpoint_dir_path))
max_num_checkpoints = 10
num_files_to_remove = max(0, len(filenames) - max_num_checkpoints)
for filename in filenames[:num_files_to_remove]:
os.remove(os.path.join(self.checkpoint_dir_path, filename))
def clear_memory(self):
if self.backbone_name == 'video-swin-t' or self.backbone_name == 'video-swin-s' or self.backbone_name == 'video-swin-b':
compute_mask.cache_clear() # empty cache of SwinT
gc.collect()
torch.cuda.empty_cache()
def init_process_group_and_set_device(world_size, process_id, device_id, config):
"""
This function needs to be called on each spawned process to initiate learning using DistributedDataParallel.
The function initiates the process' process group and assigns it a single GPU to use during training.
"""
config.world_size = world_size
config.rank = process_id
torch.cuda.set_device(device_id)
device = torch.device(f'cuda:{device_id}')
config.device = device
if world_size > 1:
config.distributed = True
torch.distributed.init_process_group(
torch.distributed.Backend.NCCL,
world_size=world_size,
rank=process_id
)
torch.distributed.barrier(device_ids=[device_id])
utils.setup_for_distributed(config.rank == 0)
else:
config.distributed = False
return device
def to_device(sample, device):
if isinstance(sample, torch.Tensor):
sample = sample.to(device)
elif isinstance(sample, tuple) or isinstance(sample, list):
sample = [to_device(s, device) for s in sample]
elif isinstance(sample, dict):
sample = {k: to_device(v, device) for k, v in sample.items()}
return sample