forked from cabooster/DeepCAD-RT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
143 lines (126 loc) · 6.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import os
import torch
import torch.nn as nn
from torch.autograd import Variable
from torch.utils.data import DataLoader
import argparse
import time
import datetime
from network import Network_3D_Unet
from data_process import train_preprocess_lessMemoryMulStacks, trainset
from utils import save_yaml
#############################################################################################################################################
parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=40, help="number of training epochs")
parser.add_argument('--GPU', type=str, default='0,1', help="the index of GPU you will use for computation")
parser.add_argument('--batch_size', type=int, default=2, help="batch size")
parser.add_argument('--img_w', type=int, default=150, help="the width of image patch")
parser.add_argument('--img_h', type=int, default=150, help="the height of image patch")
parser.add_argument('--img_s', type=int, default=150, help="the length of image patch")
parser.add_argument('--lr', type=float, default=0.00005, help='initial learning rate')
parser.add_argument("--b1", type=float, default=0.5, help="Adam: bata1")
parser.add_argument("--b2", type=float, default=0.999, help="Adam: bata2")
parser.add_argument('--normalize_factor', type=int, default=1, help='normalize factor')
parser.add_argument('--fmap', type=int, default=16, help='number of feature maps')
parser.add_argument('--output_dir', type=str, default='./results', help="output directory")
parser.add_argument('--datasets_folder', type=str, default='train', help="A folder containing files for training")
parser.add_argument('--datasets_path', type=str, default='datasets', help="dataset root path")
parser.add_argument('--pth_path', type=str, default='pth', help="pth file root path")
parser.add_argument('--select_img_num', type=int, default=100000, help='select the number of images used for training')
parser.add_argument('--train_datasets_size', type=int, default=4000, help='datasets size for training')
opt = parser.parse_args()
# default image gap is 0.5*image_dim
# opt.gap_s (image gap) is the distance between two adjacent patches
opt.gap_s=int(opt.img_s*0.5)
opt.gap_w=int(opt.img_w*0.5)
opt.gap_h=int(opt.img_h*0.5)
opt.ngpu=str(opt.GPU).count(',')+1
print('\033[1;31mTraining parameters -----> \033[0m')
print(opt)
########################################################################################################################
if not os.path.exists(opt.output_dir):
os.mkdir(opt.output_dir)
current_time = opt.datasets_folder+'_'+datetime.datetime.now().strftime("%Y%m%d%H%M")
output_path = opt.output_dir + '/' + current_time
pth_path = 'pth//'+ current_time
if not os.path.exists(pth_path):
os.mkdir(pth_path)
yaml_name = pth_path+'//para.yaml'
save_yaml(opt, yaml_name)
os.environ["CUDA_VISIBLE_DEVICES"] = str(opt.GPU)
batch_size = opt.batch_size
lr = opt.lr
name_list, noise_img_all, coordinate_list, stack_index = train_preprocess_lessMemoryMulStacks(opt)
# print('name_list -----> ',name_list)
########################################################################################################################
L1_pixelwise = torch.nn.L1Loss()
L2_pixelwise = torch.nn.MSELoss()
denoise_generator = Network_3D_Unet(in_channels = 1,
out_channels = 1,
f_maps=opt.fmap,
final_sigmoid = True)
if torch.cuda.is_available():
denoise_generator = denoise_generator.cuda()
denoise_generator = nn.DataParallel(denoise_generator, device_ids=range(opt.ngpu))
print('\033[1;31mUsing {} GPU for training -----> \033[0m'.format(torch.cuda.device_count()))
L2_pixelwise.cuda()
L1_pixelwise.cuda()
########################################################################################################################
optimizer_G = torch.optim.Adam(denoise_generator.parameters(),
lr=opt.lr, betas=(opt.b1, opt.b2))
########################################################################################################################
cuda = True if torch.cuda.is_available() else False
Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
prev_time = time.time()
########################################################################################################################
time_start=time.time()
# start training
for epoch in range(0, opt.n_epochs):
train_data = trainset(name_list, coordinate_list, noise_img_all,stack_index)
trainloader = DataLoader(train_data, batch_size=batch_size, shuffle=True, num_workers=4)
for iteration, (input, target) in enumerate(trainloader):
input=input.cuda()
target = target.cuda()
real_A=input
real_B=target
real_A = Variable(real_A)
#print('real_A shape -----> ', real_A.shape)
#print('real_B shape -----> ',real_B.shape)
fake_B = denoise_generator(real_A)
L1_loss = L1_pixelwise(fake_B, real_B)
L2_loss = L2_pixelwise(fake_B, real_B)
################################################################################################################
optimizer_G.zero_grad()
# Total loss
Total_loss = 0.5*L1_loss + 0.5*L2_loss
Total_loss.backward()
optimizer_G.step()
################################################################################################################
batches_done = epoch * len(trainloader) + iteration
batches_left = opt.n_epochs * len(trainloader) - batches_done
time_left = datetime.timedelta(seconds=int(batches_left * (time.time() - prev_time)))
prev_time = time.time()
if iteration%1 == 0:
time_end=time.time()
print('\r[Epoch %d/%d] [Batch %d/%d] [Total loss: %.2f, L1 Loss: %.2f, L2 Loss: %.2f] [ETA: %s] [Time cost: %.2d s] '
% (
epoch+1,
opt.n_epochs,
iteration+1,
len(trainloader),
Total_loss.item(),
L1_loss.item(),
L2_loss.item(),
time_left,
time_end-time_start
), end=' ')
if (iteration+1)%len(trainloader) == 0:
print('\n', end=' ')
################################################################################################################
# save model
if (iteration + 1) % (len(trainloader)) == 0:
model_save_name = pth_path + '//E_' + str(epoch+1).zfill(2) + '_Iter_' + str(iteration+1).zfill(4) + '.pth'
if isinstance(denoise_generator, nn.DataParallel):
torch.save(denoise_generator.module.state_dict(), model_save_name) # parallel
else:
torch.save(denoise_generator.state_dict(), model_save_name) # not parallel