-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlogistic_regression.py
140 lines (112 loc) · 4.34 KB
/
logistic_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#!/usr/bin/env python
# coding=utf8
'''*************************************************************************
> File Name: logistic_regression.py
> Author:HUANG Yongxiang
> Mail:
> Created Time: Wed Mar 7 22:22:40 2018
> Usage:
*************************************************************************'''
import numpy as np
import argparse
import glob
#import logging
import matplotlib.pyplot as plt
from sklearn.metrics import log_loss,roc_curve, auc, accuracy_score, confusion_matrix
from datetime import datetime
#hyperparameters
epoch = 1000
learning_rate = {"breast-cancer":2e-3,"wine":4e-7, "digit":1e-5,"diabetes":1e-3, "iris":40e-5 }
#settings
VALID_INTERVAL = 10
class LogReg(object):
def __init__(self, dataset):
npzfile = np.load(dataset)
self.trainX, self.trainY= npzfile['train_X'], npzfile['train_Y']
self.testX, self.testY= npzfile['test_X'], npzfile['test_Y']
self.dataset_name = dataset.split('/')[-1].split(".")[0]
self.lr = learning_rate[self.dataset_name]
print("\nDataset: {}".format( self.dataset_name) )
print("Learning rate: ", self.lr)
def sigmoid(self, x):
return 1.0/(1.0+np.exp(-x))
def lr_func(self, X, W, b):
z = W @ X.T + b
return self.sigmoid(z)
def train(self):
self.loss_record=[]
self.acc_record=[]
#initial weights with small random value in (-0.01, 0.01)
self.W = (np.random.random(self.testX.shape[1]) - 0.5)/50.0
self.w0 = (np.random.random(1) -0.5)/50.0
start_time = datetime.now()
for i in range(0, epoch):
#batch gradient descent
prob = self.lr_func(self.trainX, self.W, self.w0)
e = self.trainY - prob
self.W += (e @ self.trainX) * self.lr
self.w0 += np.sum(e, 0) * self.lr
#watch and record performance change over time
if( (i+1) % VALID_INTERVAL== 0):
'''
loss_train = log_loss(self.trainY, prob)
pred = (prob > 0.5) * 1
acc_train = accuracy_score(self.trainY, pred)
'''
# evaluate performance on test set
loss_test ,acc_test = self.validate()
self.loss_record.append(loss_test)
self.acc_record.append(acc_test)
# evaluate everything needed here
loss_train = log_loss(self.trainY, prob)
acc_train = accuracy_score(self.trainY, (prob > 0.5) * 1)
loss_test ,acc_test = self.validate()
time = datetime.now() - start_time
print("Finish training 1000 epoches in ", time)
print("=> Loss in training set: {:.4f}".format(loss_train))
print("=> Accuracy in training set: {:.4f}".format(acc_train))
print("=> Loss in test set: {:.4f}".format(loss_test))
print("=> Accuracy in test set: {:.4f}".format(acc_test))
# plot confusion matrix and AUC
#plot the performance changing curve
#self.plot_curve(self.loss_record
#return self.acc_record
def validate(self):
#use Z score or prob as decision function
prob = self.lr_func(self.testX, self.W, self.w0)
pred = (prob > 0.5) * 1
loss = log_loss(self.testY, prob)
acc = accuracy_score(self.testY, pred)
#print("Loss on test set: ", loss)
#print("Classification Accuracy on test set: ", acc)
return loss,acc
def plot_curve( records):
# plot with various axes scales
plt.figure("Performance (test accurarcy) change over time during training")
x = list(range(0,1000,VALID_INTERVAL))
pos=231
for dn in records:
plt.subplot(pos)
plt.title(dn)
plt.plot(x, records[dn])
plt.xlabel("Epoch")
plt.ylabel("Acc")
plt.axis([0, 1000, 0, 1])
plt.grid(True)
pos+=1
plt.show()
if __name__=="__main__":
# interpret args
parser = argparse.ArgumentParser(description='manual to this script')
parser.add_argument('--path', type=str, default = "../datasets")
args = parser.parse_args()
if("npz" in args.path):
datasets = [args.path]
else:
datasets = glob.glob( args.path + '/*.npz')
records ={}
for dataset in datasets:
LR = LogReg(dataset)
LR.train()
records[LR.dataset_name] = LR.acc_record
plot_curve(records)