-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathp3_meshbuilder.py
144 lines (97 loc) · 3.91 KB
/
p3_meshbuilder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import collections
import pickle
import sys
import random
from matplotlib.pyplot import imread, imsave
from numpy import zeros_like
def build_mesh(image, min_feature_size):
def scan(box):
x1,x2,y1,y2 = box
area = (x2-x1)*(y2-y1)
if area < min_feature_size or (image[x1:x2,y1:y2] == 255).all() or (image[x1:x2,y1:y2] == 0).all():
# this box is simple enough to handle in one node
if (image[x1:x2,y1:y2] == 255).all():
return [box], []
else:
return [], []
else:
# recursively split this big box on the longest dimension
if x2 - x1 > y2 - y1:
cut = x1+(x2-x1)/2+1
first_box = (x1, cut, y1, y2)
second_box = (cut, x2, y1, y2)
rank = lambda b: (b[2], b[3])
first_touch = lambda b: b[1] == cut
second_touch = lambda b: b[0] == cut
else:
cut = y1+(y2-y1)/2+1
first_box = (x1, x2, y1, cut)
second_box = (x1, x2, cut, y2)
rank = lambda b: (b[0], b[1])
first_touch = lambda b: b[3] == cut
second_touch = lambda b: b[2] == cut
first_boxes, first_edges = scan(first_box)
second_boxes, second_edges = scan(second_box)
my_boxes = []
my_edges = []
my_boxes.extend([fb for fb in first_boxes if not first_touch(fb)])
my_boxes.extend([sb for sb in second_boxes if not second_touch(sb)])
first_touches = sorted(filter(first_touch,first_boxes),key=rank)
second_touches = sorted(filter(second_touch,second_boxes),key=rank)
first_merges = {}
second_merges = {}
while first_touches and second_touches:
f, s = first_touches[0], second_touches[0]
rf, rs = rank(f), rank(s)
if rf < rs:
my_boxes.append(first_touches.pop(0))
if rf[1] >= rs[0]:
my_edges.append( (f,s) )
elif rf > rs:
my_boxes.append(second_touches.pop(0))
if rf[0] <= rs[1]:
my_edges.append( (f,s) )
else:
first_touches.pop(0)
second_touches.pop(0)
merged = (f[0],s[1],f[2],s[3])
first_merges[f] = merged
second_merges[s] = merged
my_boxes.append(merged)
my_boxes.extend(first_touches)
my_boxes.extend(second_touches)
for a,b in first_edges:
my_edges.append( (first_merges.get(a,a), first_merges.get(b,b)) )
for a,b in second_edges:
my_edges.append( (second_merges.get(a,a), second_merges.get(b,b)) )
return my_boxes, my_edges
# end of scan
boxes, edges = scan( (0,image.shape[0], 0, image.shape[1]) )
adj = collections.defaultdict(list)
for a,b in edges:
adj[a].append(b)
adj[b].append(a)
mesh = {'boxes': boxes, 'adj': dict(adj)}
return mesh
if __name__ == '__main__':
min_feature_size = 16
filename = None
if len(sys.argv) == 2:
filename = sys.argv[1]
elif len(sys.argv) == 3:
filename = sys.argv[1]
min_feature_size = int(sys.argv[2])
else:
print "usage: %s map_filename min_feature_size" % sys.argv[0]
sys.exit(-1)
img = imread(filename,'uint8')
if len(img.shape) > 2:
img = img[:,:,0]
mesh = build_mesh(img, min_feature_size)
with open(filename + '.mesh.pickle','wb') as f:
pickle.dump(mesh, f)
atlas = zeros_like(img)
for x1,x2,y1,y2 in mesh['boxes']:
atlas[x1:x2,y1:y2] = random.randint(64,255)
imsave(filename + '.mesh.png', atlas)
print "Built a mesh with %d boxes." % len(mesh['boxes'])