-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
127 lines (92 loc) · 3.69 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
# This project is from the Tech With Tim YouTube channel
import json
import pickle
import random
import nltk
import numpy
import tensorflow
import tflearn
from nltk.stem.lancaster import LancasterStemmer
stemmer = LancasterStemmer()
with open("intents.json") as file:
data = json.load(file)
try:
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
except:
words = [] # The actual words will be stored here
labels = [] # The unique tag names will bes stored here
docs_x = [] # The list of words/strings for each pattern will be stored here
docs_y = [] # The tag names will be stored here but used for training purpose, the names needn't be unique
for intent in data["intents"]:
for pattern in intent["patterns"]:
wrds = nltk.word_tokenize(pattern) # This basically makes a list of each word in the pattern
words.extend(wrds) # We add all the words from all patterns in the entire intents file to words
docs_x.append(wrds)
docs_y.append(intent["tag"])
if intent["tag"] not in labels:
labels.append(intent["tag"]) # This ensures uniqueness of the elements
words = [stemmer.stem(w.lower()) for w in words if
w != '?'] # This removes the morphological affixes leaving the stem
words = sorted(list(set(words))) # This step deletes duplicate words in words and sorts them in alphabetical order
labels = sorted(labels) # Sorts labels in alphabetical order
training = []
output = []
out_empty = [0 for _ in range(len(labels))]
'''The enumerate () method adds a counter to an iterable and returns it in the form of an enumerating object.
This enumerated object can then be used directly for loops or converted into a list of tuples using the list()
function. (geeksforgeeks)'''
for x, doc in enumerate(docs_x):
bag = []
wrds = [stemmer.stem(w) for w in doc]
for w in words:
if w in wrds:
bag.append(1)
else:
bag.append(0)
output_row = out_empty[:]
output_row[labels.index(docs_y[x])] = 1
training.append(bag)
output.append(output_row)
training = numpy.array(training)
output = numpy.array(output)
with open("data.pickle", "wb") as f:
pickle.dump((words, labels, training, output), f)
tensorflow.compat.v1.reset_default_graph()
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
model = tflearn.DNN(net)
try:
model.load("model.tflearn")
except:
model.fit(training, output, n_epoch=1000, batch_size=8, show_metric=True)
model.save("model.tflearn")
'''
model.fit(training, output, n_epoch=1000, batch_size=8, show_metric=True)
model.save("model.tflearn")'''
def bag_of_words(s, words):
pbag = [0 for _ in range(len(words))]
s_words = nltk.word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words]
for se in s_words:
for i, w in enumerate(words):
if w == se:
pbag[i] = 1
return numpy.array(pbag)
def chat():
print("talk (type quit to stop)")
while True:
inp = input("you: ")
if inp.lower() == "quit":
break
results = model.predict([bag_of_words(inp, words)])
results_index = numpy.argmax(results)
tag = labels[results_index]
for tg in data["intents"]:
if tg["tag"] == tag:
responses = tg["responses"]
print(random.choice(responses))
chat()