-
Notifications
You must be signed in to change notification settings - Fork 55
/
Copy pathmain.py
73 lines (58 loc) · 2.92 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import os
import argparse
from torch.backends import cudnn
from loader import get_loader
from solver import Solver
def main(args):
cudnn.benchmark = True
if not os.path.exists(args.save_path):
os.makedirs(args.save_path)
print('Create path : {}'.format(args.save_path))
if args.result_fig:
fig_path = os.path.join(args.save_path, 'fig')
if not os.path.exists(fig_path):
os.makedirs(fig_path)
print('Create path : {}'.format(fig_path))
data_loader = get_loader(mode=args.mode,
load_mode=args.load_mode,
saved_path=args.saved_path,
test_patient=args.test_patient,
patch_n=(args.patch_n if args.mode=='train' else None),
patch_size=(args.patch_size if args.mode=='train' else None),
transform=args.transform,
batch_size=(args.batch_size if args.mode=='train' else 1),
num_workers=args.num_workers)
solver = Solver(args, data_loader)
if args.mode == 'train':
solver.train()
elif args.mode == 'test':
solver.test()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--mode', type=str, default='train')
parser.add_argument('--load_mode', type=int, default=0)
parser.add_argument('--data_path', type=str, default='./AAPM-Mayo-CT-Challenge/')
parser.add_argument('--saved_path', type=str, default='./npy_img/')
parser.add_argument('--save_path', type=str, default='./save/')
parser.add_argument('--test_patient', type=str, default='L506')
parser.add_argument('--result_fig', type=bool, default=True)
parser.add_argument('--norm_range_min', type=float, default=-1024.0)
parser.add_argument('--norm_range_max', type=float, default=3072.0)
parser.add_argument('--trunc_min', type=float, default=-160.0)
parser.add_argument('--trunc_max', type=float, default=240.0)
parser.add_argument('--transform', type=bool, default=False)
# if patch training, batch size is (--patch_n * --batch_size)
parser.add_argument('--patch_n', type=int, default=10)
parser.add_argument('--patch_size', type=int, default=64)
parser.add_argument('--batch_size', type=int, default=16)
parser.add_argument('--num_epochs', type=int, default=100)
parser.add_argument('--print_iters', type=int, default=20)
parser.add_argument('--decay_iters', type=int, default=3000)
parser.add_argument('--save_iters', type=int, default=1000)
parser.add_argument('--test_iters', type=int, default=1000)
parser.add_argument('--lr', type=float, default=1e-5)
parser.add_argument('--device', type=str)
parser.add_argument('--num_workers', type=int, default=7)
parser.add_argument('--multi_gpu', type=bool, default=False)
args = parser.parse_args()
main(args)