-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathprepare_casmi_data.py
188 lines (170 loc) · 7.28 KB
/
prepare_casmi_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import pandas as pd
import argparse
import os
import glob
import numpy as np
import massformer.data_utils as data_utils
from massformer.data_utils import par_apply_series, check_mol_props
from massformer.misc_utils import none_or_nan
from massformer.casmi_utils import common_filter, load_mw_cand, prepare_casmi_mol_df, prepare_casmi_cand_df, prepare_casmi_spec_df
def main(args):
casmi_dp = os.path.join(args.raw_dp, args.casmi_input_dir)
spec_dp = os.path.join(casmi_dp, "spectra")
cand_dp = os.path.join(casmi_dp, "candidates")
sol_fp = os.path.join(casmi_dp, "challenge_solutions.csv")
id_offset = len("Challenge-")
spec_peakses = []
spec_ids = []
for spec_file in sorted(glob.glob(os.path.join(spec_dp, "*.txt"))):
spec_file = os.path.basename(spec_file)
spec_fp = os.path.join(spec_dp, spec_file)
spec_id = int(spec_file[id_offset:id_offset + 3])
spec_df = pd.read_csv(spec_fp, sep="\t", names=["mz", "ints"])
spec_peaks = list(spec_df.to_records(index=False))
spec_peakses.append(spec_peaks)
spec_ids.append(spec_id)
peak_df = pd.DataFrame({"spec_id": spec_ids, "peaks": spec_peakses})
sol_df = pd.read_csv(sol_fp)
sol_dict = {
"ChallengeName": "spec_id",
"PRECURSOR_MZ": "prec_mz",
"ION_MODE": "ion_mode",
"SMILES": "smiles"
}
ion_mode_dict = {
" POSITIVE": "P",
" NEGATIVE": "N"
}
sol_df = sol_df[list(sol_dict.keys())]
sol_df = sol_df.rename(columns=sol_dict)
sol_df.loc[:, "spec_id"] = sol_df["spec_id"].str[id_offset:id_offset +
3].astype(int)
sol_df.loc[:, "ion_mode"] = sol_df["ion_mode"].map(ion_mode_dict)
assert set(spec_ids) == set(sol_df["spec_id"])
cand_dict = {
"SMILES": "smiles"
}
cand_fps = [
os.path.join(
cand_dp,
f"Challenge-{spec_id:03d}.csv") for spec_id in spec_ids]
if args.num_entries > -1:
cand_fps = cand_fps[:args.num_entries]
cand_smileses = []
query_spec_ids = []
for cand_idx, cand_fp in enumerate(cand_fps):
cand_df = pd.read_csv(cand_fp)
cand_df = cand_df[list(cand_dict.keys())]
cand_df = cand_df.rename(columns=cand_dict)
# add the candidates
cand_smileses.extend(cand_df["smiles"].tolist())
query_spec_ids.extend([spec_ids[cand_idx]
for i in range(cand_df.shape[0])])
# add the actual match
cand_smileses.append(
sol_df[sol_df["spec_id"] == spec_ids[cand_idx]]["smiles"].item())
query_spec_ids.append(spec_ids[cand_idx])
cand_df = pd.DataFrame(
{"candidate_smiles": cand_smileses, "query_spec_id": query_spec_ids})
# make sure there are no duplicates
cand_df = cand_df.drop_duplicates()
un_smileses = sorted(cand_df["candidate_smiles"].unique().tolist())
smiles_to_id = {smiles: idx for idx, smiles in enumerate(un_smileses)}
cand_df.loc[:, "candidate_mol_id"] = cand_df["candidate_smiles"].map(
smiles_to_id)
cand_df = cand_df.drop(columns=["candidate_smiles"])
mol_df = pd.DataFrame({"smiles": un_smileses})
mol_df.loc[:, "mol_id"] = mol_df["smiles"].map(smiles_to_id)
mol_df.loc[:, "mol"] = par_apply_series(
mol_df["smiles"], data_utils.mol_from_smiles)
print(mol_df.isna().sum()) # hopefully none
mol_df = mol_df.dropna()
mol_df = check_mol_props(mol_df) # this might drop stuff
# add all the mol stuff
mol_df.loc[:, "smiles_iso"] = mol_df["smiles"].copy(deep=True)
mol_df.loc[:, "smiles"] = par_apply_series(
mol_df["mol"], data_utils.mol_to_smiles)
mol_df.loc[:, "inchikey_s"] = par_apply_series(
mol_df["mol"], data_utils.mol_to_inchikey_s)
mol_df.loc[:, "scaffold"] = par_apply_series(
mol_df["mol"], data_utils.get_murcko_scaffold)
mol_df.loc[:, "formula"] = par_apply_series(
mol_df["mol"], data_utils.mol_to_formula)
mol_df.loc[:, "inchi"] = par_apply_series(
mol_df["mol"], data_utils.mol_to_inchi)
mol_df.loc[:, "mw"] = par_apply_series(
mol_df["mol"], lambda mol: data_utils.mol_to_mol_weight(mol, exact=False))
mol_df.loc[:, "exact_mw"] = par_apply_series(
mol_df["mol"], lambda mol: data_utils.mol_to_mol_weight(mol, exact=True))
print(
"mol_df nunique smiles_iso/smiles/inchikey_stuffs:",
mol_df["smiles_iso"].nunique(),
mol_df["smiles"].nunique(),
mol_df["inchikey_s"].nunique())
mol_df = mol_df.astype({"mol_id": int})
# this fails if num_entries != -1, or if we filter any of the solution
# molecules
print("sol_df subset mol_df (when including isomer info):",
(sol_df["smiles"].isin(mol_df["smiles_iso"])).all())
# spec_df = sol_df[sol_df["smiles"].isin(mol_df["smiles"])]
spec_df = sol_df.copy(deep=True)
spec_df.loc[:, "mol_id"] = spec_df["smiles"].map(smiles_to_id)
spec_df = spec_df.drop(columns=["smiles"])
spec_df = spec_df.merge(peak_df, how="inner", on="spec_id")
# add stuff that applies to all CASMI spectra
prec_type_dict = {
"P": "[M+H]+",
"N": "[M-H]-"
}
spec_df.loc[:, "prec_type"] = spec_df["ion_mode"].map(prec_type_dict)
spec_df.loc[:, "ace"] = np.nan # this is determined at test time
spec_df.loc[:, "nce"] = np.nan # this is determined at test time
spec_df.loc[:, "inst_type"] = "FT"
spec_df.loc[:, "frag_mode"] = "HCD"
spec_df.loc[:, "res"] = 4
spec_df.loc[:, "spec_type"] = "MS2"
spec_df.loc[:, "group_id"] = spec_df["spec_id"].copy()
spec_df = spec_df.astype({"spec_id": int, "mol_id": int, "group_id": int})
# remap cand_df based on query mol_id
cand_df = cand_df.merge(spec_df[["spec_id", "mol_id"]].rename(columns={
"spec_id": "query_spec_id", "mol_id": "query_mol_id"}), on="query_spec_id", how="inner")
cand_df = cand_df.drop(columns=["query_spec_id"])
# make sure the datasets are internally consistent
spec_df, mol_df, cand_df = common_filter(spec_df, mol_df, cand_df)
# save the data
os.makedirs(
os.path.join(
args.proc_dp,
args.casmi_output_dir),
exist_ok=True)
spec_df_fp = os.path.join(
args.proc_dp,
args.casmi_output_dir,
"spec_df.pkl")
mol_df_fp = os.path.join(args.proc_dp, args.casmi_output_dir, "mol_df.pkl")
cand_df_fp = os.path.join(
args.proc_dp,
args.casmi_output_dir,
"cand_df.pkl")
spec_df.to_pickle(spec_df_fp)
mol_df.to_pickle(mol_df_fp)
cand_df.to_pickle(cand_df_fp)
# export smiles for CFM
export_mol_df = mol_df[["mol_id", "smiles",]]
export_mol_df.to_csv(
os.path.join(
args.proc_dp,
args.casmi_output_dir,
"all_smiles.txt"),
sep=" ",
header=False,
index=False)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--raw_dp", type=str, default="data/raw")
parser.add_argument("--proc_dp", type=str, default="data/proc")
parser.add_argument("--casmi_input_dir", type=str, default="casmi_2016")
parser.add_argument("--casmi_output_dir", type=str, default="casmi_2016")
parser.add_argument("--num_entries", type=int, default=-1)
args = parser.parse_args()
main(args)