-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
160 lines (126 loc) · 6.54 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import os
import numpy as np
import pandas as pd
import tensorflow as tf
from datasets import Dataset, DatasetDict
from tqdm import tqdm
from transformers import AutoTokenizer
from typing import Tuple
from urllib.request import urlopen
def download_articles_by_publisher(cache_dir: str)->None:
# Dataset Message!!
print('!!! THE REQUIRED FILES ARE NO LONGER AVAILABLE FROM THE ORIGINAL DATASET !!!')
print('!!! DOWNLOAD THEM FROM MY KAGGLE DATASET: https://www.kaggle.com/datasets/rsmits/dpgmedia2019 !!!')
# URLs taken from: https://github.com/dpgmedia/partisan-news2019
articles_by_publisher_url = 'https://partisan-news2019.s3-eu-west-1.amazonaws.com/dpgMedia2019-articles-bypublisher.jsonl'
labels_by_publisher_url = 'https://github.com/dpgmedia/partisan-news2019/raw/master/dpgMedia2019-labels-bypublisher.jsonl'
# Articles By Publisher
if os.path.isfile(os.path.join(cache_dir, 'dpgMedia2019-articles-bypublisher.jsonl')):
print ("Articles By Publisher File exist")
else:
# Download...
print ('Downloading: Articles By Publisher File....')
# Download File and save
with urlopen(articles_by_publisher_url) as file_stream:
file_data = file_stream.read()
with open(os.path.join(cache_dir, 'dpgMedia2019-articles-bypublisher.jsonl'), 'wb') as f:
f.write(file_data)
# Labels By Publisher
if os.path.isfile(os.path.join(cache_dir, 'dpgMedia2019-labels-bypublisher.jsonl')):
print('Labels By Publisher File exist')
else:
# Download...
print ('Downloading: Labels By Publisher File....')
# Download File and save
with urlopen(labels_by_publisher_url) as file_stream:
file_data = file_stream.read()
with open(os.path.join(cache_dir, 'dpgMedia2019-labels-bypublisher.jsonl'), 'wb') as f:
f.write(file_data)
def get_dpgnews_df(cache_dir: str)->pd.DataFrame:
# Set 1: Articles
articles_df = pd.read_json(os.path.join(cache_dir, 'dpgMedia2019-articles-bypublisher.jsonl'), lines = True)
articles_df = articles_df.set_index('id')
print(articles_df.shape)
# Set 2: Labels
labels_df = pd.read_json(os.path.join(cache_dir, 'dpgMedia2019-labels-bypublisher.jsonl'), lines = True)
labels_df = labels_df.set_index('id')
print(labels_df.shape)
# Finalize Full Data
dpgnews_df = articles_df.join(labels_df, on = ['id'], how = 'inner')
print(dpgnews_df.shape)
# Randomize all rows...
dpgnews_df = dpgnews_df.sample(frac = 1.0, random_state = 42)
return dpgnews_df
def create_dataset(df: pd.DataFrame, max_len: int, tokenizer: AutoTokenizer, batch_size: int, shuffle = False)->tf.data.Dataset:
total_samples = df.shape[0]
# Placeholders input
input_ids, input_masks = [], []
# Placeholder output
labels = []
# Tokenize
for index, row in tqdm(zip(range(0, total_samples), df.iterrows()), total = total_samples):
# Get title and description as strings
text = row[1]['text']
partisan = row[1]['partisan']
# Encode
input_encoded = tokenizer.encode_plus(text, add_special_tokens = True, max_length = max_len, truncation = True, padding = 'max_length')
input_ids.append(input_encoded['input_ids'])
input_masks.append(input_encoded['attention_mask'])
labels.append(1 if partisan == 'true' else 0)
# Prepare and Create TF Dataset.
all_input_ids = tf.Variable(input_ids)
all_input_masks = tf.Variable(input_masks)
all_labels = tf.Variable(labels)
dataset = tf.data.Dataset.from_tensor_slices(({'input_ids': all_input_ids, 'attention_mask': all_input_masks}, all_labels))
if shuffle:
dataset = dataset.shuffle(128, reshuffle_each_iteration = True)
dataset = dataset.batch(batch_size, drop_remainder = True)
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)
return dataset
def create_t5_dataset(df: pd.DataFrame, max_len: int, max_label_len: int, tokenizer: AutoTokenizer, batch_size: int, shuffle = False)->tf.data.Dataset:
total_samples = df.shape[0]
# Placeholders input
input_ids, input_masks = [], []
# Placeholders output
output_ids, output_masks, labels = [], [], []
# Tokenize
for index, row in tqdm(zip(range(0, total_samples), df.iterrows()), total = total_samples):
# Get title and description as strings
text = row[1]['text']
partisan = row[1]['partisan']
# Process Input
input_encoded = tokenizer.encode_plus('classificeer: ' + text, add_special_tokens = True, max_length = max_len, truncation = True, padding = 'max_length')
input_ids.append(input_encoded['input_ids'])
input_masks.append(input_encoded['attention_mask'])
# Process Output
labels.append(1 if partisan == 'true' else 0)
partisan_label = 'politiek' if partisan == 'true' else 'neutraal'
output_encoded = tokenizer.encode_plus(partisan_label, add_special_tokens = True, max_length = max_label_len, truncation = True, padding = 'max_length')
output_ids.append(output_encoded['input_ids'])
output_masks.append(output_encoded['attention_mask'])
# Prepare and Create TF Dataset.
all_input_ids = tf.constant(input_ids)
all_output_ids = tf.constant(output_ids)
all_input_masks = tf.constant(input_masks)
all_output_masks = tf.constant(output_masks)
dataset = tf.data.Dataset.from_tensor_slices(({'input_ids': all_input_ids,
'labels': all_output_ids,
'attention_mask': all_input_masks,
'decoder_attention_mask': all_output_masks}))
if shuffle:
dataset = dataset.shuffle(1024, reshuffle_each_iteration = True)
dataset = dataset.batch(batch_size, drop_remainder = True)
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)
return dataset
def create_dataset_for_pretraining(tokenizer: AutoTokenizer, train_df: pd.DataFrame, val_df: pd.DataFrame)->Dataset:
def tokenizer_function(examples):
return tokenizer(examples["text"], truncation = True)
traindf = pd.DataFrame({"text": train_df.text.values})
valdf = pd.DataFrame({"text": val_df.text.values})
trainds = Dataset.from_pandas(traindf)
valds = Dataset.from_pandas(valdf)
dataset = DatasetDict()
dataset['train'] = trainds
dataset['validation'] = valds
dataset = dataset.map(tokenizer_function, batched = True)
return dataset