-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathrun_train_eval.py
172 lines (163 loc) · 5.33 KB
/
run_train_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import argparse
import os
import numpy as np
from massformer.misc_utils import booltype, np_temp_seed
from massformer.runner import init_wandb_run, load_config, train_and_eval
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-t",
"--template_fp",
type=str,
default="config/template.yml",
help="path to template config file")
parser.add_argument(
"-w",
"--wandb_mode",
type=str,
default="off",
choices=[
"online",
"offline",
"disabled",
"off"],
help="wandb mode")
parser.add_argument(
"-d",
"--device_id",
type=int,
required=False,
help="device id (-1 for cpu)")
parser.add_argument(
"-c",
"--custom_fp",
type=str,
required=False,
help="path to custom config file")
parser.add_argument(
"-m",
"--wandb_meta_dp",
type=str,
default=os.getcwd(),
help="path to directory in which the wandb directory will exist")
parser.add_argument(
"-n",
"--num_seeds",
type=int,
default=0,
help="number of random seeds to use")
parser.add_argument(
"-s",
"--reseed_splits",
type=booltype,
default=False,
help="whether to reseed the splits (use a different split for each random seed)")
parser.add_argument(
"-g",
"--seed_idx",
type=int,
default=0,
help="index of random seed to use")
parser.add_argument(
"-k",
"--checkpoint_name",
type=str,
required=False,
help="name of checkpoint to load (from checkpoint_dp)")
parser.add_argument(
"-i",
"--job_id",
type=int,
required=False,
help="job_id for preemption")
parser.add_argument(
"-j",
"--job_id_dp",
type=str,
default="job_id",
help="directory where job_id files are stored")
parser.add_argument(
"-l",
"--wandb_symlink_dp",
type=str,
required=False,
help="directory to store symlinks to wandb run directories")
flags = parser.parse_args()
use_wandb = flags.wandb_mode != "off"
entity_name, project_name, run_name, data_d, model_d, run_d = load_config(
flags.template_fp,
flags.custom_fp,
flags.device_id,
flags.checkpoint_name
)
if use_wandb:
if flags.num_seeds > 0:
assert flags.num_seeds > 1, flags.num_seeds
assert flags.seed_idx >= 0, flags.seed_idx
# get the seeds
if run_d["train_seed"] is None:
meta_seed = 420420420
else:
meta_seed = run_d["train_seed"]
with np_temp_seed(meta_seed):
seed_range = np.arange(0, int(1e6))
model_seeds = np.random.choice(
seed_range, replace=False, size=(
flags.num_seeds,))
train_seeds = np.random.choice(
seed_range, replace=False, size=(
flags.num_seeds,))
if flags.reseed_splits:
split_seeds = np.random.choice(
seed_range, replace=False, size=(
flags.num_seeds,))
else:
split_seeds = np.array(
[run_d["split_seed"] for i in range(flags.num_seeds)])
print("> model seeds:", model_seeds)
print("> train seeds:", train_seeds)
print("> split seeds:", split_seeds)
group_name = f"{run_name}_rand"
# only run the one with index seed_idx
assert flags.seed_idx <= flags.num_seeds
i = flags.seed_idx
model_d["model_seed"] = model_seeds[i]
run_d["train_seed"] = train_seeds[i]
run_d["split_seed"] = split_seeds[i]
run_d["cuda_deterministic"] = False
run_name = f"{run_name}_{i}"
if flags.job_id is not None:
job_id_i = f"{flags.job_id}_{i}"
else:
job_id_i = None
init_wandb_run(
entity_name=entity_name,
project_name=project_name,
run_name=run_name,
data_d=data_d,
model_d=model_d,
run_d=run_d,
wandb_meta_dp=flags.wandb_meta_dp,
group_name=group_name,
wandb_mode=flags.wandb_mode,
job_id=job_id_i,
job_id_dp=flags.job_id_dp,
wandb_symlink_dp=flags.wandb_symlink_dp
)
else:
# just run one
init_wandb_run(
entity_name=entity_name,
project_name=project_name,
run_name=run_name,
data_d=data_d,
model_d=model_d,
run_d=run_d,
wandb_meta_dp=flags.wandb_meta_dp,
wandb_mode=flags.wandb_mode,
job_id=flags.job_id,
job_id_dp=flags.job_id_dp,
wandb_symlink_dp=flags.wandb_symlink_dp
)
else:
train_and_eval(data_d, model_d, run_d, use_wandb)