From c1bf14dff9363c46e146e1c3ad4336bd30b41f2d Mon Sep 17 00:00:00 2001 From: Zebin YANG Date: Thu, 18 May 2023 17:49:35 +0800 Subject: [PATCH] Update user guides --- .../data/plot_0_data_loader.doctree | Bin 15702 -> 0 bytes .../data/plot_1_data_summary.doctree | Bin 14630 -> 22342 bytes .../data/plot_2_data_eda.doctree | Bin 18534 -> 18534 bytes .../data/plot_3_data_prepare.doctree | Bin 13917 -> 19139 bytes .../data/sg_execution_times.doctree | Bin 14091 -> 14087 bytes docs/_build/doctrees/environment.pickle | Bin 11311761 -> 652143 bytes .../doctrees/guides/data/data_eda.doctree | Bin 17725 -> 22654 bytes .../doctrees/guides/data/data_prepare.doctree | Bin 22949 -> 115465 bytes .../doctrees/guides/data/data_quality.doctree | Bin 39912 -> 54263 bytes .../doctrees/guides/data/data_summary.doctree | Bin 19833 -> 102893 bytes .../guides/data/feature_select.doctree | Bin 76992 -> 76991 bytes .../guides/data/twosample_test.doctree | Bin 21570 -> 22612 bytes docs/_build/doctrees/install.doctree | Bin 24271 -> 25542 bytes .../modules/generated/piml.Experiment.doctree | Bin 629130 -> 632081 bytes .../plot_1_data_summary.ipynb | 51 +- .../auto_examples_python.zip | Bin 79461 -> 80151 bytes .../plot_2_data_eda.py | 4 +- .../auto_examples_jupyter.zip | Bin 211762 -> 214455 bytes .../plot_1_data_summary.py | 12 +- .../plot_2_data_eda.ipynb | 4 +- .../plot_0_data_loader.py | 19 - .../plot_3_data_prepare.py | 23 +- .../plot_3_data_prepare.ipynb | 74 +- .../plot_0_data_loader.ipynb | 61 - .../sphx_glr_plot_0_data_loader_thumb.png | Bin 26794 -> 0 bytes .../_images/sphx_glr_plot_2_data_eda_006.png | Bin 33505 -> 35464 bytes .../_images/sphx_glr_plot_2_data_eda_007.png | Bin 54562 -> 65604 bytes .../data/plot_0_data_loader.rst.txt | 132 -- .../data/plot_1_data_summary.rst.txt | 117 +- .../data/plot_2_data_eda.rst.txt | 8 +- .../data/plot_3_data_prepare.rst.txt | 116 +- .../data/sg_execution_times.rst.txt | 36 +- .../_sources/guides/data/data_eda.rst.txt | 44 +- .../_sources/guides/data/data_prepare.rst.txt | 258 +-- .../_sources/guides/data/data_quality.rst.txt | 87 +- .../_sources/guides/data/data_summary.rst.txt | 306 +--- .../guides/data/feature_select.rst.txt | 13 +- .../guides/data/twosample_test.rst.txt | 9 +- .../data/plot_0_data_loader_builtin.html | 4 +- .../data/plot_0_data_loader_dataframe.html | 6 +- .../data/plot_1_data_summary.html | 83 +- .../auto_examples/data/plot_2_data_eda.html | 12 +- .../data/plot_3_data_prepare.html | 63 +- .../data/plot_4_data_quality.html | 4 +- .../data/plot_5_feature_select.html | 4 +- .../data/plot_6_twosample_test.html | 4 +- .../data/sg_execution_times.html | 14 +- .../auto_examples/explain/plot_0_pfi.html | 8 +- .../auto_examples/explain/plot_1_pdp.html | 8 +- .../auto_examples/explain/plot_2_ice.html | 8 +- .../auto_examples/explain/plot_3_ale.html | 8 +- .../auto_examples/explain/plot_4_lime.html | 8 +- .../auto_examples/explain/plot_5_shap.html | 8 +- .../auto_examples/models/plot_0_glm_cls.html | 8 +- .../auto_examples/models/plot_0_glm_reg.html | 8 +- .../auto_examples/models/plot_1_gam_cls.html | 8 +- .../auto_examples/models/plot_1_gam_reg.html | 8 +- .../auto_examples/models/plot_2_tree_cls.html | 8 +- .../auto_examples/models/plot_2_tree_reg.html | 8 +- .../auto_examples/models/plot_3_figs_cls.html | 8 +- .../auto_examples/models/plot_3_figs_reg.html | 8 +- .../auto_examples/models/plot_4_xgb1_cls.html | 8 +- .../auto_examples/models/plot_4_xgb1_reg.html | 8 +- .../auto_examples/models/plot_5_xgb2_cls.html | 8 +- .../auto_examples/models/plot_5_xgb2_reg.html | 8 +- .../auto_examples/models/plot_6_ebm_cls.html | 8 +- .../auto_examples/models/plot_6_ebm_reg.html | 8 +- .../models/plot_7_gaminet_cls.html | 8 +- .../models/plot_7_gaminet_reg.html | 8 +- .../models/plot_8_reludnn_cls.html | 8 +- .../models/plot_8_reludnn_reg.html | 8 +- .../testing/plot_0_accuracy_cls.html | 8 +- .../testing/plot_0_accuracy_reg.html | 8 +- .../testing/plot_1_weakspot_cls.html | 8 +- .../testing/plot_1_weakspot_reg.html | 8 +- .../testing/plot_2_overfit_cls.html | 8 +- .../testing/plot_2_overfit_reg.html | 8 +- .../testing/plot_3_reliability_cls.html | 8 +- .../testing/plot_3_reliability_reg.html | 8 +- .../testing/plot_4_robustness_cls.html | 8 +- .../testing/plot_4_robustness_reg.html | 8 +- .../testing/plot_5_resilience_cls.html | 8 +- .../testing/plot_5_resilience_reg.html | 8 +- .../testing/plot_6_fairness.html | 8 +- .../plot_0_compare_classification.html | 16 +- .../plot_0_compare_regression.html | 8 +- .../plot_1_compare_fairness.html | 10 +- .../data/plot_1_data_summary.ipynb | 51 +- .../auto_examples/data/plot_2_data_eda.ipynb | 4 +- .../data/plot_3_data_prepare.ipynb | 74 +- docs/_build/html/guides/data.html | 17 +- docs/_build/html/guides/data/data_eda.html | 51 +- .../_build/html/guides/data/data_prepare.html | 373 +++- .../_build/html/guides/data/data_quality.html | 103 +- .../_build/html/guides/data/data_summary.html | 290 +-- .../html/guides/data/feature_select.html | 8 +- .../html/guides/data/twosample_test.html | 6 +- docs/_build/html/guides/models/ebm.html | 2 +- docs/_build/html/guides/models/glm.html | 4 +- docs/_build/html/guides/models/reludnn.html | 2 +- docs/_build/html/guides/models/tree.html | 4 +- docs/_build/html/guides/models/xgb1.html | 2 +- docs/_build/html/guides/models/xgb2.html | 2 +- docs/_build/html/install.html | 24 +- .../modules/generated/piml.Experiment.html | 42 +- .../generated/piml.models.GAMClassifier.html | 6 +- .../piml.models.GAMINetClassifier.html | 4 +- .../piml.models.GAMINetRegressor.html | 4 +- .../generated/piml.models.GAMRegressor.html | 6 +- .../generated/piml.models.TreeClassifier.html | 10 +- .../generated/piml.models.TreeRegressor.html | 10 +- .../generated/piml.models.XGB1Classifier.html | 4 +- .../generated/piml.models.XGB1Regressor.html | 4 +- docs/_build/html/objects.inv | Bin 18557 -> 18837 bytes docs/_build/html/searchindex.js | 2 +- .../comparison/compare_classification.ipynb | 22 +- .../guides/comparison/compare_fairness.ipynb | 4 +- .../comparison/compare_regression.ipynb | 22 +- .../guides/data/data_eda.ipynb | 28 +- .../jupyter_execute/guides/data/data_eda.py | 14 +- .../guides/data/data_load.ipynb | 4 +- .../guides/data/data_prepare.ipynb | 1164 +++++++++++- .../guides/data/data_prepare.py | 45 +- .../guides/data/data_quality.ipynb | 6 +- .../guides/data/data_summary.ipynb | 1578 ++++++++++++++++- .../guides/data/data_summary.py | 25 +- .../guides/data/feature_select.ipynb | 12 +- .../guides/data/twosample_test.ipynb | 4 +- .../jupyter_execute/guides/explain/PDP.ipynb | 6 +- .../jupyter_execute/guides/explain/ale.ipynb | 8 +- .../jupyter_execute/guides/explain/ice.ipynb | 2 +- .../jupyter_execute/guides/explain/lime.ipynb | 4 +- .../jupyter_execute/guides/explain/pfi.ipynb | 2 +- .../jupyter_execute/guides/explain/shap.ipynb | 8 +- .../jupyter_execute/guides/extmodels.ipynb | 10 +- .../jupyter_execute/guides/models/ebm.ipynb | 14 +- .../jupyter_execute/guides/models/figs.ipynb | 12 +- .../jupyter_execute/guides/models/gam.ipynb | 8 +- .../guides/models/gaminet.ipynb | 14 +- .../jupyter_execute/guides/models/glm.ipynb | 18 +- .../guides/models/reludnn.ipynb | 18 +- .../jupyter_execute/guides/models/tree.ipynb | 6 +- .../jupyter_execute/guides/models/xgb1.ipynb | 12 +- .../jupyter_execute/guides/models/xgb2.ipynb | 14 +- .../guides/testing/accuracy.ipynb | 16 +- .../guides/testing/fairness.ipynb | 8 +- .../guides/testing/overfit.ipynb | 8 +- .../guides/testing/reliability.ipynb | 16 +- .../guides/testing/resilience.ipynb | 18 +- .../guides/testing/robustness.ipynb | 6 +- .../guides/testing/weakspot.ipynb | 8 +- 151 files changed, 4565 insertions(+), 1606 deletions(-) delete mode 100644 docs/_build/doctrees/auto_examples/data/plot_0_data_loader.doctree delete mode 100644 docs/_build/html/_downloads/b2ece34e3c321a03403e6d3f1e05817b/plot_0_data_loader.py delete mode 100644 docs/_build/html/_downloads/ffb06e3c98665323e482500609f6b0e9/plot_0_data_loader.ipynb delete mode 100644 docs/_build/html/_images/sphx_glr_plot_0_data_loader_thumb.png delete mode 100644 docs/_build/html/_sources/auto_examples/data/plot_0_data_loader.rst.txt diff --git a/docs/_build/doctrees/auto_examples/data/plot_0_data_loader.doctree b/docs/_build/doctrees/auto_examples/data/plot_0_data_loader.doctree deleted file mode 100644 index 9fd813eabbbd799768ddbdef3d01926432369995..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 15702 zcmeHO>yKPVRv*Xn@U-o5#vx8D$4afe*^Ec@dtTkdiTs$@j_q;Q9w#>I==yf|?Y_6? z_Px!0*wYJ!n*)7ct_@S2F^n04+1wRPR zeJ}VlnB&uq`q;I7r>O;e3=mD-Fk6mh1)t#M48ePb=@vo+Q%$>d|lh5UWVR&9*AD`34M}J_Eq%b1^N-cq4J#Sd5+QWJHu?Oy&0-mKofAF_A$OCU(i z0QfKu*6Xi<-}*^R+bR5?#{Zl6{|5fg>fiMBw#Z|Mj1xAi&w-1UQ*vEvpCnC1Iym8E*+d8i)GP(6QU zZ*$lmoQX)@Pm?UY?>`T{6B&9>-?+B6%GU1QytsNB0&{znUAgwr>KePadgIo|u~_T^ zm8EL^d8nEKRbzbIw#-3nLr9w=wYO|fOTFNKQio#JA6~JUhd*6on$=?Oz%Xqp9n*mh zKDJ0(l+0{MEgGRw{lU8rb3ha|6BygRX|hlmSrdki*$(yQ_!iz9Zv4)$*Z`J}H5~gf zRGd9BRCdv@psJD8nubYIJC54d|BsGg4wG}F4;~v^?OZRPfG8P|`*J*F!kmxR9C?!6JjrgpB+GKm zk?#)#^*@B0K2B6eqY%_jxmwdRY%66Hq~)H&&?Y>?Gc&e(`Z79UH(;J47nrJv7G%H>iy(0RQgNY1x)ceSH2_1hA#DBMUIwDbfJ)#G6 zBrCMJWEJ-Q?OQjaHB7joA!mGtl}q_@IU;WF4HAkc(e*zKOL(<`tv&rW4{R#@Ha zYmPzda%NbDXQ-y}U6m%9sqnTWDhw-O@@-=FL(9D1W(nP2fbRd;Kd0Y#eomM3<=VbD zEgB>ggVWsu2gb&phuLom-8pI+p5~~g(lG7jMoNS3%>i%Qv3sm<^h{>-`nKb-WJ+>j zO&@cix(t8)RxSr~!_KFm=FU-7f#xdQKFm@1{FzJkCBtcAn{nn`E_ap`gEfo|&DB*0 zK3+_&t9eWiU|1m0(!4@W;0b#?j}8lthDBD>eKhyB?s`nw2dNpLg6jZlUuxq?(fL%3&8juHjw8%$JgH8W(X--&V_UM zf@k~TSyqf^_aMf6qHWWT{wY6XVjJtL9jsoaT3TE6O{`63bfcr2`1cg7R%pKs!`wXv z#G(6TiKcd6Ms;MK@4YuQHpWt)d!^{%UYRlJ9CM;BUn(rGR2M5tjFk$DrAm1T0Qi&& zrCe01)RtFDHL6=$Tv;eB3V<>IDk12?(n@6+4}_t#v{;P+LN7?!Es;zFfX6+|wABjtn!0IUea%jJcYGL;r;0O_nk@!4zxMF}fa?A09C@ECg_=TjiW+|W3we^Cs}c$AeWEQz-QI;oWK;k?tk zEr=vKyx9{XDIX&dRigg)gh&d^NJQ0rA(HYo64AoG5Je)$m?+7|^f&s5Vd6r%QkHY& zG3GS3@TPTXzkH+aT;02;sHN)3sfv6JmI4-0cr^^u{XiU_FcpV~&L3c$2 zNI_AoMOlgjUDU;%5v>rk9CVtZtMDH&5&JQLTo*y5EC_A;jSJHLXSP zP0Ne)sZ^+7e((*;MZd5B^a0_d(!dKGVHb#o+;<3b zEwaqz#56}spck$*mSOU9Vya%aQXzDbF)v)Hu(;4tFhv^Q7p@enc;QN4xKfD03s?F{ z_B5gU%@I3e{z@D`b(@aS_wu&y1({ee1=+f9qV3Zz!#5wdY@FD3&!D_zV_Zr$#;Ks? z#rgSl+fz+Cai+n#&rsB)TBtrV+%6p#76%$Y`X z*s|wC+FcGe^q=FmO$$`zi%P)5Nq zA61GSz33vqitsK4SbJuX;>39`46ssc^*!G)`-r%lH`PYbb2P13C{nITQEB+d#wpUF zRFMw38n(UR7Bgo|+nr(-jQ+rCND5WctFs%bZ#DIBsIvaC(em^Gl$O*TVm50 zNdVhYg99f|w=H5?J%Xw~yc{0Su@A*tCbMhA;e4HKJ#j7c2kf1Z)i~~d9-_KF$kLqc zsQN&@W)VwA(j@pdk}UD&-G`yE_+Hvr{OjH&=NDaW>LaD5o{<@8|E9&kw}xacgq#ya z<3}?h7r{;l%}T@lzhv6BC%*^5_n`Z`kSabQn2o$QXlQ>E`3JsZ1bmeK3!ZLcr2?L7 z;_M0GUYT3R56lPMKL&o6qW-@}ZsSCk(~nH=+VPM~BvS}7f?q^?Ck`@xTMp^__!&O$ z<44k_e#;7?`{Si?>Ih14kcw|r&$~YNTuLN?MPlbn* zDXmIg&+^Lt?eWmcgbOxPumAyO2?5~cJ z*{{(1C3~RmzYu32x81))AzFzgwLckEi|s=-7R|krH6)u~P|sgdHvb(shHXW9$-EcY z{2$=hQ8r&6A)8_?5p@57+Sc0bMrjFRSzB4cVP~bPEv!`N;ImX~FEvV9ZIob21Z2rm zviT`w?ca78Qd%|%{+~y{kCx4oTV*p`aP1=sDgXKC-8+$!248U%Am5Q~ z3SshxVZZxO3D>c|gMMSZT?VaTn$Xz@*AD$88p-zr4sokd58G;OM)$_0-QE-CWPK9v z$F>`KdabYsYQXMf2Yi<8&N}J3qlFwl8!|T^Gb-O0kF#Stdi$Kcud+X5cu;>Y9a zen6xmkM4&&7cUE1!Sw^+sT@UC%lL7ilwlLszzqn`ceE|*o;dIFw}7P*&dg5sP~T1w zJ|ji&8wm}#VL}N&dCFW0^k*84pPz_n3KJUhGWk%%<-!(Bw2%pqB3C@K?cE`@61E~_ z8nNkbKv0|oN$G~&0>%eDvuKzPa z#*aibA{Tm%A40m6hd>oB-ppb5h#cVQsAo43n`my(TXZ)8x|~74kCPRpU2f{-^#lAU<$+p$ zPuWD8P!F=hXApHX`bv1a#|6q$vPLsC$}4o0$4D1bqPsZgF>DZC&cWc3V2H#w#nc{Y zChoiNoQ{o5^f`O&+9NSTJ?0H}x!Dk}1iL|F<2>oWUOb9FiKRxtj z2u1e~AtQW7;!S9XTECHfG1Qp9Ok;4tC><;^#l@tfQC1c>-a=~DOSo^vUvUr%c3MhH zqXd3*V?a38_#^^VZ446}Fk z!egQa+_hYq{-mn!YJSUBaDfU?FT+LIuBN103Mqkqdt@LpNQme$rDeEk!_+X4kjkk@ zA@n(Z1cO1y6;_9`jv+N6m_n;@ab4>KmCy<9V-O5xn6R}l<%f}17(YTpXGyCdIaUXP zXd(ja1s{z4;};WrrmyuAmrKLJ4TwG@9@LY1@Yf?Jh-w!rc?wvG;9P+10w4tmfK(`J z!-OZLn`2r(|5j-M9G!96%^~zulc4`rgr4ji3GD{%ei@qA7JWeRW&92@>!}Us5n^t^ z^+WtLq_U^P3L4vT8>W<3g!yU!0v0|SkQa3Wr7KwUgV2496J&4Ne>n+H1!oJe-0#74Nk zbSF!cHvP z*6H!v`11KQHKA)G0)*@Fm9G9+Ci;oy5AR=tL8#*!yMe`%;PhMvw~oQ`@GjgDvV!?Zgd`I1+M zafNTjcn;R8Y5SC=jB7N=RWzjlz++8a3hRG>S@=A-4ZTCYIy4ybMQ1d!!`Nu0tLfBi z#vQoO-l#h9snON6c;Or#4$Sh8uVQi>65B9um7R%KB{Z;T>*4Nj*WwJr^)mQZ7He;- zkgSE#6|&9`?!2><+prVe|E7uF;W8$l2tDfoJ}z$~jbB@P{}#D7d3zV;HoR+k95}oG zDe!gw3qR4SJ{{HynB_+Mysx{(k{~#%N~% diff --git a/docs/_build/doctrees/auto_examples/data/plot_1_data_summary.doctree b/docs/_build/doctrees/auto_examples/data/plot_1_data_summary.doctree index ad8c07847ab81f2ee2fbea6dda45c962f615e3e4..e8b465c599157a79fac5ce0ba8d5d8e47c1222d4 100644 GIT binary patch delta 2445 zcmdT`Z){Ul6yJSa*R8Yb+I8(lyY10!tnJ#;b?w>>5gDRIK!nJ^=$w!BvA4(Cvi?!_ zVGg2@0d)eWL}N7a!I*$X#6}a11{Q%37DN(Fj3)evAsUH6KI#`d_r1M`428%yU-I5L z_nv>hd(OG{zW36nKP1}i+JlQW9Mi5akSMG%1n|4vFhmZ+F9yF^7#CSo8ow%Hol%U6DNZ{fFLGm;P z@74wbzF-iedut_bPWZJ-_=#t8o5X4~RS`t_ZCm|uF3SyMa)|_&9&>G$Ar0``21jyn ze(^KTv9#06IupsPKxvjwY<2d#6{!Eof#Wt0>Y}6^4N#B)p;>4Vn-Jk{k;QLb7w0!~ zxshx^bmDNlkP})(BXUBU;1b*``(eMaj=50^)3u#&$v6*st3&XrH3lcDEzoHT!8%h6 zj@e@HC%!&&J0#6sI9+!Q{;0nJmo1m>-}HO<+FnIc2)YJ-x33{XaveH-!H`@B%FU_6 zcBKw|dv0q3%QAsW4)N@4>e=krRz9O7_@9Mp?!L%XgCnjcNHt@7ZE+q%&r!mud%qOMwdUp_OQWlN02&``2g}^nGZ!H`Ve?6 zk0FRX^CryQ(MVJ;MW)_aj0Z;h@d|k}Z~UL)KSw@SoBIuT*ilP*q0iA-*3sn;cZXrh z@k;3hx#!&d;(56VXOLiLoAM2;iw&@e;bbn$XRr*C4V&QyQ^|P7eXASqrHG9^18+9O z$X67>gwx|$p2-d;up{Ga0?*9!7@Ny*Lwt|N!?M8;ySi7}HZJiSM4}#Y_PdxV+syVa zj&ETV%5(_l`s|uR%9^h!Yt|_U)XvYVQ)o!_;O+7tIR!s8d_m3>4>j&(7#mac&F^EF z76x`UKWFb^N=h>Hj9Y*V8aXMEk2*LMZ3IWlyXCAbasU^pfgfAgYO6d^hXi-Cje*M6 zEVGh<9jz`(-fwN7oXuKGzTlY{<% z7*?ZBD;%mU)6&rjDXhg~h23rKcZNRMw$1-Cwa1H0T#JlS1W}#syL}c!*J`qNF0e@z z*g*{PMQ(T-Vcy`?lIFzvI!sOO>b+5FUCjCzA;MiD32@t$qy zhbi3>aI`zgSyN?JW(aVwZ=xmo#iW#`+Jwh(S z5#KyA1E+jTwO0|%8L0F>NUlK4f4KT2dKfQ=r5eo4ry22dkt}RxD!n+&SMlj|Dh)RR zHO1bJZ#5G%Fy^it375<3l3aoxj%Vo4gls-7YS2u)iE>c_EFt}s4u8f^E?+@SgoTSBme1rwQ}A20GeWO08l+1N#k)@MY8l qpGBG~4j>9_H_*V9NP+oS(K@PVnVAnXa3NZ&J45^VfChexcK-$Z+1?2N delta 949 zcmaJ~gzI~t1Pv+6> zm}WwAx!87JFNooRp=d~~kWb00?f%bW9pS_pNv2Yr} zWJ~wIg3B!BiP;BQ7`nl%d|YFQV}15 zGj2i4Xe_?x9yUbR8ZLs}Z2?pQm)cJ2GQ%$bljkm~fv27#Q~;knO_~wvCl9K;b`%Hf zy|d9sJCDhvivoTilHBCB_A+k6C`}WFa4a?y17k;SGT8A-J4k?>$h zWILKJPmxY$)5{LUu;O$-OZU-3O6XZheDrwuchQtmb4cM&5yqX8a3Nd!6kb$XQBeBy zuV?>ejff@rxI2Z=GOReu)%oNjMH9UD8{w_bq+eoELGpnEs!*JooS&CctU0B1O5>E;DH<89J+cZK3K$9}3+r?-nHWx$?GI|Ci6@1Y@VWfNeTceo;ltC delta 182 zcmaDhf$`Y{#tpw!CjV66o6M=|Ik{Ufl)5!uH#Vm96IDqm6plsXG80LJW4jnm zVj{66@LJhOT}mh(N(sgXI>0*P3vjX2qv>{g14>fG_|n`ot=B;x(rvgRv*nqPf5E*<=7LW52Tw+pAiB|l$JCzWc#WHMVmc1N4Hd-{h@C0l$m}l=8M=4#V z)YEyhg~hhPP4g(V3a>O!t00*oG5qc(%pPY=_d47TH$V$ zADSzgO$_5{_jY#qSYMXo1?Q^C$)$3jX#0$!jFB`0-EJTG_Amp)Dq!G)3+^PZcf)_>{pH@S?#@70Rz2Ar;=uu?Oh7)wdx}K%DvbF3 zZojg5m=vpkks<_?ec7Dd`beHgbZZilJZHDgn^fzIRY(y=1)Ov`p~0@BUP{AY-F{`S zF!_m90HaZb@mQ`_Q-#v_bxc7rEXTP}WH>awlj+6(t9A~v|19soVt~f7HDEDVlwI8m zmBvm-<~R1}p=(ix0_#!t{G)Toh9@eM>Q8`>i6{2MSLUT?C4yUKjyegyR9DffTU+60 zOC#*C7_>gNo%MD@(z1`*LR!g@AIo66w*z><1R0a{jDzto;ZOu`ni9jLV;G4ai$=yJ z=lvc(%n^Uc0|;){)WLhzZPdFMjNgDY$ufPb6)8Hz%?NBYTPT@83FJVDWucVd@|g%# z3(1^GTp~tFu+%vyult*f-(W3!Kjp0*z9D(q-GYg~szcBjMxq+#z%VvwEulP@i z#CIwoRFlK#W#NjF3J*%2nNrdPl1QAOXRrG%QK(LXn{CsW#A*#@r@z#!QN(7!11x15 sp=bGa)RpyNiBCs^=*4f7S}B@{kMSwNkyv^|9<{A)fg+fgf;>ba8bv5jb9<$wq1;5GXlv9o z*r;SKZq#R8% zjn5w(8Xn;SqCYswc|u$usKGbe4X7$^#E8+7#;0~myzW2SG~#>h5bE=_+-enm!(~xPN@9tbO7*K=6W>f+rW%B%W_~hJ}5IQcbY8KW?U#c4^9l{mK_!B z^h0^QV4+6r<8`qD&d61AeqTTw@rF1~&gVkj{-MA?s6@ITMWivw$SePmCwIif^1aZ? z#PO)9D66V!royEZaIBba!ru-?*!Vv0DCGnKs%nS zn1TawOXVe!9AP*2)w~#=HFpBJ447{@w(bTEhD3gwaFuRoag3^4=2YWL-bDmmHU_O+ zR(L6JjvBE~hydQOj*xqRdYh4%dRrkgJ+^%?L%|DCa2QmNmujYH69e9HY$bDmFB}Fu zxXY9EkewCtM!uxkOJyI(Iq4bcO6J97+1pM%7TI_FDSg;}()5ni(|HMx=%yqwdtoIy z{c98#?Je--cd(BuV2cdQNnQbFI~&)s`6$hY6*lI*O|UhnS4M)Lo$V0D(OfP`I1R|x zoPbVzUb7{&lqeL!FyN0GPIHET@UBsB0m5huAy{ko0 zxu#Xlj|wa|D)M>kKbYa4$gQZ6`;4VgUAd9aOyaeBrvU&b=wm2!tKbJN*f>1Wl!aYx zgZdj&>l3~cJmZ$2Ad#h}mgVS*^hpXuEG0A~4)=Q{-WW?B^aZ?9^8xmXzY!d7vi}5n Cq-xLr diff --git a/docs/_build/doctrees/auto_examples/data/sg_execution_times.doctree b/docs/_build/doctrees/auto_examples/data/sg_execution_times.doctree index 41e6cbb9c478f419c4450cdb716c32d88a75f2fc..8706bcd602aaa87519143def166530bc3f2d0cb1 100644 GIT binary patch delta 234 zcmeCqYtLhCV4eEMY$Izc6Pt;Jo`I3!&|0sV4ccfzLB++iOs-7&(z3x@&u-6DF{)TD~Q-;R_0tL zM()YQtSOT>NXAXpWs{yPA>}Z+g-v$y3{j=Y4bnoBFS5Oy>?99j%T4~q?#wKekTChb zwAkb?()yDtIgU#}Ou{sKas+3mB&VUFiK(82g0B-?0Yqf;H_l!BldrReP3Dv0n(V=5 tGx@a!7t0(oaW9OF!y#udFL3~I3>OhdLJR;7f#4yL02Rn1mvg&ww=>w=UGD4xI6{!6 zX9ZGPif3`@XURd?lI*A8pe);Rkd>b8C;M5!k|o))C{b3XvMA}Rst%KPwtMc5dcTjd z7dO-0)m8QHuCD2>?tbCI$LG(PI|u)3tZ^y@t8}i{ES<5c<H%YyxQY}wZKpE?ed_G%a zTxZAXrCf~&G`c2?TBTU76|K=;Mh3|D;+rf;WkR+yX4BO#q#5;EnX1?zl+Ir|^@$0i zI_b}iiZUHwz?<7D)j-b#S+j95`y)GU6pLncvUl7piNBkT6?VNc37NAZw?rB$1=b6; zajt1L)(F9~b;ryi_fGSn#xfFPtXzeRsH?{ON@=`lG}h94tCTC&^Jdm5*Q+@bvTvZ* zh1x_h>lDgov!dWbjf(>*tVp(Kl}`}%VEQm^gg&7yUt z+FLSfeWl7oAJ4mId!Om-?5mmQdU9AJWNbDrmr~@4hT~)>%!yIZlYkAX+Q^lk&6{IJ zy;#eZD-1_$)Qfq35M{MhDwtKPX6Ae3%X(u)&77zd4Zwr33L04=Ux8lMA$5*o7GN-| zkQb;e=khxBu`%mhv#~T+2B<^}T6(;iH>+lTzm=;sq4C}ctSsoQ0_MjWi+ZifWN8%o zqQJ3Ku9>6d^66&1(NQg9E5p{>0i6IEHK5d33@z3M;?2f_iZxLL7IWpwWYrokz^ko8 z;_u90|KMQHbs6fNr^@BxX!%?Q_%D>JKxCD9j)4o1KWfAMV&B8#VgQJffxK=PH zuqUs(<{HLsHdionrz>S>rVcc&WkT82auNE%;v(p^Y5-@OuuqA;1S+k91O?LpS`Rl? zR3^vK3^`e+Hi^X+i5A>REsQE{Hr6^h>$FwtDVj#L)H6{AO_rLCm2MV+RN;WpSS8wK zwU(_}HK1C!rLlxw7R%#hpoafAeW~1WwCX8{^%q{zOj~FEbisy|Hu(8ev_URF@86yrTqo-ozPGimye^(v>*^wgX za6MH3`m(US8bzoCDWhGpN_i6+RVV%1i}{*PV=d*+mnRIXl!X*4$FxeXv5&J-4|C43 ziMSn^2~17uTn+2kM8&96JD})XAuDXv!;SUAd}hyD`Ee5fW8HWTsMBMovJ)_5SfEbq zX^X%n6+oAT@y11>w?jL2dfEHla&^3Kd-K>!nlFX_H5O90ZWfA-OGRdSL)oBMA82V5 zz?Au+O;jeEg$Ei}iu^>JUb}@bQ=cr<35Er&6kyUUoM~(nCEeFlQs!S&F#t@bSvcS5 z5qa4w5F&5X49d>l(CEjxbZcB>mq)3#7dE;D1@@}9Y8rWH;Ka36?lVh$WOZt8;l+T% zXc^ji;U$erL}~uc%Yfh)j2DtPmoz*|a};`OrT_-Dh(;CKv|m~Se2bpZB4iTmY(KDLa7R#B zH(L*OlagbK?1MK94sG8R;GVL>C?PT(xPIr*&KqJf1u5#*^{{8!Q4epE27o@vy@cR7&gHicMi*;8^{Wlyu z7)cd#1!?y8@7g)EH;N{j=u*v)%nt18AKK9(W03OR{_O)dMxvDiKUk0jqPvD7;lf-& znu9xUIC#UsC??JpV7w4ShjtDP?2F`;vIVK`9oV~TU!-3701XAeV|L7*F}Ld-#Q&l= z36^oYYd`&Wp%c2)elix&buykW3+h~@a;XP=DXY{2R;lK(GpyG+nQpUpyf?!}(5pK~ zO6FPcP)3BsVQx9R=^U9bPMZb{=IE$&j_k3<_-Kmuu6mx0s29$oyVKXdt8aV%h4Wi8 zn<;T~X2OK#odH+R%xpGl8So;U+GgPUa4AzOSWafNYLs$?%t>;!Gw?!W!asKQ4)pdD zXCC3CO&o)glS~+>v6Bz&WH*7=^UpS`qcFBl453-QaGv2BpKTx6H=bE2f!j%D`l#%= zJpkb79?*;F>=~oV;O{;3>C>5k|F)9yIWydc8?PE5U(U&p+mi!g+NE#3p4iL8=#%T>@5Dvj$G z94*&s$aJu3OqfGu_=1FC3jaGFEa%N3OIh%p;Y|pa3g!?+k6L+e!H5b2 zIYhxD(8qiwLv;poV9BG<%c)fU{D^2J1;={O>=^;SvsM^^wot<_;ISHfM2}mgkq7sH zgAHbbQYq^Qc7zG5WTEqnL+t)O%(OeDh)k96+FU)~XdUW7u=@z3`ctvBome z7}m<=OtD-V&(zA9F{_p-m*D@*3^pAm0$6e0#R7IzDlzb$6%)ogXiQ^mXk39z&)~=y zz~Pt`5|0na8ToR1g_~~CUy>+Q>qQe4<)cI|`+Ik^Pi!P?_e9NdNWwmU&K;rTsOcNh z_^2ohhu3I$Y^E6Hq}u&fG-xM-_Dq2i^ChJ99)dX+t5i1~!C=7PMNy6+kq;W{5bdB% zR3h#U6|R-~|BD&LE`n{CnNHqeSXZ1;W65jc=23Fd${NBb;<1L@#tCD{{oFG6S>Wcv zxK=bv<1p@tu7%&s_@VBA`%B-XFxIgwZc_>5xp2O}QuF%hPQ6koS8L$^<*H?eTt%4w zGjgytFrFz_%o6^K4o0q6cJOa9>S!Uwv?NRr0BeqM1|}(8Zyo*)`st7>$GjDnJ($O- z)&!*s_YB+%elwbG9C+!Et>~~jb@0|pu;^gsGbk)K#~^N?%8@hRSDruLHGt(WT;LR{ zFu_pVKd27NvSE&y6?(|u_ zYrR7(uyn0=T!m-B$OQNqxeWO0FvABU62}dOqw+*%#9`CJ@Lfb69q|r|K;O`W>A%_} z`Z78Gw@BTClhNp&7@6(8JI!;Mkv)}S-N}G=1Al_Y0)O`of~!+Ci^e%o3TU1oiNJ*t z<$2oqkt5(snVtlnq&ycw1pi65%q7z^0y9i!@@A!0Xd|!3Gr7M)KifCYxxBJMfoU3VN@a0gyz#Bk@CUSS?QP&x&@ zCHN@;-3ym`(XvMs&6lD5K%33Lnh2Znp|KB$84h%Ln)eB~@i+|xgCC3=ysp9Cet0oq z6^$wljty(#GYLwkntD^5Po^pdyZUE_|N0TwUZGkEVka`YT$ zlL#<>cI&>-s0^`Mn3U_TrQ6uzfx;JSR(7^~fTzH3m}F37Zp z%o^))WV16PXVJSAlSe@77Wcbcw7~H_U_@(Wm|6nIgXNCl^*Z{Vzu6_hS%+o_m7}R; zbwk@@*0fa4RH2vSve|WjGw6Q@=U3 zHMAB9ObJM;QSE8dtQbxOJPTNtw#ou?uBmA35r6z_9^G>eMu*gAYvpd_fxyLca%*+|1Y8f!(LN5kN7^)Izj>5fU?y-0h zlftmDEZxm(I02d|#Ti%_kDM-j$-5p1oOcEHRf(<79Kb8uX!WgP58OGX_^pEP%Xn6xO0FQg6Nid zW3e~*W2H4-g1Ok+VEKFqgGZW;tDufS2#?9Kl;?9k#3L-u)_I&1C+#WQFUs;HS=jsh ze6~7}g}4W!S+9G-SI$+lvbr zFCpW?gE-L%K_32^=`B``%@9*5@UFb0p(Q*TsSI^(^7AfJAlpKtS~Va5Z8?jt0K?9n7mL3NAA$NSz1~O4 z(o?ifgT#U~72i!M5ae|l+fS$a)GT})PzA*rz|9ucSlMIdCQnJHm%XHRy7W#MX37&M zVIaqP7=N%h2k&})N$Y{Vi1&qmY%GElt271yJiG}rBJc{>!^Dz-(LKIIcy&Jpo-Er9 zp+&pzrxN!==+&k47np!7bR`S=B6t^B9y3*ixUCgtr9PU?K@1u=-Vk{Mkzy+-hQ{}5 zIlZzynNaay<9O&C^>~Q%phz)L;YmIzuoa`OARA1CKo34>!8$3vTFAm+8Xc#wCDW@; zG|Ui;P|lr(@<*UI;;ap1t~WM{K`C2>77L+@zz2)mIVj>uAOO#HdSR}oo*x6S%w8}> zeFm7sK8Ra!`gl1Az3Ut7-QK%HzJQqqipRS+q6)9gU4jb(;}B*CO>VnWFa~$->e*`! zKKsGG9p;Jr;rgz-ClB}Sy!(*zywd2k6aBXrk53Gruxq=Xd-sjE-+p@U%@|1s^Hfe5 zmS`-%ZixY_%99i2I?A_*89CHp;bw^Qnh#!d^VrKkb1cdYG*>U3E|t$h49$1({c5ny z7&r$8SH#N|@{I+E5tb|5TG&(g5oTP>zbTr9JS({v=2Ku^3c|_wi-i#33H?YsE}_Tl z*aU?1u@W6c2$8Kr--q$Z6bvi{n2e%{aii2?7PDukX|O_@801+|mf99}a|jMSkFkIk zde4ir3+KUpT;P)7d;!`M7*ZfC10wDod~h-gPGHG_WpHS@7;m?j=OGnAFq8uZj$#W7 z_fYMHXBBQ@e{3&Y&-hu%!y3Wbm2ou|0I1i-dT!`(EHKxo)56}uK9+YC_t&tA0c8p( zY|Ojn8ZKMmP~kRK;_$<~0DKT+q0_<4Z5CyO5t}8ffgs#$d6bZXS(vKjCS4IuVv(pY z`9U#HjYTXXj_c(zC_MpvtxS`S&=1BS5CBX!1k1v-V3TvQjN;xzXe4`CxV-W4`L#hD-hk=S& z=>1SP2LL=Nhy$ojLhHcjLTJGlY)4&a8O@H0SmR^Iu(zyY@1XgKpz8}wN`SE663)Rm z*?JXv7^BcpvT7A8cY3nnnaS=13LRV|KO$9p&e?jCg z%tkhc=Q90&q44jlVsbOHkO3lwv7d<2tI_Stnh&5y#sZoJt4k?`*Tr?ySt~kOFb~$) zq)^vVe3gUtRE3~BE@daoHb5;HcqCpebwH=J2kH=bCpEps^Dc`XJBFXme_%ft8dCQ< zZ#o}+FtD$?u|(JbG9>eC1EP~VDDobrLqJau!4KL8w++og)2uUkm$BBFg<0T&;aC(2 z4vZJdMF`T6ZErb^ZMeoqwx@7QA&)pOqu0VT9@^7EI}7GC7T|kkRVW8cX@bSF&%n+D z`oXem+!RklwoLA1$vk3LzFtbNxiv35CEqg!g$A1TJa1KOWCoVNHHDRwrl%Yqv|a1J zN0MAgRl!yQSn(UP{KXg>4g}ADTpn^ARHkm_;U&{AlOu=Q5}H?gUyVa9Q@r9FR!!+U zu&j)SN*VhjcPc2M@ae*5B%@4|B6{1Gufg;JHj;ON`HU{(A78`v2;PomRtE+{KJYCKsu z#s2tg;dAVde=B^R{c%^}+4KhwXNR6zHJFPgY&nYxhtJhomd%AjI6XNTR4sEa9cWsk z@bwLLfsuV);coWFy$>_;ELI%H+X{TtfInM04G67c^DMo>YOu)i##)R?2lo<8Zl%h{ zVcfOwB0jvZ(0dP|hgc=+NC)owEDNTe_c!n1Y~9DX;i2>um=_m8>Wtm2j}i+;r>!T* zFf?3}c>`0md=G)@Y|q7l-WpgsufW*Wa7~j%w4<{|6j=S(b3|D_60-!XERewTM+~{H zBjcwq>X!<)#W1~ch70!>3|22w5T6ooU8;rTQgOyvtHcQb7!Bad%7Gz;3(lGX8{=>Y z6LQb%&G5pk0v^9Fts@tX%fN#BJx&U#gjLH+f<>sJ0nF1t%=L|aYo7OfFC1(q0ge?o z#tRig7(eV0!cPP`IjkDmG!5{<`^C6Td@5o~3hL=psh3>-D zte}`Q3iaI;au$c?jc6!zr-=fE^Ogf4s*^m^Jvf(iZ_{L%Bq2U4#q}sE9t81dwu<-n zR~8=S#Dy=;QEWbBF9UhWQxZw&_tRkSrY#d`bsSJ0mSxt6_b?2W`Su)c!!MRe?yeD7 z(1y3@0WfR6QRE>TB0dRlmf)g;cO5yBIkxxcfy_+@j_y5tWY6CH`|mt(^5iW|S^0Xm zH2a##)*wN&>pbACSYe6n5SZWq696=%M|8;spmYnr|kVjtONua6k&xIHomb>bo?6P^{!(% zn6oUm;ymOd>lqm5mCBs0wX7hep`Q#MDEeT?PT}Q+S1eDB4KD!}lOl^L^!_6EJx*5Or%VC1)}S*h*jw$* z!oDWq+ki@Yl3j?3vuwRXFaA;5U!{k}B>Xtyu2cH1ng1Bh<3gf!+nY-8(oD*VSiLw>ebLOVJ5ANQwB6G?&k+Qp{MNM zgeKOw;y46Rf`le4x=D|Y;%>yY#pOpW2LqXm5~$p9`}7)7MMM`~CDJ_Go0x(&h?M9K zDEW4k(&!K~0=yNi7bHp`o>?=jBFy{Og=RL1RGNx%ClMs>SVc`}mKH)_g5a8)dtR{l zT9{j;54q)(1=grgG2nYGsF&c2ou#d%H1y8o;4VK9kuxIAzgvBSK2h#G2O}-a0MuZP zjgJc}b6G2&g=rY_n5p5gn%3afMHpwJ(pKeQdK3N6)8-^J`8>hfSPahMc*y{c*atd8Jl|Eo-nJmTi=TWfu4k@Da^KMQ-NOUDzqM@DF_0j_{ zj^QU}K3kith^a3w`+8{k&HlfxD|m!p-UWkCTu0*Q#Or-J1};XE8rqo2h28CV5tC(vyd5g?&zqC%!{BN%AmTh2KRXgxAU(wE|2HmtgFd6DbW>H!zR^ zaxhC==j$naELx4Nf!tyI9K-_}pnWm-m;p>DMnJRYM^$8LI~)v%MiFLUA$$xYgSjr` z(G`rI98iGbgmun@Sw<4~+QM~=^d(p~l7|0hOX%((BwPWvdRQQY&vy*|#*v*-AnuU@ zjzkc114)e~ZoMqi7Ez7N1S6qz?6T~G6K1V(N}ZLEmC^tQqaE~AQYstY!}R#HJDlJG z?ljEdP`(W!A72`Q*=pRH`=#DY3@~sN z#2F=k9DTW5=F3HaEn+PVabSEEuH+vkmw@+3r{1tH1J=F-NiM@ye;#=}N;WEY;To>M zb+S~>Vj+0oY(VqA$LM*mzvsqmZ_mBgay+k;SzXUGYv7VJY|o;pE&(lD{Ks}lVKOWO zwj}}EdP&L~M}x2ssxDKM%%XdmkMh)uWns_CK7FJ*GLNe;PaggWi-LKowTowb9b79NJgCbJ;$fd7)7z>DBdmuttTqQHiGYKwUIF$uQ&REwcg+3)3(-rN)(BBlO3QwTQ^962d9ug?d3wWKQup0-0g}n2{jY|S_WH$W#anH4> zmnx^nDJ(~1*mEE3)$Hx(?wf3Fyf&O)fSGn-DX$3Bf@2)+XcRN@JYT&&+E~u`qh<#m ziNkXnYkhCn^Z@ks#vBFc<`hl+kewbPUrRN^n zH{hkzgF~n2x||?c^8PFmhcADeKctyi|fC#{M4$yz->InZoe+gcCE{hbg(1;udEJ|Q=1&70fLDq43K zD+H@R(<)jN4wJ(b+m(V78u7tcHZJxmeGJav!08P*@c^d4A^4Fe3aUmfSBJxMAku4{ zw;1Wv%o~ZkAKH7=3)31-gsHs`BBOwzKEYyiqq);8*7qMf<|WhRR{^I+VC~A9qZ8oX z0Ntzoxr9iRZ6JFV_E5p6Q4Qx&nvLsPCfV2dpj%uj6=W)@*Pmpx$)6KKrON?%^x%yE%Y$}L*N9H@yZxIA2ctVA4&T#m{np)V2TqxTn|X5#n@FY?J}9Ae zLx>whR#Rk6?_sA5BMOXq2Vs=OVCGgp48r;~RMG8c+}AP&$;Ahm85q~ZaKpgsJ#^%# zr)wtSK={Vg?u>)|!ubf0g{B6=O@U@88)!`-zAnzl^8VssYrP*kXb>=-fTqF?4NO8n$4hT4hwyzAa zJYaD>3cku;q1zD#*ytliHDP;2i}M&3h>GRv#o|#oz()y44$b#j%Dj4w=Ri#9nErKQ zXs_E+q*X(6Hh;``plvHlEk9wPgU;k-G^U@Bg>ic+HLh3ywle@+)%lU)IDi+2jSAdb zJOH*|Jcb%pf9ujwJvh+!cMZ9InW+(fm z%E(8WZe?A!!`cosPa!gKjz8pmL2N>h3+bxBhXX9pSF@A>G{7^u-CuTfS53)-De=40 zugyrn2PEJw`9R}yQP`EOoh>`;6A`Jw-V}co$zyVVcD%@al)#7)WRKHIu=wC)9X@8( zJb)*ST6?{tR&3|l!5W;j|6;rlR)Ek>cGL%3bZS?xJF`JwG$WdU&)?n$8&gigzBI7F zEj_9oS#X>Nn3-=iQtgB+(q*P5(<--bTqB#dMQ|A&mw+0&__Rt#^SbT_is*?P;H~~9 zBvQ#7?aI2XGC|qc?Y+vrK9a0x?LlkjWjDc6!w1Zur?~|i202+RI_My5V=yrmu{DG{ z5yC;1Z3R~|R}J(!{z5cH_KkLxK*QH&hH!Bfj$O5k+aNZ9T28c&5M{wdMKA}&mO=^7 zK*#m^7_56I3CDH7+K?Y7FEQSXDO)tp)JU#JHy^z^=0F8no6r$&ZJuMNuZ+~!DZ@Hz zl!h>32kcv*aZ;C!QdGis9Jf;5_Sr%p*HI(UgWsj%>#eo_;qfbz;NWeIDidBBNgA~F zH>kN!!$+^f?9Kwfu@>U$rCyEnv8Ygm~n*2F5IbdK6aM)ub5O zcjWj%oQ;GzSKMRM%Efk@BJnG{0nQEojBbB61-^Y-`5Xh;N*?BBL?;z8vroyOU81bw zb)y_0hslaVmEepZH=?N3e;mIXthiDfqGgyTD-WsfN>O8-s~_#RSvDq5YB? z+`cf}Aw#sqYla@=zbHVKtAd z)(VLbM$DQKz+ZfK?;=Kx;1vn@QR{kL_6&6Pt8z_{59UFu*1F&ETAE9~Bz*_GH zA1;KO3*bwcR%CJ6!#=fO&YVMgKX=jd|LaA+v&;Sh%-gf4|M5Hb+duL>EtNT6{OWJo zm&m7=yz#mA2Kn^TH@?okPCmWtO+U5!E@*O|5uaIevzVj~o$1-i|?QgTcD4$;Sp3m8L$(;DK zO+Nk3(BIqNlR01gv6XhWO#9uBKiA$TpMLM-Mf+))^Y=ggLi_vj=?^}2tvw`jzV=gR z>}ScR*Z=bq_IG5?H+<@q_7<7;#!o%l-Y=it{MqN*1M=w)Kl^F>n0$K6zxCQT$)~q{ z=h^l*B+Wni;!Et4GVPDQ_D%bMe0uwnQ}%P^(>uO?+#Z%s?|SkRc87fWldoT7?~zY` z_VxAlPWkliCqHU0luz$@^0oF+`Sku{XY94|=>y-o)BbPC*=IWc-u{_<`uytOx7W*@ z|G6n=e^aJCF|gCVT&6vF#eRFceEQ}Ux7!Qk)3>j>+Wt>j?t52lwg+X}4|*2byX4c4 z_g-xOLgxIb^?LhinfCMEH`yEI(=U48Y2P58zPe!NtL&}vspF<++neOmlABK2hvd_W zq22Zx`LuFq(4H@!Rt?=?_lu_|{^NrK_O0USYZE{ClKmyY+1I}R_?PUvMcR`q-}80* zHu?02pZN!Sk$if~XCAi~i>Gfq@8ZwdUGnMaL*KS{h^KEp^v@63%jMI<&_16K^?mD( zKYfdx5ozB({EHvhE5y_HFL~-~_B{FYSHJAB|4o$p!Cn0yvj0my{rHpT?BgQmkM4bV z%I=X*zkK|Jy<0r}_+zhIW{-%cpS)qs3Hx60^wSeJU2d8Vf$O6_MiW-yxra_(tiGvm%h{fcbWFn7u;k2P(1zO4c}O9e_cHNvasY`_MM{K zua>WPjXj4yU6|wi+imuJ;%V;2A5Gd9$*1>!?|}VFPUXV<%l`cr_FR#+;Kh$j*xwat z3%9=E2lmY(ZQ)g~zuW$*NL$o+;$`;5B5m=h>mIj%AksQM_{k61%S76e!qY#tuM|(6 z9Y6m&`!eygv|N3QeMCGhTXWX2m&m7e|6_;!6+v@Z@1Hd7r{q(4?o#{NGUrRz_1Zs? zX>Ztd#y%m_-g)ws_A2@G=lA@#y;45?bs=ka%BTNbzu5kqr1I}CdAt1|^67`~T4sMu zJS|`F$p`G)MY-j7?OtPFBcFbwzTdu9KE3jlx7zFE)2kkNt^IRJ<+mT*Wj`sO-m9m@Ma~u1o~_t7%BLN# zxL`j=KJ9G$%)Z0-v{^pwdStMUm+s(37w{)=gM48}V=0dapfgk+1NRCy_JMx|iv#n~ z1%0gfk|ta|M58gT!0z*ZO0v%by3eMMV&VG0TRaEzPY`p8bDi#-VwRHG)j0>%i1_D; zQV{ab)_Muurp8flGARYA;C!E#l%k&es{vj@N7clOT-5f`JD!Ffwi#Nl^H7{32M-(A z_6X8^+8hf8R@%iySb>>yYL+cZ!O;YftBcI1#Sm#)%{L(Y6DouopCC@9IYn+K@;KNY zk5W*$dZ*b4%oNA5=oaF4d_}E-Ch&<4F@;OS@#$|VLWzMTG?&9bc1`V}V~$(}rV-p~ zTw@_Pikcb<*cH;PhK}&Vprwxd#zJrutD``6O&#F}3UU=&jo%iM@PXI@SD%5r`t1on zl#r{y%(Yun&>j+BbfsZnCW*ic<<{p6KiZJ9*t&w|Rp1yaN~nM)lK9DpobB=VK{0{E zdvMg4Ny}Uw+o(Z;0z$kb_9}D1qLREc)Fq*Ch;$@q{>@85T@n`f;h`}_U+@S{z>o*P zi5>=m(J-PAA8sHLhgyGN)hi+wYxPq!fq=}kDnV)xZFkzaX4IjfPtp9vjA(}1LZW6^ zE}FGuP_KzJ}ymdagr3P?5G-&XtmT1sxeZX|+NNy=n+h-jc0DfcEBeBxy$ zWp7H$lMGVz@^sj*=QdiSXSp}f22#-qNT&;2fF)%zZoq(7OUn2&T?d#^@3A4LP1mjm zw0lGub$@tvfZRQi)+=CO z_O6Yt?8bKn2!T98t*AOY-^ zM@$*d=VeG8x6n+XWD7W-T zKU|qglTY%!v zEZP@_vm<9M zdgsX0sreS41H7rr8NbjKm~v|a&e)multQKk(<5X+Vbirvokm#!meiHiVh(?b_R3&q zzb?9W@-Iy9p(!-{2Er@_`cc`rn;8f@5hYrFmQK;;9b~V~`aoA=)YGZ2T`gcWH1OeW zq9pD4tr%%fi?>!P2-G3Q7~I~Jq&-j3nbcmO8qyx_w?g&;A)BIU@UK#SFcfY#PlfHZ zEn2wGG%;v#`&awSc~sY4J-i78;|_)F3EcvBqakxK4T&`8U#<3NuT?_|7XqZ>s!3oH zH_53n>Cs}0WG$;~X(jxUarIBp-n}H4eFhX2sjHKqgDlV{yh62zUW^+Gk;Q=X7hl+; z##UX+S7EyLh`StKVY|Y#%;!K5#&S*@|6z$4I#q5qmAQ<`+GxL5+>%!cliavmj3{fDW zikk&ldusy1#^9FX)S}$1BntE|zMw2xa)KTMl6cBP+n%C*(5XeZp$!qj;mL%e=${d)Go#lXGr?>B_8Fl%I3rYVoDr(mGpg}@ zbh^9UE~;>f&Rf7<9f(Q~jt`N&I&9*yvOiB7J&t0$W~S(r2$bP?D$C@K6d(m}k<&<# zx0~ssIKX@O^ik~R_H7y|a(gj-6os{%K8pRUD@ZFf_Vado;UE*?_9Xsz@g*v2B%k;-TT@y#L-{x5C1K7mAOQ!vLGz!aTMl%xtgvk3D9Vt(UQ5sGB) z7e+4)3Eo@Mkl@We4GG@i(~#g@APtGcrZGilODUli3T2npE#Abo-zFlcGa=ZySIBAL zGgoXaj`RiDegx_M=@jKi>J;S&>J;ToFkYoobn=&~KG;zPQXj3z<56Nr{zkw1+EU$o zyIX&MBKvw|MN`0o%~VBa8w;epRRKj5P3%reZBtMcHWtrkQx%Hsa%l@sJn&5wPrl(; z;;GUWWLd5?t+KrHX_e)@uT>kzWA9KWt@7Yucu9Hih&+~u9Sm^7I(j7g9Jrot4DL8f z`i7pOGxd_Hz?1ecPhh6bzpvWwfx0o`a$wag%^}n*&4JJ?&Byb2h;&uL{Zmc0Sj(KE zGY=7$oBU?76)tWVt2;5FTb%1ww>Vd>ZgJi{b&DsC5>s@Dq++v|(dq7li2}yn(wsld z(ut$R6dj6*(%ssA<8dPxVP*&<TNhkfww?~HXNj&-j{N^eZ{#Bb&IQy?7rI7{R&_4Hq?tJK`W})-M0biRTt1#oOgBw_4FS7Gbks~Vc5XZubU)t1waar|X_rsdlQwCgBRq2+ zbrhJu6`_xj^ObHaFKbqu%`_yqscF>{@jQIwG_dizC8z$7RMt8;sQP4lLZ>Ce1=lCT zgyJnNEg6nvS~6{*iT4>Gnt>A_TB7L-1od|Hv{ZPLNXZLVUP>x_)J#c*kNhdA@VJYV zRCwD=NrlH(#9N58jez+ZQ*^h6YRe1;dc)Yk-4_+9Bd8>g04XaF;{e_vf>NuD>z*Aa zzTVgZqg3RXGN$Mj6Xf-V{k!{&l7V-c8GUByjMInaqpxU<_BmF~?5V)*Uk2Rn)>pA6 zihbFvRf3zqvlL1icd6QM=gr;@v&_(M$T};uOJwR?EHzFi)j(?!#$miqASH^ODVYDu%?z!hml zvoDLcf&%+9lj2?ow$?yKGZ* z%MkLlKSoG+4TnwlLXQpJ=I&lg>f!L#c3T!13r5`6PxO(WqC1jMmS>QO#*nfe?_~Q2 z%2ij5Q*^--in6mcxr2ufo&5E~0q>)Frg7Mjthh+Usz;*;KlJ?_VGHkXPW)ETZ&!vN49#r`|X)#J)y@QIug_B z@uoWDJxTNoO*R(nE+z0)k#_a8eJZE)}+K;%E6({LKUcIwBQ3z7YV zK^CtfkCOkHY&(rT?K)b*`Nu=?`rz;Z18;*y_kD`)YJ8@fUqY`(-AA>X=@1_;r+lWx zPiT72J+yBis_9M9U7E;zg8q;|l>VMU7kP?q{`~b<{9v@=@uJdan)zhV2O~hAqH9%= zcZI#Vc-yL45xDi7@Ab_$?FJOLAB7)w=c?Eo+#xmxHyi7sHU@)n!fTze;<$9NAvi8w zYzB@?$7`Hh(Z`FOTcwMQLUHuPCZV`=vFju*UF$s(!H)5LX_rz{c`zm`Y)zle5+v%d2M9H1b)ac-EM7 znvcT$*b`>W!0AVBtsjAk8w>dD+01MohF2GwjYZ{ZrC^krg}h_m6@IlX{Ay45)h__I z0If~oTsTlbu2tj3@~BaCth_mDRN>T!W@EvrYTax)G(JF%B^9G;mTJBv92#Pha8!s% z!T}*B3CDt%Bpe1}l5hlwNkZcvlZ19ZCJ9Y`OcGlAm?SjxF-d6SW0KIk$0VU;k4ZwK z9+QOjJSGWEc}x;o@t7nu;4w*PyJM2jY{w*_#g0irV;z%(b~+{rO>|5WTIZM~G|Vwc zXp>`-&>Y7kp(Tzy1Sc<8 zSfvcUbIjV+enDDiwSNla?8O}@)C3CihIJ={6 z6s_81W~gB1PWyR_%D}ignvy%b*FHgSs}Gt+tzI=VC(WXn3o9-no$+>0O5UzY=56Jv zv*pZ5iU`S^f-nQW+Cr&}FDoTq=-npiY^Xd@sn@8PWoj0hQJ;NY9ZqMwolVKx!DQYx zo+vxDOrf01$VGY!8=jxT*j$Xym!#zL+sQWf@)KrtLg-Mm!NU`ka(6Xz<8ja zwaCYK{fm^m{y16Fy^O!ZrJ7l-RN>nh;-WG~F-)ds?|2FNqQ!e+DPmMoEzG3)WJ;;N zm@L(0CvP(oXz|>5R9p zrQ{7~Iudy6I3NNWeJr`J87DtX$q8OEnZU`qh?W`vG&&38aQ>2XzHN81uC~G2KJ@x= zi~0^G4X zp#3exy^{LdE5amrPD%;zCcFd*x-g6~M*q>ar>zoCr8JN%!d51N5(;gWVZuBb zA&iO)c!ggA3|ml!!4M3sM&b5~FbRG?r3854UxEZzFbTXUv>1I8b2GmGI3?eBDPRKM zn-A;@54^4P-cA9={rgjLj~56gaDN$c-=@wJ@-m)3nv!R{VlaW{ZQwKM-%BY6UU8U! z!sU`9FA4{%mYJV0NOGi z=q!xG>r--wcgiKSzfI3EjngM9vp`HGZ$Zcpa(;ycTub*EM`9jCQgTV-V2zB(nhcoAJf zE7<7e*5lgx&1Y;b#^+m7@`<<6CGZJt(1E6k%Tl{DEeE8QIT^q2PRTD`O_#tgv_rvf zrl*BoV{$P*|28F`yOQ}_d(g0|*jCB?*o_kogMREIb1?osm6AUUkxbBIglE>C=k}$P zyx}E!3B0YM#V}ZfoPfv-%LxT$gp!%ozLk=*jmey`WjYUMtu0Y`!aDtMr z4pJ1Nf1C*?Ggh<8tlIZNk$aon!yUtOO+TBrCbPN0T~y<1Y7xxFWnwIs(y%-)!19-p z2gyt1Ab!%K;1XO@#OP^i}>ym(AhD0Rw>>QWAK)%pE{8u&UkC z%TLJ5l>B~O?z@K<4+r}pZktIEAabDhxvP;m7_%Qs!)&lc;6|PVW-kh8JMN3RMLx#( zXVNepG|;%sD1q_79s!?z18I!GCv+Jco)>7uxYH?tyLA|xT82RFauxgrh)kSxtbkV& zorUrGLtS3Ghvy9ktuOArN?>;hg>d7R2LC|edCwSIuuRpHmc#J8&@ha9zY-V=hqe2F z4kt4<*QQ}J*o$xqoIg=ADf|6#^mudOfC*EiTe~2n7m@|kpr3T*a+jm z;#^{GCd7UELM#}b8!}0_r!ql|?!!YMMsk>UK%VxCF~KI%2^O>!xFa+{u$@N^9|g(O z!m0yOYSLgLKR=DgVJnV1T@ysU?8N>PneLcP0|C(z@-h)#kw%2MA*T*^(kZF>QfmT~Ywf!Zp<1bSNvm7*1w9epH*s`2ikrcX$Gi z%OIS-3TF#P?40u_G2T9{&D-1nZ@4`@fw$;5e&3iJorUrGRc&4u26)B&@(H|NCU>jB z_L+TU+&5Di&m1*igEXwW_+7??yo~!F=yKmZyl^<^R^YDw1Od7Z8nExqzq#TN1ajvm zd+@Ba40x9TG1@A@gqgow`?F$U$hp9C2oi+3_>fsLs}MH-AWZ1WEkLyB;D@4BM#lP@ zG^_`mWjrS#f%Og%0Ox1aea+aqG7VcD0k0F!Xh>k|BCke|uuUPP&p@MSk&iLnpN8?^ zIEW`mBrv{~qSKC<5ad+MKz!s`xVzM^+Q=M?*;~^vyCk4xJkuh9+2#AqoaNxWF786` zvl&QZ3?56vV9>e6lQj|;TnQ`3XxwoBXsr;OcMhd8ChtwdWbkts&-hSdGBCd!U~;g@ zm@KAYGWe~Dr;Q{qxoW=!M^muT^6_V;O63wBRDYA2C38Q&FT z%}rpe{c9T5g60j6`bl7|Lqul!8FODVw*D&(TS3QVNitjTx!}}{B5Znx@ypMeKZ&vT zlrnq%HQuizcgW>?PaKB0k})_UE_5P8AdT@fcZI5(>gVaHRy=jn0ZE11#8FD@D5Rx$ zgU0Ur@&1VWo4#X+7T`Od9^srKI#FnCD>l0u3(mpuN6p4OI20L9R+{XA3Yw-Jf6!3j zw#FiUq|>p+0y?ef7^`R{Rm4t3T8fuum{m9|q!c(U!k6MLXlkDz^z2s6t=nD$e0k1q zYHW6u*qe{M5htMAOHj8lStC`xqovC2%OP1s;r13NaLnFHzl7-kRlroesF&{V@iEd6 zFPVZ_c6|l^q;*T3eFfi1^2eMx)jbUgKJHQQs@}jgM1EC=lbO;P34NvGZ9uWM{h4Uh zm6=xhgh%O1d)=#q{QCB#FjcdH`l?>_>!#{g&a|pu;ZgO1UbtwQVQ~UjH>)eg%h8nMxS} zeU;)JS_(s7dX+9(*}|2d4u4`kRlpp!6{OObCL2s-3T4Ih6^a*o&8kAT%(OzU^eGf( z!NtKn5Q^+u^I3t{Zg~=!LRoQrh2B2fHg?}kEA&>6Lf3?^D)TEfDg#q2BcrcayasJn zTk8EYt=M}#id`)f8`JwE(wSNr5q-7d^=z}M))&mQTF-mbx*XLSqtZYcQzt8|ug-O| zt+^AqHI&L!$_VJI^wQZ@>EKMOw9li` z6{OObW*SUn3T4Ih6^b_|&T1PyG1Ce?>QU&*UWnE3T({^Sq(Z4orHp{SO20hYDlN^l zN>6)Kx`I?1+eT5}ZX#1CE3U85-r4T-jhR;H!ybiFEA-q<8PP_)sZ6DefWAs^oNbl< z(M+rKEgqFp8+Gr?^lLPj$P~(o>njxRAd0o4Y{1<39J83i003!84Pz-uLJx*Gzo zXt3#?1-t;krdtf~(g2%I{>P*E>B2r655BkQ^m;sa-lo&z@ql-mPHD#@(rr5D9FH2e z>AY|}zT2iVxbYxtn@+RFL#1sx85$2~w&{drJm%P@vx@P!V4KeT#p8EvIyx86uCq?Wp6F!Lu}pYYl1&F5;b}xR9Vvw8{@8SQ51z7P(@{Bis*O!Y z)8HvFHXZeXr?1#_gbJQ>V$)$Ic&dm^M}y!Q9yT4sf#+k;J%=`)OJUPl5_s%`O~*Ch zX$m%-f`CU8*mR@-?(?^4e?D%cw`l`B?p3#Gn>p_LwrRgMZmPCvGc@i}wrO`UZU?q$ zCogWcwP}+q?rybLAa1yU)TWJ}xL4DrJ(jpF(x&ZwXf=yct zFy`N;SbYqbw<*va&p6;uC{4Z3?o)_(+@L8Zju*reH#h0JJG`4+HLO3Y5e6Hk;zoFr>_;P%w<%vMB@$ zW2S5he8OlUn<95GI>n|C6AYQKDeeJR^le&}$K_|6){t>s)TYHvT(Yxi-3?coY+5eD zB@&y~IdE>@rU`nSjJ9b;8Rt)JngqqEKbz+7aL&r6i6@+Hv1!f(=Lc;1$j47wo4!l& zON_3IxA7CgrtbjseCZl;8(lWK)Z0c+!zOnDhe*0_+Qvc1rjZ240=o@^zK#s~I2!cb znOxKfIAV19E>KKy@mjsH04@%7Z}Vd}@+}>$7mH>sTZH>4QT(p>eZ_1!n?fTo*US&-+ZXC2zaSittPwquoG@=D!?TRcv)Z}&*S=5 zLJh30Wy*DN5}lI7A|heWfqy)~Yp&!=AOS8cEaz~)O`I0nzeUi!Rq+&9vc_VF+k^9a z@mj?0V~rl8UMpu!eyK|z2F>-sfd;i~e-{7F7U8G>vzi^n>kq9`^QFyWjlTAZVDT}$ zc#sNR6<270)#LCR0I`D2ad`(>UNdjBrn#NvgIkQCF(%Z%gXMjI-D*d4yW{HLnH^(y z%w-+AW3F}XU0K*;;?SjUS-8Kl2D#0~GJY-mn1$DE0tEIA*e-VC&rSGq3;yiEpMChV zAAb(Qj|mqV8|U)4+oE~TDdZE z!a91S2d)WqM&M_}r?U|Rf5d`&#m@CsL2?Rk9R35=gSG)>E#vkpw6oOVSr5|qP+5Rd z5sA5JxTudZzc{uFF9hn5eS2wK!m79g#j8l|73cwzh-GCFqs`(MU@ix4Vr^*_i^_F{ z%%Y`B!Uc6qmjpH~0F^#*o)J*PSFrlVx=SUfuTd5;8dMZD3Dp0oTvrIxrY;E=)Zfx2 z!9k_3)ma18e`~D|#A_soA5j)58blN=3B z8zgq$RhA?gJCrC1yKgDi6~gWtx+GlezNSlpV@Fd%vxZ&xs3>12JSc&@WR0pH5)CAZ zmjvV{<+?&ZuGb~u0=Y()1P794_GS&psN1A{P@a-d9#j@A8cGx}3Cbbmx5||$(!$8B;h1ntxcvf&q?lu55L5jn3t*Pe}9yEZDD+ zw&!+bRY%(%6gJ8B98#_;WPA4Ol5hu;y}BegtP~M3Yp`yNIlI%3=UXM7b!F+I@kA+; z@T@A=6~eQuOTxvos7r$5NpUT+hUezwb9MdDzDGj)I%Pqlp+$j{p#6R2x_m&_(tjvLSSm~z!2{Z8qU zaC^uj45H}~Q zDT1nR(pbg_#8V%AbUw2+w}2!m*DqMxO0|B$To?@!=;Sj&n4_ve!ZkW2UAx6UHE8SL z?0srP59{8M-|oacffUdEa%G&O$9a@7>9gZy%5{b8)r*P5EZHlP$#1U$_JSK6zPV+* zIFZePD}(z@5;IoK@uZ9c*>R&SiY%j`xW#YNygUwOar=*CGC5}(G`DBRtZ}CunmlJ4 zGS0l0p+f&IocLNETf>fEgqrk5p(#ctVu@O%G?I! z8?sfiSkISA?ND|zGs;l|;5(r&+JAySe}+Hr#-I1%&-?M`gZT3o`14oz^Vj(ExA^lB z{P`&Ud>ns1i9i2j8{#EE-vb3cco|8W$FGK2JKC9Q2Uv( zw9$haN}V*Q{aCrK(4h7MT@tQ~@;zM=+(n_23}y}AErc(-=gW)kKI=5x1y?Yt@C6zG z_bLhQ)(xs1DjHlAISJg&%5{any+W6S3+|=5BsjQqIK`}idpR7gnGvU#<>~xvmhnSL%{* z!M$9U1P7N6VVgB@GjN(`&p@c>#(BvPNnr0(7BjlnqPR)G9#^g_1nd!A5-zZZbxCkw z=}f&@19mF|R;kh6$2;4X5l5oL&tu6@;E**V2Yv5kN!1Z?B7V}YmDslZ6 zWhtX^MQM|8{Xfceg>d}`T@o&?pU@@2aixPyXARfQ2lj>Mqgr*@4@+o&sVrzTv?y>A zv_Ds_D+KLNbV<0-{!o_$hn7yJoi%7LLulLVu>UAgy?WF1IL9b!5~^1z*A+swOP7R; zYDSj?N0m+)o;6gr!A#@fo?~WBX`uar#P^i4w9&m5rB1^44&}N+_#V?G;o>{2OM>G| zXGhN(zMCb!ZFb#nNN9gUSbgIX`2LZyw9)vY)JgchMY*mJzHibc;o|#xT@oDM4v=*AW|J?M_aq1+KKkoBtf5e^$Bv%tczd}8?dw|TWjh8OT737FWWN0pqK<1@)UhL5 zEsxfnS_uNgWEE`}Xs3pqAcbQUEwhw!17};+;42_%*xEvdUD+|is-grjrzV|%#&6$= zKd12L+4%EZ{J9%{M)2o8{J9^0M)4<)KV$e)fS+eBo>J#vCEh-R0hPl~F<)XY2$V9O zk{Od!@syj>Z~^g@boY+(sGu89xe1T;Km)Zq;FtTho!R|zboec0@uD3z6fn72qUKcp;LG?*x25}5B-t}6uQdvr;- zVE&md2@WRRf;DSkZh8(3@F!t_Z{0hONI<`)EM7FAC}t9%|D{}42+;q~CE)`4MO_jc zP`b=))&O1S0vgvl@0MV$xma~Piv|-#OagPIa$O-Xm+6vl!CazCf`du-(ajo|8;>&w zxpn6(NIY*=mM$7klrjm=-O6=^@Vs7^gp216T@oD6^DuuS>$k)6gZs@uX|aXARG_2l*O7<`kUJwHr4O4EpWuXC;=8D@zuQB}$lt z<*StI3Ss%EE(sUQhAs(?C0#^6Ygi^Nw?83~{IIfI(MY0vNl5;Ma$O-LKcGv(Me@D6 zBsh{+Yk5N2%k8btjkA9sk^FCExuTIo`I3`|;%8;1b-kTr@~^i)D{{S5 zp3BD9-T5(Xu<&cZ`5PC&J6=t7g*b?W#**dTR~- ztb?CtZY}nR#@RM}EmnvcT9ZA@)@0{`U@6yRS%XWpCi|bd&7PZ%jasHdcTF~P6wf`) z3{fMpoN}r4*YUii(10kI?q+3WM_UpUH_4LhR<0{#Nv_u=;f@JAbV+bvZF@5nU24mM_;O!Li<5_zv-`7bb|5915Xe3d-BqTqmTvrIm_vw;wk$kr< z36A6;EhM$w@71U92=UDEF&IZnHM3N6{GD>Qgz`yc!J?r=0h6G7LbP67qIdjkC}UU_*k_yjL7zehu8_X>VBpzzwwJ1Lt^K>a9Apro9yk z4zFOo*ROPu#qPmKFl19Xx?fJi1q2_i(dwkSj_$<=tL6iB0HrvY+3TD(^O-y9c*uOY z6zHtC$W--9d>LovOn9@0r8!4I}PFV)KLk!L`vMAH!|l z<*Ej#UED72A|89ZJoeC3m(%oNH!qCcuXGjf?&N%0m&A-?*M%CXGT30BSZ$K}-GOtJ zB0wtc9`m|LjkZcKJh#mlo?Aj(P@fF&?L&5c7}+h#{DpeumAWKm9NDdGCU?JOjF;d} zIV_YWTUXtIXUg4H7OF@75hw_;>fMv+F8v2z}m#9Xq=&9p*n)hAFxoqLh&i^Yfz| z=C>->8fsr}CKCTIIn19>7P?JUx8pF+i*lGhs?1RchQHG#;dZdUW=Q_pI?Ufu7O`F2 z+H{!b4M#Z4-&E!*gx!<6BxW4DkmEU>4)eMzrso4FWbzuy4)eU>2#0yKGJhdtSLl*R zf$ZaR=FFXg|JmPNJZH|mO?wrrsa*Y{=7nar{T+By$cu!h;HlB37wq${+APC7tQ(be z&~CTY@SNujM|jS=lsOCmyspNJa0I{bG}EJ zyAY<&)g=+cRKx9cJ!j@$X^?Qac!Tcv!ae6NK}d3}gJ;M23)(AImxxu246b4n*|k)( zn2{OqedXCNmhSWKC}S1f7*W(n_xTl3?(^fywT2qmtB6Fbc7F}$o8PM}bepPf$9-N9 zQ*?jZSBW#wrJ8&&qBO;yI=PxLW)GkhI`26zG zBWzX~dGgF;EQoTGKc~!12%}Hyl9+LfR!NH`ChL4dYB-r8G&eIn4sgh5HCA^Cj-sXy z7eslxztq*PJMsT>T@pcnG)6mjz+@IxgM`b)qq>6d0rT$JooZ?^Um^Ucb8nOaAiNq`pn5%HjGqc}xa#f2(zWFNk`{YZt1B6?9fF z21T(I^o3EQ<@1#}3gI=WOJc_Hitt!`Jt`ud;q)eDk=n&6!J}CiHDJD8nVS$sf1pcZ z#xV-JEIx?B$qb>7D+|;vLajZTg;CQwf3M6;2%x{!B{Aawxnn+eIX&Ccd>_e;mN^-0 z-&Pj0UDz%SIifx8dZ_oKVPVuH&VMWO6+-aqx+H=KYB-dxPs*GY4H7OFgSvunpY*ob z^+{p7hjrE{u`7uqRzBY#J<;wfr{^mO1&s7W-xlSGZdI-|)U-AeiCOeS!;TI*g8tqf zlZW;5L&`!&_w$gd+nKtVALW?tSLP@L!(LqyZr{3vAvxWSX^Rj*-)Pz*AH%JvEMmL3 zwYl;+Kgvn9l(`CFH>OKs#<82xmCxT&7Q0??Fh%s8@bE?)Y2 zXq#nNZ+(xl=}^YYAV&{ux9RVVu#^@GnFj{gVANr-Pp6 zv40lOKfH;!-JUg(RNa1A8ZKZn-QwBp_LsRcA(^pqwdHA^AC@*?Tv^EIQ3!>Nv;iND zvH^MJT0=I#AQG`QAU@JTJCJ0pxOydaZY(kf8|`1JEODE9ZmjDPmyq=^BZNmvxpQHQ zha+Qze^Z&C5CSjMML;)pVTA&?8D!8YBq6HE5qHI#|K#q*v)@(;=)v94M4}N9Y5fUhK0;`G zRF}kzqtS72APNlkHN)cj$^x{D#geYEfoLcqLZiQ<%ti=`Z|af=LZRU@xLyY{i5eta zE-sKDv0;$9wsQ@?{3LelipszmNmtkOd?tikgvQz~eg|dj$Q99VGs^6Q8p~z6B-(~a z+sWAAxdbB?tGG-IuiKQRYqwKx?DE{}8H-s&2S1?9QV6qsL_)*g)9o?q_Q6R7XRUm# z5Q{@}7KVbYEONUjtnV5XoW)}h<$sJTvlK!huS>%1IR*oAy8REhpj=)#o59V`RbwI+ zxTMSs!bg>bZ5P5Td>tvzxNQMugc)ooGZzB$VOxIdCgHz#lxNNdoXgN!IzYo3SsdDT@r5R`5c3Dy6y3{XwWj{ zQsy~jI9@Sx(wL~g@r`~I+b+dmUA$$cT+{9tSbNH)p0mh*kHh&7;2dG97btTX!g;PP zi6G7zcGfl3tmkWxaJiT{Q|;b*<4%P78`pZz%{ZPstSQ}~tl@So1ej{cTdb*$*mJm3 znWIp%86*<3YO1BEnHHuxIuirpZe_9C1p+@`#MMagraC&}U74v67N>McxSi(?2Iusf zYN-}4Xo;q}%~A~3-%u96U0A_XOHRD7CYb8zNO@&0LpV?Bk_h6gVP{=a&3e8D373lm zQ?2`5-NBDF4UGKmYt~-grL4ww+sl$J^IX)}y(oNO(%Y4p2sMX4(j^fDLIX>;Ik43- z4H7OF_vy~CA{Ve6+O=R-w|yty+wf0v5%e3%7)7@=6ftrU^wUv`pkGt2HPpENi%87k z`0no1IBLRK>$yND4kxqDykzV2_~{`9!|pW^8PPMrIr2E!-t z64O4JzC z$+10NdzSJd_gj_%f8y?(`l1}~9#KXry2YWOk>lN0qsF_JE7uxoVlN{SvAX?r3;OwA z$`ZG!=j5QD$dk0+rp!+Wfj`tmK=*TD%~8`RWlla&hqKJ{nFG~ox#}O;qB1bU`j5)u zwyXZNT@%1nkHfg?F^MbBSO?mVT7dhcGD9K#e@vHzYu-M>Ae`=5gtY|J-chGqtk=va zq#|=LsGd?5t6iwpF{ljAS2R`;p2>HWISOI*EnN~bj@8OLMca*v5(=dF+t*D{~XVXN@k2AU+!2hU>5}i>g7w<>HMq)1#w8f_$EAR0h^o z4lAp+-Ts^uGc-49Z{a~@c0!G1NS8$0Fljr0ap6Edtl}~;yh_T_wTo9fF+-6Z{IoJl zAM%zZoT^EF7gT+E!QmSF+0?pVu^p!<|H+-_59BP3{U)UNz{ zlsO7Do97aVSvA!z44NT9FH{!0T_D;C2?8XdO!Wn2rb1Xes7u1_JZBl4({HLHL7U!? zpf@Xv-!80LAwh_9gsFamGM6EoU#m+Zh_i;Bbxk$v`5Gi#E)q<&?q{>RBI+CY-Pder z|Fp6i+ifq=3#D_1BSM1yMVX0EbND~HB!WO_VCgmoww9(r!sX({x)a>U1%w1GpWTJh z<#@hb=7d#&okAu5_5u4_a&dH3_w;-hpm33kqd$mR99^zlYp7Xu5{cN6eR@wtA?f_5 zqO9kqm*A1aefX0t!hOGVVfdy{l2f06n-(WyQsGWjyt|lE*M-WOc_XGAtjFO!tdx4O zx7?U%)aq3;>zG9|R|}`t&X!p`f3^nqV?uh=wdFfO!S?m|b0hvd3x96LpIh-~FZ?`1 z2e0f+sIp za@DAntCN|%C8Id$SpJAO`)O%cY-QP^M=z8y(yq*31`yhdIzR<0K?MxgaphV=b|p_F zV$~WSbfN1Gth%dYoiVDG0n5lIishPLrHybh6ZK(bQQK571R2&PM?HWza3mM|;R>** zuY;E=GZWJLZ|ah82j~|v=;9i_E6omEa!mS^YYjE2|Bt#Wfs>=C`nm7>KFNd) zut}H=;l3dU2_Xj|33tLWyE~iAWOiqrnI#E_+(C3yK3oJv6i>WSMDYMY5EMU^&jSwx zML`e*IaMyh4$F^WK}?>4-mf(lcGJ-+TXmRlRz3^!|>BdIly-yEC~`GSlgt zKwnIkd@e1I13xPVpF%bj>0l9me{07Rt5mn#TC)#03kcQ8_5P>0kL;_)&)p6 zkd**HT*nm=1cK3HnNCl&lME3?i}_qb+)i&yeLFq%lC||t7RhrYqHH0n1)w{NE27V#o3L7LBr1l3X1hVb zbtTy-EL;;Cw#yw~u2y!SED5a3$O-|VF6N5pbD&18O?8U-He0>&|D?eABH0iuIHMcH zd2m7#J1mxT)-7aJ04$&3iU`8O2+K`muev*i2%|-nn1tH^BL{kaAiEJu3j09My7&Ee zWF-I{9_ES&0>Qx2&_N9f7$S@oKjlWb?m%xqeFu7@ob2W)?zF!z!8yM&$eX;dccNTr zn{|+PfNhXBf&5g!s(enYEkg%g-3bJB{Wh=-*W$#%zz zWNS+<-|h$75(%G1RuX`{kt?Fl!Jf6gkm+pAbP0&%5g++ZajuVjnMpbNRt4z0$%bM9 zo!!u-HFY)^I+`X^dO?h@##*A}3&@HA5O;D#ph09OXGW}cMh=?_Y5$VLviApt(5J~( zU=bSWj$cYr3m+bq@c3r38UT-*91)>CSLh))+;DTMUVW7iNs!Rp9-((B_uo&p8|(gQ z4Z1RjTG3|RggZd2KDVwUx|ggKK;v$%2va-mb$=w(UvKS zv+Y{COBwMZEnff>b)(|YzsP>Va%iT^7&$$p^M<3OPfK5wwwxvW3Rx{cq8GU$42k*( zzPW2tg{>K9*4KkvBHykfqd+QACAdl$%oTygl-+I4@tkTVkX)W=Z%-Fw03;5c+?H<(Kw9-~1?cf)d$F}MA&yw+5Np=u z%l9OTZCYP>ETyBbuZj+ZXU!f%)(yaUq$8q!y)H7z(?Yfk>vemQXYlHwwh51BvKqj_ zo4F!PeL0gW!gQnx=3eMX86u1pDmlRrVSF))+oib4rbp_#++QV|Ho7}kyn#XX@KJg- z-RH^p+Q}|$vnHF46OVFm;{Q zC&VmmrmI`!(EX!X`z?w!$C3Sut>Tj#+=`tPv$jSvUlVKL%+X|p0B4SHL@;_dZWB9p zL%Ks8ycW{Ff?t*AQ)EN2o)^b#I{JiERcp_74p|%E_OrPnOeHx(A=mpY>$X&>F% zQOoiL@dj&WfkR-h797 z-`(RNEf96GVu9F^YbpCQ6%(MKT_ za)|nGvKz7Fu@6y)*p9S)m8=Ay!%JKdK_D1d8ak-a3`2y`;&0qBl{-W|xxS0<$8Oq@ zPi%Cy*uh>Yds=0Hx_D9VjH9G^)&c4k+W@tR{8T`!g^q|i_VD8>10DP8Rl(1y7g$d= z)n1W-gT?y$$`}Z|UUh(dnZ;VNGQjUAaYdM_v{FGA*6Fij=)tEJ#p_-CeYpFb!lIk3 zI~I!}Vqhbm?HR-jwRNxsvIYQvyz*YyNs8fX0k}z3lLS!2caAOdd)a=Aa{BdTld(?s zBmqkuU|@@Vd&nvQ6#j=R!c>C~C?LbC0T-^BX2oT?vnWnn4P9~_d8Y#JPO_O; z@Md{dSt>ons8O%d3u0(V<$Q;%8Nl#cToFMG8G(g~O;mkmh%j1IX;8ULLWZi(lii5r zh&@ytYMV`YmaGJz!_!<5K_D1d8ak-Bh9Sae(a1H#4ONr%4OQnXS#v_7aY<`yw>XAU zELzc9=S~o-id#!X|7N*tx)QqXcR=riuF_m<=$f;IuJg!G1w@qsn5mr|KrV1mW+yK4Sdkd3uhZQx>Y22D!qlx%Z#ssvABuZ?}b%`&n+!1>2>MVR_^ zjKVLhgrMU6MWJ#V z*$g}?;spcYs937Ntz=yQDqrS`2%^FW6ilq4Dk4LK(V|LQ$mIqy^n8NsMl36Ap{J^- zmZ{0d$!Y*XJjN9fgo1&lA%u!d7$S@odvOhMgU=)D8+`Oy8&4Lxu>W#U!pFZr``LzJ1>zYgVllou4|WXjP{; zx=6g+tCVWVr4wuOZRuQc$=1%i-1?W0?@|({WXSaefsXLL~xeUFm$0nYzDSA?l`zft(ry(1iSVDChJfbeBY zM<@}n3`P5sbpQywy~iSe>HO{c%rejjRvBAyeIHkZq5M4xvM|bX)6ApvM1utw-%kpde~=Bq1EVJ)?7&zm!r#ft0AT*c z6%ho65iFQ^LsdtH2%|-n7LiL2WB@wnpxzk>fIy&Z4?tyIwFIEE$Z7yWOy`OSLcu`O z5JJT#3=u|)v$)K51JLpH4M69uU$IIApy@(Kx0-ISY~l;Vp`Wb8p=Xjov$smpW@{Y! zd0QNM8u_V!Z5tgC{|#~IPO`B`7gvu%t!FBAll1}4FK|VeN|smn^>(LRbq3-lvg%kg ztYN5VZsCcLA0_Jm5V)QzqR$Z+dcsa;=ZJr;Oyye@4BbmsAB)1UhP3;9--8Zw$A;M^}o@o!;x@rvkS9%Mroo^w`6C%j!<=`Iu$P@2ZB+ zJh*q_THxbqyh?2=87$S z-tO$CIsvyn9?Em{k}n(#y-R`i4%s{`Xww>G2N-!Ylt#`{citlF1(184E27Vl8}A^e zk7S2+%<{WJYu+J!7s5Me=>ypvodTVmHA_90tP#LzFRq9_$7zy-Q(ysszd5wuqR?7J zHVj+0Cab#TIf=^-nB|RQE67R#z?N}E1Oa1&7A87TT_Zz;(V|Lp!W|?c=b6qYyAewd z`#h73QY_)>4ze165GAgNAQTKV4Ixx2h9Sae@d`H~WY8nZ8mZ_E#`h^z9{^~A@`_W;8$d; zk-jcZY1r!MmQ2g_+(tJ~zug~Bb^IS$AArKoqEW~$3?u6sf~=ClZz)p0tv>n&x$d@fdnTtInSE1Ooc)jd^N#$}|ImK@(&b?tshy$=E^X^s zJ)k_aHPz+3#c*ADkc6e@>hh3nnKp6Kr})=sS77CfVdC8@E#f6>Z9S_+1uA7q;z9Y& z+%9qNh(cI3pEz3dev)94+6oa> zbM3b%=gbu#cehZSgRQue8`OK4{qXp5g|Oc4MOFvY+nJ7t(AKlh>+Qrqz0GAhR7DK_ z;G|CNHF1@&A-h`qiKqT$$H?b9b!eud$&rpzDKr6fNa4~8b%-It)MVASGDMj8=}Wb= zC*3XC=j(g$|G1?&ao}pQCBIYckn(4vvp=uIOBa(dwl@XRK5M-6uq|G?ko;6o<99hC zLTh~QpDs6jQ$a)`&a0s}q_>Jg-O~k|Z_5$)scQ9cvhhflmuEDTq>j$(p$o2#AirwL>+^raCesd zKdD;XPBszg*z%x;Oxt2pZLN!xTgguc4nCJF!c>?o3Zvc*e#UId=W}u#AkrzBt(`t< zmxDhlG~P!x28+hnhLX}o9Hr=JQ)y4FYnR_cRs;ZZC09hB12f5TkVPOawcnyZ`Wo3V zEJ%|ZGTtLLKx}GV-uxA^IsmFKaz*qxRN_Sals;i(V|S($IJzDFtRQ-rY!DVAd7{47 zC|Ptg^3){D+~_aKssMN%;)>{Vct)=1E_D~u;<)!zpndcGqCk0rYz7vTQ4Q^m9%2!X z(8GhrV3_j!H(3jS$E#csK|B~?o{1DyWWf+&v^bV)h#M(BR^QZ`y;1hAOv*l2i5L$) zymy8x(nf2<_=+uJTugo{U{{kPA~a&`-GsVhoqr;1yqi#0t5X+k&2>2QTEVYV>T5l1 z=H6W@r2W%i?)UAPtwrDTnEUJOf4xEVDzzly=s<&-a7mr-Fv3?1%_$czQptKW435uAgwS`@*w<0aD;c z#pAD&%|tp^Yyr6@lGOp8f0--7RFxMLcwtqAyE1c}Lw~Vn zPQE#GJ=og-e^wC9K7!gK;~{b?hSJCik)?9XAgco)n#vW?=Mar|D^S?$t}VYSkd~57 z!h$rR!L34`Jr@23%(kxfII=zfrK7nb`W&SRdfQ1DOtu>oPFu-FVR4$+5cM8%)#6#Q zK5b-$08lBeh#*jmkljT6s>fr9Fk19gh~loZ3q&8j2*rMj;>-&OZL&Rpw=sAC8}-CYjpgah)$2x3KTi)9;o#C-~l?~;wjqA^1+j8q{@t5-)~i)&q; za|c;30LtxL5vB@#UE$i>q00<~o^E%;;fuOa;rA!9ky!j@y7=jKI0`^ZVDl(hF#zE2 zxgvr9GMZ7-605q+5Mi{a(h_qcVC3GUaYy!5#B1A|B)euy$2^*>1fatRu81HI3@i;D zRJMj8!f0_dcT6R<5b3zT)i)j2up(6~B}{iOUqY}_}QZ7R_6Y1Q@q?|aA7S8UqlT`s8Z{>K(gJSV0w{k6c(mxvzHPm z%P8Y{vO)l;XSpJRKrzA$6RD_*$`E0+sM4}>>0%#3_y}XaMNww%(Y-Uu0MP|vlwm#b zYcH}wfHE_=BKjPx%4-dL_*A}CkgOo9kFCX)mmLfi71uJmv5c$(K;d|SV5nAW)3x z+ywZl$76^vTJ%+jVjp+=7-PRhab`E!zgW&xp8y2vdbVp>XZ(&?RcQun)ed8x?*(BO8gu54)~d z0%!?renM6Z0Qe)Wh#-KBX4JIAs%|qx7%i%_#M}rNIl2Ef*^O9=*eCag**fMo$w~k^ zyv7v~1cHI3p@YiSFhm$Fc5ug3ZszTr`expydnfnTh^_r8>+!PL!z!t`!;kHqF_tvc znu+y7($f^L3pTZSks?$0JT39C? zUn=fGvTazT5UDupv30x18Ueu0Q{Jv$DsHMcvbB&d7UlNwWqGkHIMbRD?`rUGWhjT< zrNX3-lMTm0F-;!M>gtzl_3GzYtt!B<1-UnpwE}S5z!hQY&vgpXu=>M|PHb5NUvO)? zL7{aY*(fYp)zS(QC`&MV4_P4q)LmQ=L7*6+hlyTP?PZ8CTJ%+OYtI?@7-PRhapqOB zf3cjYo>s7)JNXh>A;6h`I3ns8j!Ztekl89;YLrWCY!xr&Nt~=+uj2zDl;ip+ z@)Iv!%DcKHi&D2_Ug_p*Wv!`%iDaDs5aYNaOtl&9hzNb*4!4yZyG-)~W=06vFsMFjC-w2Y>4Rn?Ut!e~*YapkfEnJLJT-H7Fd zJyX!%mMO@Pl>l^T=ZXjd!NAhcK@BDuB8(P`xP6G5DVSd0Ou@tr={2V&)}_0}Rsiu) z+L148_b=C3QOOZ}j*O9=Ytlq(j$o}VNAPL#Qvtbdc0|;%Qy#BQ`dg7NbadxZ@R&Kv z@2Z)=ecm>PAbLa(<6I}_DOA>rAvvh@yy z)3ao=usBU}&j!gkSvzoE`ry^WZKIv1$@&1Kp5%(?bEFsqDnaNAtv zD6%R5n&Dg#XlUZgxE)Nk4O^2C8MooKXl5~4BLG;FBch%i&YCrAa^isCW%+!eO^n)0@voKv~ZbM&#|V_6Y*6ImO8&qui; z`W&CBmIF*+%?iCs;dMXRJS<+*Y)6-L$(kQ%5-khl?j>slaJ!o;qR(*~C+k&LAurz{ zo^TxE%Ur^r6;jWV4Z~MSWOV>UPjW@{IYdtE(3Q#*c4Ue+j4Zz^ zkj5_Qs~}v(7Fs7ON<-kmOryy90F;JvMFde|w6;V=;i6wjI(e^9%$!F zVq{OP%tZW*jEktq;n&4r`B}<&yZCC z9)F4}!c?Ir6llGj4Vt_%mv0drwK@J5P85aQqx$6WOM5522DLz}+}P^qmJC1d-@1cf z3|S+9*GR62KF7-*x1vMaL&=6=t5x;TcA#xy;vlj@0IUPJBKjOGkd**HoXQmu1cDK3m~ch)ZVVAdiyv~EYd2i!U*F{uW6xOWyhTyG5WTCkEwR`i zu(VYImg~s)*m)++vj!~NZ2`-*7V)OKck@d?49wP%tHy^-fd| zx{7kOofHx%OBI<-RtNw!gDaxXftq@HImh5TML;ToHW^7IGYa57_`LDE4vuVB0wUF0v8;i0^Vm1c6{wJX3eo zppPNKXi?^dX6`ut#ew2IXJH|A=#(jYWD^+2ALt*)7c1lVH^}(dc_z)Xj^od_jpP4K zekvf=tB#0JkM0o@57U?TPUH)m8##_2VjG-HA*%vBK9MWJRHAW?h~8&=$Qa!>Knb}= zg-*wkZ9`TA%*?|O+aTpAvPJ-~!+NwoJd)H8ku!Ivjt^DKf)zwpk`2N`h^=z} zhYR?K@%n|&Z#W|A7{W)KMCz-$5%;MYymz0WfjqHPKw=AB=8*LQ6?qm{gsDQ)9TA~X zJ~z!3br7i!zNi}&ek;jFVq0MBiKP-iOJK8{tQY`r30FiAKt?laT4GhV86u1pRa#;$ zjgSeron$v+DPm8+4Y761-DD*I9SU3#K_D1d8ak+K4MT*{;w5g*$W6c`$ zQBPy`g`xfWZEMTEC_c9IWZw`U^4qu6<=g6`-!SLL0qSFr^HClmw(p9=oO-g3bwkBJ z3z>AWXG>4xy7JVm-C};TxTusCPVU^gDAn334t;6e)w8nd`ow+)F}>!bVP%n(?wBM&ca&NY8SiE+_LHN zs7z;TuDdNQw+=csW`8SOoc+E0^9T9oG5P0D^3R{;pC`nhba_}uYG<2Vtktu6KzV3u zN*zhIt~^MtcR-A?674=Za%e`E)+NKN_B2MfAjKmaeFD>wRwGJ?V4m;zO}en{MoEr zwb=!zsZbO^?jwq?9;v$F9}5GzTT%o3F} z3S?8T(2Nn)LFp1$ZlaK}450F4T>vsUu81Hqj9$rfY^qK&L>Mjhj^+ou)ttOk9P}cN z|Fg!wet!&t&hX=rhDOSbxT^EILt+T2Xm2+-yx#$DoNbUD-#Wb9syjGW@6HsG4G#JsU;V1t2q=Db;Pj(}=mfBK*k`NX;979$D(BVj~h#(LQEDashD32k+ zXfcr6;z%vThX_s}xev56yzJvT!z^IZVf-z#} z*4S~{m5H@!kqT@L4%orZs$KsG*;J&1#eiL>@RA*_MxI!6sBQ50VX`v7?;qldFm>n} z1zm54KocqmY)o(MkmvBX`IerRZ8s>8zE3s^3zAqC;nu)pv7(g^CQD@WJ+e9grf+ja z^f^qX9*MDBr^ufBL4rRkh@K!DgoVgckHiSh(Z~morAK_6tPB9?F|LR{2WWDo9&Oqt zavMjJ#ccuHQ1aFKPW}u%*`2ENMUuBx zBFU{}Tg!zb%>)bN~ugP5K3BpR}JfK zvav`Pi#J-Nv`)!3S0_)SYF+VlIawRv`b)SXOf9-dp%)fRvNO$tPc5dl`d3br-R~3_ zUn1*{1!G7Pv7bAQy5s0d~3=u|)Ds3m1G{}IoVO8%86F|UFwg;rv zgWD2hB>){}b43J!U|?zJprROt2&2V0Twc2Y>8SeVHb-votdH{rrQfdvrCZ3@*c%{e znl&iB-xidfMSdzE)#;81Mo`KQcoH6WCd7#w;#$AhSuB+S3zVwguDXB=$-Y1$P@XGR zXjB$RCWXeys0B>cH{|RhD+ho&j|&vHb)B_L1}GvnO{6;85=+IO9ho+9UY_MmMbWn^ zd_GQg0T!Rx4Xv)GNugx2MQaL|ItgrSk=2c4)c`s-a7CC_@j3-?Z%0=1muHHllsqCy z9G9f3o_K4Ag!I%-L1am6alJfMO8N7ngmMbt`^YZ90=%H1&9y-usibvw!0t9SB-^A7 zp0SKX+Y*@FL)H_ZeHT|mpQAltZK|N&EM2LvepqccDE$6LHVTX1#0K$-Ge;{^IfFo1 zlHY$ND+GZ03s*!CC`PMRpFhQ2?vy1URm*B24`|P$AsgowKbq_5o(QK_PQ4*(eG!zIAmH8B0gHg{%QU<}9v=K1XJX zUiq6YB$lOenU;cO1#s9+3ZW~>#$gef+Mw6|rVB~&9-fMJzUaq#V8vx*r2uFbb4Bzy zXyV1_m4RA9ZcZ$uI{e{}^$rEs7s+N};hN;@soGq<0$5pQlW!qw1hD!HS45v2q#5Uz+I5DY909aLtJA;M^}i97sq z6TNfmo9G=OcZIn-nY~e1_Ggtm?~%PkF=?4K&--gzp7${FQ$Z7Rup^?5Lln#60RWq0D z@@VG?NaZ1FmdbDwSt)?UN4X+QWw>6!8CDs%L53I_=+mn=7Kvv6@*)b1zSK7R9+GiDmf?agItxobBPqEb>l; z-LqsfvDnQriEnW{iPSUMYV-`$H%kWmX|iSj!zZ~S`W(aA6%0=lwJk5l>Y*rBxmV#h zc1`bu|1faa%iy?8>l%TiWhg(2tQ$abI9EgvNk&L-Mg^)bWr#3Zs9@&0f&KdTlmCTI zYH%BJ=TRdPfyMvLr`h-EnFb!zx<@grnwkv^_A zT(rJR@WW(nfbT!V^*y(}Y!E|~Qg@+6y_ac)Sdq1^yCW@jo{HmfR-{wnCvjAp4-8ZZ z)hU0E><}zG^BTn9rJ}d9E=!#Cru0s>YrQ=|mH^B)sQEToLjc(~xgt#Ccbh`Jw+A)* z_^_3$?UtoVX}K#zqI;T%nC0>xKf1^=3g5@crepEl7vd{U;nBK_H*~qW2N1Rlg&rg8 z2oQdRDH$bMa76?mWwfNGF;;B>Lxj`+}tI2M} z62(3Mw!R2)H(3clhs(JlfmTKcFxBYy3caxIy6-~Vq3e1l#07k}g}By9pFv~|008|R5q0GLWW7^c zHz$^@+9CI-W@bLwXlxyrQrWAm&(;Tqm?cTDnyeE*>_o1JAYzOt!UQ6!0y9JyEvmGjT;3q#(u>J% z#InO4ms;0JUr1I0&|w!>L=XrDmWB>0mSKo6T6~w=C%bX!@cPE3qgHi_)f>4ST(F;g zW3-M*h5qnG8ob8U&vd@0eM5nI$#32_8LG2>*uQ!?LO z$`sp0J#Z4?g|uiF3Tb%)YeK%1$qz|wq7;5h$S%ZIrenmJ1;Wy#urw(xO{S8rr6O0J zk{NQ>QYUrpu{7D0>Bzw*@K~~@0PLfXFH=@7OSvKj!kX0C`n zhi%_Aa$ll&iHbxk)3S4GOJ2Myu&J0AkU3R6mru0?&raT37uwrbWN&W)1>x0X!?6&~ zZ4l3vnkS78$ztBAtggT^)kFAcL0J1NV6#XahzD(wbo$u1PY9q}T$j<_l ze$ElWi22x|^|%vuij`a$CysM=-TRvq__Jz9#;@<4;2QWnYiTsHW=)$-hqd|S5|#w^;J?i8nciFX$)k`ZN-!JsEq_Pm64UG^}c=5Fz& zc?s)D?}-20m#?n#zK=EfjjHRM7o)CI=*{Q)&ons7e>F8Y!xRKz0V|u*qvd&8Vo=g0 z&LijyEUydvrrfcC><(ljA+jg(TrANSy1IaF@MQ9%0h8A#H`Z^1-S8FNovkG?E(~Nu zJl`w77Rkn8{W_wdy`lr~X&3piz^5Ht5vDuMDp-1*-P2F*E{Xkv1$nA?+JQm7s%Bfh zEr3SEeF~lH$u?rqnbD9}I?7YVm5%b|HI9w|tsb%(0ImN~t`4gKebSaUmKTRK=CZ~& zxejQqIG}0$vL!v`gJ@-zEnRc+ik|Y}v{I|rrc<58O@(y2r+f^p=&GWK)@9We3(>_| z!Jf3YH)>p$y-Rpnyx=_hefRTj_wyd-)BCRQ-sq-o6;f+_eYc`UP2H5L$P5vtvs6tq zLxgEg`l_>>v`V}}snAsruLF=rQLfFmrGsxOu-~E@k!Q&eVH=Uj4H>UyNkL?(8E8MA zCTjrNk0%`wp|N22d%?MLv7VmNH>cqFUb%PVDbyN(b+0-B4tR4I`GLTjgSjFM*#|fx zLiZ-}BSVMY>b=6j`JB=I-<1Csk!`{He@ufzXf?tSx&S2hCqEh>F<-f{&iVVG@@ z;@G82Tv2y8R@9k9#mAB({5qBR*6Mmpa_>s|G6r)#%c?usz zF6>pbDZ2E^C2Lo$OP4&4TZAe=c!W4DuY38rb@)fP1w4-kMrWsr`Yxlh)7;O~-On@J z&okZ6v)s?K-OtVL=N9+#9QU)?{XEzGOu3&e?q{p}+2($x-OqOCv$vzcl|pKb(V%J& zYl_2E*TfKEqCpjIFhrORvPv|_jZ3Dk7u77eE#I1`)IH~LVt-CB^e)wBew>UGw$Gf_ z(BQE)Y8_mYz4$Uh13C!Os# z%n>?3eGGCw6a}`On4KqX@#U}Ibc8DvMtZa7UQMzKqy;hCE7I#_;w-L`E#q3Qnzn zR%ssn;S-D7GhNL^mDFq&M;^4K3q9`vjn!O7a(yxi(Ev^{05-|YWV5q|qTuV%HJF>o z{-{(@2h3B*<*{JS3WDjg1pvE_t_Tv?)nv)8a;E)1(Gd}v++f6R(F~XxWPnKaiPPHr z6JweJmon|s_4(c8@>mMYwo^bG12}L2T@xe+c9JE>&VkuM4!o;d99&=8)!e!*-MZb{ z7<`p!rDnpH$mOw2Xs|QEZxZ0c=jr+&`S4k?lUE-MrMz_d>@;dkWn zSSEzD3ECLIfrsguAUW_$vgFt~Fvim+q}%*2Ak*E!u#L5acZ130vCvNfjexWPAU=Su z021+c{`(N0?m^r=qf3OcIT6fS>-`~Q-zoR&dVe6fJQn;p0Q`VCfCr1{x*&P5KUs3@ zHGiUq2V2vnW;rgfGN6TNn`S^WxjdEu(*Xl2h5+n0)3rcieFC^Bq)>1V@a^Ll>~l^02{8RtAk|2ZnES(mJOv{T_J3^lWC-8!*|H#dxs6m zBEW`k(bYk+;TvShv9n=PpluLSp6Q&mV|a#XoMypOv(pKc6}Czr?a0OkjL#sCf+L)Qe!fg{P1W9Pt(KzmRUuaOp1kb$DLPv~Nr zsA`a*EVM0f0d%C%@pT#yMcoWk=&4Z7U%VT-4 z7vO>48o+|<>8c=E&_kBIXR$y=hN3H#ul=#N20vjMs9EqMa`_rq;Ijs>;D>ZokSzEC zS#sr!aCC84xcWtt&Ii-Tw@MmoW4kQDp%+syF zB64{w0pQwXuPuN9`_mOcGGIPga_kI%EkLO|aAc1jJ2W$`(*)Q|E{`QZSPS5o0`NbR zt_KqT)5wxz$KSgWsgT|(UhgcnQ`nNqWu|Q!{j164vFO8_Pgm?AhExkEID@U zy}1MN-U#(tx@P%`Ix7Rd!?aK{;9KPKSO&n{LBJfqgKyAvLGs{hWXT~splp_NMVMWZ zYWovIgxMvtm$SUK7k9}ts_lYfPuS_ax3QS$E{d(H2_M(W;8(Rv?FGlH!R?UciRYdh z*kg9?xjnw^b7KR)`<|wIwtq7*6U+uXBbBBU&*NF1c0HGLJf{wL6-i(B^hmh&`Z=au zo}G}-a76@(MDYlqv)Yfz5Mi`QdNk8sJ&uKSgQ4cs_k<%i<_5fA>4vCt}2oR3&@f|cekG-A~d@0^?0lyNEdmiS4XOpFBF?qQmoi)jm^$w+Nue& zgnBz%=vDphKa~54$BxOz~OOBl~6N8j#&)Acu?`PVkDe_)&c`QW^AW=lx2PknB zT{$Ert{_W}of0!GlxP-*PszdI)13!E`dM)CAd1E{`S1k)$5RZz-V3 zHoBTfnxx5+W2Xs-LW-h%i$j|Ka9l*o|FV=1u^O9^Y5 zxSg&Sk_fG2$*~h*vWEzsyqLF>)g8e{nAT}Ne3)Dw%ZCH8eDGKZ+J_I()kD(a8nWcr zX)!TCi-LH8pS9n3fN7g1#eL-RSW-k!DB0`-l(>hk9Fh`uktN4YiAf%pb>;G<=8}A& zu&tqZg=w7T#EazeSWYa)HWbD{K#J$-+965tELn2wq?q9)g_>M!&ZSfB&6zeUH4Yc|$0t<%lMN#ycaZlL1}kA;91 zE9vSXX|bFvIfNFJ?1?MFWYg5hmm$K8f`)S&K%<4qtJI{$W8CbH)I#L+#>JP@yQb!x z-i=XQa&vkgkx%(3Bd2$RBV6V51~si;w#3&*WIt6&=BXPgDB7#CgrZt9@46_9aml=E zm0f#4GH+nese17CBc_$Qas45=JQ9(zduU2X7Ejs(n$jQ8l|eS8-;YKz{7s9!z6x}* zu-xSBBKPFHM0SVrsK)jm9nwn z-Cmn(i>_yq%VUW!FLL0eZ356wqbr1jell5d2=tUr$`xUv71i7@L>K~okIP}Bh3dX) z(&B@)Xdz;zvGK)BUk%1gBc1Kc&Y3;-b&$Cz?zl119a8GI88K4E5w2pSz2vKm)oaaj z>7{w`u5)oh!7_17UNO_22^@@)y{8gADG?Mr?bTR z-8!zifoZ?)d#@vxM`Bf8pqgC8<0?b~4ezydwU7<(2cyxhV}!LR5^ZGcbuZab%GVnI zyUFFT_#chO-(o9Z#GQ0Sk&O5bS+c8~=>)&!h^Su_CXcrbZzw|Jvlp0_YO*{>E{`Qk z6M-z&N!4fQsv+s|6j^fY^k|Hxhi4YjmIs}+rM4)3I=MWSCGJuTOqbH+F%q;TQ|KBZ z$uf~FId-xnqsgMqj_mH-QAl-(qm_IaGaZDiVp^@+l@;XjSjM=^rcsOuS_){hjIJh< zHpi1C$4;AlqG=Pg4dXnfwVEzPa(OIW+pZ>4Q>l?|HCv`^W+V3c`Q#T0j|eLK$d^g zHAIr-RkGv|vQW~4t_YJcR!JO&2s30abBA?C3zaymNsDu9(L&^{N5q%6{wXWEg=}>@qp_}I(mJwc zS@O8H{`Zq)KPgvh^gm86k466|H2M}(0UvIp>xtyU4P?o#a;E>g&Jj_+lyxGikqFIL z|D0*4rpo`4%VVjM#8btZu>LV!GbB0gCrgf<9Q#F*!;{LjH79Q}?bRH4ja(kf5%*M& z@L^x2Gl@)B|C6pDk}5BgCC5&c{UfR3xVkwyTiw_k5r#&@UYalakjrEFas<9j2^tDI zpS|f?B1tocEID@4%!?$A&g9w}ms6R>YO-t~m&cOD-AjaNT(p6JBq!6gLy}|-S#s>1@;-Hom%m&YRPPY6{t4q(2Pt{D>ZlgN@?$CAXq`~z(yAj_}m8Y0Q^3$o-OyBR zA><%(c`Q5j^<{IytparDPge;^hqwRx=&*07(^W#!;S93m z*y%7O&~E5C726>715EQY7v4uMkL5x`R6C(f0z`NZT^}S7t|Uv2od~n+M2OhJ@I9uH znhxJ4m&ek)%iQmwkPx`12?7BVuPmaLD1AHnVjXlUr&Va!eqX$5J9PbnsXO8i%oT zm8$YW(P0!>a_n^2C(t-_cZtKs($4v{&6$p_e4&);Y_%U{yOe3IZY_=@m&a1Wzf}@v zA)v|8boG!lIf5)XgeH`kI#-05tyQxv3=t;tKAStlHd?4TyqdIli93@hwGea0e-^Wq zp_5Lb(+Z9BQ|%hF6U0>O{7ZW->S@frAp4JDW5u5r#lN=nsF~WT=PO+k#T|Ffc)XN4 zLHtQa%%h50I8SJ^F1wHO*XhpQ?+90#jB)0SD~mvV*~;t;`2|h$GxsfH8$8uwzD$R#$6d=P^ zx<*Jcw2>vpP6lUSUWuxlJy^`Yc(^jCzr=E0}jlqTL@^7JQ%Wsnq@MwT2q1p?iIXF9~z7_4I&s2hXTh=$>p)c@b55283;(yP1g=dk^)(B2uUc3bytL$TT$szh6ppm^EGZR z&S;@h?loy~MJ-y08J?#His_1ac3`M#|NHTPhCC5&Ny#jvAiF4y~DqSxU zSN2BYb4)WeB|c3qkEO&yUmmWCX@D3v)Ad3U<0i7?*oiU2?>%QPmt;h9d&b&x{EBI! zCdL1e%VSBgUj!+9W&uL{jII-s5I-SHj-3#RFhb<=t)j^Yp+&#;+G5N9kR64kg?|Tm zRpS6T-k@uSB*(wWl4B=FgWrEHCDN%vp0gCKL zR}M*$d1T44Q)IH=gmRkoK7x}C53;Y&u$T*!6v#oNE)0%mK-|`W?GyU z*@Ilgv{94c3UYZY85$!33y0nny8tCFr7MM`#JkCoW2Z!5Krc^73G zz;S{@s`dejTufIENs$Z5l4GaHJV=rDOsCjI-!1+W(>XCim~OLj zUtonY5Rl}{bnTEN`2tyT>?Dynn?OAaJ301GOzSi&9wnE@vI696EEWM8{GP53k_Nva zOOBle`$8JX#RRFX;th~n<Fu{Hv#oJ&^_NtG>R$+1(V(eB1}cT%y+K~EoI z8mzf;4Y@p)EB-^N(MAHYyq~Tik}U5fOOBl^``G=sRV`;y%}cS_I-I$OX{~0;UF7mu zrucUr<17R;`7T{OBu(xhOOBl;``ex9IjFk1klGOy&OXmHTC?R@a(OIU{4cvC845`A zG+j$1X`UoYj-51f?Y^wGlzK*{wt>%7a(OIMnu7DzfdO%Fp*Wz&B)V!ydWnlw4xksd@4) za(OII{D*Hp)U@SlesX&4~IjdZP$ zq_}}BId)Q5W_o=~*KG@>e$F&g)8c>0<*~G=Hq+}f4G`nUbiI(oxSuRJc4Anj@r?H> z>kn=8c#~qIQo5r&k2uSizx^_sCyiArHJ4vR%mN%DA*=Khfv$YLd_92(Y z(!&3)l@OBv5%#9*gCxQnvgFu_V428MZG@YEkJ_nmD$`uuUTh$j#}cF3M4r_|K$Mf| z`XPz3hAcUDqFCl>+|C5Cr{^-Jy_zW(lgne7Qf;2bZX=+|g>(gxRM|zA96MDksdq6} zDP_c-z_xTDbDnr{=y_@TwC}A=y6)e+dp1s$$sPb8+k(v)rlgnfIP;L6mV;E>3o}_DqB*mY}l4B>u z0@yydCraa19#75HHt?84E{~^EYqP|m+PM|wDDxvW+-4CoZAlDJ*gZ(sUs`{X#a(- z78310ktMsznV#!WM@0S4tT41do<}gbqqg9D0=Ybv9M&@{BJBed8B13VNs&=x$+1&p z5@#G)^}d$C1lpIWae~N3g%Q`e?c~ND>@DmK-|?^m+qRkI-ikhGEXe%;w^^i1aCrgfG2`5$7h|2~($TU}TA*-1Ph;koYKO|A^Axn;(D0(HN-;0*) zm~Cp|Urc*7Q(hsL$1=sb60)j|fGRK26+}|yd9vi#siOB{_}z#(gP@_awjoS{Tpr64 z>t2j#0|7~9)3rmAWCmGs>?F}M3w|FuTUt`ixs26z3$JI|tlN~ec=`$h2AWJfv{jSiY;t)lIjT(7S?mK8IfJeok|L*)CC5$?eRjB^Na&dZ z?_*l0N%0c`Q$=%*WVG1Vs50T|XpI9wkeT zohUHLZrh7*qsfG>+6F6Q$>p&$sgh*383;%+imn}!B*V#)V<(AxqojYp7j@RaaZCes z`*Ae6JeC;Xjgoew02z*;YlI}jp=8OilL4l?{JZgOZAFf0rlv%OTpmk_D(No2X@D5* zbiI(oXeCRIofwu@BI2BZk1!3?l=v{YJeCsGT8Xe@20ldB2uX%($dY3x101e~ZY6(! zX`N=medO|3CR7=&+IN!QLsth$gS*I*W2b>WQoxMy!#9$@!Zc6w;6-wIEDx+l3It68 zox}5VeULv^NW2eM? zFscaMU2P-CTBgOixj2bj9!rozqxU3)S_$Z~lCC0>F3ZW1W2cKgbilN`t|O6)N6%-P ztogEoTpr68>!AY}GXY^rbRCg|c^6r72w^C@c3lx>@3z`?$q-@o;oZjF%4f7t`*~~9 zVs|ZCh#lk$-kXI^>fA{#c@&TR_6!`2FSz=Ia_xQb0 zrbk%n**$)@GH?&rJw7VbyL#vNt4wos8~YNuJQAAn^kAQCXaZW%f6%o+wxWNJ#6&E<$ByBO)UWM9%@R{WDSUkZ=0DfZtrqk$}ATgaxmJE8v366;R?G2ZQdKrIV zRzI(18mTMxiRAKFB7j4^!VLqYIDxJek`znHl4B=@JoL}+yNH#FJDK)rK6I1IWBC9M z{j=Hxs8FCQgrq{AEID>6$W@9Sx2dT}}LQRQ>$mOw=04GU@SOw_tQ@Tn>Iy^|096KH4 zNzyjQxyx|u3s&D@+NnwL7P&l@6yPN3NZSB4UZ*RDq{hF%e& zGm&cRE55Bt@lD=*oIH8czZ4OYxsx}yNU5J^Oy0ch5K~RwjA>fAX6>?E zs#wglXVL{j)%ECQh_GWardvy{g8HIJk zY?W?O7m&*%u_@2+cd$O9fQEEGx*Euabe12;6r)pp~ zk;`L&4J@|x0_!yjV0;Q)BP7P_$dX;nB*O({$suH*bXcwk6FI47hatjHaxT{pqlN0qYSQAL+zwT0AtI+Y2a0|* zto048Z;jcJqCcL0Y0pJHjoBB(q7l*GxeHjvh5XQ%ogkK&c#352Bu7rajB>dfIo&U% zKEQ~a9&&_Nmc6Vo*%W`^^z%yKq)JfWvsYV*LAAi?r%|Ry1QMQQFApjM>j8EUYeSD$ z1X;?XL|0o$?fAT_%i8G{I#rUPC}D`WjseWGnj5Xe{d(Hcj##TwRq$mOxH1~LpDSiLp@g!iT^ghY4_Su*G+XE`E58*zFYUZq<5so)7O zY*aXvX`iOT26Fjcpn}IHK!ua(3L&YmhAcUR3Y4zO6=8xE)#NZln2_mZa(f80P@Py! zT0BsT79wPNCccpA5pu}%=_u~FA=495>XVF+>1Ic`3YjJ}ZAj<3m#?P$(-m%6%3 z*1qEsrlFb`7m>?jiQzwdy{d759Ou(DLy}_$S#s>;m<#>qY%6T;?%YvGb#(=1g>?k^ z6{e+{9bY7u$Fjr!lBw#}0eaj*R}D#z&yXd@PLJu(fn5H#TjJDA*7(>SX~h&;jc1e3=t+zavwLd_!yc7&^h|9GA7x6kBfN63db$AhR+ z2net1*ROv+`JXrlWzaDBVXwy$kZOtlFGTqPm-zpjvUU$h{Eu^cD!Z%osO=9-lXWxu zJ92p>JZ1mc62KVHv_4GN1lhFyG8)r5ru`=c-4J?a$l#r|Mc4z#<*~T>H*8rA0@%LO zXV|_)mJGVh*A+bmhb&_2^(7NCfzPTWbPptBsch7Bd=a@kmJ9wv9HZ<4l-QrH6tcR{ zCrgf<5_%9`Y3rQ@NLA9g%}hHrEjE+OV`*U>gooM&sBtD;F(frkBTJ5*8amZ)+=of# zmYIfXZd^?+kL89n)gNvgAjfXHW=L{ePL>=yIi`UoH!79;9j1Yr6yGA3$CARoelVJ+*TX?qaDW-Xv3Qv&BW2xXjB|O9=K!nHX`XGt$7+G@cM1TRN zC#7Y})lJ-0+hAiHxjdE)RRTxAU`)I!oNB@_kO0qx|@A3xjYh_@=V{V z+<+;dExn4a2eK`_A{x(n=H~oPXc8-Ba=Wav-*=F`p&Y7Fy`5Yhi>g02XEg|5`*pfD zNNm4Kmh38LdZ;fsBI>v3c45G0t@&c9xi#O>l}qo;ly-?F5#61c&aL8kjrB^;-4Ci zGz^epBwZ^cDTa|H$4-idfbZbjRf^5l_TyNlt-AdW5ne=@G?o#n;@HNo}>pl5;MoZJaTSTpr7a$Z>|>FhGjwbghu2m_n8uJ1OP_ zYZK-zBWsv;>Xu>^xjdE^{)HpeYy;F-L01e(jb&uXu~Q>B1T}9OQOASJw!_+N>|)xg z>2V&pJeD4jLr|-IfFeb@a!87FktN4Ykr{y+CeEHnr%K(0bVzdIb4(L8Gd@i&k7b7c z==cb;03mLs>x3l4O=QWj6JoD`=RC*mhc*|#Vw$N*@qgsjWXZA9VoK0?5gW;q zHS%ErxjdE+{v~H2CIKSsN7n~Qgn4Aiu@fO-_gZr^1Tz=z8s!LLT*Wj}6XObUc`Pv^GZ%it04Xk|YlS4myUCJc zC&i>dr3zoGd^^)PO@^1W52zx;97>e2FYMb`k_r+@AHkwsp#XW?HD3 z@JDiaEE6JA+#ag{9sWR92}y_FktK)FfwDH#6=Bu~tMz>h5oQh8rQ9_^MhmrSv?eW1 ztwjs5N_kd%tCSBWuToxgQN-BIU8Q`ClzJ>#F>gfQIx` zx*EuabVD?nbzGu6(dUDR70OqVouT}xF};jj9*b!L*a)M)%Pcp64l=wKgJeCr0#c8-@fEG8>)k4zZ2D0SXY2mCT z3plS7xeoc~Od~Zb{+C=H%L=%bEYvVSiXYRpLXzTsvgFuFG1;Hoi8=%IO{R644X=^Q zW7*(;Ri@n{K!bnM)j`tWWwPYhX%Ltm4_{H(cu8#oj(y1Gu_TC^9uHYixHnxHBn9S> zCC5&IKzhov^3E18oXRv%HwGKX<*_`7N>6!=0`0-cbd8W?SVNW^LI%nzE?0zE$fwrg zFhrOY8z*xoY>gIbeOFCdG}NMnSWftd_})*nfxMjX(^1@UmlK{XrEX>{C%oAat`9vu zW98DtVTYc!Rn`-#G86#q6<4BAZ9U;lQN~BinrBCd7m}!#DScF#xCg8!924PRy`byTpmk|Cf|;g>ec~z z^rx$aq{rL;ee{?YaG*;Hbs$-DdS_QoM4r~B<6yEI6%xAXSWGUDWysru7L^y*idCw$5NNDi^ zrg@qO?<1G*JtEkmiucg}A(4iG*5R9U zt&pU+jVw8KQcSh^Zb#mJ-tFI*_Gv!+m0TXn2mcPHFq;4s{z6v>NrgX=CC5$$5HUm? zQ8@YX+J+hv$mOw2h>jRslK>IM()B?SVH8<%>_h+^h4Na&DRfJjM(T#)IC6O`9ilr5 zpJ9L$N7J=JlHv%m+o8hqv(BZ>$m5_A!5Lt5UbZ87zq3*7>R4J{G#&6Da zbma@BRA;L_ntYIHux7^tJ$D*^w?1VA>`pv(z=c1m*>#+o(+7iR@QMTij z7>-dE)&uPz*kV=Livsg4J<7kM!`-XbpDknBtJ~P)$>ovQ1dc59TLK!=W9Vui8`2}A z(X8VF!|^^JG=(i8>ma*Ac~c{rC6~t{>OV>dS_4qsN>>GmY8zRytDNbWQjUoFEg_uk zcNk^?*+-dHYARe$E{~;xe-~%8Wq=kvbhVJQ_#d+5*l95hIxk}R*pHY7YDWB!Tpr5^ z|2CaaqW~FxK-UOKhVPRl$4-VBe!o>+JoYNnL`{d6$mOwg@SiaiVHP07Kj=Ck3GsKb zMwT2qA)H+*l@V8yX(1x#dDk%w z)wEbmE{~-J+@%s}9B3_0q-%yG#|dP~v6G|0-_F`sRoU{m7cgzr{Mbn@kL8E|J*OD^ z07bg#${{IIAWM#&B9r|tj9N7Id8T!m6rUxR$CAQ-K7`#OK!Z=w)j`tW6J*JIBn?7B ziierjX&U^JT)x+6V2dUmqN{_X!B5GOW2b?$Tg7y^o|C0Q7LpFwU0Zzl4%tUoGQiy` zVRnI*;VrsSNJ_j;mK-}JoJB$b*M%(?TT~+(_9vIevH>mdbr`M) zvlK_orZYsCdDp|ZS$Ly`TA@*s79(rXLM#Ys8Wh`tpbwB21TDTQV$|j?2)bTMy@9bH zsL2uTIdts6utUdguB-@BWhemJ>#;{;aUNO0hxV_s80TY5TO4`f@qDH_i@t_hOUIUXk<4;{OT>>1@;jqnxZ@>qny zbWXH!0P{=fnjtZNH(9c)oawnPa75H^#gII7%PP&m|Qa!u{h|@Obay+{zxv5gf!yo7>A?fftvgFw5 zAkU!lI<6z%md-VIckU>py1LQ@-|}l642*eCMCcb0{b){%B$vl>0-Qk?Wf~yHFuGny zVhkorj-41XXYci1)T#eRG0oG2IGkJ_O9+s&x0wWpa0p!=BoPiIOOBlga$~Q>YY`iJ zw=s>>bV!rSW9a}k_J$hzm92~Cd0Ml@>nu}jlIwy zK!Oj_wLy}gOqLuw34)=dC*N&L)ZWXqP&46fa(OHhB11`!Re%n6(p5sz;X7o>A#|W5 z#9R?3DXNkh3=w94dkQxuHd?4uSxs8(Q;QZNHG4#Sso5`+Q?ui)j)>3Q)a*B<)Ne6T zv!fm1p1qm}RwgxkgN5w(E16kUgo2;F;z|&zWoAc2*&Z=A@nmL)Dhv03%&gq28RA|& z7CV}0uWnS2AeTpC1NUlrECCJap>#En4e3GAXx1?=EB9&|AB67JY$v-yc~c|WN-mE@ z6ztUuSOZW!m#zvD)h%Snu5zYhI?EAJzs###@!)Y-mAu=Bmp(h0P7!AL(&gcyeXNdm|$Kh-g=n zU@EyhmIPpZB(MiiU=m#!Bn8HkCC5&IK(ydVLfBF(E13pr9xNx9$MPU5TJRVJ$gqU2 z5t0nYk|l?bfij?VMVOq18kR6bm;m+wZo_7@P($6Cv=~&279z89dc86$DrGVC^mMK@ z-;qv~@`++=W_zZT%%xKW|CPjOV#+v=m=Fz0H3`WWPVl!u7r0_o0Dj{{wKsQ70g zlP>mb=~-7En&~W-Qn_5u?w(Y6RHm~v*WH$G&*Yq+vv&yPQsrSCshw@Ee~oqpRK6J2+1=5S7F#TORtsmAG9@86-aThHITJYC#g%6DyEpIN&m*_LlD zZWezwi+HO&)tYW96oqyBh;pkZsyBpwo{NmBY6_W}s@m1HXd$ZFDUnqT&j3$jCZz5i zDRpoN;Tp3eLw?DQ3;W>}LCW$731ebqcc#sMKxFpmN}YX%>?eDjm6lbjvrmzq1?ub* zj)*$dS;r<%oo!rKp14&yv$#l{`%uWYb*uN1?iRIqr2B(7pED(D^t$pm_lxw-k~3m0 zI^RyNeCxbJCe@P3WlFo8pGLbsdF~$LepN~rOPS8C&TZq}??l5a+Lnx{)6UnU^w+7P zXh3%Nq(PI?m>u&zQN_o}KNIAiN%GGW`DdE^GeiEFCH|y)r`cKi^gvp>a}cWC=@yi3 zc8rBh&pTX#nWje(tfr>t@mjR#Zs{(ME#+IAMf2UP8)@0uY!Vf0b^q+6;tWRd@h|l; zQhhm7eN0gw`>T&d>SJH^u}XccP#^zL#m`n(udAy$>gwO>>W}K>T(kHzX^o%%RheLSn~+^DWjP#SLn%_`4GJhWePSzI;wy?WL{`QXhlV$6wTM2db+>)yIF-m-E%tRP}MV z`q)Q(Oj92#)yD+&F;IORAU}p=k5eCilEMaM&r(+>s*fS^qknd&{1}&QkROAx2dk^m z>bIw4xxv|l`fZH-7?vF%KSpF9k-rVgKB+!VmR}CZCe_E0@?%hTv-;Sgz8tTvj+GxH zvuDbWf!XKP6PBo39+Ox7v;UMIBeQ>#A49Vn{ZzSgYx3qyc(XJA+LsHUzJxwvZLhHsO((%F)TY@4{)(RsbS_>hO6t{(5~I}y*5(`!O`8L0|0 zWw5ZipVPaq?%!P=BkON5-Krw6qC860-f@T@wzaM9e`Qa0$6->?>i)ZXvL93b93cMr z1NF~=;-62ce-0A=9C^5N@8I1%-TrRpq8=e_z?D74>>-U#geor`nJx205%JH}{jciD zUZpPvh>I`li-A{(cLpBjDJK>9-TqEFQBvIchPY@HQXDxV=$n%?*8{}$dU5UiEaes| zKZ@JMkJo#y<;_3VH#^Tg!t-2d?cfEDsDaLN7w8Kqca6A^N(_{02s!WaTuZqh_FNAX z*WdG84-(hUiEF30^W396&y}wIsJIrt4sxD*x4w|ieNtbDa@pa^X@gb|l1@9uBSe6b zJz=3EWUwP7t1qOG59$jkQkNmFF2D6$OBWAY zB%+W0fiwUqm|zF9(JiJw$$87OMY zt%nK?1Ubaxey#o~$@;qbr{vFGvbGFdEgLgYO$5IQyXI8+pgyz1NPEal*|Ke)$~nKXK0?zHg+IvwYvk z2IqaAZ=?a`K%DP1+Jj}IeWqyF6$YZ|5MkDb|t>U85`AMQveY4Y;o$XOVR;ufcazrVxzN;^!5|4@tDObC_|Iy}J z$~{nAJ3mV$PS+RCL$-JxBCG3vmN>Vn=6>&`?uC5FN_`=P68;} z6}NsuUq~T85EoKY37xDBPkFATrc;$!gI3Fj9IY>$hon3Yk!}0^N(I%nKdUd~Lq;uA z50MU$4_WNFmJd12b1j*2f#+KC;ureDQKHqOglyCoEO%~Ijrz&@LMrht zaUm@o;wtfB&$U$Id!B2l#N(c8sl@mbT*=ZC2Z;+MOcCb{&$SeGwZ7R=GVM`P_5=5d zYoUqi2cFg!Qpw>*D7m^HX!2Z3xf?y#Qpug3YpLWH#I++?D*3;aAC;0Xdak9gxrzuw zRad>$qvSB5iSYJpb|1B=0@xxqC&N{|iOSwxt*HX!L&$U$YdU5R(mr8!8 z@}pAnkDhBOY^!<3R4kCMZMlD|f$Q_;t^oVmJ-n5ZU1URuD)vc!J8p(4+sKxOV}w>$u899h_K_Em=>;mY>INKjg=0z5R+~ zM^9U6NtPu!@1!~1eI%W&?mnG!x^0WcFoXegzU(B*O5knEd1Bv;xiP(K}3Y zA__$A<9CsI=}&G>e@+)$)D@e>OYe5qknCRX8j`(%t~oo{`z~_<_I}LfRL<6*!4obzt`Q2CLc^RAKk^CmO=O7@s1E?VvT=$fEZtNjRF zKwP?FaX;%_1M12#_Z;HxqHE3$abIsPAnv!@oJ!mu^{#>RyCyTl{fd34#J%B8Lxx%u zWj;jLOa|hfwGWlJ7rbj^{$-Py#eLip7tZ8HRlCZWJYg=t{*1YR5$1AYn5|_ctmPfI z7;B;4kMO=k*VNl7YuR|Kz5w3C<^t+?v$=q{Z!;G>5`343hzj|Pda5eqirW~G94D2# z%Ul5Q)#d_-U30;R@AeQO^XqPB5GC_>nhPNQpXLIHpEMUh{Gz#F#P@iJaGk%d=qcCv z59R`h8yZZDgTkfkyYR47MEN?J zI9lwr+mrfb9#0+d%tA{4{R;J0u@Q^0P?(J(74b$?sCq&M=D$62~^vt>Z{eB6$sx*CBZWk~blF z3zBa|GKFLY$tfgfC~0SyrUlZvo9WgDB%3H{XPBGC{cEWTvvo)|AlXDoJHu2h9-=j5 zFyIU}m%&W9&f6KLXpsZnm3>Zzme|fPJ&XI8YU6pc43k(HW|VkFh^JzBcBIV{t;mZh z1)db(A$x{FcZMNxhCyvR!_+IXVIY`cAeLdElwqKgVIY!WAdn%@&Jf6E2o&2Hrdm-7 z(G-U=8RCu%K|+QeH$(TweNj8ZyejfObc}9&9LX;r`9&nZgyh+0D0vN%*CKfxlGh`7 z1Clo)c@vU1BY6vwNhIHjq=jS($uyD~ByA+8C~5OtDZMS{7u!5l3P$R_lA`$_elAa{k9uF%9T zaNBZMXk_jRt<7Db*|{sUKX--phby$l3)~Rh6vvah1MUj`z+J&HxGQ)FcLi7BuHZA= z6`Y5=g7d%?oXG|DBJK+A#9hI!xGOjqcLh)5uHbUq6?~7of)jFA@J8+mZpmH2Ke;P7 zDt84(g)2C&3+%Dn6G9G<&E zZ|APy`EUhKc!6D@yMixtSMY_nf^WRQPSIV#JGv{lNq2=Aba#b0Yzqo1uyHa;BMU&+%2x)elM`!CHY@+1^&6)@Wk#4F4^@h^bGC_U4*+rU*WFMX}Bx&9_|X=h`U06;;zuKxGVH9?h0LvyF#DiuF(0oEA&F{ z3f+;rLcip$&_TH?^i=K&U6#8--{r2*dEpB0{Vs6lg)6KRp=SAZ^-Nu1g@t>Dr55fA zYcAXs7GJn4tio_tSdL+@Fm+7JzNic2AhADu*DzmiR(bh%HAnf?Gu^pXXMP4tQofVk zLB3>~f3E3uyNi?kb8}PO*6MLB48o z`V95rv^tJf!{uuxTl3xdeeTZERKB7+m9?iA5d@$4`otAW`KswNv>>fbOJP}#75b7d zUb=03`$L4ZCBLD+aHcc=!nhK?Kkf?UtM)O#2?BTzgLKXbs(&neQ9sn~t`hZ*=Ax8l?da#)pf;?;d7vdIydB zLVSLo9O7>TzWpk+9(+58v=2ktG$nq49a6eEkc6tE1LqaA(>mMfdvI%~g4+{c zpv+gjo|xWY(5`|AbT#osdi1gcdO(Gqf}mc}am-43e*&_3usmC}mr7tWB-+bhqE4e1wDbA^DmGadYAWSG_r%&~#{0(W~`^PTqe*^ZZK^^|{a;@c?O zRfmy*s)>nRHLI>BzKb5MI=(d1Ay!aD{B%{%-kA6o;NnPkcD~i~n7w+=-C+}2d9>Rj z$n9h&46$D%PVb8*B`y3H^&`8peXR6)l5h0u9nx1!S;wLDRU*8XDAiusJ z8czIM%69crEm~zrbpvZ+p|3vU?o9k&$a13Hd#(-DlHI5*v>MOcnfNeeS#grBz*Ni% zI-Q*BY2xSU;hMv3^54DA^che0Yi7mGiH}jnmHW;x8N&dCOTh6pOs#@h5gMk( z@hjkF-x3VN)Z&V1eL3+P^l;VdxvlTm-qHxGu-+MU)*4RyzkY_PFvHYv;`hPFlQa;W zZTIF-)0Pi<-{IYy_+w-|GQDqUcD8l;%=SkfrrO2|s(j7d^t5+#;&(A!x5oH68s?q~ zd>tYIto*uQJ)FDa9Gko6c{ALEL%Se6n7b>Tmb)K$Dfh_uBzMO%SKLIc@M^RR#!2BW z{L}?$xVVjVYFvUi^b8S?-s~P}pN6||YZn6B#(lUm4dfgC!xSy4hZjQ6h6mvFLgdNZ z6W?*UyV6&=`^GuBJDyK+H+?_k?s{gKxH-jgU?HC7IcN(gve`X#ehd$=s81KO9xS*o z;I=a{r5n##IktR<;O<%}e;4GU4)_(d+hP>HRbn9q#2x-2G!`r8OPcKl2d+lO-j@E21wvSPq zJJ+W>tIeG~z0-7^O>oh}oZ^FsquCMqdypNalqSB8@eh3jfDc7gSO9!5kIc#9Cka!CGJX!CGJX z!CGJX!CGJX!CGJXc~;$2^TK-aH`}6a?o~fn>q|MY)|Yq|dyG4zAhLqBjS^n-KWK{dqb8tvtuI~OsGec1 zFI{1+Fa6xEer{1eSnEqSSE(O0C(Ubp-#py1CBLdqBhK0OFu(D@3$&|dXO4!LjV(01 z?DsL+!szT?3ZHqD=5o*g=IA0doe#Z}de*x!!Y3d!8m6GP6#0%MvM4X`70>;pxw%&F zTq$yzXI)ZY-rAmNl|pR{nWO>&;oej2*5XpHO$(%FX>?x-c54VG%L?2vY!U*EmLlE| zBAQYH>jB&~v@ns;F9p3l1uBXcqc5IYxEORUF3|4;?>u`^%Jb$F&sCBzj)161BaSbfYjDym;ppx(w|H3f%3ATl0(z7+=hlYvb;y>X_{iL(th8(CK%n zuPRl}ofT9VLD0BQ(Xhu&m%>MO9TXPGcd3W{)^p{WxiQT%$_c!?72aZxW}ZvAjQU=$ zpg`0dE-qCxy8;eTPT-BvtX8MLSP>dTJ%uSHuV9=h#N1CMqN46`=D%>`I z?Sw!`g)$H9+k5!wgF*bmVaj-SX>qngA4ATx7pWtqnOq8JR9A#&MOog&ks2JTwfTE4C+LHRVD%8=V7EuAtS$2WWh?}sLindf7Cu08 zYIx-cJQOKJSNN+*_Rd^uvD@oUD$D9m>Ik+#%^_C{y)MPgi|5E3o*0F%1Yx1CN9p{F zD)R_=v61%HQ8>Xt8-6^$mu}D=+U=Q+7ckb;hUMU)5jijf1t)tDSWquQGXTq0#e<_T z;^+xJ_RgF5^dhWdB#n3k1t*VRY`v7akieeCH8H`#e%|xRG?ryo%Oj&yiy$eu+2eNV zSvD&pS%{;j_-OMNvd*z?pE%NP&G+$EuC`BAVNgK}b9h4VC#*Zg3&kqg9fttzzqxb+|J^lQlml{<@2g2UbWD%A=D8e!x7Q@=s0fWeiu=8#Sr@of)|eBy)FC?^ z@emF)1m#!oN#%=VQp*v0TTQVo5kY&8_5qW$7tyK7&dhQ+C~aV#@Bt~o$78PHEr*4= zb?>Ms>TUk=-8Jv~j_uo1yIrf1L4lPJkQC51=(@onSh4+WseqKzHDd!WsAJFHD!mGN z>HyJV*?1FS9eQHd0H?xTG-E+;q32suv+cdzF7LJCmVAWDZpDZWgr;p5sAc>QjEgdD~@@AHgOaEoB95-o?bZrJV_%Vpob4dL{L;qgZ~6AWZMT za-5Qda`pdcg+H)GDqPY-^<0vLa~wQSn}g6HJwB2{N|06~nHs7ua!32P>`3k?!N$Y2 zH4u;!7V(Pu&M3iy3i0ZwLX#1+AF1mA5|qblOCLA?$6b@G(fkv{>sx@MWEwyAE^>|k zu7ii3JW(SEQInop(XxzC=|hzbTox{9P%=|RBfdA$h$Vodq9#X^a=5@vPmw)@hB`&@ zTJPK>&6M>zFNC#KL`66UnTgw^02TV9Nn)3{%{i*NLX_E@ zLlfG1Y-xc8ZuAa?W)vnna|_)bts9+olM6|1ok$|`m2!`#krnke?-b{p?wu&>+`3$J zqCW|sfuDMJ?(t-c2%)wVxIdfQ383DVrVu0N_h2pOm!P5ElO$R1ZB}H z3KjcKx5V*nbuKAogb9-B4QrvW3Ae{ndFsCKO*IKdCTN*r856)l$1Gv7)3adCWGW;~ zxV#5STwa2JdX<<|p#~BX+*jy?64+`UDv2Gtpsmhn)U1pW-8d}4{VURLq9#2N?Meer z<0{&1-l5WSKTqyCQX}LO?ne|6BBk7q$n9)NxF3-xazDG!6!BHrWc$=9fBlxOOi|iV z5OZZB4>u1FP{>fyECh%nB&uHIVM2*!u^S)NwPsbLC(CxTj^!e$cLu3E;~}DuX}ev- zF?p&J8kpeNNu}P$Bx(6*g3d$k$!vF;1guR>M9G4q@fcIkd{k4?OZ@a|pPE97nHxzq z2`eZ+z%L7Gizu9%q@{rb`VPK1q8jh<1K|V>11BhzI6DF1Y@@{DLuc2{uotd#I9mwv z(9!l{4W|>j2w6;suzQ+TA9PO9*sMF>P1LI4ZJl*~8oqY8SDRt{}rG3{H5(C7l9 z5wxKEic_={a1slQ^lH|&dmH5%tAup&ie4jPkvwmREoeWGh%O@#M=UgW$yDU#c@Wq- zeY)2^jkuha8Z9iP9HWGBg(7Ijf|zKC@-YiBzTkmlVcm%-Zu^rX zG-MGArx^&q1@(QXd+un|%mc3x9@zrLENGgEG!4Pa!`0zVQ4V~3*3t>~+KR3Y0d z+!NFNkI=9xdW;xb&~D;`m=UOnDX&9nHHNTCb*k86!q2A@R? zRQT>Byx`z5vf9NCh1&GpQRg|D9e&RHwxhb^s_>f$a6x@raR^)_v6!lht2h-3KUftC z7tyNl2Ld*bD_Hqit;s666riB;VCjTyq#NgWs^n6%64SO#vF5&7sEYO&t;8Qs&d8KV zqE^rpF{0pv&UU&1#t43;!c#j;L2HkmNr|GT5h$x=Uxfk|Q4oCW)w$vjY6M2aGKr{0 z%$#*hLUGdOvrODD?jDWcCfbT-uGNQBQUSJ<5ObG5+$xaFmUN9Foaccvu-Qt6aPeTL zKF!n+&e4pKg`D>n52GxG6HmN53AG*#qBx8WhdK4-N_7X8r|KaThpzrWr#|IW=qf4u zxI&*iaID)#EvD0ODhROIY7C!v02eo$`m(2j0Leg%E;R58gs;K)rat*ph$qPh(1P~f zk%vwe+f_lzIoWJn1srHbgEPSizoYkt7xgs|&OS;P5{${V6ZCd~Ug?m@qBu#z`N>$(3QVfWq_Bl-dZ1?fSouiJ zO5qe+?xU-RNv}wZWa^kj<7DsO)fqiu%=2?jIeZsEbz>4I=8(-5tC) zk_K0VFSsy+CDX(!=aH@QTq{ovmTb1_Aqvh}bVHOe3YKl*!nMoln`<{bu_c6X_oPF1 zo7ssF4tH#pC{*V;N3UZ~)Rrym@WYX;&7!($_m*7n&kqYbYm4E?gyV9X#X}MlcIg<= z_Hp&Z2|HnPtez^vcTkRK5>(K=zqpICFiyO1NNTeryQb};7pW&pxcDHTkks9{bC30i6x+B% zQd(;B*{#mC-1+3;(O1p*MTGLpR-E{STm{JZz|T|EJj>qk`{irVh}DBLZJm0?NIka3 zYIqbKGLqI^ux;fi{Dn4^y3Pj4bHM^wy~MfudSVFxUzZYx-l8KF38qU((E znN{L~O8Kje2*c45U1yZf&`P}8NWXfB5F91pD589ch`!|2LsZ<6sj$b`W#B|`=Q8fm z(AEA_M4n+OQ8}pz=&*njK=k%uwy4pTObdl&9SJe)39}V7SzaaJnpWt$Ll{RbWnxyn zWexVBdJWcMIg%+SVY8Js*RAEv)q*%$A~*=OU>cCHhxAZ5Eb1tTp>UWj(QrzJ!eMDg zq}(RrW`hF=T(h|gdymxUX2rK`vW!sC{d@>RXk)T~<6SfvnaLiv;C2w%J5AsJ^Hy=Q z?H924Y@xR_PaBf*DG7B+iW&5PWEsAYa;IH;DE3p)qhpEcq!k`cW^(aEv~S9z@kD{$ zS13);+hj^aEdj|Cu8=bIjiAJEvWag5Wv0mWxlcywR+?z40XnAF`4bMoJG<9;>_d`R z=OGcC5TYr`OziFqo}g6nO`L>qbVQsWGZi^;o&;IMCs^1yvaa6BEDn0JfI^}NtEMO< z%T6xQVaQD7>+Yj>31F52SO7sQ{gr4Djj~=d{zR+fE72kXW&SA+C~$U?3n=ac zsEf9WR=bD~r9=^-nEMLD2}i_gK2_zm#b@;K*vrr8$ju3OEQqmNvkTCVJn}BewM@;63JW&wA9VPesH7iRDVrWJ;{8IC!Z1WUoM` zsH3wCm4^$fW^!FlaQl!zCdc9pR{DChtXR@Y2?! z)OoJ1^6F9QJSQ~wu#?HWkgQ8j%-5vySLnOtpPWccr&6(!NoJxYWBkds1QxWL z>`3cZpcoGY)HGBAzkan<;s-URIs&8Cx|Jn5f|L{nP{^V>iRZgf-zE`U)rde&X0lj< zLec0{mURS5wUtnX1=5{e|dY??iDMuN1yy7Nb>BL>O9Xq$6@W#fg!Q$P;yRRoi-q(vE_N z0Y#qDZmwiBB0wA=5#NYBMV(yfHX8!LQ4u36k*Bze^XQ~~rK@>6iBOA9;4W)y=OH+D zQbl2v<;asN={DQ9zPXei}91lljvkh#!sTC z(@cqfDd=JzAE}G6igqN$hem>}>JDaHOow6ww__P2IIoQ8Vrq@xyuwbV(A9XEmN$a) z034NY1m|UnI=1o=l~>Zihw+A&si?ErU9lJ;s36-BgyTe?Q~)Vzs3h9-Ae=~H!}l^J zr#331O%K3P38PIflcADWD^wV5dc_@$FxvDoB^*I{wCR;~1j=eZbOr6~5z!D4>Fsb$ zz1DjPQAAX7L8RvquyzzidM;1YAj)GeSI}uB^o=f0QFGW8*luEQ=Rh2xFq(9EN>}BS z^imGNQ3-n~m&X{XsD;8_%9V52VK3$KB#g7XmvTiNd`V5jrukYn&FmTVa|i#>G1%Xd z@u~9JaXOCrJBRrSswz6&1^3Q;ed3Cx{H3&`@)H(ikJ>a9M2YfR1fDfh~@VV53498LrGMq|1;6tegd?xjPkE9;(iPQr= zkb1!9Q4jby>OqFns0Vx)^?=W!9%ML*dXV8H>H!}_J>YYw2N{l`9`GsD13rX$z-Leo z_y}q`g`1z^0O~=8^QQ-V{PciNpC0hx(*r(xdca3d4>FuQJ;-qI^nlNu9`Lc#gAAum z5BSjO0iQWN;3KC88BUxY@PX5V4ChS`__*l-pEf<Z=zJ>XNO2Ykr%fX|p7@DbAkK4JPiA25BM&zC;W$4j5jaJuyQ42Me(_-yI(8IG17 zWH?#+e1?Oi2YjydfRB|PWH?oNz=uko=QE`Te5CYwK2iESA1Hl3!+Fx@`8etGe46xm zK1}*NpCx^skCGnnNzwy8NcudVBR$|_q|fsy(&zaQ>GOPs^m#r)`aGW?eVz}H9`O0m z=QA81eV$K`9`NDO=lSgD^BIng9`MQ0=lS61^BK;KKA+*(=mDP^J;-oq^nlNd9`J#Q z13pb~z(-#V_=KE6hC^Nke5S(r44bPDc(>p4yy@nEcfuR+MhfRMe5*9z&k6<^R?iPI zEEOMQSp9iE!(z5UhBwgXGfbTiGK}xfX9&Uu+yk7?(AWmt)&?1x+F*%WQ}(Ktpp|XW zt!+zuY;}HJf8k7L{)O?GE+&Qh;|u5LZ0h-8e$CTU8SSrmV1BW8ZulO8_zDrteg?-| zzib*y)`x?|;dc-7jr_G(YoX(vyF1M8`>d1KXnT&&P#T3_@pG=rg_5S=;jXYM<|q#t>=x=A3H3@Gr!Lm7+ZQ zIGNfn^UHA=6=`~9%!_Dsc(o}0D{=AY3{idwO!^iDKN%NPeUwKR1r2RJkXj)8=7#ckF`p@5CiljFu{?50MrCzaIlc^$hXNNztP4AH{`L9~@BkPj&X? z{&ZYk#Zq2*d3v*7`ajhvElz3nOaFOXI^I_~k*n$HLyiT_Z^i|qS`SVo_UT^nuBb~;o~q!~ zHFe;yMtBW%i`h$oAo?#g@l^mYJvG}srOz!6VY2tzK21%f6ksqDiP;AqZ$&JaT4!2- z85~P$bo}4ZMPCz%_!xK51yCJx?D6C&KKFRM3OoBrEB7nQfCHRj4KUZ&#u|8H6!g^L z!CJ$NzaIE2&1x?lPpB#40>y;<(^ua@&zoY7)w=uocr+WqX9^44>to!~<03;o(O2o! zQN99hjA2J&*I&KkSliF*g0Ojl)j@DhIMN{J?fZ6ZZ7OP$>7N9u@*I4;e4J{~h z*o*~LvxwE8UJGKVZ821-v>t!4ku&1X7_qdC2Z(&mtS{_?F`im9Q7x=pW+v+Qkr=Sl z`aA}8Gcm``3fRYD*t(jG?U^kI$- z7+G0jE##nYV_x4BBZ?39$`xSTfcn6~=X5g074N{yan&kNA8#tg8=<0Nzrw<|V^Hzh zCc&hAppm@};hzawF0_u2;ZC`TN{^=uh)-KAX}sujts&c-r}7nNoF z`OSyHx-poFw(9U1w;smq#h7CI`cej&uD8E{FZogoEEXM>0tan}Iej4p6bsx-0fmV( z+_%SY^_3Z0IAi{^7*l*$EYF8CHjN45>}@D2Y+Af=In_DcAD?RV+v61&*lr2&fXWJh}ZA|V?k?Ui1)`3!da&w^gDK6 z)ju2qi5KYskZ7pP$&bbWWh#lACZqg#j3WB-fDOIE2E!}wFcwi&|0YHh>nMR}y9rbB zb7<=yKuOWo#hPE)){7ys@3Bo?yo48o{Z535e=ufSeAg^Xd(BB5cPj+>P>dyfXdza* zX)=EwjxmKNj4@@)WRRbWL898WishvQ3MAPu8Sx`AVg*~WT{6hWVi2(;K*|<0OGfy` z7(tEAJkRU|6OD<>|A)AIi5PKPVvt{rK}6Rs#VBt|4EXCYplC|8gQHtxW-RdYXiC3@ zlAGU-9ui z7vqU$DDlh(Dn7zr#|UB-Z2}=F+2>=NlG=}(BiH`l#~`8+5Hr}vHEuz##$f78C@or$ zuw-gMbQs(sePP}~OR50MK4)7~Xn?Y$JdZ)EmihT|EKOM10hIm1JRE^B-dAHh;jAK| zsIf<<-}wxFEd~s&Ct%QvkC~-!#0Vm8j9G#Q2~Tq{?TsP78AFP}Q5upKbJ$bv1l$!D z$SC9j4AHTt;i9t_1m=}7rU>NIm}cdH+eTP`UKN9ijy??KRxBj%$?u!S?J-1!Lr|Q^^Uj3o?~EZUT5xH< z$&%g^V^%aas><+CGQs72F`^jT#kvc6W9F+Fqg0rz{I12Xifu7g6-V+#E_1XqMycXR zd=lw%^k9rtVPF1Q5oYI+7($FVV>OGB17kcEV^p-|I9y?%Ct@J6(M-&Y9zm3MFMDHH zF|}R@ThYTDh;h{#F+JkaxOUKG?E5|hSBFqo1Xn_5iQuXjCwtS-yxtKJTF5{$v|?@! z$D*V{E6YMjB*b`6$9Q6DC*sTtgc#s>43Kgtj-j$Rh!LNS5mTM4L`;Q2jP|-1E#;Rb zTA`UT2%ROa7qf`A zbvg#CX3_&o1VGGW7UQO3jeyB8{$Z%O7%Chl#`4PWhjA8SoN^c7LKZhJXQY0NRPF*C zQW*R&-g7ZtYB1!K<;OmZa4tqD_W@<04oZ$gSHEKl<@ctN9t;%&liiI>z6kncXKZ1fHKoP-> zo024&r(%rIw|W=_ zQ>Tpdffy+qIyfZfSDlAuln=%z;m{$45_)IG`cRA&&I&oKQZLAGACBR|c+bHF4vPVP zE(QoEmji&LSRaXDimN?t-ptC!Vhs7p!9NYfG?`6kGQWh9qREKa*3+}}%AvGy_CIZ# zkv`Th<$vF*M}tiL6EWWgg=cDgiDSQVt2|we-;CY5I+s%j&Cp~!(e|Ag9(kt zVBFuuE0P%PuVOUepJTM(4J@PlO^hP^b0Lac8^KtA7h?&Nj#F+?tuFapOzX>? z<%*8Yj&WATIAYBlb{&oVF+PmWR->peI zP`Y2XkGmnp70o%oweLRtk2RRV>tZ0$#{@v}0HZ%?d@TNCk&C~vg|}Ixg5%|-vyWTnE;JXPo0Pju_QT_R1VP!#xYQuwjZ(Q2^-tI+uT4 z%#H|RW$DPRGsYWZjL640)c_;(>J0Oi7$)jsB#dnlUj;?6utL*LMww9 zN|<~CO1cJSD34KuYY0$WLv(YzjPtJL;?Q=lI#^(we;MP5`H@0?!f91TdvA;;UUCI! zrSruM_^)C>5nBa-!Hh9O{LnHW0ww)O3?Y0=ii@Ovek=wOO)CXN8{~=_`-vE%R3$Rp zWR?6>3{fgiYGDxreIN!B5n>>ZaCHpu!5E;dQN_NFQ9cx-h;^X>8^(U{G_Wu)eEjmX2TJ5k3hwJP1x`;`&$$hu1VA{ zxuzZClyvDB;c;TE3?};l>z~3#Z zTL7b6L3^+SFABnb)a@2*j1@amXD>xbVXUI>h>X>GrU)hbxV6==FLkv2zLe>&h&c}( zfLA&;E(Wz66naDtDKITYSQjIN9??S(2EpYw#^p;C659iVygUL~ z%5J55W((&ld;LXk2WPdf^OgO@8QjdTp`A-kcNffV&SoR%t7cnM?OER6IbV6YJ>Qw1 zX}>Vc{)Vdk%uK#U?^4U1aC?}qpFG*4ov&tjQ|M#8?h9&<+Rsz&eC_0H>)X!JB)iJc zrrm4LOynyFv)yaW4)d2CVrc9}n|%TB6WJH(C;JCVzJK_A!>R8d<}0Zh6$ixcxu(53 zGn4%tW!vHx%vT@bJ**oAxc}9|y{g}C^`_4ZvwxzSNw8~9aE`{Y*6H>z;_-iYSc0+a zTi(Zt+IWoj?`;T{NTB<-ww4yVlkFE;a|^WH_Ezk}w3Q_sr`j6BC5;*v+OzcC+b}yx zjW=H-Z{}Ml-lZilYDFsz9B;*QWjdI^ab@;;M>Dk_-U}X|yG)d0Vq%2KjX&P>u zoF%~kvuK49e4DbvM6n|&zBv}!#@y)bh$p9(IGwLN-$zRHJ6R&#!Z|Gg0~BbV zk9uitW0{)}vfWdPAUzO3wSZ686cAcG)oabQ1FbK#=4V=crq7Ruyz{%S^(cp6>KK=2 zogV}|Ykk*pm{OEU@3$$vzhXqaI|-rr|3>4@oFPWgyoHE#pA_@qLNT{1d)Hf7JC)l# zt*?P6SPgnjb1z@LpDr6GmgeSKv^RK>b76~%@rS%uKWXn?rM(@M+6yqCH0Fv+mMU$# zGFQzw>uLnvcPQP^Hr=cj-md#5sN+ifnO}Ke{~ic`PoZ)pz>tq8Ai;Mk!N)5F_sT

3cVN-@~f(qg=_P>csBRObu|{DKx22;)7XPeD=Z7f8cPY0^keX->8sSg#}JyeQvcpR zO(C%sQwvnUci7{%)y|||#J@ljM9nkZX+qSSmUiHhhI~Lyetps7{Q6^5ut5bIcCS5E zkhIkZv=vcR=%k~r($TF2txy-#%y6zmdo#I8d0MA)d7}gz0hF8jc91bFh1p*qnvSa% zPIcJg=x~uaV{yg>_`6no3DMrI6}j?Tk2#ozaejy97P`H~*8FrEZTYTR{0#Y^BhvSG zDt$jtu5U9+fHY{k%q^EG*1j1SP#JEsHFytQo-q?0F)qw3C|#<31Ddn|uuUU&5}aub z`Pe41(1OQQjp|8bzb)7}Hrr(vSgN+|lbW<5L2CQ{5!9wiLv3$_ebrLi_9jtewUsgb zR9Ri`nCwiepp8cJo##3;6k0T=yYx4lA^lC-rA||aabJi1-BBZFeh1BFXt>5c2ZvT~ z;i~M=@;2l{wn(Ax9zmh1G!)8Q*HY+?CTW8eT9f}UY!SA&bFww7blaMqUYc8?>8AD! zjehB9^rrg4n>KE|4Yj?wI77a9k1O0bjKYlrr%sU)`;`sZGN8zi0)J=(1*+0eAoEyD zfjgTdGApp0?Ptqua@XW6^}*bTm9p$>!PXR^(`;IMw%Iy8Pd!OTcR=&nK)(h9RR{Fa z6v<+{N5T4HRjGVjsr8Uw08?N@W{)PLx+_hF4EOGO0u1>`I8yviD#bVJcu*}rG|%#I zp(+=;s|lsC>X#u-Y5%l)vVW$foGSj9ZJ%qlX5b*6Ypd>GsfCRBvrzvn<(cwZPCUgR zjXfHq(SG6BY|DUDDc5nM=#g@NdIaU_;!rMgTT8jSn~;f>Tg`ouPl$uIqA2rO_=NgV zW;m2FPAE-q$R`t$);^-Nw!Ok6V-$subHNg`tRHUP9yBI5v23Sd`5?u7rM=Eq9?)~q z@PaoK0Svhu3Hu2pY}jlaB{er;W~UXoHS%U+DtKEF;jy9!SRpSjKn^R~ai8#Y)Esg6 zWWFi+EZ>yycHEWWu>yCfD~yI7zkfNuDFC^tM3w zkk*i4$x1(`tn`+GCaKD)+~j8IeMqAD=}g5HyjJD#6!vAfZGGF*SD}dLet+A@SN^&Pu**u?zQ`UiYuFot{Q^f;S!9S`h*jiczW~5_8MQ_3~aIwNlF@qflN*dz+ zWE5#8D)mk(=1zrGN$=uXy{4!2sm|Fpda@oG<$E8xf=>6Oe|#csen*WW`JJqK#ubX+ zOTdj23b>};HK#+SPI~|PsCowg^p5j%^ZI(HVyyStq8unu`u0iM-NG4r3)MZMc;hQ}K=$U!v zauv>bM^g)^Y`LZ^hfC~PbD~XVjN$2`%%X7=cz#EXocW!s>*E%#(57o>TXQ(%lgLTi zw~wrCAVAy9{|MTqa>^&ym8PsC+)4Y0pYB_yjEl5g+vwvT*@0AN%*U`ReSu~BQAe4w zC3{0Y@ST)>e|=?p2v9b2Uq{(Hn_5I=+I58~vu(|awwy7>r;9S%zLRacM$Y_B*7k7= zw=CP191b&(Cw1>0S>2Ek>Sq2&P&buRwp~}6aJts_i@PTA?SQpyx@c|>joS-3_CwdV zR^-YXw9dD=Ju+(Ejk~SthNOrI{RNV1U$pXk>K*0qSN6Mo>4EW0S5gPMHtc z4V&H}Yj-kFM7Ix4(t&~2l1Z%?#lu5;>m5S?(4IKb9%$(O5xIEZY;^}z0o*?1t2;WC5KD4cj0i6C$+GTbE z#(Ps)mi!hlbld_Y47XaTnwKHdBc;A|RHXs{N@afQE0v0|)mF=Jyu@Z7!W;%o=`32i z#dVWzR2c68X!ovqnQ79F4t{CU#>_Q*@dKl9JIufbY5m)k)_2wz97>U)d6tEXR*VlH z!c+&eWu5XUl9k0Cjwx+VnEO!mKsV9`{yJ1aqcUH9ht>XZ3zabSdWzTV4Kq+D#eeT| z6b}$6o+TJf@l=$}zNS!Rw*T;CPwgsaZ6DW7+JUjc_9xi(>t)XGIo>|}Y-9h?qZeuW z5x2t(d{7m>pf?vLP3g&76;>Y%0q3UPGX8<+1KJ z<5##vZ=PQT#nylGT%f=-y2fV?8EtN+?Le0hr%u{5LX zy#owiZDzZnpL%aR!_|xt`jF8`A0JfuC|b>^3##mS(P~DMEBW?yoqp=Q^J7WOeeb1T z>gDahphGsI=+|giywqz=pR-QX+z6cLFnbx)cYV?0{01y_0@9;_r^FlN@zI!2#7Mgz zRodNM5EmHDq+~&ZWtO>cA~Mj0&3iphFct2W3bePTKyV$Hjj-r+L%YObb_5#Tn0l0N za@suZN{paMO;`~jP5$cgGzl1Jl35*9lT?_UU!gFiwz+-s`F87Uf1&GwTXQ3_&5dlE zMUV3vUQ0+P2x(;7jF}i_AVwPf)Cd|4V4zWExt2z^H$B0$ZI%gCYMUM>+C;`II^D3g z`2~z_H>Mutn;h}uu0)k>#)Rn;Ts4sW^zt+b{-H@`byQ7KVP%^|!i2+E;Wu|ocAsna zXhQ?*HuZI6ncsjOUtaJuzy4_jld{Wj!B9B^!wi(jEdNR=v*;ri;WDKd&?U25^pT73 zm^+$IC}oso!n~@?Uph8WrEr%9ny#%yUWYcmA@L;NXtj9UhI)80;ugF3A#{uIO7qjxW|$uGhtZ!F1?-*ntTrfhTj$P5iL zP$lhtO=s&)4_G|X%-L&H>_?YK;^a9M-U?ykvR zcWSA>I8RH>oGIH|ktOehemA=^VTSz1G-x0bQ}Re$IN>z9q%S5Y@{Fwtq(T$l9H9$uV6@954m6i=)F@IW;>Mq zCLh89n?jA|DE6D;K+z)I-n(4g8vA9QN7t>h-(so4@9%{7eQ@$rtJ8z;JOe zpbM%Y|AS2{1{EyiKl~!ZXe^%MDw>!3CYpKudAXvfHBE4s0iJaB%6dABQ4~Vq7a>Mx z^{3_@N!R$K`b?nhP0{geA$_rEzX{0hg?-iid?0+gXY3*(G-O;-(vwO_cUSb<8bB4x zId@4XZE~l-akwGi%A3YxVa;=`27HyJ_GzNeBaYxRw&0tIZ>`X-o(t1VQ8(nTX=W1* zwH|gm+4ZP|+p4nV>MJ{sy;Ou%Fz~a+P|5C)*`d07R@L2;_3F;7@-NT>Tm_5CaMhJ- zW(hT1pfU~{YN_LOqtza{bn4ge)kV7I-1A}fFlz0lsMfqJ`OTq0JsNa+;SLLd?QRWf z%VC2(#RApTq^hZX%d0656t%=+G1Ta_WRZrU9%n>-WF6ZKXW` z7TfcSDvVQ~P*Q3g{njO-J4@df_s`Pj@^nRS<+}6q1CIy3uV#O7X{LjZeXazntMSy{%UAEC%f<glU z-?!}UsY{kN@uUp~@g=9+2Y_mb^|P6_0i_K16xL?o{;faE)ic_a(>+t&Gk+yJQI`ep zGg6*iWi9A0wDp9mW@Zee^o9j4D{YuDOFWvad6bJa6y%~RJyMrJ)!XAZF}0yWpE-=) ze6zmpV&ydV2buNvzRi>B1v+gnqk;r4A9I=bF8I)BY`Wf$xtyYDk~6f8;933Y1Z5)X!;8@-2|iix*28 zB>KY)gs5qLP&LhcBb6>{pv?T}4fM&;h?g`|W?=cv^qJ8ZsnuASrKlOQnFYEoxFE<_3GgHkIE(^MHWN}X$?kRWl=NjA5y>3lw%#e*3QbegOe^RyO10$9%YRxRl z=&iY+yDem&zHvmaIybAf>eTZu5ZnBfc0}2RfS;H1?`dB{s~s z%_&&eb++DY-(+w3+f&pwnH`lTLo=LjfXgp2nH{Aj!&9EMO-3`Mh?2>CTA5631sZ{P zs}l-or+XdVTwP1S8=N-xd-wI8t^O^lu-YbS=oLhSth(4lIb6)+h>-6S`PwFG$R|vc zNnZvNH6&vbWs24wUHD{gT^bXW!$38w5SXZL9ZeTD`6jBLdI1yK=%eX2s=n2l<~=xc zWASh4sOTv)5gICD8<2gRR|iDmo{fdJ)TK4dfK2V+E20(aMq%2^4}K2U=Al;H!`xijxaVkX4r_)y%;TjGd0sstpQX_b z^LXi^9XEEjbAZW--eGnX+FaciBQLii3s{9h?Q6~Zd4-7UIBhnX>A}kwyuOa!8+eML zZ9IZ0@L{$B9Nto%DZgc(CDkC1#5-*_aV}>*O$~O?Uv;_wzVK`S+4ge z-)NTQ2JZB+Sm7m1JF@ze7FON0b|J93n_p{*otW?*ZInW+a0P4WNOuhS=;AnTv?S}_2)gwH|SM=K~=bse=VB++AI%U z(G@GVyr=ogy_H)5eb;%^qCZ7*WY2eI7SHI3Ue&|1L2ODs%Qx*cMFPsM%cw=!mmD)l zbTUTF!>tv$@THDj`qsdl5y1p}x!H_*eA(4EF+2W3B)>kca|@9I;-i{_BThRtlZTq) zU6+kHq@R*G*ar>Tzu6X}SmN2y8kV=v%A?<;UDuxP(knK-|2u^jY$5m5%}$@OB{^)+ z&TFp)u--48r$kE_(6>ZD;iW0*$qapRy$IPyH4Kf=;FfiJS&qOR_ z`%s_Ykin_Te^zz*?mde&q-41<1JaypFZMdq)QFhNbnfz*K0QZo z!P+yLz$$kmUvajDlp_Ns6e+67)2b%j8>zS^Wl0x7IW{%pmo9J%NY1rs)5|^`he9LX zX1mwx_B6!}i6{AnBb2>yLS=6p;OwNF5kzFv)>OYcyR=BFf;@s7Q;+hEOmUAc;7C4F zyFSKxRz4jyvMH<$Z|7@|n~W~jD+_@GO{U^JrZh^NR~B0a^!ykmvX|w=cq7!}G=!z| z{6yc#!fs4G$~W%Q1%f!n&4pC9jbzxUTJ@+Q=jtwwkQAZEkMyXv#*ze?(z%Nfn zNW-#_&AoT3RCO9X(fxCcU!HJnlsd9OMXHXH4@*L|QR>KHr|KyEv@A>;rH+#5#dTCO z`$!?$j{5D$b@gmBMP0pJ#e!LM?$PmwcaG;8^y1Z{Q z(~6(_3UiJv&3B%on5ISDB^D|gUe-nT^L5YKtb9HUk9%z30#!&!r;@;H!`u1Vy(XiB zeV~|OdSOWiF(g>tka$8Ng_qso-%*V3Y>6wS$d>Mm5%7k`Srx8^Spyceip`8~z!vC4GUMfYhnRB)OqxF~~ezd&nra4rsH;L}?b zbaX#ocR*+5ml()O&|@WBJ54iWk){)kiC!FF!qq8T-Oy*ETnnAoJ$vz%m_ZMHm;sC` z;g3}%B<#}5JvPe#l3v>an7P3QL}agoo1QVQ_+#P z`sh8<0LA~zx<sCR5cstc&jF>kgT$je{yH@p3TMk&iw-OG{XA zh%%d!Iwpy1h&~+b(VFRL>Q9@~Q?uPun(CI?`SbhsX=rMew18F}jYKvG=*B^Yrfp02 z9)9{Duhg(_ft>~Vd@j&g1Jj)aG7yZKy7M%t;q~)eD>s+s$!|VpAb2>#5Tf6=?}pPH zC`-p?+FBP^dw24yC%B1V<7u?w-Q`+05ekVgBf?)6H{S0+*6u; zQ>i?fZqCq28okaGpH!*Exv?Ziexs>4eoNC3#fi3!`_r^(W#wsFdP<$0N481Jz%@zo zyDa$a)fs8cr3RxJekVhtd#a&XCic7Jy;aY#+~WT7=YVY)CxGH=Iz1cGKE6o1HXOL1TVtu1#~LWJdZ( zOG_j1B;Rny%Q>K0 zj*M;N{A2V&on{3&$R_16H><@x`r^aSLdx1z!NV9FE#4MV=VHM%_NL^sd=uO$ics(9 ziV!V3XIrGwCHgppyr?k(|D0JCW^-|deDkyYHazD+eYCbbUG}LeF;y(x`8JAz>5C$J z)+o+1vxl`Jyw{>{shvOHqT+HulR_*sea7LSc~u>{UO8G%RB>;*v&cgS&B!WuBVToV z-=UKh>SUG36a+rs>djEVHhq@=ut%3SpYPDCdpfF#zImGIbr%+Bu+%&?)t;e~;JG4p zEvsz)5CxM=X|E>Pup}EG**E}_js2P=?Txwj!2YxMJ_^mqm@1(e*RGkxqIN9@a`uew zNmMR(fZ@sG+0zKr>m5igTXYOQWH4&cr&E1loZq!R`*x4HS!Y|Gxle0gO{=4bfnNlY z((V#AkicK+(=5K?Du0=}$Y1s>-=yNwIV6e)Z14n?Msv`P&H3af+<=32484OUPK$qT(0JBqM4E6<= zk;tBHO+6}gE|uq7KMJe38)rb*$enLFw2#b#dX|cVuG4m+c^hURN_O%?1$JU&h|PgZ z<`-cn23p$*OCQ@wR4b;KYoc7Ts8;NnGE*z=bZ4ActQw}b0=eRd=Qp8_cJg7zBNokf zA3k)1YD`UO9CBY<&bHOZC&|;Ex%O@dEz`&_%)k#--v?Fo*-5EL*hKxYDD~^lzORX} zbpGxJnr40giL%5|#4q1?i$4i>P@ zEn#wiRvV@U7VBXXchtz4-+AodAu(_)`02pb7lsHYVi?9-kj8pNHUmM)buO$sn z(@Iv8Efw8ZcF)qA!1gRIHQd$S9hzC@$50>Y%PzZ*IJ5TG=T&n3h4wTKkX0W~l80aw z+**+w4E}g*iP;H(1`WLGl&%FJ;bTj?5rM-Fvy0) zlYGO;GwsG}P4))&62z9BK8)bOU($^*jq8gZ=hw5%nz;#YVuPqf9kf*f!LD3^6T^qk@=Z)3=n`Q_QEzSqAY-0e;IoDqxX6LqsZ`CS z-daNW@GiYmJ=2}09mK@86WQzGFe*;1N5RGcS&$gEFZCrR=nWZ{T*K!7L(W#mS;tP# zcBd%JkWUmqeqH)ue%+H?D8ZDSn2>m^1U*!gf+!7aN*(3$~H}112-qMfYieg30P_K60Il$2`^OEOuv+Rx?XV8xl|G9Rp==9OUdC zwl~iAg~1{cei>(FNfElODqDUVR-o|9IV)Ghf_+gZ#j})Ky{QiAjutX0eKKE|Ur`m4 z-%%rHeut&M$G~YVFn9X_M|NeWnrPhA>&`4qqf=wk@^1{YJ!rP8#l3trjeKkwfZ4%~ zpHDSUlqZXNrLw4-jopPA$2v2#Qvwsa5`V@tY{wiGUF>#e(Guv}^Ui7Nm>K2T;BJ2H zNtKNT37n1Cw%#^^q#I@<9W$7uew2YXC7 zIGIs3u)$QigC8;y*~M#>U0g57P0r0u8jr#h~7( zPIalX!d&@WYx)cw$wpQDUm@Tv<(cTnKjWrp+`m_YG>#Y$(y0CRRZ>^@Bz8-QZ5yG? zHpZ89jyO$6^1ejO)wRLh{MsYDGv`T@jp*7}P643q-JF(H2+O#p>kA&*uJ4dFY%Ubr zi`DHM@!M1rq&k#i0_&ptw5cd%Z5*Jt?-VN^!(hJzmKmd<8bd-ARVmo$KCOcRuPUpB zwVg_!6V0d>+^O1MA3w;~YgXl3D%-RJBL%l5a3!rUbV!a{#X52bP@{oT-tr zwp$%r1kX%t!MbrpNZ~eaPLj}Sz=nNp!3c}7S;sJ3eR%)oGUS_eAfu|5UZA;WMA5#b zO;R-45s0c%Zd4?bIr1A7O{2$^P#q8%uKJH$Lf#H}>e_Djb4h!j4fB zRmfzzA53?QhBs!z>lm4zI+hz&hyg4xT*e*UaDzZl(V4 ze#U^OEtM5Bs-@a#BW*obb6N3z8Z98ad@t>RDHbdFuMYFxsq`CxLew%)f`s~ zo3qmgF@!2fcK08Z-6b?_sfD)3H0#)2*v*1XD}tJn2ps}rk8Xcq%-~asZIFr7wZSrI z=3WG73Oc%<4$u;9)9NRV#Z+C_57NRu%hyS&0Ws^NG$1=m5}Oxo358XQ$=V&Y5rqR9 zUk*hk8L+W9%MaM>tVyA8Mu#$JW3m?$w3W4c*TFHFq7E)E_s=+7xZqLvCzXXH+4Kr)PjtpY45_gqk9+o-H@>b zO@(Hq=<@`e4?tr9GQ!R@9X^ClYM9RTMUQdtjVVZLd%S|=vm-~WX&GyC5uheBN{fwr znFdd{R+eJa)>>2}v`|Mai0_kQpw*Llr$kjF>4*7sPwPVTojVn3Jgo|mmcj`Cv=(F< zJ3nBD0D-?Yyq&Mzr!#t(;b_TVx<<#$7B#xiNN9oU5}k(5{Wbn>&bR4+-dXygx6D0S zptu=LZe!|EzL5{$KFS3eM|FWjhwjl(c+}Kx`(b_`5Y~g2RS$z`X(X@B;&*z?%zD)h z{RjE_BRtna3nFc1Vx&x1WlYk2Xkk;2@{NblS2QA@61Id`0yj^@?ALJ^p= zHJs7nhJ#*Tl-TR}_}3Rb&aXchk9f^&Tj&IRdSG~=*FDuC7o}$0Sdewm{d^rH(OK>L z*s3~Tpv`)o@6h6L51Z>;K2UXT?pgFO-V%%_<1J=>R1a=fsif+e$r!c!k&iDDy);7f zSDXzmjnL*zE%_5yR@^WU^2K#NnMEw}$>B6JCNJ0_&(J~v?zeGgnEg-8RjrXX^ELZ* zrUoWC(CEVXCj+Md$oIZp`QEU1GWnwUC#GA+ZH2MCMJ(`H41DoE%aTzQ8iw;sWmNMD zXKySGSEr0yRHxxo1D%Ywo$HkTz#9pyrlXGn=%w0A(7~<^Z|7_2Y&>MdqB&a1&)bZL zHETc>2-R#iU9%=%RI^NbIW=n$3u=~uN3YrNU4SJMkB*r_-O+K_DOg<7`2Bd5kw=MF zLyu?CpKo_gpIO8=IPK@?G#PyMqg*PJxW4Fde*J5?AilpjpbOf5D2!<=vCcdqBDFH_ zxz_BGp!M>Cr}@hdxnhmipqQl;b`zFTx|y*|7u(D%4cE*VcZ6oPBhk!g%l7{d&NFCc zv`u@^%y?_|L^ESh1wzg2y@kz85$7(+n+9dt%WP%}v7nhT@Fi(xn(^ojAycT^%o5F4 z;YKq}syfz1_tP^_VT?^yqHq(_Pt0)r>8FHeP|zvQz}TaBhC~xm=;5pQVW)ro1k?pRe;~fKGB&;=~S2lHi7YGhk$B zw`;W;MtZwe+o7Uuh)GzQ!0OCk7ZTNfGU^(6GhcIDXRcb2G^;@y97DaUBdOIu}S+k`2eEIlKuZ{a~qyMeR3Df^1Z+KMMFa_q{D@$!s|*fk%xZ z4Ze7Wn%9}`EX~ZE)^&58$=MVS^Xse>C;dW1tGw!+{iv$9*ZIl=W~DQM*b%l-xZWC+ z%}4(|%)Scmxx!rLE1sq;HEF3RZ0DxHNpJN4R6#PGRX@TLl9B4YykmBWK8@b=mz+$t z{^tvJZFfo*y-1%S<3;**PB2x}d|srv)ozlJHYK0so6ILjT2Z#mm(nqx9;N6cpXHm( z=Sd-*usil^#rtlJWhinjQC~!}FCBlmyLUazR>Q$uj?c^ZI_ zxr`}uc~xjyL4N9NEknT;$)@vVt{Rp3a$1mWp@JQiX~Gr#IPq^c*e&3n_O#Gj&0_ht z+XPni%SuBxm*&ZDwwuplmAE@+z;zJtE!^N zmIfo+Qz6^z+GI)bGbxH{{PxfhY zx<{~2bC)-9;{sGq_FYSXVAdDX9A~tb2-CZ`y+jhdn&Fe>wDix=7fapfkQ(OTmhw#b zE!KBGWk7-*P3)9@ffif~VuJNsklmYHRhqpVX1Ayo-KWFG@eAy5l?zNiI> z?5O~kS*YKF?8!z}Ns{ZSuW z!I!_O9PhqN%e{4l+!b+_%$(mPc%#{Q>R{|Hb~M@EqaK1lsTyOyBe~OlhwCEtJ5@UO zHlU|9K>Xn@4eZ*y@0H%MR!cTkCu=_DY!GM75MbkZ05(wP4YdU>q{&*B0W2=h`omEo#5fnD+U0>ui6atJb`li(z&cZFi-; z&R4#c@|~c3P)#(QXY#35i?Y;ee^9kr`^v|(DL-?n%`)lwZPsoMp2XL-$C$D0MO~2K z%?v%wO+7AUtn1PbX*reNeCV}WUv^|#PRk5GleE$g^XtsuG@?~r%g$6-lp<5vytOk= zd-u)GvVG~lbyT_v=CNAb!$*~zU1cFNS?vQ1Gn65-_^>jI8~ul4Z(Zup7snb;WzE;f zoB5h&kcmEFVJfgg$)Wv5y@PM<6o=v-ZB}Zwa6uL}WKEJqq|Z*5$feP|Q5Q4p8e?sE zJ70S;$VfOhvJ>~p`?&EY5fpoA|)@-&~%=Ikz11to?4pcPdrJIc#{ zqzT}Qc*aw+B2o$I3Q-FKw4v$JYvj#*%@JP8%F`0c$3BpxzkpRlshvESr{(SBac7be z)eLR8t>Q)Y>P%s6cspN9)r5?Vlj;R4408oFnn`L&T3B47VbKe$sP#N(iK_+vw4KCO zxbtz>2Dp>KJ?s*q+siQf3R>sd@V2@$?pllT$)>fJ(omSxW>@@cek*XGCTk`xXfE|h zQOfs4oZecIE5G%Ce*4j2mXhJ?`ST4GpTdQFDjaa#lb3V@Li@Ds~q^K^T061JcrKM6=A1o_lO zKpKAMTXTp-xw3u}*hnrBw%!$;v40!bNC^8?7r{3>bItGX022veK6$a2leC(KK2z4v zzYl061ijq0hMMcOp7(3-j{u8=U=Lmd$BXnHgwRoWn&D3a83`fpUncTg>uh^+!9*&` zCjJv}kz5QeI$Y8(A8N1p{d3?VA>8G*IktsKyg z19H6Kj6RL&HJI1AorBTRj4ID~0ZBf72?6WF%jI>LffEX0pHw02#R*-+rzdpwQm7aS zu|2z7w#PVdDbR|l2=f8Vq#1!KQL`1GkA&#Yk4WF1*+sMTG>&Rz`|lWo++SAh zVG)(PNU`?BFnXmy48ar%y+MJt0)mi9@kvJUj53N#rKTb&0u~hc>>5-Q5)$g4U!sbt z$-#KScu;lOwcrT}@$|MAnJ0{v>BEg~uRp0ASASA#YCX6@LR|G;WUjDyj?FsT1TK&e z7vJ{cb1_Nd!I{pq;pTd9gM_#__abwHpcdbyV&^C}n;XFllK%~=nV-~yBx^3WfEy&l z&2ulZYGfrfzzGuKN4xf{$NA!cSqRE|5^u(FSG zS%=v%L?w5Zbx&Sym9fa9sxw4S>W@udc~Sf;#;89!tNNo$pp7E7J^5H0*?p)5BvcEd z`c?;KYoVI1>w6Yji)WPRSrc3!Aui5blrBpnCy!zF>#&Dx8)zdT+T9n0w(mcgg`Hpl z39&HuqOs7U_dQzw4}t+C#K5T0kf&6Nt?KF@A7D)4b7IZGBj5lDaj^KJs6e~w$=P=6 z)MSTV2Xa+B20oCyXx896MrPp&uz-YEc+H5aSeRBP+?V+{$}`N?!4=+Cl}+U+YShQ} z?LkCdI1678k!v0m59IZ}TY0^U5w(azD{8h6N<~5pkLqE3rIt`~p3M!(pyuo#Xd@xo zqYgmp(q@0g)DD3f5~7wBnGes6^zlvvlV@0f#c#;zbq&9kqk|dRJ?qrXM&G5mhuK<~ z)V*v{3f^sEpMt0DlaO~@vqEon3@iM_Ke56u|Ckk+S>b$iU0D=|WN`0L26t(cWB9M3 zoa_jy1__B%7!TGJM|s*>xf8=ZR91Ej{2(EI3f+D!3fA-2%FV{g9Gn0LNQi@_OJc0G z>SNsRf|-%mfDt6bNa5(NmT;q~f*~iD=AZAi7U*5BveE4I;06hCQy7(925#)|g>~{K zaDjxlc;Q8?9Mdz?jy+Sm}=;PLPl+%WxnT&i1->Xs1FB)KWGJZjcZ+g|pB#HCxruIM&&(GyN{; zBO&_z(VMG-tl>>vX5Xtb8$GargxFYy2Xn|HvB7%veLC~91YVF3FU#;?%jCs+bmrj& z@PLGPSVo7xOdhlkWe&a_93Xj74a4`K%*H$^b;36UzC&D7mbU=5+C4IV>CMQYO9Hp$Q( zf-aKFBBFWc!6Lp7q>vD)lb2MR)@3uD_k#`+qEk3|uq;&uVK!6yVNgRt)Q(?LsdOj6 zRDKjxkX-U=@*O>s`f-p#LZqfIsX$8$G{4p6Im}6a<2)w&Z$K6ak$rUyvT@I9CS73v z_USPD9D0|{VejHHsAtBLqjNd#N7>s(oISu5s~9??a%6gy_}revapq^K(x)4sfFMi!_lNIHo=?M9h zoh;OqeF_wi5QVBZMPh`FMm~kp!@jqZY70j#&+ma65~5b+>Lgw@HRB6dtUm-HBt+m?+p$*4`_C-qdF7V>kTiG*lYx$;r;$*-@iD*qZ(kPwyET|&v2N}$EhgBB8^ zbtx_1cj;{Te-A=P>ZuNgA(eYrnPZr}8q>+Q_@OM-K#)m2H{m1B%c2uDq_^Ewt#Apd zJT9n{$KCj&7b&3OE#{pC%)SIQA|W+SE{E07w+F&Z)6O5AQ|IU?+WD^1Y4&B1L_#F1 z;?Icfl*125CSE5(o7q=E7YWgAUj|X>19Td1(aL-M{T9CAX2M?sVI)Mja2bIfBQHl_ z?&X-$H$VvqQ96AYL_}}bI!!y%p2pac7U3@}QP;qvzX{Svh;-FRb~!?VG&SH}XYm|; z(b%Uc6()Pd1tN=t$X2~mSuR=CwTn?S)4me4kr3_9Wzx3!#LgeWGx4iH90?Jxny6c@ z;A%s29ok?4D^p$t%1DTE;c~ExFlW@XH+jaNzX?-Y4F-@916AX@<%%w1Iu?5^s3N(H zVtZ6$u{VGLB*Z|C044B>iNG?*!J#a8$b{V5xgAz zkqiG29x=(AKoSX&yd3?4Bk5u#CVVRhBO$^yqUn*9ix0oGjJJan5+ZduItC?~c9b^8 zWhw6jX(UAYa(L*1_?l_o1KLQ4_T_MrWV(x;)+|l=_d3tf%Z%sn88lPA50sG*` zOnN%5C|=tO@<@n$)vA-_#0{E!VaRp>^pOz#swq`XKb}=JFJ8h7!|Xl`SZ_`YSS<)` zX@|#VOsL1J$Ne`jJL^@8g;b+ekfzbxce_A2;H4OLwRIZ}m0 z*zWANyo!$i{SzgANj+Q#0^!FqPt^ z$BIn&SrA4-gsZ0GM;9<2DKgR5fhZCpS~C_HQQCyxVajg=Wh6woX7Dv4<&?`|(r*E2 zBt*LAT+4{0qcI}WZGkQlqFd9`k4U#@gvjJ)KpqK^uNel7NZuQ%>DF`_G?833kv*DX zbjTuSAdiH|S1o{AUYo)co*o-A#W_$!LKJJfdqAi%qLR(XkjX8891PN6$GZs{4`@NurglJuQM-U7ES-SI} zh~)A}XNG@F>+PV0glJv*)}aPsOz52;goFsyoU|XI%JeXdDZLw%kPxLy???SX7?T@< z91 zVyo3|&{Otfz(+#(HC&;CNDMgKL!P_#mtioip8zc+MC-(edJYGRl9q`~n9NUs3=$&q z`b$S9T7tpEJ^*4!h*%8==-4jRpNmEi{xG2rf)ElSRKqQeOvr^jOzuMn+C8!Ds zsj9N2`sHI+DxSjE8UF(rvQK~zl1og;uY4x-YaoP#2vznwv#x8g0@?o4dpOMg3F{eU z|LH#u`p?57_MaY$F{M8RB_u?tYIY{Zsix#N04DfnAc%wrR?Q(VmmoG?HY-n<=wE;+5+Yi) z@?<$gdDV>nX)aU!D^Nv3RIA=4FNdmK_|Me-2Go!cwW_((i=bv+urkfR15G4EvuaSV z9GZH#&9uG2Us`lFc&+mQS_nA3&lFZDN ziqCt``+d**JkR@__q^Mj^Pab%5CJJ{G|tq8t2X@R&M-aa;1dSYFVKQ!e)g+7C;PMC zf!u%|SUU@C^t0b!k=%SjH8r2lbMramvJGlIrSM#~^j-K50r{`d&tXflGt*<&ouHa9 z6eRrsdJvGFMiZVoG3Gigtt^=>U6i_yp$-A5YxJbk(A3p7UrObtP>Fz4HhF8y#aLP| zR6U`t@lra!fKCLYv&mb#Dzc$hrRh?-Ryvb(As}5%c6Tl4(v67HGz^*$kf!BdS8AIO zrEWE-LqO^pEy`fmx@C;PvdIH!9`mluegK2c$nFPl5J}Gty&CNYkQK)b2b5C7@gX-H zLoAWG)v^k>MClsv7y|NGqj6nUKwU*2luR2Tbu83cMnek%($Z)xb�BReMl!L>~@P zTkv-z3-HMEyl#9~Y!*%Yuq!3}m#zcl2uOLOVZk8j4V24pvPRn&XhT5S8jZJF(^miE zH6ArqMf@t1A|R!Wx|bG}V&i0`V1)(^4nZHX)K(ZD>JX5+M&rj8)tR3rl^cuDgMjojTEQNY9(wqKIskqyRcV|A zjR;8N^1bo&xGJM00clyj?N;rmN~zi%st}N>M$5mrVD)1~ zGb_ua4y0ehm@2cDojoDDmVFS3KCpH&W;OT?DI<&rRM1ERsx2@75{0Q9Pf1a^FzMcK z6#{ZqGaa$yU*c%0nyLp=Fh89N9SBHAqsQdxT#%XMWmA_ulv1jvK{WzW-Arp+Ex?jS zQq|N!11Y8JKdI@~nJ=22V;? z3|$CFS2JC2)BdX)Iw^Itpbi14Tb^}&$pa^)GKES6q_Uaee6uCY44aguxzL1wG&R%v zHmj*_(4@4@gEj=Dt(nO~OWII>^^i#^>wz)^q^y~)zG-D7h!nuGV;HP_k_ zO;#L_D4>)^6w`P_F~ky?Aw^aJmnb~}9z#GLYcyWY3aA@Y3`&-6x4P3kij$rMjR=~k zaDzk+?xqGMt5syB;}qyXKsp*trUnUVpaboB%_HF2i>E;!0@By0M{Hf6ndhsbRiFw1 zscO^&wWg}tp5yT&rEC$DA^0CED<7?uodsnGNLizPYN#cvKCh$7cMen{AeD`NN^DK# zQl5EITF--41f;dmIIT6U^4ycsb0PE~_}}P}3wH_hARs-B`rsjyXV5jf9NG|&wnm-F z5VXzjqSYVezAK>!!SZ*X>4BA=#n6Lb`MZzxm<0r-?P_R4K-wCODq3@&?(vnDYoP@J zX<5DvVr`$VRQ(dF5Rj@yFEX@Npk+MCtTbN_%?L8fU8kwbw z>XW%2-m5Urnv+@Rhb(p$!3PYo-yZ%4@96boWZpAD{>UDQf0MYF1IU zvsbF_genC8Ggas@l&U{L6#`P#=;wo0szbF@)lNexycY@)kiteky0@ZmDc!u%c|UX_ zAf3&$w9Q^R>ExA`2cZSQ|3Zsgu)jhJ0@BiGd88Hp)l9Q7=u{8B;Rw;TOiV%>ZMo&<- zQkZ3Qv`X(kp%($^ZDJB^FMC>FlRS{_fL{p)PwQ*XsGHW?El=xf#Bpy6rPSMA+Vr%3 zkc7eAZA~(lD18+kLqHyDVp?A#U`ZWrZSoSP^(apI1~eidjZIYaT9HfW5^IxHAFp)0 z1sw=TM-!c4t&j#fYS)96s&}9Y0jX+Y1)&91bx&w1eeXdZ0@BySoUjFb@^qHc^C9#g zAU#bClUmnfCL2oIf1wQlX=|bjY(blD|CE-`palVGS-#bxwgptGRyd1PAs|&v4EgQ) zKD}nhUrilIi)e=i5BY0Os2lRz2evrmuL|Qv2pXvox~b_Qe^x+U8ze>L!lbLfRS3vc zO$_;)mCkQ5!uWJJG$0@iP4s(BYp87ul%mz42mvW-=B5!>EU_`Irq(qDO4}%CLqOV^ zxoN8Mmej~qQ>7tLTGoOV1f->z_PQ!(*;@3CsdTIh9SD~51**L*m7?{a2mvYDVmuYJ z6hw(~{`{mP>YAIh^>(%OMCCc<-ZpwbtGja`orxQ6{iP*W)}P54H|y=%ER&HmtWm3h zCDDy^AKyspj_>P9y4z>vm*$Tj-G+z2DVOL{vmk=!R+{yf%IL(-ZQaJ5JRBSRyvnr z2vlqsVh7j(o>@<Jr4?f zEUAqowHZlmkVIdaWl3$2)CNgy79X>uHZ7@*BvFAkhJ_!X0GlWa)3FAq0&H$#=@u%v zvfEG#0CP&+!Q4a@0UBA>P>LY3bRovU%8|H?TPrKm?F>+bXfv^N2bElz*nA;!d=+~7 z=FSbe7b@GKh($DKdyd_&MQD?AuxTThY%7~m&j4j|-o(;^O0MLaH`!*BlQ>Z3LJ4PY z&Rm<#rR>_&iLhlom^w+>l1?^2nYxRKrMs%+R=n%z`c5Bl3A(vvKv65+b#z5%5!&S4 zVbk_7c@Je%y0-z!Z+OdG*e> zrmvV+Dyz#16`XllmsMvr-2-LTemNO-9ENh9qU=adGeDVnx{0L~mE5A4x%PSSJY^ZaS?QP#aaba3vbE2rCr+}hA!EsMm(v+R&R|$qZch-zZDc-x{C{z176h-*fWq0ON4}9SrU=K%IZLiKX{&@_hpC zXYinahZsB};86yT3wVOTQv&|M;8}oo;N9mKyl8+j;w2MHU*_c31ia4RO@OUYinkcN zV}KIyu8F1ZspLwbQ9V*K#~#zf(Iy@AS%w~UV?qn(Usg@x{HB$o{B4w9U!o6T&8{%^ zBV|qci2=&k&rB@+TqO_1Sei^KW1(dz#!`N5?26}+ouA^;tVBmNY#(NTGIqF$rK_pr z){M=y)8+fv{1tWnys{U8y=Ue@$IItXClnqOxcre zZh$g(OA|}CQprOy*EknyhGcHlyW7B?w^0?gRraK91}JmKn^5>lZ4gl7T?h7T0q?rXo-}WOGPh`A=>(NLBy){-p=LZ9=vPUc=s^aGYRG%uIx$M z4N&F=CYFXOc}V6O??TOx%&mGifjzIIWhg0o(y{@{+&LzecBtgmItjl$39CICw6xYq z_-&NG#JSIQbd? z59j}k!7mI@=U-=H>908X1_3uRxEWv=1l+>lRs)oP+e|F|gG#RK)aWL{+LPK;ffnT3 zt@a>_`nrQ?pI4qZbxyz24iVcCCS_zTLi^d$q7;jfrj`l?E9 zymXtX<92)3(MdNw)glgus>VyVnJR9#X(2WKegk%mK}GqOvMYVt0A=<&CYJt3B@fwb z<8G)Lve{K{zYn|q1#f?#>`Fg2K$-oCiKU;a-yWeIc=vB^%u;?>Xl}XB?bg}`;;9X2C z-IbGf2iOJ$+=Id12B`D*HL-LmCr=Y_0E6iO>qEdn3}zaj1RP>w>7gpQazL{lqK9$t zgSJ_@Hc|7$ZbaX2?BZuRpq=G5<2NnHjQ>nDD_48-2v}c0;f_?+r-1>gaFL0nu}ZE? z{gQ>FibwZQk0}^5v&=71u&PX5s9CUjOB8ChvO1k(fGX5n6H7Z)a%G<(6^fR<^aV6E zRMm0lWr-~piPphb;@~=e6fFKK3e>GEPWuc{1)6VS=>kqZ24GK|e=LLJ4N&Kwh}b$v z{thRfY=BBW)x^^8aq{T^E93kMgGC0Y^Up-gLh@Ohe2xJs`CJoA&*S6^1zg17QURAS zxI(~{3>FKxiorDilcDox41QsN(s`YUrN83j8wA|Q;AR20Ft}B~?-|@K;0^|N0X&PA z=T8joH9+aS&&1OEIr%{W4>5Q|z@rQv2RIa^c!I%G1}KS7n^^h`CqFOX1qLq(c$vX# z0$ykErhvB?yaTWobpD6I`vxeTADUSD5hs5l;8O-)2w33)9^}y?;K)c z>7kr_gn%O%1Oh?^34jZUB?e^!l*BnEmUeJ*mwQTa1nz`1zg793ISI#SPU=<-nojwH3lf} zT#MMtXa#=G$=4a6lCL+h^w*qxlYrka_^p87F}O{@9~j&Tuo*1)BZIpQP%7>q@60G`&!6ybNt3ETa^m9&L@j`R{N_2!DxCN}rV1$6x8H^IJCWEyFtixc8 zfb|$`AYelV8w=P(fy(fXa-VHkg#kAHgfn1FW!2dUK}W-r7_Qbcdm+v>_!NcHu@L!p zRHCo5jx7yPB_C&E>DHXQoq+8bj2B=ra0Ivv@&XDBCJLCuV6uRn8B78AC#>3y!JY;v ztM)drbRSOMPr&{Rz9Ha11~UYFlffYZ4rOqJfFl_M0zw5UBfdR5=$vI+IeUPOJB?kt zdQUG+ggYpqs1qujutrC@Gwul%Qj%rqq(z)GI_&BWyZYi_PPwNh<5`@#DlV06vYew} zn!uiEsH7z}uxx;G${Z6*J2<&Zz&r*$0(u$D7qEcAF#?Wda6CX8be_QABm1bmGXc{|iv?VzKxG&% znm52g&tq?1gOd)2mY;F1Ul^dYTxVkGuQ>Sz0XH(ZS->p}ZUs035`WL&b_0~eJ54P8 zBPZW2;2s9|3AmrZg9096@Q8p%89WZKHgrD0;3)%?&ZkW*eTI{t7w`gumjt}5KxG&z zE4>_{gkH$LdJQM-1TC*~t~U)(THZFX^xvHPu7LL#d??@}2A>G{l))DQR=9}Aa`cCF zuEJorfYlg`6tD(^(E`?Du&#iwC{S6Wqpvd#lWx=pYBW`mF5xn+k8=+}8NbSzH!?t# zabpupH{s;50=~{*OMo}gW^Kh_8v~Sp?My7)o|DH5uoyT3Tn2do1qKrVc7ctP7)&-m zso2HD(p@=ucL94a*jvCp4E7VSKZ9=wI8cGgsCh|D^ICecnS4g|LaD!8`K+?$oUS>u zJIZqw2A$kosl+QearHSJLAi%|BHQFz%n56RL1#IM=9FuauI8jwI{>M9Rf4W%IHJ2R zE|UVZu8RLsE128W(HV5tXuh5kR_pBQCOJ9k>eTr+G9KR1MXjpPo0*R4>5J2H(AnEn zW6tk5ZA3J?Pc`^P^KF_3^zzF>lI3d+cQ7B>T@I6SH%XF|yEvt`;^lRwdpK$J*#Z65 zMt(vIrR=>=C(tWNM<*yaRaKSn7fu-7tNd-;^f1#=9ZBb`q`Mr=uJOpDoVHptTM056 z9@klF%TB$GQu24LBm=?J>ibo1D`K%f2GARcP|qSiofM0Io|-E-kxqv2(h zmd-#`dm1;)H@WT|Vt}g6hnZMp0i6tv641?{ zPr%U(77F+_gX0AJAA=JGe22lw0#0FYnt<;!I0N8S6yygC&NM(3wunFfL zYk(@k<|dYI!O7zUY|UUh0oyYeFTi5p2yhwX1r!)e6flXwWC1%fm?B^|273zFi^0AE zrZSi&-~a~G1sud+Ccx*oBM)Y9m;tKnN0?Z8Bqs*~LI#O|5`(gUl)+qp72)1a21gm7 zRP>lw+RMrF1uS52jDTYq953Jm1}6#lE`w7Ae2>BD0xAp^3Fv2VHo(8(i2(-Z8lcQP z-^9`jIQe1$moT_oz>gUGSinyh{8Yfz46YUMa|YK5_!Wa21l-8rW&yV_xK+UK8Qc!A zBm8{_gS!k+1-Tosmr%}oIQc#URPqBRmi~p49~SUe29F8&8-phW{GGwm0-j;;ynq)N zyd>ad2CoTtoxz&`8=@3%F?h!SW#+pkmcGZy9}4)0!6yPfW$=Z76)xd{HvM50t1uW2 z@E%;V8iSDrD4nBBEM1e6*A}o2gE0cuW3YjM4H;}KU=s#o0oFh{zs_Jw1C-8jCYEl^ z$=eCop22tl76V6s%OEeHz+j?)Nem_n*qOl;0lP8SQ@~yf_7yOd!88E}FqjT779~4~ z!At{G$qq5G^iWPdLcoy>0s$d|L_mo_SwPBQu7FMkM+xX=&FFKXK=QF0S4y+OodhFF}TnGW!1$dmR`cimkan2 zgC7g{34@;sxSGMW0)EcmI)D+-`6~uD7@&0CWMb)WIQh2%e#hW80e@g{r+_~)xLd$I z4DJ(fKZ6GaJjCD;0gp0x9NT z2!n9~{>ES%0Z%g6PQX7Hv;2j1N1-!># zM*$x)m@MGG40aLl8G|VTR#>F2-0lG1#I3dm9Z_A_+W>Xx_cgI}6+VAI0mB(g1NaDa z=Kwk)0n-go0%n+4I+D+yDPToaHV= zmVm7olmQNaCsI11g3L8Q6{O3=(rx+tqXe`u=n-Hs=o8>Dm@mL*uuwpe!7&0RF*r`Z zWCq6rtOYYqpd&K#Bmd zTfhMf&Ji%3!MOsy$>4kehcLKMz~Kxo7SPV%QUM`@%LOD1t^imac3(+HWcOkNl-)ly zv9!$RUn8J{!Lybg4Nzv@ zW@71g`25=ioXp@(0pDYAmw?k5+%4b-4DJ`xn@%Kog0rC0O$&kMMg!HWWZ$>1dc*E4uUz>N%E z6L2$wHw65S!J7hZWAL_sI~cqp;4TL53b=>C`v9+?WFOEGmF!~!RLMRuvGjgE|1$v( zGWbHkUm2`OpO<8bk1<$Tz!MCH33!UZZ~@OS7$M+!1|tRhlfftfuP_)b;B^LT1MGv_ zY8^VFl8rGym27}GLA7dpWwiK{3 zgK+{@Ww4Ea5e&8yum*!R0izj=7qAY4oPaS5906Zt;0f4>L0-Tn42lBAGMFe}3kEw1 z7{_3;fNdGA&0#0Xes(>FbI8DHr3{Dp?z~Br4=Q3C%-~t9`0&Is%e-<6lr9a02b?MJF zvGfu?|9k41O%&dIpOH+{oak0&Zq-jey@V zxEA0mDA~{Hh)Q;y0jgxzn^^h>KK}**cQUw1z@Hf04DgBS^XZ5r-fDo7c$5Z`g1ls6>Kp2m{E7g4?3}=B z0`NI<0&fVw$HED`DF9#cCh)cZd~Tb-I|A@kYy$5Jz;~+&ybqwhyZ8Ye5%|~uW#%U) zroP%t$)5=r%>up0=~*%n1GEK3>UBogAoG8G8idf3kIVEjAJlb zz_tw57SP6ET>%z@F#;S0>kGh#NvX6O2*4La32Y<)ANVA&u>gF7lfb3|@VQI^V+G)& zmIO8jP+zCof{qA`GeEg~8xvDscBJI(1WaWCZ33n-7%$*J1~~yU7&rnBX5a}pj6q(& zkqn9g0tOQW#0+*6fRD+MrIQ8VQ*Q)z5r8kU5tt$XA59~$y8wLHjKH1(@C`Bodkeq^ z!wBpv03Y@uupfZ>0LT7xMBp0+D2GlrG4)w1N}eGAU!5W_Qvf~@Mc@zt_=XdK!vs_q z93fy4gLVODF$e^l!ypoH9)m={g$!m1xP(Djz~v0)2)L5LTmkrC3|ZPG0N->WaFhUi zeuY4f0DL5cK%W47yM(}e0JYKj0y-jai~-7_$C;S=fCnWXF96@$AaJ4pd=i7eNdoZc z3IZn!zy~G>oGJjHfgo_20DPu_!07_;4Fv*c2*BqK2rLqSFB1?rQvg06K;Ucv*yx|Y zIRdaJKY?=vU;}*u=L^6__XI8!fF0-wTnwOggT9202wZM}a@Q3mruJW_*9*XY)dX$;P}}9+NJj*2 zHbB|^TN6{8HdFGg0>w16S!Ldw(BKuF90^< zP5(?s1RgK|R#n!}oB6iSO*;GZuDyn}DMncyL>6qZn?A%c9x*_b>@gEd|E7}rW`Dfz z3YB5K^sERr$?dDG)HzRWmU|%mJbm0ix(Qi!+yGAMtE|#FuPsuEQz$Xroq}ynRPm38 zudu@Y>0Si(Pxn^gJ}TT-g;Q0y<(f#{kB(1E_owiPf%E|Nr!P!dnbOiXduC-My^mAw zT(Co5Z@FWjveq7Ddd7zKgq_h@K5Dme)H`tY0O{R2J)cUsi2kZA(Xc;nf2B>{$@7kf~XjK(%)uL2=!Zx1$m5sAS zvD#@9%&h)DG|Z&-v&?3?tzjm$yJR-g?;2)Odp%||-Cmz*lWduI=f!NU-#5&~+aP9h z-Kle_y)4yEk!tfz?BdD$F=E@%{>plF7a(V@z-zU7vB_Y6Wo*`3i?+p9oAzW?j~G_d z6f7enJyMy?`0s`qW#hYS#y6VGSf}yr`iynAx%&JqZ9$P$xk7y*mz=Xs=UWYRR<}vZ z>U_1?oOL?iZXd01BGE6wJt)46g(4^_9+%If^Ip-!E%PUqA0IS18Q*=Q=O@;^;x ztkd{Xea0=bcS&XgrmWT#>s_?e%ypVyXs9`}AyHQIb1h`9)BLa6%pOJRy149iIa$?j zwvxL}_XiDgXE%i)2m+;zG?uFpN_a%Hwq$*Nwh_FA*kmYTUv^XK)Nx5?JBy6r@= z+TU$aK%E7{>dhZCv>3dlM%IAO>J3;{{yP27G|WGEV~MQ(*IUb9r~k$J{Da#2>h=m* z&F|Ib#NG$}6)St~EO~i7yDdOg&dAy;z;d=--eJ`ZjeWZkXdeyCtA;3y)hmeLT0%sUe%eg)j)q`vuyibvl3KODPL+j zi&Vu|n$98>@P($cNVR*h=`2#&{@HXEsbViTokc3vzjYRDLeO8?BJ1Qq%U(5({!dHU z#My7RluaD|iOz;M^XsNPb*pPNW`5LSMltliEoKx`KW;Ij)Q}Hb%qaEbgBCMNZCPPe zUNXX~{dHcgTXU@O>gQTxvl*p~D`|~*vA@5vQMR)2+FgyBVa=Q^S8SDL&X&uxax-U( z-K*)du{l7U-Mmm)WA`Y1_TlR6uVqWA7aMC%AKBFDQqHyX=|?Qd7G7zs5x!0{XN&C7 z&73Vh{E9vsZ|v83g%^rzEcvQFd#5FNMK7k-oW6cjr;FtqHg&p~zClx`%k>|tPse-8 z{gt&3DDOA5eP&npoKi>Ed@}|dr_aHQ!u^#^vsaxLz%ak9DdN`6<`A>DZ#IWmzD=_^ zq&eBD*&Nc2Y}afK>2!9`Iq)uWUC*u;Vh1_PZaRz9iSbQm5eMg*&LSSRn$99F&g(3A z3%ahV@M`;@()-QkkivV-=8&>a&^hp0bbn>@Yz3~ar?O?DXQx(j$E~(TzwvtOK_7t7#$R%A_{^e%SmEEJ+9OCian$00scCTi0h^KdNHivk5*Jg8w zhY!#>@alJ6eao(**EE{@w~|YIHm#Lh;AokhxWWYbxsEJ4#*q%2|6S)^vRH=RYQWrxm!x8v)kqBTEm z4XQM0OWDNPvs=n04xiIfHgS4qliBc-cTJ5bx0Fq~*KVB+FYwpZy_%m)YTDJ_rn86# z=QW*0ymwU7S;TWk>nzw9pst&!{`5DfQp|59mz3xjoeLWR^jF4Zhd|jM`v&Pdw$+@X z^Z%O9$(2K{^6{94Q5x9OTg)iU>?ti~l*ab77Bk9X@~JIml!fFU=!_dLsRCqv#~yTV^|zQ& zD!>^nW)!au=#1DBqOKW7I7$%QhTvZaZo(;h;^<`r!*Sks!Ac1B0UL>6B7$Ec_z!~3 z5PTn}Jcyth!TkspAlMXA?!qY#BS;b51xN2An2YFfIErxcbqEdydl9T3(XS)A4Wb7i zI0I}uuu~BI1ET99x*~!j5qu57Uy<+>g1_UuM-hC4;7+h35ZH)*fujnJ79!hyIGT>& zS_ID^^$;9wj^K4f&%@D{IQbkL{RnJ4j@Cr5K7x0_PR1#HINA|MIRrBhY=u+4gQH7u zbR&Y-5WIquXCdKI9G#Eg*9dM#YKUM8Ql}x<8NttydKwaD;^-_K9fjaiL~lWGB7%0X zl@M%=Yy}*-INA+I&mowNV0Ex7ada$>uEx>F5a8ix5rXxQa4*;%IQj;TzKw)Yh+dDQ zjS-xH;4cW?#3^%dGy$jl3DJ`feH_8R5xoY%RS0^)79;3H@B~;7vYm>fwZWz$+J)$T zh#rXOPB_{dNB=~^(Kvb@M?2u?A{_k?!D9&40*ev6jcjGG;}QK9jy?zbKOFrS!J!C# z2R09<+<~J!j<(0q^Oc{uuHxZhM_xt=?`t= z(+c#o_C*^Sjr#bpUB&s*3TLgr;!CY~Vfuk0Lz zfn!H;F-mMd@{)WI=4`t}+bFu0RdkEVl4Qz5;o8j0Ga{#0o}F`iE3|V~A@bZLii4=& z6~bKL=Szj0w``GO=#RBjevUa`AXx>k=7aaf?tj+@YbR?%~9H?;Cj5>o9;bosKs zKx(tD%Sf6~3f)3JC?rLy^;AO3PC}|$RAmcELS?qOfP*B7S-;l8@Th!$rDzqBypzv) zk)JQvRHa-m&gG*dB5`@D61q+e{>@Pvc0)$iqPIPxq{*O{2edtRWd!8%K`HU+W_IXXjntIo?R>$9=PW;R{X#+7F$fSN?$t8zd_6q? zR-igl;RqUXD+`fsidcXc@sO5*7Z1n?*S775YF-j1)R1|B z9Yy5BVwk5^$jK$z2=#-jHsaxo05Uqtg{8=&M$EHfx9CTXQ!2)8oGV2^&eNV?0b;~s zS_WQx=&y|TbAFU7M)|yzr+y=`s6G_DD5U1K82HqZ@a5p&L$wu;WF*k(MZ4%x-6+~2 z-H1WrhH+3Rm5NT3E5vzStF#0$<8dwI88#y>#niG`g(!<3xc_{#dA;lyoJ59>C;!=F3&>;{f~^S34SR@ zy|V9+Q^}bzIofqyFZ8^GJf8F8L9)_5l9qHEVVmn;@A2?we}y`FY9k#dBtO}{PhGPg zQb$vyPB6-qXpF+8lebQ^i^gVzcwv}B#VQnN&*+f+Tgb;GB9|lEXoKmZzSdPC;-xLM z96ZWO#+2eH@$8tcmu*FbQsPk;l@yA;8zdfe7`juCA5ye2TV;fJwom&++i}h>QpfA( z@`;-ZNkC#bR0#rK+7i4+LsQLad$O&T!%xIg6O`Ca&W%e+5ELET@qCxY1O>VW{DAri z-H*%LG1{2zGD19Rzv#MnE;auJH;lYu$t}?6!l7mt&A9F}t3t#xh5#l+eI7c3_Bf5($mqv^+)!`!5Y#t98Iahv9IiC5qvRez7DUZ}hlgvXv~z~z>l0(F6OBiU4!U2>5{ZFVs! zl`sZ2x40IBE6zh{FC)cAXJ4?XQw-glV^NDq15?X!b3PR>p9H$v)JPHUOw@w#Of{K9 z-lV2KDMVChY2-kIw%DfD%PRPOlu*^?a#i0q(&kLaNbxxCmGKa>X)VtI8J9cRhABDLR^-gwJbgh6o#YA7M>aXtFoSiaK zeAg+`4G?$%b@enjA{T|lf}2o>lB32rtd}C@OwodN)8-UQIm^ox$+K}Wr0Y-n`zJv} zqrOrxM>UkaQ++c^o3l$sito~$ZCRy&#(POrDi*0kdDqE1ageut@_C&UF=tOL2oJ@h z?s!!5X&_2%Ul39U?Rr*_w`h=-qsx_;kxTXGDs9dl87Y29EnOUy61p>Kh@D5%RV24Z zo<%JN4M;NPWZIm4wIDpQPv+3QSfKkmA5gnvNl*Fx7Xsv^o1^ zr1+)0M-5#>{jN_fDu#I>#_K^sLkQ}Dbls_uBHo#%1>rRUGN)t*zDo@%4Xa3?AJgE3 zhOll>jH7@I(ydPQ*DP($eiSTPH zI!4qKMhR6*8oyeWwx%jXd^1za!J8D+A}7=!Q~wkP77a+8Fmf!nSP6phmO>;4rZe~svP=lKEmahAkscOg1&L9imWB6b`YY6W2Cg5_ps*MR4t0caE-D6vLM}%$ zTbeWI0%o2+(3dXC2*P?piDs>#jSk(7L&wVnk>^nN9MhUiUiTMSL1I**W#L^MGRiH| z3Py>hE2W&DczN3+&wCcNkTh@zY530VM^#qUQ?oLHig_v?jaw*)J!+z<`|&Mmmb z;$lF3VxH;{nG#S>WO*fv<`*>24}IH_5g94!>kcCRGPjs@oEC-`j%YoDZV-=J6Po(^ zzDI)@YO^Uyy#X1P3yb>xtud?WtYb2gCKSDxhBB__C!uY5G(E~$==W_Jo0WVkky)#l zm1((;*TVSKCK|E$dB-ayR)MCGG?k=v5r>B3ZjR~}Ra2iYVfM!ZU9nEgNSZ(kH6$vg zRU{h8x+PlLaIsEUj0-fwrv874lEhmlYhid5i@Zg*8m$o)-MmdhV7inv5vAoHS~l=P zS}BWV5Ia8!=Jd?#>Q(J8kB?5uNScr&u2V{=Z^Z3PT{iW;R*9OL7>gU!@YI==@z!Zt z7+wy;T^PnRs-dwB4RdJaA+%`8j@n}~El;a>o*ougf8MQDty43Ciqz)OFuGW<61sqP zj(kKzosha08t1r9PIn1eLE@{5mWB7($f!bz?q$qzm|nJ==v)YBI>G29<7c! zC5wgxv|2;MCv+CH@R`q>+K~Nmy6UY(8DTqmiQ_m0)b&C_w`4AHiUExXXob0{o!glm%Ws>?~ zYH-jahh$R{P@`J(5*j7YGRD$`iE-y@d5$u!7*L~^kNpyjSuCIC>=6xp0-79@N>S0J z!3WFB{PI|J-1!+(-b+Rj+S~f>RK^0cc`7FMLmmVzDtoMrd_1Pt-_{JWl!i* z76OOHRj!wJiqv7#AjEcP09q{QnwBxG>b46rvL?}u>|r7o*-n5JtWsD?XvM;#0W~c# zSTYo*PX+e%^x{k8*)i6oS{yzHPYV^)Kf6IpgJD{*rbXkxk4phf9Ktvk(}^s?r7?j|i*vLdLkl#rlv5+F>a{B}vL+=38eN69Pd}6-K8;0kG;XIQ z6q*4R-BKyhlg~^sGk57#S{&Yo#UzW$M@u|zDW=gtjwaSLICW?tn>un@)Gp}`y!z;k z_SfQ!6dJ6>4%K>UI*Rzgg}Pjq#Lqt}ACW0mH`06Wu*;k;oao1&J?nV`rW`VIolZd?Ug>)0RG+MQ2>XsC! zy6Ag-sWQdX8?@Mh@*LguP9dR6=j3Rb5z{X(G&G~u)=H=)rx|9QSh@-|-%qCj?5{KO zc8=`8p`mKQr6mL!kVh`HsZ;O;h{v=8UwR=q8|*y8*E^Xiv zq#5)2D(ld9=4O>UgO2v{+<^A*>FX}jE>x8fy~*5p?f5AUv60`fN*BEC*% zNDnm8u2SutUA;-z)inqEU2UztTVC0UzLyp!J>#RGhr-=?8M1xX@|6BK<)j=+B`X zgBolWww7d{U#8uZdV2=&YcI0!SIsRP;bfJ+zcO0R5Be6w|u%UURSmj9l;n-gp%=T%PXwVF|Y zTF$ntS#`b9B&PM#4ZU19D&>0XHjrg*d4wso;IGZ`>ICp+Q_ogwmGLSlW2IIoH;90>VO(oeOO-~+80lj&K)w&Z)ZSL^M!JsSuf}%<7BO` ztT+10)$x9jcgL1~y}qr#p`Xs?u|~+)vM#cv$d|NwJvXk8kAR*eY*5u|q5NDyAJv+r zMy^t29I;W)5&1!srAE1^*Nlc<$l4#9)}n?!UM*>W2eS$qnP-0jy{tg$0>vD_pw}QT zP+KVEtv5$Ujnge_e!c=w$rd#K##%wI>4iN;zR`lldlXoi*;fP14_mYQjOs*r1p1=H zv0Q2BBbCaDR@0hWt6(d`);bqD0W@kr$(jQ#)&$}$Yi89LF9D1BN_C=Uj1}S2rrq-I znW2H9q3jhI>Yc|cmC{J%bO!h@R%$?GiGG^F1xTRvh@LW=J8!EvXw4PqV+U>&^>OUU zD=xc?+0EsPdj3SU0?o7zjcb8acCAu^zA&c*daY@|*&6IqvM+&3Yal^UuLG@ntwq&| zF*HNv`jZ(a4r`tya#CS3r~HmbKW)B9SWY)vP75ZPpsO zhS313#p|qj^s!VKs{l3pqu!5t%i>@Au)SLgD95OF(f}>Dtfibu{JRf6g1(q?Lu(j$ zS!1s?+ZflzP&3!<**>h5H7H)thQY?xhp|r&gUuMOgEF#JEq?-Y4tu-uFvyM+L5C}; z0??O%?Nuv5B}f_Vno%z3(5QOo&pyo8s$0t`f1xt28RZU0C^SVP6AQ`bS!`C?Ams(Y=K(tPGl8HF(&0OM{v4b%G7L~B_O#hx zlZv3r;+S>5?CsEw>wWyauTmT9-_kn#g4PS+f7UGO)~#a6x8FO&_6^@Em108BeS zw2A6Ot9Yk%vCL1z>9bP^Gxghrdcd%tl>$s!#go=*S<4(yy2M$?7zm!gBzJkqWf+ z;tQ;Gvb6Z-W<2EGHmzq<<{3O%WDW}}lgUGm z%H;J@3I0|B)6g>vo!Kbs^sh4#dZT>y%nip69Xxwx%fMCpb`PEn&sJ$RWWHVdw(Z)o zCn8@KYt4>~$;|t<;s4rauAmW>1@;c$|Dp=i8<5q`yKmnf`0p$Tzw_|1{X)zPj9nRE zx7uuE>foqoEoWV!zdv$?Y(N-?rm2`Wb#woH8iwqiysxDI0jCb4c@@O&Y^97 zwK>`RR0jsG+B$Sq7z-27U@E61t9$nBx^ie&bUr`bT|-yx85|1BKT>KsS{k@|-@Z_) zn9EOdVBpGayLX1sL=#RsJFnaos#h^ULjmxZ>w0$7>3aL{zc5bx zWt{FhK>wZXfiAU&j0JR^jB92=ovU0aXTg^;%2}{V4VRtaURTfb>V0E<86H75_Y9Zy zQ{bTtON+y9Ieh6E9@kFj8Vu&>sPqi)Fh<2_iuSH{hDX%1XVBg0AGorA%fQ()n=(>$0SVH7;Le5Fb_7WG)4%$OYC>-(qWv@&)BV++6;)st@|uM3cbu&%(q9WWVbOvp_8YTCHIy8<&v7^d*QGyZb!9Cj%K<{9pUU@3nNS@e)ma2E`z(3e9N zJP3WvQ!-GeKL?gP1ihR}70wLHR#L1Rcj?(-@H-pDVQ32toB@wEU=lrMl!x!y0S-2p z4N9e~!`KnVjk1BxGZK~HTsx?rw*OHw#*GGjscBLRKMxRXNyhhFVVt)Yt4)vZH1>d}s0S6GMoiZB5%qaGpLLW>sGsbAfHinH# zB~z-D$1;sdX4Gh8DrNXTJ%de$MF1-i;ih6uStvVK$wj!*EwTr^Zs$B+R4DMLTNBfPV{;~-j_IeY%^)hTa=!FalE6g#7>#K73B>0tQ&TJUO@@LNq3N=_@ ztew;|^~yN>V0rZA*{MVAqk+F7gJUtw{DB{+>XggsW5rbJ%y7XN*H2e#Lw(yk7VmQR z5DP3_?jBd+-;$AW@H6rm@Yi954@M+`8w^L4@yu|Ymxp0qL>?XS4vIkEP>1Ee#svB@ zdGU9dx&s%Z(LK>JTl%)?r!&Jls-l=O7KW3av?%hN*7kARvSm^sE^Z;Z7WccgsBxp7yS7cBoSTe|fQ$S$xTqFZi zpql1xkvqzj5m-7p(Wo`SLj<5FpdEtWEo9$VNho?8H4+P^ zh%gmBWx!e-EVE_|STU->21RCM0-7jHp&_3}-V2K;YGIuK5KKi>QJ@|RrUlre>93~@ zdS=2F+2+O5H+!g;hxFe{Rcdc4x-UTF>%PN6D$o*WzgdNaR=rNW6O0h}b#;~lduDkD z$ULTxRkRX+lwJ@gqDDZCSjcI)?j)zx+6`MKdmC!7xXX{04Oz5brf`kZb~k|uZGfE? zmI$XW#BFpNg%q3wWc#iT>x)uB3_H$&$OH_I8mt8&}c-h1KLt zR-!o_9yP*SlG93Xjc9L~EV@`y01FJOMZ$9~IPN&O;C1+%k;9#9d4)ZApmZF1i+?Hs z-3zyR(XxjXEmWZWK%33Lo(M1b(AWpWv^sQoTKDm}@wf~GgCC3=qOPI70r)U(l(ZTR zj&)iWE=^=cXich*Itw9h_a?vd5A7MouPFIk%S-N#cbPMC`dB=B>(Fht+N0+fFCxJ5 z4e!{>Db5bD`3WPWustyB&>-rp^`Mn3Vm}=A6~1-D;1z|MHrlxD%!VOpyCBmJGHcx9 z$Yy7TPoZ}!7mt9}bx8Bba5Zgvi10(OCbU`^=l(rLwk|H zlz^lusy(6WRjpnH&jR+Pjf%uvXeu0g#2=^4BRfvx$b{Rh;De1kDiwz_;i)wOY!FpSi~98VHs(xR%ycGU0!RT^L)pp*A8nG z(*cV|F#oq31<|PE*bcP73HCNYlLgAmqg3taNw67b zP&f6*1+u?txIH4%N0&VgFN7%_;EFwO(=E5lms4X}N_8-qt$)+JEK5QN9%IOVy55BX2noNbCYDM8v*c0iUDNp@lPzn{yy z138F$&|1x=D}3d2O&`r^B?H!v>mW7+o#+rqf`ZRH42w{(v%Vd-n77}-`{mp5;~fz2 z0f8Y9ReoS$IpR~R_@~y)<6u1lwDBWk zoV5=ZIw8ozTQhyds<9bjDn;JdjNw--43SqD!?DtrOrIfr2JEq7#oog35z=PEAJ7e3 z#dljXA&eoU68wsljFu`IB>O9&&sYg8Lk25>kB~MOW?&@>BCu9($A}bL0-1oBC~gI} z%OMjOym32|Ou$Ta{m!Ni-a#OfOn^*_L~I2t)`JrYqWAhL#b}<>6jSES31xfAxLhd| zy2)S8jw|YOvO%GFA{wazb*=I8Zl^%DSz4{8K>*r9j;{d2&i|ex|5p4Y)L-p$|C6$0 zOU4P1SdymV+bIQtyiQ>I>2dzmD*g?i3X0W$n~mI9`Jb6q!_61m{=6pgi%+J4HiP62k$drpA@)@nH@$@r)BYuf<3@Sf{F2 zV2j28?B;2(t2{AYX`+0y*~p;|i`PP&*9`EYTZdl+n&T)p&|I^8qFgxzF*N^$-XyMp&-+^x}@<&oJX0F{fx13tVyztf#=b6oiwB53?Y`6Z(<-=REpn zZgd<%`nbg05`@S$q3^@^q)P_o158>;$GA~yF?0Ce^_Iqk)-dEbS(e%sc5?_0J%h1; zXZy~`w6kZxew-DO;d%ku6Btq;ECV9$?z(Ft2TowQ4%^_+axva+j>tnQf?%jR7&wY8 zEZ$1B7oS$VhX1mqcop-rScEl#wX5K6ECA4KjApOS)(tS%sMF%k;x5j+MEGmi#DFpd z6k5|SyG+PdyuNq?m)L)=C;$_J9CSKZxy_-BFk*AUG6=%WRYnLYScRz>PSR6?NgRm^ ziysv8WXAHKZVb!p zKp-0zXdz+;MYb#_kJJ2F-2UPK(^)J7Npm9*vJ4I5Fn?c&UVH8oL^pzl0Vr0&Qe3Hp zmCU-6a+|1Z6)25@`_OS12eSnEFzOW2srB~2j&Dw{8W6=OTO)mf*6;eXj8p>#4g(c) z(EFio0RVVX5C>43fYyQ0h0uaA*p9l;0$LrFvBrlFV{ci)-=O))pzE_ON`SE6GOoeY zbIls`Fs3lKY&5Dy{=`Jx;bal9Yk!_kpM^Cq{>1*y3`z~O%<1l`cw`2az%_-Pl$NWU7_=Sh zzr!ZEn5u%K1hC^bYIut=8+8bt0l8e{=2DraQGk!EUzQ_}#}Znb-JixFmo7gE4r{vY zJ8)L!p<2QID4YsPD1NESG7VwuR0LT5+!h39SD4zLMu4p(HdEz%OA4D-u; z&7f#~w~{##o#dJ^0@3##K$lX%ta5wIP{1AXHt0*2U9wOsdJY2ky zt>iLt&8V%qTBNX`oJP$N&O$)2cqSufgEXG9r7a$TuE8dk3UC}doAu%|i$}S}W5whA zmnVu};lF&f_%;5^O~q%?Uqm=N^wgThE}FFE92E}J)kcoj!XccVoD8a#-OD;Otr3`g zgI!><1n6D zxLXV_9D45}bPrduf^^_~&v7vQ^iOSV#skFnV;f_ zS1LRf!+I4A7w;%)TrVp~ED1O+)hu$U1moN)aX|n^1DILWVMq~zb5r0k4u>!)_w>Gu zD9jaz_0s}RZQb7IA$;iLB(PSCCXcK*ty{&Yq{84+{^{#qEVpl zF0xl~Xx)g0LT8!CSGZu*Aw+dTWV#jCl5T71oXI96R;7d{RemK+_UHC-ebqEYuS~rbV~DVCf9&S zc`zLZcOJg}rk&SA(SrwJVHJ-;xQZ1u1?>U< zZ5&R9fq5!5$IH;N+)QB}Sb8pid&=L>=MoTTP=Xy^IQYg>bes)|dRK4`c9!j!$R6{F@1=r2GTA%=NwMdP zB=*M!rbDNrBBI{F*hh&%i=0Ty1(KXNUjnevDjp6uq6An>iY#_~curY|mV#5H!{P=# zkcnomU}oSH1f8s;A&u%--cOWj#`HVJbBD(y;w zZ2}!kv&7Vu0^3NiM_O+km=!35q2qX(PGG&psY#?b3bCf&ez9!37dZLw{2*9Ih)0F< zYRtj)J8B;%&zh^72Q43b0z3-_UOjXZap-Rrxh1HGpJ)fpv-`zD%>2tkw} zp$?mFwns;CH}crx!b3(K1DUiksJ!m<>1DEtkS@GLrn!zcv4U2~l<*E{^X(|bnk!cX zL@Qb;Nt8i6y`dQ;Sod#A&8(5Bv=rqmBG|ZN6%DCb+6aLKg3GSWK5zZyu(n7OxrLMk z_NY)X;Csz%mSM)uY0D`My)%1ow4RvB#--(=0fp{<05 zdLGUZj4~Z+o{QTnjV2sfgY&R_P!hITU{(xM$3_vhKngip?}7oAIA4?(%T>UA?&KCw zH+^1{rzMXZENn=7ATkK?R_Ci#b{vBXAVgs)WeC;43QTIF14sp*r8x$iR!+cdN%WuP zSd0^>8R5xxnRY&IUsQ9jBv#fydOe4y$6(#9UX&7D%v&^c^14~R6UH%|Vit0ZiK<-s z60)y^mJfYUFI8crFBinh7#(7@Q)s5W-2SJ`2u{Oc^V84)afDsrBp39PxOhS<3$yfc z7CM}rZH<#nR3~Tm)_H?Ywna`h^65kCIWYpQ5LWYW|AuT+)*-OOApqHEG05h@#cB<< zoxvP>(^orXdC^N6-Fs~k=Q~+oVH#YN+IWrwBV8(SX{-)|IX7`$Igna&vB?XwVr4<5 zFLvtT!^PG-GQu|iUXHNqoLuMtW4nOvi0cZ_Lmkz*bZ=+lRk+(6TB{sdBs{qNyn?^D zzge&Kj~M0tqS0&^Fw>Pxy7Xn!^rH|A)m*Obm%>t*^!MlU8LzrBet5BAZiI|g!Bc+__NC*5*@J+CTIJL9m zy+kC?Vlu7oiV_P%0{Jx1I$;k%J1OT(?zF&UVu`)K0UO=2dp+%VXFYHv#>L6+d5E{85i3by$i|Ccki0B zQ@c@yQ?_Uw=$?&Pw{EK6wq0m&l}%L4i$yMT!wk6|<&w1tJr|er`ML^l@X*{Bzg_$e zHGtxGi{InF*Tvd^y<8Uw_Y9&~Kh43+q3>LbuudZNv_J9Hu$BolE ztTK|gmlv;K((ABpBn|)1TjhK$11jsh2Zt zl-1aoU?j91yBtqAVbvO!)VYLRDGhKi+CfhxrSkY5q$if$;RY9Qr(q3;@~x8j#MTI` zR^yQ#DcM??EH3hJv|u|==gTbMKR{t<*J9TOI~dim9COI~JP1I#4uKQbxD(MzVeiIU z4(x@tA<+sha_1D=?XdI&gDI_E*z*H-wsAKg<}SOrU*OKffPt$Z?{_ z$h|bgf%z(4EG8!Fz)A`BMNoj2&4q7fF$R>e(1_m{GUitCFT zm@B?(2S+Wu42c)HikArOGp$;lWOe!q-@}7r^F+>06sqUTcyM-#Yu`L!#`&CBK4Xe< z&ryC|09vIDKhMm5o%~8k@*lKx2i_uW4UohuWYSovG6J3f1crf+491pHSNT#gmayzf zUn$c?FBF@O2R2jjqFx+jMXko50de^e?yD8W4B4K6du|<((`GR;Ug$0?Tp3(Y7{&I3 zmd~04w?k|PR^+Dpa$c^LH!9Jx9;l0!CmAzw?-Ddm`nU@3<$#NYFdjt1c~FiGlUN8| zB`@-kqy7mnV6eH0yLNLVx6k-3{D-3eZr6)J{~owR3idZ>^o6mCu7-ijg~Zm~MSikU zi|l%UTs+IzB0B-Er^2vnzljTC6pxnn}WcH+?pSs+v z<5nd3pE9edoz&Rw!zh9C(taXoEu?*-{`$$W%V91m=7f4b-K^8YX=YU)gPj>FM2k}L zA9O*0oDi<`v&>n6XY<2gAI*pG=Og&@QT+KB{D`UKTB#g?r3hT1sf0CE(JqYs8edg- z164t6a8vWJffBrc*Es^GaUfX8yANu+tIzSRFN57G9s_Vn`Msj)q{r3(AqV6wdP&Sh*d8NCDg(y~In2xFRxJa>N{r zD!59~mfqIf>9LVPR>Jv01|fZatug}6GAuPgU4b;1la>q&g8@E7xjedP{d($4V_Fcd8&~A+LUhxLZ5 zz~(m64CYS3AuO0%LEsr;AH(;){nsCJQSOxp;hta(CGQtan>{lSPwXXG37Mc?L+*2+ zor=y9!{PM@J(`vMhxOi%jk0B38=*mL-F-0Eg9ZrEXAtyEK`(v#>lHBe&^-3R0EltM zZTkL|Ij|1gEY=F;Q2!Z)OJZ>S4X)$>stPTPP(jNR54pQV^@d{}*4QtWAbPslam_fT zm3QNA2e69)sBIY7%hm~(W_DE|LIIfwHW!%!QJsc10>%)BfpF7B(p&}3A*?KdPex58&XgQH zPU1V_3_&!b@K&l&aVQ0@!+GVf>Itg9yQcqFQh#xq^U_9NxF( z{9Qbzg+tRCa<}j~aHJN(g22C8@8#dAV~EFJYDjHb#MLNcvrsN`i)iN<4CKgnxLWou z-)MzZhZw{Ihw$Pm?4q!nB6K7b6fgClTk1q&(4gRl$?3yMd*u+E&ae?BcgpTxS9w(~ znv870{k{eb{NP|r+ZOG#JD95$s!pY%k&5mL?KDE`oUaeZTDPi}dwGW_c#OSn=c;VY zIj$DBg&5!AD72eBhY!0f#FhviBU;ApT?cR6*T#b!R)bLQA( z;z~AeG8y;-TZLMot-~^i!v{Bxb}rfgL;&+h#d&>$1yxABK56CJ^7rm~GC;1!-$)|8Awt1xpwGe~SV7MHN zMWWY=0s(6vOmzTeS$$YbqQzgw^&#a8Hl?p6i_^R>azeM2yQ4kZOl(Z3tF%FbTUA_# z68(-qds;;A;GWR8H|SxyZR21>X;e+f0Cr^e&V)V{i2#>c!-d^AC5>?xaY#Js%+!2N zDB%=_XB$QGe1bG2p%u0P=e2MINi;8{?f8&XlfNIvOd^EscWZT{Anr_T?dcup#U27B zW3tWBpx3U~Z^fu0(5CC&@PxL9;P4NGu_i<;ZcyR5jb>TLJK5ndrVtNSWjQ#22J{$+ z(QR`sjhryOq16SEr`xC`R3Z}`s{B3IRD8qrdcI3AF z%)CJU^L?~jOSZs24FkD{_#~Za1aO4HHc5@JAg?$PpxA(x~ z2XO8R_hWdO7_LC)R|(*==bmynx_~*MdOkdc3!e*Wqj^`^OJrGWoDf8nhei25LvM^? zU~E4ubkb6JKTyJQ9!iUNcifH#H3@gaCsa>|??rLIE_e+8yn^>KsOC*b<}g8fyX70_&}O@(HfjhpDs(&_OE&lgwvK`}$93!FvZV zH=})A+AN74g0J8Cl{KGT{L-&)vJ`Ct7kuFBHA{Jd%tc#YzcYI6*5`S1i3h*_+(ffY z&i%5lpN*#PTN~yQFaO3P(ItG&2bXxo1tOu!%IGOzmS3M=98 z%mrTkgR9zmh@9;;Km2-IUy~=?ocFaqcv;)LJbmQ6fAX_wZS(R9Kj(ej&mV7_m;GJN z`-Y!g+txuBLp5i9p)FGw3=22@6i9i^5?b7@7e`o`X5~Olmz)5`X5@>+b+Lr2F>&z+HyyN{0{w(oWHwWezDtw z?lRN=*t&rP`5pQXU;I!zxEybs$^XTMw&*&W0i6Bgo9888$>k!CT=w&1MI0F(?f-7O zBHqzoLauJZ)Zf2$lm?^n;!9-P`Q}FP9ih&gW)^c?iTr$BDm0h4!<#J zAxDNE4Zpf=A>Za0*YuP8)})1;ntqzU&u`TC38=Iv~4lZ)~qeulAhCVNnXsUZNdF7^1BEg z%v{?@EY+gldu0@0QGH^`;@`X9Z*W87pU5f|&ZS@O(!pq6dKfRM={=Vj(S6cD&Ys$Oy@I#+Z z9E89n{yx9iO1d2}$Ya#AX2tN^*H{VmZHcKB-}}i5JA}nq$`O>l|D%Vz zi%3*vRcm4*VhfYfS6_I`*X+#{a?tUISDQJ*n=gM`NL-6tsHZ$@`hWhukUVn5p7NZ3 zgLR#~HA)rvw%It>KkVA;&E;GCqFiflU;LWTfErHy(Py3gMCqyG@+qaRyX(cDuosME zDy?Es@&&W@zbrr+*TFdTCBJ+;ms8T&2`Z>G7A_EQwUPt3??u{^PTM zWBFIUDP`laoBlC+6P&aB%g|WljxXi7^n#mSZo@5YGAyLq`{kVLp(CGZ7hgn~diTuC z1T#4SN}TEOM~?)Uwzr8X%jV%7Gc0=xmp|Qpt1I+h%Z~f-DZ3J(W6&G85?aShdd4tNh*ruCquwoYep%?~? zxfcGp=z$k(QI0j^l5d=KL@A_=OTBN!AID1Q3GU)z53T!?*vi~NFI?*3_0NsdOK?Mk zi$1acaGYL5(WCZO5SRSsvk$~I8DHEJm-|im-Z;&8cb=%&nUfoBY6Ee#M`D zF0MLnTohNg^U=E!ROgO);c|x_|5AeLT$?Uj?AhP=6o&Zn#vFgT);j zzdq+1e-q+)$bC@CV?6&~|31-n4d#Blzwd2j+sP6`BE|_*;$Zpsq(2ctggJ5O{(sB+ z2U8f!Fn)(KY+3ukU-`#kj8_n;ulvD={izh?NHuT0?BN?jQrV4seCvlF3=YQjHWU%q zw)4?uBaJ-{2Uoc~|n?gm$U%Lm4@X>^VJEMA$>|_(p2MLVfSc;sgq`2lYkj&W9N(+rcTVfRxsm>TlVnI zorWw%D!urk@55+I`|>9V*x}A|ZrBmDB|EPd?Cka$8Zq-~W9{t2nXV3MsoRO5xw>AJ z6VJgNH#Z$ng54`OC1vf{8{BRxdsHQJw)x#;e2vXRG$)P%_uXYcH24%w7?gQ;LI~Wv z`#6$o&TZP6XGhmf>VQY^{sg4_$2i>7Iv<^^y~+$ZJD+Y=_AArz?&P~^rEIvq=HC%V zK3eLE4md?qy_TV@Bs)0Ct!m{S;sgn~$tcduz4JRaA$8DPVH!Tr6q)kQMchoOqaW}^ zZw~Dq&MrUPRS3t$!xy#Wp=uCMMBTfYQ%2AUBXg6v(aRuBh1wXn1Ped6dMO418Qk9| z_XCzEfk=V@a(KE=S^&Xla$cH*G;RG_R$=Z+0`H&7JAVxIp;GF7iZtbw%~DplbNtz@@Ts$e%G$BxraR&%a(=DMkA0eTium#2 zuFOy9EM1vOXx~rUcsgx^;Y$X}+=SZ>WisK50BOni;O?Mf`6wwf6gtFCnr{@w(C4y< z#Wb;gjCYy=%Cx$-**gY?XXK?iYcMpgaIV8QODD}Y365eb0*%PU*c27{52pnMLHe{D z`={|7*+auQ;>e*-9KAUnHQR8-q2^@l1hqdC99J|c9g%&fX_DYg3c6DkpuY6zKSG6mWy$tw37!_s8qZDd^H!8s-v7 zFZ4WVeo%0xzKrPFH3DkxDVaJg*Vch=2GbEOA77oWy!u$1+Vz>K+Wzw`)Fs&0oWdhf&3`mj`2zK5ERw@#GiV@$olx;m1Ntxg-Pm$garL!z@^;q~=p8xb>1_YHI8 z5%^+SWcIdmNB`w1vQStZ(n@|^_VZh))%$u!Pc8wLi;hnT(Wwk>XOyt zD8V0_CmCzoktWTDJJDPOywnW?+o!U^x#S#;C!AMk<( zB-Gsr38A-6NC@28G~-UFi%!xB3DF-qAt77HS7MR%pGJ!YG!Xiw4rmAo26WQ=s^HXT zyXBD?F#+&eCyoIg7!ZvjO;OPp(i9b~IZe@6OFC(OEgm_Qn)%F}RMn*UkMZQ6>K#Sf zA|a0JNcvW)vW&%~`A_k@sff;@tOElnpq52bG%#6|p`JAVIYs;C6Ardgqb=5?`7eUJ zisD6lqdl;vDl1fzs;uZi(Q+xZBU>EVj{Y^a9Zi~FPmt#uv3aaD!af}_4js(h49~KT z!rPu=l>WEa;*;h#MV@QCeNJpZMHoMNQ4kzx7+FQzPFtLZ3y>nxYfVd8Sh}>uMe9mi zoEzAr`7NQ|rzcmhv#H7&7Jg<26a+>cP!KS6KtZ?`ZGi58xB#mI3KFkxC+ITY5qZLA z&hm7L*J1GO$k_cRB@J#FLhO!c2us)zjaa9`e+*Zy3Wl1OfU2fKOlg_F8;h^sEp5xI zv-aI(&JODnLF?o55slkrHFo(yh8+5>)iGM<*7o(yv%T2>pQ z)M*W}-F;u6>5JuVi>7Clml?jAC+{6n5w^HPDq>vfkczNB9a0e^T!&QRn?r{cJatOo z6Xv!blwe!YAW4j{vueeks8NPpdE=-Dc~7DVTgtHyY# zKbJGg@C0lQSE47){}L76s6>O-Zvt;Ddq`W?z`P>twP7q9@|qhxI_U^CY5quXc2!c& z>L*INRx9`8gG;o`zE6z<-wV+WFV@s6XOF5-dbtiyCYAL59KM?l@G^Wq?pR4X)s*DC z8hbAFGim-r2p08bbwn$IHv!KrU;i!mdU{d-sn3Ziw!7vsy%jsMhJY?@3hbU@=2ins2lkm^@pf!()`tv zfc2Ojd%gRXb$6@z^^<`2IJLX3dUvz_n?Yq4H>UxI>EA{v` zX-=EP*LnXAt%kKDsoy1M19(!kAC9Wh!yPm&h#9Bx5`O14eMfVX=6V0$kUz$7p!}gm zZ~Bu!{21)KFCnfC)Tg(vDDbAm_4Aea5{5&S*;kaIXI&SM==Fz{3o zd`tS4+E7a&^B`uv#QlJJ|6X1Z%k9=mxJXhqv>PhTI=GSDPkq_7L&!*j;J zLI-uv7}f3s9?W^7argpxqobjGcNyAyDs38MdfH-1JUs!qh}je02Yk0^`rCZyW??WQ z7B-m#(^E!I$}nHZ;0x8|c|rKTuXEwiz<}6xNm*KKx1=l`zeSspu!syuSz7G=q%6%i zPnrwVad9q-wzuNj^dANO+=SJ2<1Q^)amu;{;3-S1-50?VHsB1vXBT=Aw8juMkn?y3N)e<UFMw0riSePJsIZ~Ecud&j&ppG3a)fSi8v%9(R@_rQRNOPXS;B3x#QsR~6-F;&s`rGIfbRJuI!8GA|kRJuH+5tS~_Mnt8{X#1#i z8S@;KE~A5^(&Zjdc)F*n%DtZiS>;YZc-Bc%E}=)I%jM~)bh%6#l`fa-qSEE!PE@*F zT8T=RYXec~a&{V(E@x&@>2hupm3~x2T12Ebt%WtcrfY?qRyw6k)NzAo?zrC2a4SYw z>s4T_t(oG9b2i(53{=mytl5=XwWyU_#X{YDUGNjWYUs=Lf#9dV4u1NZ;3pg?fYy?+ zQe{Ld)s2EaqSfH0kCrv_c&(|o>NGw;j(JtBrk5L@B)rfgA_+%@h$I{kB9d?{h)BX= zAR-AzfQTeC{t-!N_alXk^_urVK5J2-l5aK)cv_-dfg6ch)-1}=dZ4xWZp>xPt7)g|m1ZrkgWa^| z=8HzD02ZrtTg!aOT(q>u_0tW=ZY|scHaK&{sOlx7thZj!qVnbgn8}xB&1S3DGVh1f z=7?tXXpKhA7-_;H7u7n$DAb_}YmNv2!@tieYvYg%f16uqR-J#0z%iMcK8h(#YfeKO z!z5df=7>27f|`?16N^MF6$@qyzJL@jM+Pq-<_}i1LZ)|D(Uv|dSC;l! z&DQ`q^BwR5VwtanKT*}MgFm6FH}D^C;y>QZf4qhMXqs<>Kh3wp4{&_H8plU8I6+h= ze)rWt_%<8|vpzU&+IiFPKW6c)oA4^vo5UP_szZ(*i05d= z-aR|LjL;XZ|4SX#--@q)3HP0v4*f!F7?rY@nP4(=_RS7CdoZ4}WyIMtn-H4Qn8@rd z>iH91-oi34cR%isyO+gtw{)MbHJUX&b4)Mk`Jm!L(wVnu^E&IGFOTPK@$plY%rR}e zTGBJe;oz57ZGlwgYf*=Mp{E;T>Xz=Vj8~ftYG#>+fhN^st3%S6w+lMt?G^F7tv*tz zH!{UaJ_83POPW#EMht9tUJfI3F`t)p$mc8L`Ml_eUK^J>lx=YTc(qb%Xk{2FJqnG> z%v@jHA=j^p=X&)Kn1dKvDYHkf>g9qCoMw)cD!!H(nTz?{*CC&;j^}gz{&K-MX%xWd zWOl>hSOYsY{2dR`=DFc|HJqdXbAP-;?q3tn{rNld`Q~`Dq&4(H=3pg{jE{~2cu%u-c5lCh;B9(v+ZEXM~sl;chDa%?0yU?Qj0GHxk$87IKoDrz+d&-MwCtO!f+*Bwgm zr|}Y81m`C+@<33Y-JRaumEA@y4>MpN?{S%#>(6({^_%0l-hf=Y748JZXGB!IkM%?) znE!w6kpDl6=YKsOLkg&!+kR-%Pf~!n|6zyRza^ggjl{i@`jZu534Ya~1aFO(U;`dk zkI;X(?MYOE`S0oJY}WL)c>XsM|7r*%D#8-1=}-cE6ftJB%)oiD>|g+bD9aO{ojJdx zL(bn3&-o_iTuJ!}%diYvJCp&RT8z>DMwDSFp#64(Z?YmR!LAM^z=s)QBzOu-;6|a% zpc|W;`99Ji-|vd&d;Q*B!SS}8-jfty?r-mqdwl3IM(Y<&mPtrO3giSDVF1|4&``nyd3LoIT8YpqyTe&Plw#UFP{5LkLm|+%IrCOSPg}w zrC5%abtuRC=E#l0zM7#I#5R+FT)(M9u5tT4rVoUyR(clSLeiPH_jbtJ z2jh8Ld}Ff#ue$K^FCJ(0a27~qzCPX|UmuF+YYnbY)wKM?c3+eAG8mnWIsLm1IsI@v zrz;#zokr>9GCT`&_>UcO_)t8DYi`!H6UVBRMvN{avoWXN?~v1v#B;jBVIfkNp;?&2 zUv$XfN8>qMed9^JHfqGEGBOwQIeUI*bCi$8^SRvSGfI)6Ihel{9rE{ZJb&xp8W}_E zoV0J2ZF4fe>pSH4FXH)K?cp~{r;)js&w&p4{L6Sg*B-5mH0zDBUaz-TYrBlh?R6b; z`|)^gSG&1&xwc;O8JUauJlG+hkHqr{ZLkiTe7GC6J=1nTYMYb!eNKn`ej=VF81b{U!5Z+FNoo)U`DPFtz#N}}z%wZ^Jo@6lJ?mh;G*;s6skxi( z;|`C-#BjF)gAFSXcw4E#fB=zZ6LrHkT!m+0UdPk&+IwL70e`o`qdGC{&ZCfAj8*qq z0M~bB?75vV=C`kSP$-76V3@K8=wLFl`QlF4^miCMv=qapH^$tnv=-s~?#E6fJ^~saG7z_5L&II#!Mm)L~BiOcs z`wxL+YH_GODO1v5k-yc6$kPLEC>}|S5&6O+dyZs!BVw_AqQ&H85&pXq5zaf{w^4X> zGDd`rNA~Rp5!wd9`y@$Lgaw+hF!jU$`sm2IIXC$(TPEv&BVzw_%%l3hpJ}(SU&&F`PWLF6e@?}RVr+LxJ=Ya*2na6?D zJkId(h{t$icw7MS$2E8!E99t=H;H+BdTQRz^YMn~h+}vQ4}A8F$>CX;*TboKo#o>d z4>rf}x?!IN=X|`u+}A_kXkjAT!1z%(8|Z^SQ3;mhwzQJ;9+(vvoAD@ij4*R$_=?vZ zcRn*)rB2wI>+^iR9naR1Jq8?whn+In5+5w(Nk5ir8-}mx1 z*Z#~r{b5?3dJoJFj0SiXK8CG1VuRPqmHm~OdPOHp`8_2(g&)JzeAh0imoZNYGxwHG znDfs`@g9H}=6ak>F)wfK1ZM3+ov`MgrrsJ6;~C)i-M(aV}QiP`(6GJD>Y+aJbrv~cH<{jgg! z3U|K*j#v89n5Q3i$kTte4M&KF1^q1bDo#=s@#*p z+UA1kwf&PPo3?+y3)(*G()P?gcrDkfX8y$b<*e!T``>E%UFNdXFh1#}y3aDtC(F!9 z9AwE9z*Ru_?0BO0zh zk#)+&)9dsX-PY-<#qA~~Q{%NQr#jd(UepH*X!4*w#2|T=Ed7bBQ!bufr~lJ!oo?-d zP6u5&U4}Z{4@U!|^ct3db<1SZ>-K-Ut=pqr(Cv*b-7b~7jW7ct>8x2Ml3ugF?6zjB zUC`{fOS216vk_YLrLji2aC(jYs@ocUNf$KwVwXn2e7fHg57<^uBI}fkr`PGPyRFlA zbU~+Yb?FpZqU)V=uS$JstWhqUUZcP1wnjhQ1&u!D(&(~2@$h-{Xcf%Bx@9uyb^F_H z>-M`{(CxQex?L)D8(~*N(pj@iB)w+w)%nQ%k6zQi;@kN;!t5pI-fx{jb+F&MxDRg& zifXcfRMsjJNUv3V%f72x-Pi@KUhLB9BGPI^WA!JpPPuq`olftzPIq-dr%!k3ba5XX z{u_*LslHU!DicVr)fwH^>K$Fs>TNEqE+VZ)wp3KAlgK*d;^}odv)ej-UKezF#-&qg zsY7jBsymgn$^_DDbyl~v`syxd^%X9yQcE3j8l!K81y2S$iL6sDo?fT;)I;Pr#pCDd zoAnZ1kJ6}Q>UraY(a4tIx=CNeL1ZrG^F!@a*=DO;-n2g_p3k0Z$`!aM8{SR0&g1OM z{fkd_$O6835u>V}o9cQkbA1!uk@2u#xf56+pYMH04_BNApW%-g{KqW*V-Ei@kN&{e zN&9%leE0-l-~%f$0-S%nUdDhG<1V}`o3EQaM7xMy=G)|B#@A7mPN;zr<95KfU>u)+ ziD7&>-IjG&hkKMt8CYjMRjK(NMhMNp%wE_yr6%(@#*&(`cfKgVZ^V%S>i?&tQk?9|h}jJC_j ztT(-^Pt|ZT%RXh{GQs%DQjBC5I(I{4Mk}?p7udw)W%*uwZseO|%V*w453|sV#4*C1 z?-NdViGi@tHu+en*Lj69TkvlfP+rD={4xLWO8(>3{KsqQkKO}woCt1aylM56D&;ZX zOIGxh6hHNZuP^ZvO8A(ONiP!NBSI#<1ccA|nDizOKA&Sghzo%DRE zJFW3rX_M}T#tWKFx@8$JIyULHV!Sxmq}zY-`dyRm(8X(P&37U_ycpJe7yb<|SvBdV zRJ^*>r29wl@=ud)@WhKWO}Y&euc9>RK1saZ(WE;X@iIk|ZbZcE3r)I%5U&R`>5f0V zhR>wC^zfQHlkTd+>*P$j6AmwIGwIefyc*4<`_1suF_Uf%!)v`vx|<8H%rfcTE4-A- zq?@Jix+jzFY{CnbOu7{buP!p_{vo_5$fVnT@M0d5Zr8z!ZcMtZ1}~5?=@uBgs>P)H zR`6mJlWsS`Ye-DGO9Zd@pw}8ryjsJg>oD-<3X^V}zzZSF$5DTHyMjr#BH&d8CS5Ur zcLA7mh98gHn{-khkG7k1Djg4wn{?nCPimWV!Ws`ln{J^Wmnsjg!&up4>(h`p{nsfjWPXwBDjt`I0nREaS&!Cxfatx1knRFrx4^NqN?g@`7 znRLns4+5EVh6fMQm~;RJ&#sts<^+$2m~^rO4`rBim;z5im~?^xj~$qFTmYl|O^VLP zpn8*n;W3Wgr1*0T88<2J8w0gXinhkkWRt>#F%H(GU{;LGG%36iqXtb1{loY+lY-PR z>dK_hDU1d(DWnG@SWF5-!MF>Pf+sLqz@#mI+}k#3gBtf@P1;b!Jw%f>0&(Zdr0px* zu`y}e1@{+B+9bgBaFZ6baShj`g;-p9G->$|SIbOV^1?M9lNM@lUBaZr1)NQrG$qFQ zs!5YhoHm*X=6)+^?l*>WzwMcP*kw9$BKjV%n4P>jM^itXt?@Jp=Q<`$LU2~V-aNY5 zCb`Gx!hDm(uj&f91lM=W4)i}gZRQTsXdNr8vMRJJihnp!{ z_gJ%mmuAgq@%xQE@ZMCh0!i@XVX?pmE8xvWn_aH*Z z$EP6y9%HQJ@jPFYZj(Qc=)4$tAJ|%J4jfs4i;3~c$KJzMR%F zp+_S(ki);{N^n(%UdxT(yN*V=^}^O+t3O#0EIx`aDpH|Kq6!UiJ$3P-Ay%+HD(?{I z)eBmCnp-#@yvhVkG^YNoocB(CrH|+0P9Ug1eP8V>F*Lucp z;XioaQ>)S`BRHpmZzZ?xwPqKM0=!KIEq$S=M|`-~n#;FT>4nyTX;u$AfR%D-0!sD3 zGo?7JK5KR}HtIC@MTX8?>P2H-KqY=a6z;46^w> zn?!$F5}TkPb8$sl5(3owe`lZuADs0Ji;vi#-k~gFIH)LU9H_S`*A)QuIcZ5apx&I8 zgaDN$wq5I~-n)@JAU>k44^?zAKv?EXA034tB0B6SVB;QeWyPWbOOkY868D;!7^ zFAm6mR<0`mk8mFoR)-x<1J}P2pnk-rE55bJow~6a)XWJ zA1TWfjwH$#hvXkB*A+nWMQKSmNIpL;34tW-fhi-|Yo=TqpgZg`F?ZORgEpWaRu(TD zP!ux`&<`lr6#(?TL?U{r<%dxVCux>VNha^IX~whC)vv=P$eK}>E2q^_gO&!{UY z3)R?MLpdYQ3z+R_ZOLgR&UJAczP7@CfLM)fmu*|FUeu7Yu*J%M0==96fVyke zkfi-~Wvi3c=v>tPR#Q*3iurWg_AFVUs_JmtgTltyo`uSF1#C}GS`rSdbJCI!g9!ys zbPd+k5%=wS@jPVX`7~we!tq2YS|?e*ziR9|4D`WI`nUy^2W%vlt(+Pk80CvYa0eX|NU`YX5xq%{TA-b}G@08-r+HiAe z5S`a6a}Yr1wP{J5b95Hp*lf@N?Bn?QX?e^uDp-M3#^h7V;v~gn$%YE^lf_6=ilJ6Y$X zgj^HvM#viPh69eP{S@*`TN~@VsdAgd$*|U&flWy?0nxZ!88&zchzvQ_x^8C-+sjzK z3Z?=p@n<#uoR2^2;HR@~jC)igtzFv~*QD6S@Wodjx^D*CnwcO;hx-@YwmRCsU>7C@ z33T#V5O!2kkZ_F7*0lXhOf~3~VfUsQ;lsLnZqyj7C!r~FCZM@BcY17OFbPeOGXc$QNOLF&O_5X5Yy;($IejD%LYz@j zyfhl2s}OUTR5olz6J<_7`RZIvhoeK~auUi;W~LlA05+j7ny2t*0)Nin&sqHWJ^Z;F zfBpb}UVuL@!k>Hb=f(K*NBDCe{@jm058%&(`15l3>1+g5KC9#!L3gJZLAihV;{Xob za2}68qaaX+11TH5j)t)7JK+KX0qA(V@(`9b5a3d{bcaeW zzYL$@r{TS?f|?K8gWAWHr41j{Q0llr?P2A*0)yH|(vomolntKTvq_xZ>1&SfcuTKBm}s0k44wO zy$CK6_g%%3>D^t~ZPfB`X4MDlS8P~UtyZ;@;jp5xaj-5|t}6iRlC&foSQn-xAz-CT zNxBB>287k!S$D(LVQ}kC+0ZgKRGRf*m;H{7?M`J$!?8t)xvl`VPfJU}!S?F3 zBm}l}%}m#@U5|H@1^O(HwV^}pPi<&R%7TVNivq_%Ybe(hfOa%32?yGIS`q?Ux;Ln6 z&~7AXmHO=rydQ`T&b(Y%)NpW7|ENVEo zC~_RQ-&d|H0Pc6vl5oKNW?B*gT)MBVYv5+!(#`B(pyx(;$ypoNHEX8EOGa_yfL*Cv zR{+>$X-PQ1E>25A087{Jbq&}}46IVOeVUE#Ze>}+yDiEbhwcvLx&r84o0f!w?)J1K z1iEykV%N~!i0BRlx^25fsr@#%Wo1#r!9|hdz&)W{R{-2%S`rSpdRh_!T)HK*Yv4YG z!F6}tHtSJ0+qk|$S;}x+QQA0MU#47F0M`f7l5lXHOiM!GN_U=i4cGO1cLmp@+I3mo zhW4+O1r3K51&)LE5#_o9(EdeQ5)QNVGKL6+rcSX-PP!emgA*f$Dp@it44X(zrhh7yBy>w0GP1u04Nhd}Ne54&T+v zbp`NUk(Pvm@6xm+1itU>D!%J&d=qxv`)p|UDhnFkby46rXm=^s6@d2XX-PQHUXzxD zfcAY|h4xZXaKQWh&5NE9y) z$R8@#6#(+ziA40wVoKxGNhWXH=Voujo(v=xfuCAF506phC+x_&gxPB%2DDxF!Q3fb zJ5jH~o$4~SG+}m0-FF|khxege<)mI4H5}r}a!cA*w9(5J3^+8z=_{N0&N)T~t(yFyE zsa}IWYw_m-{J98!GWfF|e>URJCHT{eKbPUp75LK!Kfk+p$}|@%iT3Fas66l!-jkjK z0(BTq$;PCkc*^glHECj0_)w}*A#FV68obs64b*m@U+y_}W`5Bg9d1@ua`@e=-ZU*3IO_NX-PPMz9}sU z0q94%3g`+4(5T+|TN}(Lltl{%6Ge;z^NY%L1;G4#S`rSJkEbOe!2D=e!CZYKJIL)j z=R$m+j$-C!tW)(*!tq2YW`;_$? zjwMPMhvntUbp^2OO-sVTa#LCo0?UWHisiba&IGf4|J-b2dW*7z;h3VNahN_!xvl`F z$I_B;Fg=o%guwJKx{B#)52jIl^eP+A=POGWjwebPhv(hObp`NzURn|ko@dgM5P1G& zSMgkX)Lx)z-$nP@kiJVU`=$21Y+~PC zT+;@7%NpDdGHT>Cde9p0U%E<(K+V}i!NS`T6o%W0@E!Y_9=Ch@B~YdL1pa&#etvg* zu?JJ!Z6o$#rKo{D+5Noc`53hpl}DjPgTqeCB)GwKv?u$PPPl+OZXQi#I@0dRW)9)K zrUur+-Y9OIC7GsNSHP0|IxQ;BnDD=8Nr*Awv91DpK@ixe zRjd!#p!O*%I(&FQQR6_pT)D0QsJ&@PIG}DyOG1G9sjhv}CW)-($IbmWXt?aqk!#V>#` z=9lp23Hx_$3)g0bgQP8-~I!(E*Kxh4RT09)P`@d;P2)p~)RFI~&y9;(}b-1aq(JWv` z^BghwrHx{rvS!0kMA>{On$s76A(;U`0u1NvmCKcD4dB^JB)VjLNjk6b&5%_Ea|=qY z_lt*va(EemxEqr$j=m%`mvbwhxRj6bUL2a&eZd=L>kZ8&SDtgnjPWL7J~612dkAue z-5-1m)NI~_KR4sgE%kHqnLY3ngx9jn$39OncF$LqE8Mc6e4&=qI<~(;yvr)o!}L`XEB-p-~005J2Qyy zVr32k_%29G;+*4qG2`nj?Gn7Z;K*ljT&tZx{doFqg8Yo@RmvhK#dW>F)!~_7_3-S$ zbXE}4t;*a5Fda-w!jEYRKNqLItY&trQjl=CIFr`+hza=Lb=Os16`1D*9XoTa?J(b| z3{!YJL@7fZ=8MA|=CX3Ff%bKRNc_L#Fi$EAolw~`AgaVF=rRXqEKM>+DU#!es0Mm=olJH}i!rOHmW_GJmkZ`ytrfr3 z4)Z#>i;=-yj1mQk(gxN_=J1+AXNEbsf33_+0H8gNH|>FlvWTiVE+A+X2A3vJiFQ+FweVq zYP>fTHFUsydf0&Zo3x7k-cq@M_)8+u#Q}2(Zgpn%==FTf;K(;`=ME%u=gyof1zSru zV3k=nM=t9-D{O?kP??!P=U$tZgww576A5#wN66r&c)=f#5VCPjc^Im_%A$qa;Xq#q z^JutU42t57^I2h|Qc|2^JepZy1Ll}AHvx+;eNhw{nR-90ab@NI>ejHF`W_SnD!`h6o6q)S`tp*nn@(4+%atv`R5r;+vH>1 zhLlB2*hQ>_8=f=5oYa10t^(Lyk(R_c$L^eNc;2imc2Yc*H#}#AxwglZ`3oTX%(NuV zIkE{iFFidpVHxhN&s7#ZDY_{(JZFS?#uLgM2Jk(Zmc%*7H^By`2ipYs8Q0eAc7EHp?>-^>TwO3{ z$kj#bqv?*ee<)_!23XLZjz2Tu$8(OZduOb-E1jdWH4;2b_oK8;#Oe0jL^|sBpYMbV zI79aj-R<@ZafXyRVpQQ~?6U5e#+ka^=d;i})Xph}_jwd9w9l8q`ut_ewFdh9r9`4j zeV(NA_W6~fZ{mV`KmO!OaEOhL!>$P=)tlpRd|)CX6%GpFfjmlG5h$w{w1{$dHZ?q4 zM5$}tUv4fH-hPnQ?TSk7mLWaUQHfjKE8 z^ET+G$>;G|vyg!OWy(whfLNTCgdd0$4u<2S@K~0Dgu})2(zYnE*6~Fczat0J$Ssl7 z*AdO5Ne^Bp;hpgOf$f;wsEkZ_3q!#|9g{x{b4(5@*BWS2`-w!PF3*8uva4y78d(d}r{S6jaKs}33M4Z?4=4+i93WkA6b?{`Z!)ROOaP!iN=xFL1LTZuo-G0AGXwHr zWdV``5_9Ggu}(Yw1S91?@KegI_Pl-F<+g; z_ujjkoB2|E?EA5@T;UB3L)k({xwnLkaxYb`HPEW=BNCD7ocbBwGNDO0 z{tSKtU1#PsuVERuC%<1=+=NQDmTwTdWmz!zk}H>S4ZYdsJ<99^wExbuB%I##b_Q^& z=Xs75b+`Dy+Syl>1xN}>xN!}=rshk^Oay@VhqNU8K%}sYj&bGAn1Y1Eg_TwiVO*c+ zu5n$ukGG98$7tIau4VTa1M}Usg<1@b=P>UB%ZbGZ{eoRYanT!`Hl{yZ0Xt0m${85%?=*;gTZIv!RwZ z8eu998@E2L%tt`U52q#Jbf=FnPE$Q@UA3=LJEheM*YL#jgZYs|7?%TC@&xy_3y`3vH6-N5I%IZmq^tKJ7LcS3pU)Gi{i}Gc4lrLKl z@?}Ry^uh^WzY7~5zopD_piz7yEeU_4NHL*s<|N$zQ;=}DI7cp3!YS(cm!6}EgB3nS zogH?RWtB1$f#$G0EeSsmDX?^!1J7nskZ`!@N!zZ)6!k0JouV#2eyWl=Mqxa`QOW#E zdxCmQ8J}A5vNmaGIIj7mk z2H4qc!V-FyAUSSk-M~s#fuU!nXSaKMriTt21SBWl<`ZE60YMN11O!D8bi`~mpwK~cde=G?`^5;67sJCp)FJp4NP5|=I7Sr3u0WLQ?v=CR3;b5T`iyM z@V}PqEV76z;}a>@CK3O&P1WQ{?3}Xio=TJL0fpbng)sH2Me`TdaQ9vQdOq29EFB%- zSosYXBFG9OQ82lNu80f>V?~Wv$khfi^&Gr?@1&j}1+b=`x}sX9CI^ts0D}0menDs| z7;G9r=*)xxVFYmy*AXZAe7dp8=bU8=Me-?TSu^W1?c$UO-{h;<#xF8ZwNYSuU%Qe0 zOEn8Ukj%Y3FiF3yS?Ei)EObBeuL8yGtswp{WTD5AokbRL?JU%~li-VFdqCkI&4n-( z?Fh|ZZ@0=d2T{);n~r6}nuJ<+2%Ji`0Wfef7oyJ@K(>81k{!VEV4ES7ZJ%|Iz_-a} z04l!4g$Po?Xt+$dQ5J%=A$-Ty5I#r#RUp4-6vY39hOqw*y_4>OBCgdChU^*t zr2fMHkPBgI-TRuqhBt)U_8A+NhEOtK>53-EHURlIb0PYi0c1nCoa_KH@Pu>%B^8!V z;K5`w02Pb55J4&!t(a*Dbv$H17%TqFt<_FL_?N~ugj=p&w7PlD>QteWQPZZ?1-J5) zu|Uu7!)k+f7MU%(?xeHU25-P<5$>}$4HFv&U#LEI>vZz30-2qnApS2jc-N7gMHX?b z22TWA+j#6XWP3p2U&Vzmwd)GaUs!|Jck>UwBHNCo!_wkO3M?(&gJc^31wYs2*SPtI zQSSVMh%I-gvO*!mha5+jZ{Njq$s%-{gB89)&Gav_3LFxWJL(D?}i!dP(`8 z=(CMYK(}7KWSK}n(}m8mo^G&g;tS-VBSdnjqtc0F((Lk+K3nt9CR-l5k^HMbZDj@V ze<2UOoa`*Jh->Ge*2DTPCEEiEzlRH9D%saGf4$u(*PMa4muxzg4Qm=|9eDW(*#^MC zkGT+i&cIOT2wLBqXQleC4m&TA&BwAZ%sqhCECZGas&&-md9oFNhiADEK^_<_mTB~K zFl0a&D+*jkoJQ}t1~+<#9XwwQyBv0KN<3ddtj%hdo1WLFo6{Rt=TdsIA-MQ+YPHeZ zYNy^w#ih^IMz7h{=uId8Dp1=N3WCw-vAgw_)t$a=0G7{n4d0*at-XeWGOpF?g>*&t zA=?8=e@|}dbGr~@L?~@5H6NDGmF13pe?$#_sEfUY>?XF@$I8IkR!SCKYdkA%Rhioc z0FEJ>14{k#TnH1}j?~2UcCImExi}U$os*HsPmT8jP0N{NC$O}POsrE@6xXJ@y-l8` z#M1RYjcf{_>SFa`v)Ja|Toh}tG98(==FWV3I=FJZ*3Fu_?~t9vQa95q zV=pF!wMp07q+>0pVU~{j^BHG>N_4*iBIhw|hL4=jbJ0Iv9GF zCT&)-j}q_7775t^Mjj32GH0nfTaoPo%uVM)^f_})iaGZTQdq|{K0b#7Dk)3cmiO6}TZ;*=-D-ZiTlgv^q>FQ-85p*ZJzikM;&G&^S9(*1p<3qK{RrdZPLH=|kT-KUK!jrpHEJl=WKujBW; z?v9Ll#4mWiz1#YJMm$90?4DJX;Qey@?%CEy0dF~1RGpdf&n)>TA^ybl?B4?@&;Iob z!}Ap2v09sBgdcT21z2mLu3-CymQz@_h&?ti(K&CzUpu@Zv0}eP7tTU*;b1H7q(n}h zgb`71EghkQ$mW20yT5`6jh=m8ZzlxmZ7$QPD`M~iHDYS7iR*+9*-r5%p8A*FS^oZ% zG5z{2pRQ$cjCiBYI;45&g*wE5Flm!+TNw~0ZF-d3wm50i^NmfL#x2N+b5@hB`HgyG zlz$CpcF)m*>MP|k?Q6&!+e3l$&zdhCAbtwuOIMM971a1E6hvr^@BKsNrm6>4HH#yo zn-5K|5l>V}7i?u)iMUS}`F&*Pkwspa<~+Pg*qAIhHiBV&>jvR_$Tk5&?&d<6N_Lm# zG_1Mgc2>t9mJ*ZnOERUBIH_r+WlqL+gXZdGvQt>D#G`P8Rml!zm4zfrJNW|H7(mi< zT!=m=X{LOzufKLhFjn(!P2Y%l)D{d&U$aPbQte4!O$+7HG9)pSY#HEk5Er7)xtv`M zkn;S?VDFDo|CMf@ol}6kePa|3|u3pG$TTS+JEsiA?)0rrKK9CZ9$Abx^>k zb0JKHIYo2S+sV(E!}Ix^><27L7c*;u%eev{YBs)0b_UDF*hEQNBTi6M)>H@dtV@<} zA{zpTxq%DO=fq63oL}MZrd8~>Xp){JJBB4`QX#F9*$mRg5 z9^pdtIaT7M{FHmJ$YJG7DR5#t{8&@;AF@MOisV81u0_eBvdB}DESbr>WK#e=Z*d{| zoSu&3U6HUsDoqMNC0NU`%s6>adL#*8qc6j(045uollC1!IOy)ua z`Cz1ZCR5az1p~rZaXeR8PNw)`V>3m2Q1*_!XOF06j7O45vWEcaqcvkZ#+ET2M*dZx zuGI=6G-K@D0d?h_eL7AM>#p;=q8>M4!PS{`P zgo4&(UGZjRJyw)kvoAF^-XxZ!iY4(>MNdlByi^FheN$5EyjiTV^QVp3_G^(o7pj;pld{c6m}MycJ+eiBu(x$-H*VehG;RS&+wyCfn^=aP zE+iWPi1;cOB1i&#ZfJ8}mv7v*lND!Y=+0VO|=3t_6tPMW;1s=`eY$EoyC9LOOK2C-2D zKGqa{f$R{TB2_W8MOKO|y@{j9<^YNg=R)*3MNRr4l+C7-?rXd&md`awr;uI3k~BWy zR3Xm>Zcm?2RwPRTe-haqz|tlzM4z)X9*(8>X|mm*dAg456qct6ma!9W=UftHN${^B z8w7~DiVG1Wijke01Yfs!3_U_NSx4Z`vyH%=N&Z!!tkV=k zX!G5>3yhR^{sl%;oV7cpbg?9+*yp9%+RBAg+a|SoC-~upbZT9(TO5od_tsAid^5jZ zoFtafpG^yVCf5CA+`|jxcc%tF&$pI~rLJ^QuS)_Si&fIOOuEb2)gLsgBb5Re5vMOas0 z`Eos0h`{n{V*|^u`L51=0p)Aefbu-qAA3NNepv&`*KGmiS@N%ffbz702n{IVONQ9% zQpSmGZUs^OZeepQN|uyG)vSMrJdYeMME27+1rh)Wrq`|G-J`LtW;x`>f2zCft@ol(@9UU*fhhpGh_bhB+IfzLEGOUbTatHT&k9keZhkzrLAY||!-$hH7x=5rx}%rIId zlQHW$$$&6c{6|;ouzol@YED`p&T|qQf*0meB6NyllGQ_c{gpW69xa%S{J>|7V(ym$0r} zJg{H?e)8Y3J=q(@DLlvaV2K%HvJL-nsJhBnrqQ0q8dbFgQ1mPpB1jRVJu*$2j*tup zV?~W7jazY%V}g@*@2kAuHYO+qVUfdlvJpTIW4RDPA{bm6Iq2>l1HxGGCvM-z858_l zW4rD{4{-*Xye&ia>T1vZ5Hc_Js3YC7_S|o<_1ssGe-#L7nSy9w?qhj=khe@Lmd|yB z?;<;kEaK?r3k_Lrov&L*wgwdaS}ugCMQP1mST@A&C)9lY#YJS>v1EYfUq}KhdH)4u z3jhJ<>(Xo7E}n_*lbxMtVp+yzzeU%8JIO9%3w=@|-zA@bu_@^csDnBv2LCm{t1L&ctu4zwkt!^lPeISl4P1c_j9Y2=`@7zTu~ zVhLB*PD1)xV-wPmhk9l=y$MwIwrWzkn9Pkm07=)ZN$C%5N$CReuL4mWs2~_gDLdg2 z$I4bGi`8@FqNkT?->#d0c5+!D8K}$>NqY@+~_)E zp=|L|Ytrg4%LU>H&<&aP(puYORP?QypR>tDfaPb)M4Mx&I>55kwG>WNsfQIqcFrK1 z2G}{33t^(-$(rEa&aAdyB+hV7iKP|I`3|Qpz$wh!A zcn5I|nD!x=@2J|W$SxZnlKzuRhsYx&Y`vKq$#w#^zs-f{bGFB?OcmCM$(>wtwZi(R zoNPB}{vIbgh2?L8*kGisN>(eUchp@HWf{YJlxz?n>R~QKkSIpJV^Ss^x)~70iZ3ch zLT9nrjqx_Y#uzbciTsXMRsTJEC;0}6QDs}uEZ3aX6i+FH(f<>!MqXXEE6Vz{~pUwsBx#mLHA^-MkhX>k(dVR1@U~{w1Awe|Xu2*WyM?7|qOYX_ z#{tPq)w<*Gt7MA+R~0TqpL5l;ppX%D>#(-GIMUX#z|r!#=IJi7OIV)9Ct9UV$)dE$ z)_WYV+;Yb49b|g|OW)^01X*I_m?lltSquZhSWzQQ_G1bxu)0IhvLn`vOlek^UmI@ce*pu zGwV3-1GaJAndDyunwp^?7~{O$I%`>6;4Rbe#Rv1r&f04+DB@a+55!U;nB*Qnwgwda zzFY`Xk@nK;g^dleyZ<#8A9Rpy$C6=Ld@#h;J#Qmh00=l^qCF}&Da^>(9&6djBFX;@DVOV zpL4inmBWLDs`K)Q+)x&4+^c!~57|{Lk6RfY*SfYwFljkF=v}gHfXTPG5J4sxDZS|x z=(dyrVXUZ;%y8p3vXeMx?>@@lLskQcHI*={+=grfki%>)M34vumqre{Tfu-ZR!rsU z+UX?zz0sXSbC!X(Lz8{9+DU9BQ)3TA(lcu(@praPVhj0Kfu@d85R6VDy92`RC7wq1 z7Fou%dWnN=iSd`o)_}4KnQ(zLs1dSbDZjh(1fzZnYe%%e6b{94J-vt}YOS*(kf3Y$2fRN-l&6ewS<3d%G{Q zjgMQ={}gjrrSzJ-X7@;uD8my4kl)e#K16mM%kQ?3U$J%CwLQ7swcV3FONK2ypa;k{ z0*3GBLIfFRw2-Ee)uDj_VXW8~tuuD~t~r480l5URLa_`W4YtYP-((Ab4BpYD*SGp0UEWD5ahleiG3&Wu+Oy}st7+0X5Ud_hp^;Wg0c*1lb{dJx%R zY(*36pM9(;RuYE=H_S z?6ahUZ5`k)vJpTI>$ng>A{bm6Ip{7E1HxGGd2R#cbb#MzYzKJQQR0-q!{jM}zV7cc z)$Z@jWMb?BlYUvdzc1Rlzc-S96)5W43WCx7<q_-qiu)$nb}Si|6xZ6gzCpGC5b&BVy~d@uliUs3ZaA^*&~l7g$NSC;L^xJ=Q0ckW5u_)t%{SE{-d#Z>8NF0VsS(+2iNIm|6a{auOX9T z7n$@ekefO}c%iy0=qmDW0WDpjAR3sFj{aOZ)3#1LhFukm?bCS%xsy_1=OAX6D9 zo+$0N2kaA#$ph-V@zUCq9Pch=iXEaJ zsDbc8TEvAyx-;EXYF?dLxx!CLeNdXe?a4)mtxWriqY8wlN#SWydYVin9Z$trc}k9u zJD#ecbC0LV?o4N{2avrj*-}7uf(v0PU$fRrZ-+oJXW1nsQSNe@faVuY{YEagzB898 zrC&Jp%DH~#XMo#hyEo6C+oPFXNp=>??6gFivNl<@HtGI4r0uh0GXQN%xe$F$+qNs@ zc0_UVwPY*Px^YcwK3^=&E#?Jfs*30GsrGccpS;=bmuCCEGTZwFP2mY-$FUU7N{HW< zmM4u3$zonrR>x*g0lUc704CRQA^M!j=}wK(&$Cp)R?bE)%;!?Ae)=Ns)Vy6xb`#6n z47ciOJ5{KZvyW}cPC(g(WJ3UDU*$psDP#1{Oczf#(+mh>g-%`>5XK7KMPWb~E56Rn z|D2BIKO5W896f*aGI5elN4lV%Smc`p`JmdxtW^zRe|Bj;nM z*5ej$6f3zhDvwi}?foGIeyroj2V`H71xZB+tVEx(RJw&=dRD{%(s`t|L3hqcZoy2O6m4_GNYVpIOs`LJWmc=m7TeNzkX+n zH-~kmHi{l#X>HGEKNbHfgVyBot>O`1L)%i_>d~vKDkBQ14I&#Cd#B}ZISx-250uMJ z9@DSis_Yc?SDlp7Bv9*on3XQSx&qF>GzDP^D_hc|b z99S`rNyy`{L|f?C;;>>yr}iZOG*I$q6a*t?a0f+(FDZAahq4DoL_F{7a{VINIc&L( zNOV+f0A+eK`Da0y9>Ik$&FP_yeM5tD;klPE+N5O*7&(j0kl*LVD9RL z^Lr}0(Y~{A!HPqc^i=kueQWv3bgHX(cp;tcsq9bt>awE9)@6Gl7NU!_f<0+(Ycyw7 z_S>SQ#giqo*E`o6oa>G1>V3dtZ!}Yv3e-BADJ_kV?>0BU^*l*E63+mzW!m^|gva}4ukH^RsfcWuxaPw=W_y|X?agMfEt0YSAWyhK~n-k!ADz%{J zQ=sRs^g`D#M7E|Lvv-O%Ti#6oU$SiJVR&$Pw->yIEk`e1u#5Nh8ji}_@wSM&ccp>v z>H*&;x)epPIF}Nq=!)pSKn`Aui9gSm_a%SXYv|nQZ!ev{a@neM$@6pbP+uVYgg7Lx zylB-b{7*Pv@ccwDJKJB>cbT0X;9L)Mt_L~S`ObBLb6x0M7dh9(&UJ}%UFuv9cCO2u z>t~(oa_73jxvq4stJJl(v%z@+wa#o%2gJJaFx@mUAWSx>(+viMX&`H4gWR6|l+~h| zCD-QLnyYnBoWxby#?|X!cTZsSHvJ zBD`}iYumNlUWuY>PIjzB8YllWi9hM=bsF?~ebJ98btEuJ-UWuRUsU+oijm#{bgwbl z8S=Yo$Xnk}A84-F45x; zWH!r+SH;a(G6a$vu~I8IzXC$jDEg02D6Y$Nw-oj0Yl}Gdpfz3SITu8%;R-pl`!%OG zw+2LWIN5MGR}N3MsD%^-U$gG=xgWVay!BM^xi=XC%jb+BpFVd0w|meHL2|nr8QC$; zv;#XUh{lOvN>Bu1XiXf}=AR&QRgmHOXKHl^83L<k6PmqrX1ks+{RNZ7^T_XE#`hJt@_-7@U| zgA9RXevRK)2CX$h3m%;>(6xO6mEwZOz6~Sk@zL_Aflnj9t!BilEsxN^4MRY5W^v@?F z$4>u@0R3*==}L75=1SdEU<21lqk|F|0;_}BRvq}A0)jY!ZVplqU1a3VRuH94-64Xw zj_afm#5H7y-Vua$3JBsVx;aQeTtP;TT@Vuk5kgFfrgPR7;t8&EMhL$lLtuq4%^DfB zGe7{prkjBjz(Zu@*aa}%CV-ZyXms!)83L<=S>ZZxeFAcLpKc9O z4)2kXW0!+>+(0H-Vgo{W(zxUNx_b_D$Pid5z;OegKR^cC&@DmAU^W>!b{R|yM1_)g z%(PI0%p0wZ!_iz9O;9+341rZbvo$DqT>@e_lx_@C42O`BV;92~9x-&L)}>pjdtYpm zhi7peG*UR741txxRzM1Vhky`Hp__sf!bxQ0%}WR}Q50>ed^nIjCfv?-&KYo0J_LERbSa54l|36{pe=MWIW5V|QyAq*rV$1VgI6FO3v zLRY%z-+JVBBlqTdXkx-1WC*Mh!eTutT48zB@FEs zkj43Qi;%MT3K=>6mbt30;>o(-Vk&Nh~aL!F-S4oMMjQY z43j{ND5loidlvuTdS`U-IvE11gXtlWL3slt@G9L7qy%0fBgZZQ@9JhC`w*pE3 zIx=$X^n1q?#B(V0WA0kyBi*bbxQ6SY5y4et2&@R;m_ooKAcZUFwjibObuw~@6eyeT z90;@VQg5bWK$s0TL%6GRjTL%ZUR_o^#oZj}Z2$aMeA_?g$la9Qy@Au!?mGK{SJq1R zW|WqkU7@?kU)fdsVeAThL*eUPp+n~CVRaJS9AsD>uaHA`hc<9upyG3G zd%7(n5BqO%Pgb;6;Kk(faEjElnhVGfScX5N`_NGgTigVkA4oS4$@zX{WXCwui0#dV zFpZd29wqVtE5_Dug$`(SS@9w_tU68UTZ2SP(};))Pf}P?cT;*%6a`LGdWig$)x4(k z0)?-e(s6Tx2SfTA)uXG8s{Rs%RD0c)%+zXB&yOkqT%-CG?PDV(5IjpmG@0H^YHU;i zyUpvpT#rrg{RtTYNl;~{$lx1v4+PyG(+xug-5*Ai+`wZPW(7*Y(inN`l}r0;)NH-NJgujxJLA&=C1<|~gh$Ldr zD4i;m#Ulgk*~r6OAB{+UNru3RgceD>t^$?(f^H;IB|jr0$F7no!AKI-*8GR-pHaxW zWC*N6qQ@1(+yv@)i*6uN9seXF$F7bogT+>C6OSBmJ2lom&DKlm?$gX7Ltr(s52>l~ zI}4Pu72QmvQl^uUV^<2uNQ%)J$>+E(nozQe41tviEhF)G3N*5uZX;472a}OQG(s5% zb|B0wg&wwJK$y9bA8-eJj1_u>xGpQssmF?PYxeCyvCUGn*F8(|%_uE7vlN~3SGst! z6yH$z?lI7wCtrC7QnTx;6BPP>3ZM3xElH_0L2+4>@3;wyOSF5N!34#Kkg|0LsejFN z)?UTbKec1N7Y~@vKpAC31;=k6a>7 zp&Fv!CPQF}-aRr43-uGw{wCc*B<*jIksaeqv-X;TXxt>k7*Dx{jU>-rT6b{1vbhLUv7T-mQWZrqa_p*@=qa-9T)xy& zl8>deg^TZSoinnyo(zGN#V*)zVSEI-xR!1mQWsZ~kz?1zG_Nl79Arx_o$6@Gv|H8j z2d;}o9ls?*VAT;ls1xBS(8%L-8<84$l#Cp^M!dO(XC%xPJO&)``x=XEPj#G6-$)_SUYjKwwZ{3DM>&lf z=Q~*YwHb`_4Gb2lJMMEb*Gtm^e~Ao%B&FhTJ^u))0F zas4q`c!CUp)xy@1T`|`!!2WOO1|ix1H5oaCeM)QPK$y%$2OS24(clSOM~oG^9jnWV z#r0Sr@~3y>%b%_e=1(Kl{%CcGi+%Ov>}3)C7AIf&jzqnQmoLp!_&Q(ON7A+po&rUd^O51cg$2O_sdW%A{sQ6$dVpnyNkC3^FPCphaYHyE)b> zuKy8k9Y1Fu$d4K0E2dobNBWcXbiO?U&dt$C4zBlED0GhQLZ- zKfDAi?gCL1=!POiktZWN#+lYIryv@ak;!vV!^1^ruJ&!Nr$#T|B12&HGMAti>)h)% z>82qS@(nU_>bfl{`mn}<|Nf{YxyQg%csMeM!Ix7wd2 z`+2UBb>daxxh?c9qn~cRjP^wtV*oT!)QRzDI_@N`;c|di(@>`7Y7I zi?{CAzn}bfY!7yMz)i%TIM$tN3wEU`Lx_%}W?)&5@-QHb6$`j|n6W|+F4kqm5EjO+CE5rEN&^(DWLyDZQBYp97tJygItA z5h#q>tGJ}4*68+!+?w=SlPIDqhlxM$Ylk<3(QWy(_~3Ary|mr7I~gSgT+d(!G6a&X z%J#KJs*G6AJ zdN^|I+$GDF9u~H|_Mg=ONc|lOhxV#0iKsOI`Q0f0qY@c20C|&kaWfcz91~H#?vUei zT!&4leTEEyCwsD0^Wd#`e(Ww$cXxfXi6J6$k^;J1j|61tvwySvhMVJ2pIxP zvVWkcrhkC;fpp7|wD%(;gNF2Dt(*tN^u+e3^_<)@Cwq~Yq!5+Qd9ukPVIMpZ_Q60A z7p+j23gF84K>3C3U)qD~nyL1?ks+{(a31Ywt@dg#6lh>)x-CczB+1CJYakdS4jDOiy-c-~V|%*0wAQ|1 z?;fs)Mj&^SA+Q43);G!%?if(SU38O>inxP}9J?a64K28qOqY11c&bf?54${G=eld; z@hTYtE05i9^6+~JwDJ<&KBQKjCnLwM67W z6)}d49J?YW2cm~N>0;}-F5rB8o5Z{fG*b2twQQzEg3m>T}%v=UHGKpRb1zc9FmxIN~x|k`}w)=bG`M+bt^so29>@|;YT5?E4 zpU#<79ynH@4ibOTQM0V7B2E?ttjbPNf7OC5%{a-+I9iZgS{`)dz3gE{5VGBVkV z*PT)>aQ!u5Hcy5?(o>lRGBV?gQ|vEP_Y&pkW+209CYsO&&L}te2o2q9@C|ZNIHhSw zy^IWjC3UNCQtk7Fm(Wc?5_=ID*(oQ}LS3LB8n^jmre6V`>7a<|!e4RyG_RzeXkRkRh-t@h{}Wx(U?sFS>z9wfuvO z9J^Y!fW;UwRhU>Ekr>v@163l|OoqV9W1AX5#PJL0VN1G2NIgs=Bgd`>)myJ-SZWKG zE;s)anr$p+HP>4cJ64h*u;PHd_1aDXrF@od9#Sbw$;h!Q#S%FprU_5xI%vf4B{Bq7 z9JL}x*eu}&xtT|=C2^)G zW@VI*KqouWtwY9*Ib`Gzolr*J9SAcEqz6wK5N3?6gWI(>R_HPLx~$lz9xKEw(EIVt z0&OvtItz44ly;n1pji@iw)n%C1v*LLyR$$`=dTRgS-6Az5jA+Aze1tVUX3LWwPt}f zMY$g})?sFW)@u(phgqQT;&o?%Zsz)HqU?=i2qZm$Ss=eNAe?@iZU!=(ek+>LM$Q8H z${=(W==bEJa7xpV`Xm_wOR9es2s#9aeT;4jlGsPc$c}NQh5D6(XxuE&mi_{h(~qa)o`^39{WReZpqbtl=Mk_!r}2LH2oqMZZE_=s*6QW+nRkz-fJ7O?OlM&{<# zFN&SW5Li+8dtRY_0X=L_w+N|+ZOO>7>tU-vx#h&c^*KGBF9x*iq2d^>o2KFTJQ)J3 ziXDAJbTzyK+BlMK7g8ICk&$E9#x#HFsoh{w6fGSYYZG!F*F~d?v&j%xU2GSj3!i5| z6KBwELTchvGIH#iXb#gvF5e~sM~E_h$aT~x;|F92tTO!j(QEn#^zl8qWk`K|my8^{ zJ`(=&b5xN|mCA*5OIn|yZ4DkTa(y)t`70R$D-r*rE-)?vmHdTn98x7uk&$Cp$s~Uf zcIWb;jmo&g>h70}CPQF#;hzt*I|Y<5f^H5{2}8-qu`6M^rO+aqlKr_pnmDl!83L<^ zIT1;Q5_#1%po%@|Mj=)488UM0stEK_J@aU``N1sLK_iJZWC*MzqI#(wzknXv=@udN zkRl_8=z%iU?m(Cs7d>3cfH0$K-{cOz7%TKBd|g%)>#;)2`+N}Jyw4uwd7mFeX~&uO zIZ&b=#GCiIQ{n4*pYd}=+pug^x)e6|b8vO;M}Lh%qrLh{E^5vF+#Xc~xVfL(w3nN~ z+)q<<5xaxKFL8Y~5%zg91d^f(m?{Wp287mU>82n<>(kN1HgFC|j_di$VQyQxP|9?O zbK~+|d21JJ%;9yX+9SyjSeC)KUX*u$@?mtlkdzN5BZJm-fP!e;?2zoE2THF!-Ighe zW1d<%%3bQbC#yjA<@##Ez+PkstUy2?y{3ymCA-s&L#kv~GIH!H*&3>(Bhw`|=aya;)y36)C#rwJL8fn~1 zhQLb0f07{5OQ4mX(CtHN<;P^?*tIg-UW#qGR3TH^)RM~=?I%vY$#vD}g6CZa_oB9#$JwV^a>~) zWQr};4$gY6w?-^QG6YsE{@u(tCxKGB>ES+KA=9WC*NSFp(w1SD>5!(5*!3=3O#!?7Ep5 z5?RE|PI%XOha>Cm5p73?z)Hn`%2zG-fI7CO8-`TJEHZNJ>X>0KzKDGuM{%7rQRHwk z1XddUbJ!z&1G@Me-72ImR*{io*M((H*thcCwzld_uA4>~r;#DB%BVFb?DGz2GTgebuh18nuv-k*fax>jJq)u)mBgd|j$uR!r z@+tc~@UvX^j53}kLtvHRf8I-oS3nDYqT7Si!tcq*v1`FH-=`ymGeRG=-DBiYbtj|4 z$Pid<)SBLv1`RLm*cc5h`m93as4%cWOp(IRxGvVa_nvbwd_ha z5UG}VWaQY@Vi}tky_Zr(>@aLk7c%R`6HV8r?GwaluD3=jtz-zSR%(sS+nfYSX`!2k zRLU`AV{a0d@SCZWvM>KO`f^t`1wgD5TpnA*bTJ!S&GS;x#e^Ru?tn zh2t1d#4B`@kcxPbj2ycnZ1F-DT*QMbrygB*_hm8}0;`Lf@xtdGP{#ziVMuk1BO}MI z4$F8)F}2?QNV+9l_e`)@NQS_QqSkna@(O6-Ai6zBE$mN5j$I2=U`iH#esz)SpAkbh z83HSYt!vEUhn!*ENjC_ohAbI5b~RXL**yEXZAs?UTqlhrt|UWXB~fdZ&Ep%05|`7h zLh9mDGIH#?*a1cf=R9lN!sSP~E*q6ROoqU!WX~FbBh*u%nP1XvL~7<2WaQX2vty`c zkjt0<%k|la=09WztZ4SaiN@k8P|dq^Bay0ki;Nti8p6EUtL7mHJ}hT|*95Lk}Eq1X}5 z0m8pdHw#Jl#bjj1IMak(s301DAcj!}@}z@bbA2`Xc!&&v)ra*!j7S%ON*3h$k&Dn_!9%q zq+5p6#|~uV%`~cn?De-v<#?{oMk>dWA+S<`fL zyz1~%4bJDfX@v3>G6YsA)(y&G-T`f#L$?d5jWfx}v1>ya0)14U%EL+CG15;j$H|GR?oW2-_}>@;(BY8v5pLZ zRYr|jJ*$&IDQoHGA(fIQBgd{3IA>$u;%}466T}pp}d1_93-$ zAsIP#t-w)u+ZKPDQXb+uYn1W;83L=68l&(wAAwHpr(1{A$-QLc*mWWwcN5-Eo;ohQO+##z>go zJD`mjbi0t+m`X;DT^p8I5pjaSAzTMdtXM&Yz^bBFtOz^6U>V&aq#l-#kz>~b?8Aoc zP(O+5oe{$(G6Yr(HTtmj4eIOZ<{*_&BqPVJ1oyB4)A0}ApZ*=LdqxV^lOeEDupU+r z^a`{R*V64lYT;@!a_m}w^Cg}g+_v=L4_qIOAbv}RzzU+qe2K?3po+)oMj=)4C>c3+ zRcsIX8KFD2Z5kPPT-_;VKQaVXBYQ+|YzTD}DCT1_uN9aWg*qvgi*YTfZ~Nn=Wnn*6+wA;S{E!^a(NqmQrxWfZrcL z>u>0mAZh(I8QC$;G)@mGh{kO>m#2rB^1>{h?%z^(?)?e5oUmE|r-z0626XWu-72Im z-X|l+t_yj_pug-QmN?F>UlKc#A+VAFXAD~10&18;HwdYQZOF*6t3fVr^c0(ZG;MW} zmoLY1vw$yhy);e6(PRj$CcyH>2qz&2 zI&PyIhE&HbWaQY@G25pO`%*4j599@|t41Ktks+`GnHSoroNM8;2CfZe--x#o_OudL~|Ntw)CIpHW5! z83L<}hz_d9Ef6Z&=msIxa6B0~L=BYTbqB)CvFI^U280<*yNWyRVyw^u?{!&GsK*L1 z)ALb$Gd&l``H~(Hg^umflPe>;Go87)o%!~3&i>fDyP~w?%=BC)Q7;#N(ovHis_IQ1 z)34vE>=gA^O@!Q`@U<~x<}O{aa$zo2EM__~>4I+bX^WxEW0Kj1Dheca-NvuD>R*{*?@Yq^B~?-{ktV0>bHE=w=|p=~D_h8%AgY zCwsQ=5jt0n_D78Bj!xB`T#q0_V7U#f*!6Pj^$XBElx`7{=0Rj+&}#Nq5RIGs3FyI- zZP=2ieYg&qy1pkFqBr#5@eAnTGjxlPdf0`G9HIwG%jH0r{6z;J2879?{z#6DzzW@_ z)n&!a^;jXYsE^~zqHZN;QRhZ!$H}7ZlBhr8Wl?7-{OWp{6=t}_pG4hPO``NSC=A+b zuB4$>5_Ni%_qZhL6zyPGn;RNp=VTud-Rp8h+PWB>^_=-fw$$y^+`(U8RPOaa# zRD8cOO0>DvfgfM#x;fMxTz5@e{XQ82$xd*+jMoPH(1R zYcZcC7l>1)hS{gd5Ljjd!ww#1y>0=L|3o(kN%HT>$c}NQsd`dDgx2m}uiSn$c=8OJ z8b-F(olg%VL-c|gJZ=Fs45k}|RKox=a)=rzZI%OJ(kC5w7!XF2H*#fdtkA7lT~?e_ zj};<)`Xs*e=@D}J^!X_5IO)^xCF&n|>C=%4U#Cyw=N_8Ql^3mA6*ds{Y&D0{U!%}y zuf39sS~=8VQAL2up;l`zH-j9iDY}T=MCvTA&!)LOoeY7bsIrxBFbX;ZLhC7XQ;?zc zq-bIrm`x=>Im~TOw`Gc%d{;|Hxl5h4`Umu}Gu<+zK9XeQ*!3|BmY6n#WWbd6y89&)$q-mc z)asXbd;_{@qFaU3#TYVjh%P82unvS7i`Ro^3*N`Mbd+|S8G&~s>btxdfmVgDX9Swu83FsWfA*v5gn<4Qg++S} zmQ>W55NL@i0o;VZG1|#Sa2}-GEW=QXD#kg@l)Z%A?%UV6E}Lfe|B)e(3|0K6RserM zT>T%qCCIpXZZxe8oDP^6EQZhnN&c5y8cu;4YJWtAz*6hq_+|A8(0eD{8YI29laU?c zOoMfsf@s`;|8!7hHAZ>=#`V$2;bk%eRu29%Bcogcs(68J6jBw>k&$Cph1(&o27R?o zsm2)Zq;%bR_INS`RvFd~d8m6p9b@T+A=NR8j2yc<+$jK4e3%j51zbl>;5d*Bft81K z3LxA+ppX6NmLc`AHyJs0eQW^&Z`Am1p6j5|MUD)C)rEiWOQ>H!4;i{eNIi6rkz?1x zWKeG5<9FZSx@XjI85shr2LBo5AzlG3Ttc@8sfCNk$gyhy=9``oF5Bqcued%MK|Dx? zzzU*9zUgrdsN&~zqmZh&kBl6m3d(4S17U{EbXS)FVfsR6aT8}_g&s$#%Zks}V}%&J z>o+*I!MkDO#7~p9DoD)8wzHP38JK z6b|jxR}xWc=&mWsf85aB813R_FmyL2qI}(fyMI<5DsNRvvpr z)cd)St^(Ec(2Yc@=4)i+*i|zlpqlCifKZwIlIx_A$uGzdSef|e&Le#Ty7(F0Dx@xc zN=A-d7l}aG!RNdbTdYy!U9PW29&eE$u=4Ql4Z*kwRPs-{aY&W?os1m2O2!9^Fk@fq zJ!?%wA0jG;Hlo;y41pEJ%&4YCZgl|~m`=9^sevuX$gyi+i+~2?WMO-{J0!_i#dXjq zVL2HBs|5ehZm3^C4+qmNLh4~L898=6Ot+L_)DKMibvALtr)GU*R9_7*NEw=q4c*@l7&v?1~8X zJY>635~F`D?U~dXYijv>u9HR-Pm&?9qKNEy_|Inau9@kByi?hiPSY7NGHEt2~4rt>Hx?M{ayo{avG>!p##56BQ$Y51S87VR8R#`oxEA(io6GIH$7m>ev;h;8XFa@{kM_$wI# zD+&KXwGgj>7XCuF2dRap$jGs4q1j$)ExEjyRSn&gJ}y&t*JLyq0;>xDBIla^0ey_1 zTZYufP%?7t`Us9_I7^%(w6QDC~1kRl_;u7lthxMwY}ZJG0>Tn~*HddLu1F+`4m zdmICb_!`|Lq$2(w8977|ly#*Jgjrs!7X~sQ%*wGnxeEb|6?(;KT~>^&#|p8?xqp0% zoVO(}a(+2VJI*5Kc@lMJ-XiB06uw^MJVq^YuI?oBjaFv&s;+U?U!hQFue*|mT5Fu2 zi*i3|eTI2()-&3}&0vl5XxZG_i`QM^+?1_5Cm%zGK++Rc(%KA$>#7=cTmt0oPB#Wg?yh8H$2ikU%~KGK zTi?8cUj>nCer@U0TCU4R9BDEHRvddqh$GTdpc%2ds9(7?mAz_Mzkc#DI#-LUcz)!! z^yNBzxn5sxRF?`;Gc9D~*fpcpBAIGddvWu{Tpx`{E+j)>MFQ6%g}DY)@m0D}NL5tG z$g!(pwm*`fmp0$eb=8RDUNQt$9P=U~h}A=&k)P0QLu%y5WaQX2(iG50$in6~xtKD*MH{Bwn9y-a$vFjnw+wd>?wRK6a<@#tOaWxqN zD~YJyhTk=yiYw_xAysiX898=UsC8$a+Jsro{5aQ5BaBDM5LjWrb!QRY0c|`?w+pF_ zUy_ky*G8ZxYF+7T3mhMFT{ZgnFBt->kEoug)kC0>|IlqiYUEuqa_kyWv&N=|)mqBD zL$2m<=~f|iaUvNx zc3n*J5Bfx%z50EwcSaDmk|D5y@IS-T?i5hM&2)2+O1P1X9J>+%bLrtr5ufGyW_0j0 z83L<=sJZlzm56_$8-rBA@5#uqs~|9Pv_C{^J%RuGTJY z1`83#M3k?)67ejq!={-%oeY8GCvezmz#9-zPodj^jHo9?Q`*3#h|T^&m|I;@)KTtg zD`oOszSX=g$+wY9#wlDw@-1WtEXn>YU^V>%w10ZZ}Db+Jv*Nh_mOoqTJ!hay1#Ur4BKhSMKYT&nI}#ZS{Oq{ z-aNGsl4dO8x@V%qd@@AuX~C9Z96+}RsfB&X$gyi-hOGugCKo4goivK*B12#m;a@-! z=^Ka<>*!V?b+ML=9J?;2*vf80-hR~XRb2m!B(5MsU?t(-3>D@UP{Y^h1|ijOF&Q~_ zHGu3P;!wn2bKNsyc!&&v6+?9P;CKbJ@BrN&q!#WcBgd`<&|>IPi#YV|eXf&65$};9 zu!@LoF?_xOUA#@V3aN`X$;h$mVqze)hOac+rn~O`#cVPJRuBF|@2oxn9n7R#gVezc zGIH!X2+nwT)@0cxMi1qBXoABbWC*MnB4<22jsZoipqqqL#4<8+?24EZs72-O_EahD zp3vWt>FmxIN~x|kdvbXS*I^@&lgJQQf$SbNP8IGa(90&eg-E@uCnJaGg|Z&ZfiTMg z^@1J-gjw0KiMuesSfN*n)n&!XdaMwO69>k(II(q{SVl;C68xi4+Hn>qu9K)a@rUsw z_=gp~dq|>;64mV5WM~hg+hB(mORv2oA^s*9_3^$NB8EC#9wF+H-oi_ zqr;2WUA6WB*IyH9|4oKK(i1o&(eDfhr|;0sK!($QMHAYdmjTg~;-RPmK$2&@|X+d`wA z1IqX;-7KUsmXeWUSH>2w@FEtSoy>L6h~i6R2&^dl+kHa)0(#g$w+N|+5*aymJxueL zTg@eBH*sAwinxIcfmMY6Fslg9fF`b^+l17_HDu(?R}&#K!GGksXf*LVGDPoc!ZsWH z1l=a2CVoRkj$IRKw@bATHrK?7$Qj{5g}PJB{$vQOGT?5PNdG|0_=L_JvrsQQlq1{5rmx;4zmBft85=VXPPzfl79y8;6V{bI8cCt7MYD2&0yo9mn;~ z=;DiH2&^vrhfmm@0!lcVZVpljN05;>OC^M)7yrZc&M4trGDNQ_!IoK^MK=ejgwx5$ zu`5CCdND1p=LoBiMW{dG`e^iUCm8~(2e|7c%ry`nZl@cCRK;y%{(5N3wkh~xohVdd+tBAQUDJ2@XmhCuQI4>=r>yE|R*t=@JMgI{pn zG_v>^83HQ{aO7Q-cR(9IrQ3zn#{ZI$W7mcp)c2NN)WZkf;<{%v@lP@YRuf=Q-{uw2 z!r$rkAhqx}GIH!%keh`qr53SSc&l>V-G}L92&^K&X5nz(fG)P6TZPocBrDC~1uz-vlyAFbxrDrtUHjKNG>!A@tnGAsy zLu6*@aSSM;KsO1gh&&lNL=lv+G6%v8-0Hy&288ML4&^p|#tJ=(R+kk|bI0(}q(o;lg8#r4>p z?6>sgI(@lbUv5+v&|r>JSdAN?mFpxtC0Ao?ZW*}@9S2P{UqXh!DgvyNu=@psv5;;N zQWyu3kz?0`+!gF8H_XV~dajp76h$%wRuo`YaD;O}8QpZVkjm&JBgd``xx&&@cv0hW z*K)lxiny8#fmH-pVQFy+DB()FIY=d3PDYMh337#{r_jPjUmoZBW_0i<83L;Vu)-3! z1XS=a-58__eo01-T?K*6!81f*8+-Yf>!6Xsf5{M7DMV!s9>0Jd{zJD2sfTyT$RT>5 zbax#HGw7jvEDQ)U^zsV1I|Z!J9pSpHxVs)J#L&x-Mh(5_0gWj~rE_ih&UAAr-&}0V ztjm;=xpb=Fe-cCXr`3^-gEvq+YWA8T-K;gTv6%c@4x#2)s|5-oboo;DpH2PxZGT#i z>_J^5dP!o8!8vyf-><3+5i1PRU8NpHU1g~FZy}Q|_8i-@sxmawRV<})xt_CoQk7Ae zuC`pcJ>8MXsgJXr!njmrSZ8Wud%C-{wrBZ(%Fwn{w|ZFPs>+}>xqNHSd6gk+Gwto^ zF7dz74nXydVO{0U*0k8F(X(6>W+_t=!1=D+CUNhGLTZDt#3`4_VstM%d5kFeofqzN z%n`+Op?J)uRM(m>9kVE1Tvy6>AG12Maz(N|-&QULC2n^xQ&GcsE6SZ}|kh zF7Y@nGp538X6mYH2i9YSsA@was~TPbo-iU%hee`37$Uei*+)V?$vzSG!KFg6l@XH0 z=B4FKyZ=a3&~r&W zR)`=mys<%I)FL6-=FgQ=N{Qa2Is0lgOneyd={50*7*hPZzWhU9-qe@3)Wseqq;G*R zk$p$ppM6*S(Y3uYT(m5r;gUz`>K5gF@{c=6O{$W#>2-c<#Hy~f4&r+XF*J;XkAbs8 z@sO42(%O8xZ&Ik@zNy`uvC*&IUMu6u&_t*Hbye2K_RLv6VEN$X{nJi(9VvcTn=qAZ zf&($W3NcwhFp8Gj$c`JcDGN6L|u8&D!oXmLa>mtS*R7Nv2znyig=7`7Y7tXrAAd z%55rUihhElZ`D?wM|KoT>6VFZ*V3eHF_fjrlxt~##(|K=v&p6b8qeTD^f`?qmUpI8 zUB$x-X@4i8;{8BVbSv2jEJY&|>y#BGX+?mLL6DG}$%X(zZsbA)2{E~3?FL<2Q5o4< z&gI1R1R0l|kgS_kI#$-0GeLROn{&FVlR3q$(#@%^c2(1zZizRQtc2dBmGf6}X=9bM zMZ&GfqDHr?`t8`~laVDj|AlN55Ybayh(2d+*y4?;&Tcu_v=+51x)nhy-n{Hf|kX8VgFF45H-s4s){WvIH?V}Nuq*vA|$?$3@8f1C&l`k4EX zf80R|?PKn(5F6PMs+P6rYZfwXfvPu3B23W697{IFsp>~oA-=$bfZd>@6jHA@n8OcCujv%Iuo#;6#a_?*x-iZrdxB+V zM50)=!AD8888nofLAC-=aw-?%6!Aq}7JbBpY43bgn78$>-%NG@%Y?TX^wy1PGiZpo zk!%DY;@ez^AQ7ews~x4CKxs*8b%>;6WsNy|a6NileK9+-vF+iOi}l0oQ?0pl^MZU{ zjq5kBOtr1eh*r`U53&!zTs}Bn4nEd}zk=*4 zw(y%0ox-AIT3M8ohwAqD%iUI0mXXZ?CBK9VVXDePOs)~rAWI3r}p$L4e zDLR4d5S}7cF|{XdM@#&naqhD$p|fb3ZGV&oxPxkX^!(G(O=}ACPJCUMmrEvF%WC1HFPo3JPqQ)R#J)=Gr#Wmm@wUxt zqn{F6>N1jS7a(OA7s6Db!3v_+2e+na_T0D|PG8iGn!nx1PGW1*bca7T4o4AaNo;l| z8wLnWav_2QGQy~d#JX-XAdD3?A~81uHUn_JI&a?A5@{zFBUU1|aXHy*w=~QtvJpTI z$8jNoL@>BCa?qnS3tVhAo(XjUUgfuXqB z)uFhn$V}N4Cmpp8#cgjJio1gRt3YC3R}c+s$AhD7zKR_DP*>-B$ZjGFH*zShzpatJ zn`{aw@w>PXraIlBNedfah;JzF1+s5grVvAM{g+!B<>$y20m7cqrQNvE>M71)F>;t^ zVP0gDnYN6W81x69O6Xm>(hNGOchX!Ckt$mx3h6asMQu^oCl=0l?DHhKf(%>z=})!_ z(D4bEQB!|D)QpDJA8vMH8#VBSH`@)Gt?kL>f~`2Uh7}}HmU^=-*&skvf(sEOijjJl z>_yjJ286MqufnZ;%)qA@`z=~CUm%w+Rx`DS75Xo?3@aQ(HVA0ua0Su8bY#*Yh0L0a zSkv2lm{@k6ZazfsrSy>ya*t-=B(l?37A7b1j%~@Jv@My}w)vv0b-BzYvQ2=9^;`&3 zZHk)9-j1?k7s^F4Vh5|0EAXji=^C;-SeC{m+8ldA_^|}ntH{;>ey-p`1o>e^MiX3h zb!9*pD{2H+Zd+`I1bkK5ysdTdB)J%|y0DKF^tX)^JVrJG$l(z#M34vumqre{Gs%E3 zR$R=@?wpZ=(TyD`m~d!%#SzV`(q%DPATFg1`NBHi(uM3U)iHumC-+W9E?u;a5$t6f zBN$HpRUob*3Zj9Ha+6-JBlhiemi3M~Uzt`cpX=(pBiUJdbp}OT8SgCG5j*#)HhCK2 z;kM4s9I`c_=(piQm>M-(v)9|r@B}@gA3i!(vEHG1T1|Ef%hN<>3_qtv?UHJxRnfa} zWVo%jvyyBNVCu76h(2d3IH=}p5Q86Te#&HLu>3?Vej9G&dyX}Q}f|+6>gxxfuHM&@)NSN*y10b z$mKedMQu~Eq-^pvID>3W&X39VfWrSF7sAw*A87u1yUE#NbxNdJIkAv;VLo4I7rpjU z+OiHV{5H+m^JE9HoJ~#0Cr3#O#ki9g{8&b}29m7-{Pg2O^f^CM+?5$-MVy7F(7QBWJCfbQ zR;(>7YvZiES?1yAkgWo|ZNr7=bKb_udevRX%LC$?)f#DEb_YM!Osyt6gk`Ep)hx#% zD@B9defee$<4UqQfTGWGA^M!6CPk6h@wg#Vv~gtlT$5BLyM!f4=N8?LO;(nMK$Z$* zdjLy$E<}(e#u$?srqbyp1HxEQqf^c957_5>e0AD>iA*2FwSE(a_z%@Ku) zE`+JsS}T27v-@~H;sbISV0B`jj~Kq(66pU;HUh}u9WI2CgATC_E{z=Yz%>KHSTT^> zrE=yY#x!<5V)UYPTShL-5qn(&2Qy_4s?J30c1rJbtfX_+nTVyfnTVaqzY1iPR1l$U z!Dg{>_)xN&_9_etH*&S2bsfMVWK%$iui!$MDzr?K*4v{&A$x*-xl+hIx=r3db`47u zV(4_BZ3w7Dwg~Wb0vDps`LgG&KDz9;XtusVb_~l_?bLRlZDQgwvO$2XOSlkyPL^3G z;Umbrtx5SA*#Rsm_H<>SZNlNFWFr6(|I39462ZtdOuC|5HwJ{UVh64xPP#I-vFXZK z@vI(s+DY>w`80#(U3{}H*+Z%c%ZFsQ>^hU~Sre8cZ3)Z!H z1ce)!uvj~yQ^=-(5}(M0FqNoDL4*!0um^WSvJqc|4Y@~$+XKnIA*(?Jk+BT6Wi0!V zEdqq?txLOc+bhO_qfC4Zz>js|r^v2i3qSg#6H)HAncm~b=75s_A{W9`m7_Izy`9_J zHcI$NvfZF*I-BeimZn-eDI`&r#lB~d4FW`+%7y52qQtYHGHceBn)4mai`R=spoph4 z*yatx?$VUqOm+`T*%pZn%D!a2Bbj#W1B0THH_LqQjby6;Z{OxZ^f_;nmvzaNjQaTq zN2YRR8*O1XY1SSmJBMX$N+M&dORksJSxK`@_C88B3Xt|N7a~X+Bat_K0o^JxAdD3? z(irYYw!M??i_Z32v~2pH)>qkP?SA}VTRs1T%eOgO_Cqd2pOa-e>^_3b+nSVZ`-~KO zKYp;SADH{DWjyv4tPqj~C@`t13Syn*&PzJ}!i*D)(se z!m0{4S7e@8`ggKJc#5J!Zo`0G38@A^Myp+jy6cCff~~r`^d;VJlOu0WnFGrH{TV*&smF zJT63#C`OWQ@_gOmF(8Z;eU+lvd*D9B*l*FA=^&RcRx`Cb=|gOlyNzrR(9H1)qJb%V z#7U$+A|me7Y@ADW9?J&u#8N?tEp<7IY!@KqbS{LcLZ@h6dpmWBI*8OqU(}77zweTr z#PWwdu~ZUhNo;N+8wLoxfeR5NkP${rB-VAC0b#7D5sA4Ouo-FdiN?IGCGsq}7_kzu z55NtvHOx2R&NDfG}1Z#ZB0q0l22d4!{j_pW@~pdF!l>ylrtt z?_}%JFYCx#$u{yfiTtZTQR5Xv1DkF5Ks;Z~g&*r0yeHXJdkqE!9QnMwA@(N*eTHld zDED2s5T*{z)ztNN%RJuIdUMDV^K3V0l8zxeg(XS!h1`c4TAraNX|lAxpC_9GXgZP$ z(dRUoin1Wn1)sVFKh_kTMs^5Gk>|OSt&T<20~I7emNA7dlZ^ocoydjgbAl#S>(SwB z#c{4{^Eq*(Lg3kGA@^vit|z;OrE0RNO(m~wKE5nN3)hk@0(@P~h3Ip>OwQ(l!9dw+6yQZ>08e5OCS{Id8&Je&DceK}oU&eWH))x|D3>1i;zJXhSGJx~16 z0;zyUG!G#ExPuh>h~`ffVGT?UZ!%UCXy6dyOn|%Ve*lKt7z=w-R-dFhHA< zAe-XU^%+%&W+nuDIP;bYX)|2Ay@Ko_maxz{UoUUf?9=eJjBF9$ZHX@J&3?|ei|i`4 z@NILxzH&DMr>5lBk<9@mzm^NJSbR~}+q8lRtt#9RFWXF%FQD0O&=y@pb_z?AeX7b& zl%vbv_p&NR-JzYB#Uiii+jg+PcQlv9iXT8X=ae8~c2ePdWBmw00gKmorv7 zVN+IK^;G+grjp-JHVA0vUM@tRlQnel##Co_@R-EvyPA^M$>w7z8J0*pzn}H8Q0);K z7G5RW09bg53lU_2QR{vrep?r&PD&XN#)^*u9T99C$x18At=YE*3S+|B`p|ZSz07XQ zh51f#o?@mbPO}i36`B|3QsS92;$b-O0pZyTWiR2%VdBr$XZiagJt}$4UZO8w*O$xn zMZiFIuO6ELTsfVLd!S&YzuY)Pnh4k-&dyFjS%EUyj__)FYY=B;F7K$*92As(n!oMSX?y*|&>)n)?|lZXufisQ3;SB1nZv8EQ9$jurP+>y{3Q3X#~-pjUFgV^LfbCe4O%3BB^NDLBoh*OZB=N?WvRD+A)5ol@)Q>WO%prGn0#nD zmr1o|a+y+io)LDF=4%=%u>MzkWB)deX8q4SUw$|?{RC)#09CY z_6?bKanMRwzGuHhv#=f6Wo)gPlxTG=3+KR=e{4-Q39vAW3t?)`Rtlom1Kd{LinAz_ zT2n}Mh7wonW=-J=va?tUXZk8qyS6rhOiLJCMm7$Rxr7T5B$LtLnKn~bYzBm}qDGs^ z4#txX&9|0|r7rRC)=(*h+@lqAGP#7Y3YwfKRBa0tPIZ9Cq*`AhTLfgYK|wHj-rPt$ z*+au>k;TZ97{tjL{=RqEO`3>rlHJApfaZ?~zLwDs;i5FOn7*kY!Q&nn+l?#p}Oj7b3~}N-=v9{a!y}%UtEzSLqoOaq&>sMM6ywU zizY6FsXSv8M6ajL+j;7RhqRiZ+R7sQmZo(-visQjB|>%85-+VaLbX_)<36;*@VqzK zO2G3TT!!p)ij99&R*JXNVNvcQt8#!dj zMgTdi;X(w7U~p;Vpl8b%5XOq>+(9#Gg_sUKbdZ?+3md)(jcM$@+fqMuo zI$Q71HTyxb$H;Q7Jr&yDHZ1mYvOR!-`?w5ngXs8`=~P$qVJDPRg>-xK;zA)`@X5Mj zyFnNK-^lJ_i+@6*Q&^QOYO9iIWtFFUBud{_{x6da0_Fb#7s7fF0&>|CC`>n zy@+fj;CVh5BFHl%&YDoIYd!;xfro}u}_rtH_t#fA^0C;BY+%U=RyRDU~p;Vpy$#U5XOqDxRVjm zigIhYGPaa&Yw0R?wxqjCg-p8Gb8^p|>{rFC;`0943-sk{`f{PZT%<2O`f{dV*lC5-^<#v7ffxg_KFL&z85B23Pefg2T{8(S^)|da) zm!Ig%J^J!feYsa(?$ei_>C654@^gLpg}ywXFAwU=FZJaiefgEXJghIj)|W^0&0XTPJosLH?-}=n{9b=;+Mwm)d)aN>7lY)Ff58JH z$|0NFs6a$UDsDYQyqF^(#jEB0OFh}L=k);b`f|_ff#UVOp4WrK>$k*f^>t~)3J=2o98H8ad4x+t&DSolipbB z%(tg=N~J418r3g&UoYw5syp4Wo6a(1Q6nF>n$j(|GW zeIboFMZC~w$Y~?4^SqY0e{gS>MttbLP(N~t=SO69Z4*z&6ZY!Re6IUK{>XRT7ZT)2 z_k{vE%>yFi^h@Hk01;{xw+`RMc_Be|6fdNuVn|QPVYTPAwDdIhX89x6yD!v_oZ|Dcga`Us6!I9oW}>A&op%ypTq??ZD}t*An*z&ueMq zBc9jN$dAQq^>u0FOi?d1m^N~e=d}bY>v}VExia!RkCDTKk)LX^hbcO@-c{iaTP}@U zB3?*b@k(iCo#(a0y}J_33bBWXgRZjXc|ZA%Em%_k{q-J}O>F^M}j&Ab#O(&ujUMQ@(6Im*(&1c`eOP zd0r0|ug~_p9wJ`fC0;9dkppD^T>Vhg3-RFyT~CKEA0iv_F;2WIrHdtb99JRxP_Xwzo|sQ9mPbT{#0j((*;kM_Kl9-QaiEDPf1>W7-G$33s*&F^_$OLw>3 z-T5U^aOLc+9y?^rdwL)BselsD{q}WU$lsYQUPz+9rM?hA?gpm-s1#r&{x_V1q868HZT_bzaDB~`ufz%Vn(Ofr*sGw(w(kIdtACXabP zAdksRNHPalBAU4APIL7f}O`(6(h zo^Me-Ri5vSbO9*3VyNHtt^xHG?;55!?>2@e-$-(7p$nB*$?*d38i{|vyGG)l@vc#9 ze&4%BvH5qpW?5M7_j_`~nZEW8eyW`5`{@GIXw^`NKJQ(F`b?E6Is{{_}(0HE{phyN3QNw2*u<7G2+=G@^_| zK0V>_!X-ZNa^_Voan@Xb_qFDN(q;d{T%aO<(OjUjou8}glDCf%SEn;jolaS2suM8~ z-JiXZ=;%)_#{W(i*lUTd*t}OBbJx&pyLS!E`gG0F*(~M);(frzRL<jKV4I6r%KD`%?0rO(_FwD>#ow#pzZ_a0);bs#6v`e{Iq(iGUTJ? z0*GHX7eHLoU_=^W)5R_3f)StRAwuUX*K$;)^LBFq#6#u+h_5miKzy&cV8j=Ah;W^+ zR(#5JzRz3$@pI+^R?J@LrGx9*_zadrxvuA$3#9vR<^qzu-CRJD-!m7GL{Gv@cMiHq zn0yV*%k+Eg_IPJ*a%PccV=zkPiPi6;-~Tw5zRUP7g8xGBl=CP!6~So;&Ooq|f_C<% zr}55e*MT@|023|A%cq$T!P>-3ferIiWrNybp*jt z1pf`eOA-7af|nt9If5TW@Ja*&1V4`8RR~^#;3p8g4#DdYype)-hDlOTTy!bjdOCtj z5nPVoN(2oAYY|+H;93Oh5!`^_CIn*?v@^_t0_n4t)2+`T_yPs(3{#)D|CuZ3)@KoX z4#5{FXlIxS#Y5BvF2EVeT!v!8dEU-21Bw{%uIzI%)WkMViQ+zHvUpmGC!8|O9`Wo? zhN&2y9cl9%C*opCfhPqr4B0abx_L;PVNl!VSx-d6Krq8VEW*)Xp#!inv$ZL$}_E;O7whJc4&2xaVF9 z?nUrS1kXaS6~Q(H+Y#(Qa36x52<}Jl0D@fzo{eBPf;|ZKB6yI3HcxNTCi1gKPC2E; zvzrj)BXpI06v6K!_&9=3AowJLPa*hY3feRuG~JnLFO2uQjvt?YX}D~ zAC7b7a95}$?h4h#U7_B%D^wtNg_`89P^H`zsuZqJ#g22`a#yHi?h3WdU7^~!E7U)C zh5Cmp)W_po5#1GPq`N}ZbXTaO?h17jS9k+*oGYulLalXIsJ`wB_1ImZLc1%}Yy251xJM|IIiRDvD_70m%D=N z!WCTEarR;E3eL=3!K=9|cr{$X%N=L;=C0u9+!Y+2yFzQ{uHgA_1y6XKU7)*yFLYP% zg}B1&qT}oo-4&+e-4)!VyTWX_yMp6%SD0URSMZ>?!ds)`>`L7ge5$*Gb9Gmkcyw2A zx9$q=7FT%bbe#RJyMhCDSMbE{3NG1Q!8f}rIB9nUZ|$z&w%rxnHm>k?>p1&wcLhi8 zt}yI#S8(n2>h-6c@|08XkDa}}&0gPK!RzA+t-x`1|LzLyfV)D2;I7azxGOXf?h0*% zyF#PkuF!h8D>NhS3hjxzLc`*&(89PYG&SxDZH~J_Z&W#tY@T%@Ow_@%J&6&GGyXLOYz_}~5bnXgGp1VTZXRk1I zJky<^CXhRc3&Yn8^K(`2u|4JA)e_}rPIYJLjmMOF^|n5L$|Ty%{H$KL+aF&zIy=#w zp}AKo4EgB?)Ya>T*T0P0RcwO%V7_XhGciMRHd`m?JA|RT-qxP!9--^g=#AlApZ+*& zsy#W=>Zy&KAI#5~>Q2tJW+_Q_@!0@6r?arX?Z+A9E5|1fQ7hhS&ketCn6Dmh&2{It zyE}^$`5E1btUcLBCpc@7l)Fz^%vVkxYRw&NFSPrt${G5SFP?Vu*v8ukY<>Rph519B zxyQzo{tII+QND6J0~{cL*HO$>^xX$Oxo%BOwWnyZhjMcF)AF$%w93s>8m0|#a7>? z5}eftj58P9o!#G{D695R zC0S@4rARm5tRta&f%l2IVB{= zJo~V`yL+CZp1GS|nl7{{ngKlXu)DK+5z^5ML27JXQJKd5s{5@R?oY&`)4VVpWnA>AV0rv8}9xE zigxA$Et*oNyg_MVyPbK+-P!#fL^;szJ=%t8sobb23+~SD_feEH9_CVDGUklFzTEu; zJzTw~P42eWnLOm#e)WvFx%;;%;)?Bun8rx5V$xji{t$3{3sbFNQG|tW9`61Kq}jfR zf?;y;j7fdD`w!^h$`^25-?Xu%5mr(Orb>YuyFckimQk{JDENy`AZtngxCgxTfM@9qM>ByO()rUVjE*zM`c9Dc$Im9EZ^D;QfrQt5T+VP-hTOhbJ`S5n? z-mGU=cRX}#Ce`uCk+~jKOzUU^5t*h+04kod9&c@Lzk zFb{ZL8m~$t9Zcmm522Q>Sh$7ibllc1cPFS+cz}9!oMur^ot&TN9_tm<-^!*@@~))6 zWJfkzOSc}()*;MSa;Np7-b3@$aXq`=rekkf{q{cUz0NMsomJ+}*4{z7&aUC4*K)|6 z+3Y&{dyuWCkfyV4;2+vO=x3?N>~&O6qwYidF_uhqXYw<`#j=zdi)HBti)HEOwd&_} z>IaKu=_VG-($5>z4;IVP)qht%YN9uLv%308^@GK-6y>MX&s){c+tkn7)emNxD9St3 z&(EkIES9C4?^HiOr+%gU7i=YOf6-&H?YEKBLsG;#J(b%n*UbQ6nZ=?9Bt=|{~NXILytS89ql!(v&w`lR~7 zVp+PvVp;mZVp;l8Q^k5_IKyIDx{1ZI^z&KugT=CR1{%hC^=4Ey zUHyal!D3muQZvN7SeC{X>+{nWX#7X#Lgkm<_ZaO+*qNnL+*nV8J=$@Y20j=lT~A$O z9x%BWG?sXrNF$h zJ=H3OIzJSW5(tFrr`xUmVy{iBfoEu}T?%$(2qx1C+;s=r{c%{d6!GaHqDdvNZo*x| zg=vL_QqX6lKt=Lm^#0NL6G7+X0{v>p&JzixGGCICnUe{$8!g)SWOt6<9hQP}|KfhaY5Iskm3AY~Upp$m?fYhuh=xoq0O$VXhqa ziV#;M4N$Stm~4wvszycilM2-9IU~ohiT+%7p&T}p-RktPt$ZnLfwU&Az}={%HP31p`PwM!SnLo(@N5Wp7P{0{m1=Qy1q&kxjvEvQ zeJauJQCm{(HluPKBo@fmsD}%!N6X8}rD>UwPT*au@cKQP2QD>2)b@G_1)`R)zgSW2 z3M522fk$8R9_%cTAxp)JS_+d&U|ruoLX%%O$8sF24NDQDvMbXn+%|tMgpQEv%G|Vl z+n$GZ2K^uIri^tL`?R}vZ+xoVr-qa!RjEUxnj$oV@#8Uu65`)$CrYOm=NQ9kP=?_; zP@B0_l*Jv3D2$@`Aj&Cv>n@afsIij{E2GWuWtXp5{=#Q%xiHC7a^bQ3P>(LXK^7rhmGy z^wKesMLa?w$-O6Vx!xM@>)4Ef<+pEe32jaZwma-gh37iAfFA?3q|CSmq z$^kj%8)`C#j_Gb!J(r^J#+tN_MOge!-0v;UxQ<(8jyaV}9kR0#58=QenD3gOp%?mn zDpE^P`{tTzTN1&&Rr`SPnRaV>yfd{F2})hCr+h#qYp#$cr7Eczkj0NRQUocq76(pe`p=*P%`t zwZz8}3Tf^RyHa%!ofN9V)k%}=Mr||Bj>ZoYZWgr;o|8d!DeI&$GEg_0=!6~a>WjeO&$Tbyad{rmtTD9FwX1|3^%RU9)r7 z{Re7vLe!+EHndD5OnO^o1(%5nDwK>=QHiflRALF>Sk&ZbQV-X0(>;gVP*EpnW0l^~ zahfUXbsh_ItB6H72N{X$qyQE6Hsz*Tlmc4tvzEaW+X-r!==n7Z+?%wK zGo*U?o|MD%WP}!*HNNWJ)GZ^T@s^?(mPCK)#-zKH$(<(ZC2d-h*d^ZV993N<%F3KW z6V|$Wah?XH^bUn)6vjKV^W7e;37vG43rT66N}}g0^&U$jEA}>TwdQ(US0k-!Q-U`T zN(dVGsdwj|Og4#7YJGwGv$355>TPKXF>-#l)^dIc4)vZS$q_*cJ-A;~+w~=wMXM-G z>^t2O$G5?`q*NhHP^veqg~}$}9#7?|`@%QXB#ern6^eCC01F$lhQ&_Lg1I77p<%-1 z-BjZ85(Mg1V$y^fNN8|Fp%Y4At9hs-cI<*SIHyrFGfHgZu!Qt?rQJkLKGEBi1w4(b zxZAwNqvw9^-@3O(mruAKkwmDJaz7%rD@(%th&Yk^*@CKwZ@k9a)6@R?EuEPnwPO%- zWg-q&4-Zi2P*N=fh$9kNFXAv!qFUU7PuyBFs?t-*cJDaLRZ{N^QgOyYM4{70yNF|a zx)T;KA+gg+y^l$9`DlXYHuq$vJ4p)GW)r<+A<VwWSjm^4q-9+BYq)w5rLdkezKC0lmvvOz~t7+d-goQ33ji3ed zUDLD_a2yMa^lH|&dmH5{tAup=idG{MkvwmREx2z=^e!V1M-~=%DOBXJoKfo5isKJdlT=$Wp!DzMtFVg@M9?IR0b?(3?S ztz;Y$fjY%SUpI=!ibwE50-k6vi-(JcLJ_nRK}$XyXeItwaz>^^6Sab- zNDu`lY_{1AFh=kz6`tB*3a+hsCMD`UjlisyeHAKL#31C@renojs1XDa%Os*4F>}^2 zg_5Mrhk>|xqw6$+n`kSVxmF)iNdwqaLd`AyaH~Kwo6=Q=aGnRwz(y+>!o`D~`kbjD zoa2mh>g%5B1V{m5bYX$J(0vWYH}&aLT|7x2Knw0|BM+S{ zw#$N)bF$Gm3%H{h4bFrl{EprmUevchIQuAFNH87~oUFaaSv_pBYK@|Onn6f%3yWz+ zH}!Q-4J)jSY}C{ELGelj++LKI9}+#sWHz?9%BZx?(_!FH#6qI=(| z8FL}H)33Z;h>->JO(lb+gnp^%H5+X#8Y{?Q?dym(g8Afi6+Ex~&uS>THB zg%oD6WU6@OJhC;OtL3S|l8sh9MEMW#rfD5@mTls~wae<8Yd1WxDTH#@rMv7lvQr@( z?${_%SDoh^y@oxJTQ;%74@a^#ifXFeTXG>kKP+slErz2B$K^JPha?!b=su!tLisqa>TAjiME)r%Sl_AYe$^Zp^vIdL+eV+#x9|wKE)k z>SjN#zJJf?t7iNp!uVw?PW(hJ17!cek5g1V%ii((>1%Ps=J~EL&pI-X&9R!E*GnOc z<0%y7s+Y#eEpye2;vq=}r_PBoI3!bU{!jM;*JL&+>V{aI@7e1Mxk}Y;)f`i zP@sA-LX_T_ON>~econPdQwstj496vUXi>a$1DS5LqQs6wG>}oeqC&uP2iO=Y{n9tW zaeQL#Ad1I)4p-#c?cD1q{`4jSbEIOnEQ(k9#ox^ZOEM!A$0nN2D4tm*E_5q@wGm-B zF41&G@eEhu)kgZ&LxkX%grkV!C3^HFuO6c0j;5kK#xCQ(gv+>2Ls$D#(en&biOfk& zK!*vO0;07KqeYdrWLhXp>nOyqCyZ89WqFl=t6HJ&4q+Tys)$+hmQ~o>>Qz{ah!Biko9@0bMFsWk@L*X!5qT-Ycg~Qa2q`XYT)dpt)xE|Uy z*n6Z#Gb_GjlWByBZshY2!ZIckIN3#&k&*1d3T_9HZIkrf}0?HJw zU`~A_C^4K_#W#X7QsnyFCnI&siKwapI;Pk86AmFeyVp7FLy}nMArYJsqAJNq?CuPn zU@G}0PC_^y(NB<(ikvu4g7onT7Iu!TYqzoz2fJB7q0y~XQxsBUrYXAwe9I=upT=hKUwWYEYq5`B$P6 z%JG%eIHN?ot48`O(ISqrRx|!YtK=)uB7!pi6n7|ajFIb5Tn$jy+bUY^B0iK7Nkk^x zP}rSt6!v=o@#UJpOmrr;mNoV%*OMR=)9{k83|(lrNwoYmiKB+f3g;#wq7B&YNHzGe z&$CbsuOA`iOr@qNRH0$&V>bceYLA%A5pkkU1UHo2?$@-L7{*HMbQfYHZkr~*CP~yZ zSZfw{AWEh+g_zDvQFlnPsHq^42izU%m$e2K!qJqJvf|D|NSTgc0#kFFP;mEhnNx-aZEEV(9>T$i*!zbl6E6*PD@@86u_6%*0?c!s%T8FdH(&| zHjX+vmuZAqs&|@^iJgr^KT1Y&O-^#Nz|<&G0yq{iij{dTLKI2COgvl87Rg>0h@+O z;MdQ#O8g+lR6}6QS~s&qLy*$K0191HBXOh~wQUl?WsT^_$w(GUFcghWWm-p2YOTcj ztMZXz5lgAH3O`Iqj}(hI#7I#_N=!eOj1*;BXR0y}7dCEYZ_(NxX%vx)k7#A2>a|a& ziU#&-B)9#Q!k5fqv?`K_f|eTTh}h0>Vx%MDL=9clwjLt2V-S5n5vR17D;bRl5Jx2X zHzH0^BUif3hCpyEVq_)a6gP1mPuf?yoVSw*wRi$|Sz|j7A+ggc>Q-5aJgt&$v)*ZA#j|EqUSE+Bv(Nx^xD}~g&yQo`DP(PI;TO@>2aClji!R`mFfZ% zG;0>XkwlG-jgxNFipEa`I+WQd(WIrvPX*Xw{3PNe8kv&ulSt|;Q{rC=nwWb>YGSOR z9i{ltNQhP4z&uSfFc`sYTEYm^0#}ba1}!tPNlHody$e;8wO96@<+(@X0J%5pz+1?}uKQ4!J8+vKWxt@jcliOA%Fo}Ncw z%Td_Vb8(^yQQr4*37thk-{|5LRfjD>*-Z@Y9Ec+ddy_6s>8hNPR>~nbmavs_aZDi< zxlq_jxpWRYY^7YBMByxNrCd@6Uy>7X(L9}tW_E`9S)qP#-Zh=Md#3uqIp1`Jldb7z zwfZ?*{hXtI)~KIz)z5kA=bNW;g8jTWj*i5BYR0F@XE)K&)Gwuz>?!-{#2DPm)KS!n z`O|2l=0kiqwT`sgPCekW zsRtR3rXKLg)PoEMQxEuD>OqEMsRtQOr5^C1)PoFXQV%j5Nj=DLBK07{fz$&&k9v^d zIO;)$)2Ii081*2-S=56JM^O*>BOqDhs0Vxk z^?(nc9`O0ogAB({4>FuSJ>bKq2YmMQfRCOY@X6DI3eZKJ>Y|;2Yk-- zfRC9T@F~*+K4khBpD}$b!x7WR_=M?We8BWEK3{sk$4d|Rbm;*fEZ=oJ;-pL^f5k8dcdbiALGNM zkMUX313pUn7@s6P;De-(@j24RG8`j)j8BmsWH>~6z-LGg_z39%pPx9$aJb-rPr@4T zfjI*{^JTzCEF8yB}yJC>o& z4fx#pV|;M^u?!XNScdv`EJJlWmZ7#CTeKDGsq;s@>a;#S5IetcVg68O?y<3{E~c9o z#^#UGsn>JE{H%v2GTOQGzPWzy={N@B~Kk>0Ru`-m$k2A0RG(R4vQGHl1jd{hbj>Q(q zUmYipPABEp%Vckn@F(Jgs`c}Dkl2YfnC!*2O;eLJ1sE(uVqU|?`*f_BTESX?860?OY>e(q_NS4GcXJb60M#)EDvwX| ziOOSD*x5_0-uILN2ROwRV5vVBTi}_apr?){))r>`KL`E_vyM#nC)DI~fnh@V>3ecv z=f8|4RxA4J{pogA7kW^%i*L3o7ro03-a9+Qp>+ zV!Tth{zpE6NgnJ62T9Pga9^HHe|U6GN41>&X`v zaz^}aj96O714KT-)>rnFS4U$IwH%{bS-XHu|1k}~U9B3=?{}g6;N586*cW$QjI2sxE##nWV_C0_ z5yhu~ce1n#9*qoRY%Ua z_Aut%F{aoUzf?fxbz35cOnPPvES58t0ta=6CEXSSily_VfTD;q+tZ#rtn0-P z+4tD0E?(~oV!sh#@*}a>;)`jS+N)0LAYGxz<1v=-p@mrKs>$-bG{zL3FvgTMlRN=b4>iqB3#%JWgMt zMqHN|CU(EPf@tqi}N+S6pmnHgcj8Y|$_}J2y=#hq#TM9sH`8vh*!mksYX^Jrn*6lwl+pf`DKY#SWFr6niw+WmnCFz z5oOHvF=nbslb8j4AO^fK229l@30U3*V%)J9HyjnB>nw4-K8vVZ8)L9)Aw94}2Z)8- z662=&8i9~u|A(P&i=o0{Vyv(1{xHs+F;2M)a9tKRE@z~BVx)2x;E=-3592*6#!C%` zoU#1A49DU9=?7)Pwr zh#I%5UJ9eOV$@XU$0?{$D_Vf57*?&yb)6IoX`CoNV#y96q3EE9&W)ZwEl!*Lob8l| zgk&9?$e%rB(!;T|qFW>q7fhZq&|C}@_G_IK0Fu6yFOFRZ0o@pdgV}>IQvsuXQYqyQ~6)c>d_#x zzbcly1SD3TL5{~D(p`85u^8R)om)1HbQiT=>u&QfN}K(SRbA$oN0`u@x!)KIU5pVc z&KPfwF+}F+4esNqa(v&Hy*1Kaj4gU}T+Gzm+?e^T2Fw1{nnU!$qLjt!HCV8pj@1$k zZ;a=S#2DdcV+7%nV}#h9GSJV*K%$GE266{Om?FbqzZioFi^pKx-o-1D810v1G~u6P zwBQXaqx@=&BK&h9id-APSnrFmM3IiMM1O}dej~=H$ho*~Fwk$tK%#PMVWP^7k6yFi zL1N()MXvYKRihXyyK-nIJ46!`3gP!HSdb6JT8Qpn1Q3^F#`)bCCzZ`s1NK^RF=nif z##q8SkxT`pn8E%a1``cH1Qrxx2Kht`BKp}8h$wdq@kcR4xuN4?$2fl+~%ej2mCfcz*@F@GB~@DlkNJA5Ag9S7U)h!3~n5Uh<+GA;s5X z5K-z9AZGJyf%EkkN3;bA965GimA(<9lw}rF>SIM2KB^Vsd@}|T-X;{MU>L$eeJjQ) z%Xl{sQGIO)C}jI~j3+wnfozG7#aOKG046LyV!9##@+K=HnZ6s#BnE9MD1gM4Kjk=y zRq}QvM3U1Utl6nCgmCX^2=BlLzy6;dgOwF2?c8PGf~8s+1BsS2kV-gs23QpXlvR<~ zy)()=F^U*xK@8i7nsSG|GqUrMQh0aaZTggOtUPr#w9Z{L3?h~E?aX{pEVG!Tk?HHW zc80wqhK+oeHHGW(`<|U~E{}1RT*tOMiVc&0<_ZkVg{Uu0mUdY z01Re~8KS)eh`>mPVhG_|Qc@)Cb2tVPRVxKVTknb-n~O0@O(MISY?2qp5T*L078Ws3 zKL!###6Tb6>KNci3{Y07VqeE7kH;utU1%Uiq-Wy^((eIFWfv01HH;s-E z80alALex4r19{ys*E+EzZ;Nq66-emfxjBY-M+{MB4(a6>;hiyp=!Qulgm2>X?~2ox zRDjquG03}P5V2TG3Q_5q81p?bX4tj!wjDOE342Fo??qDKnneDRYuYqML6;6F9wX7p zV6s{3pTbJyB`faUu{^&Xs}gqad@!$j$H||FlZVZRpB(N^Iw?l^K#UT05`C0{sda|> zU<+pJut+FV~DVEPC&@%8wUDF3=}rbK9HyY4DhiSpv<~)4Pcay$0%Vt>h>Wv zg%x{VXP-n$QCLOW5fxVJnIe>IXv=EYmO5^~EoJ^s$C8H*z)Kw$E(ZBb3=%fT9!Npi zVx&KdkwTB?Aq7Q?5xx*3gdWjD5CwwM|3#d>#2|5bV303IAdA_z=$^Nc^QpaszPItL z-H-Ovh5i)o=V#IWB?r6nW?N^oDfH#wZ}gn6IM|-+%uTf)8)m;lnSW?1U#<75 z<)*kj%+DQvxJUb6&G7Ef`+D8S)K0Y@q}cg6<1?+tkJ41TiqNJ#Z1dAqdfI!MpxeFH z%rHM~7c*dM+U$Q(y6krmd<4PoQSi#)D~1!V9Of%1Ta_#%`O&7mIy9Aih@!0z(&nr7 z^5)i!V)Q@s&`)1zw|bL@hS{Ic%_7LN4sfK#zShC^FeUG2JVYU6C~|)OKHlWFA%r9? zZ`{yY?03i8kF{p!X=m;Y*sN&-t35{fxek{!w486x(8qDZ3>$IhtL4pn^$v>E*k>XU z=oO`)3Wjw4GE1LdMp^XO_`#XpxDaI=G@6p5G$~3GQJO~DCPzsKz#>|ugxn_WFp+F; zN^b5j-OSSHJ&VUD7CSTj4z2hw7Q*V*Cf{v#=2$AKM?>DRJinC9m5z~L&bHe_$s6mp z0hQ7>aF5boKO|Fb8eJsCOZNSSvhN)w_8l+Lj`opO8ZbbC_4%Zk=FO~g6H2yw$`E7+ z0;pE-p_&T9iqpN;Y&)>}d~0s1wZQ!Rc*r}%`&N%)2%+|Idbasaz_Zo2EJY~AOm_b_ zW%s*Aw7b&~mj4MqFjfB~biRGhNZXd6{=)q=CFMv#4zvJLI! z&355Ey>Svjek%UVPrYx)Rw#d6p>ZX^kdHAS#aAiC$0`-~(nD$H=2WFhZ&FH=jI6K` z^X@`1H!D4quiB{_+yD>x@P&L0mjnNPzJ|-fK2EEmmX?Q@OF@%aE~;A|0t}dD zh-|4Y51W-~w5DvHr2O|5+G>lkmEKz3)fauEIeDl(d3eZ&ROIKewd9lhJhs2})U{!7~eOc8lF!UTtm9R@1L7o9Y&w z05aq=J@Rwo2l=@>)n*Tk1ML|)w*ZmJWX+KX6+9X324%D@m9;Mt8)kb0%*JU;>)Nvms&VVM+%KE$Mz@*^+=pxSX=CIepMjE}6W-3xdH6`TaeyN>9!A7ci>0U( zG+As*U5iC1u-F^xS?t!PRhAWFi=~uE`mu$B)Cp`)E~0FV_dB!g1vb`XcXocU&u*#7 zcZYmfOnz?sAU}7zi`-C=$z(UAawpBEu*qKcDtnds_ZUKpR_fmu4pNs`tEm+#kUMPg z+iLq#ug5=6vq;TD-AO{!JDYakl7@VcPJVIGa@{l zzVm2jinvr+9S8vWAA>`nCvRfGRZ%$THS4;N~W&%myqM`;oFT zxn+EY+F-84%2@W@VQYfWX^O2q(`+4_qn4zj8=yH|K;H^$s`G(qilpD}QD?nhl`0=o zX5Hl{z!VtKY}GWXxzaRLaIdYWz>trQBg6lIGJLa+2i5w+@~jUhs&b)QnlKuhehKQ7 zwokW=FC1zqr;0yj+DDtMDL9Bn+p76jW}(9THkkj4@<{m=2OeOM##Rl|Xg{`Zre#2? zjO(OPd}Q2XBN$gFhjCfjTE@Ml37y!u)zTOFgt*gI)XT&XgCq1Z!=a3ELTSPwpI}H< zd#$qC#)={tqbP)&6P6Uq`rXZE1eM86EZb>VK5#K#VXyNQ_vyK4c)_O^0Sq}EDftT0o|US&wTk4y?`B)`*#3%@$`kVef5(*Epc?YMNUMIOOAU$=rX; z=6?NMr#$5p{LAax9Z0Y{t5M(Xl#K0OTc`UaUrzChIirGTtl!?= zY$~->iLRl=F2`S;{u#leEdq|E$b>a}D3@A;8WoJEyB~&YPNAK~awS#JZnjGky*#^bWv8K-^HG}M$G(bw)K7sS6HTNSX)atet{iGb;NufwyrNI*?zC1%-B-AAs-A+#(vrx z`E_=kqU|BT*erb=V{dM16;;u$t4vwh)}rW=vySoUqO5HHBA4wNG4re0+WRfslFGJ} zaF~If%zgIA=7x?iH_JbQxhb70+jX@Gr)zz`xMdt47}&B+7tM`f;r6;5?}n|ftcaC2 zXfbeeV^pkVx1+2`OR0t#XvxM;uWw@y0XAm2>)3cp6ZRkrs3KiUlW_G`!oJ9BEZS0* zqpPw4{Yx-%t*H4m%F_ES;F5~8HkKB0m_YzC_u7%o4Fs5*H5kF%l#YvZeRaxw$So+- zn?#x36qe~=xcJL3`C8;oMa=waSbS4dw&Q_fS^1U{4l~e`!EdT>a1Q|nXZh5phxbn)SWyUFij%R%CMVCpNBsVRx62qIE`m9p}F`Jbb~>9|DKQDj$%ZEqc?Qw42NroSr+@~^7<^wBG_G3U0MgwJbyCBcnchRHFg_MrC>H8QBin*4c5J;USyiIqtjuUw0m<6UwqRj(hf7oK~{fQS$%Vj!J$+cmSP zHcWNETGlC#qFGtr!wIF!6XrftKG2PH0e>&DpivnwUu&(u-$EsddOgEy@rD`L$?z{) zis1nQ!?OmX8J?1Iv9GCAS=qmRyr;IFvt=LGP1>fhqU^tq%YMDc`E~o-dmd@*c<{j! zEc=nP!whmz796Ud1rh{Vz`E4Qg4@Z{@*bA1?2n*XS-a_k(uHfCH7(sRWq-QYX;00z z=nc{PVgAcYKagD3jR%6lY|VkKkumSSw^1!J@1qZyl$a(Sn<(XXrj+BtlAixsgn zqwKu{3}0<#zXAKyd*d0dW{l8>j7Ii&g|bJ{YDS$?Gn!b*x36pTQ}3N0Yhvzu zFa1(4Z+8X_vQb69M#JKzUTgBGb)x1*;6#Vn|A6@}E_$3l9ZQ{nbZ6ix@dkNpG$9lj zS$C+cdrLvTz*r`w3o0y&%!v~{1D)8s*Ygxp-Q7}!w$)S!t^>0X7M*TrmpIIxfJM(w zJ<2a|*4*z>j9^JktVqa`Z(W)t0Rv02sH0kv60`FwRHn3SZX7?-ZXI5j@4C*dxe=Ak z-{i7c^f-U|^9bnxA&p!%VmQ7C*T}0Md zbh=^7=5KM?Og+jkaOC@4imI|16Av?xkR{){G)qE$Sdv8@)smE0mCYh$!eOlNo14bF zkG6ZX>w$Hf`Z_9^AAlV%DtMY-{E&i4mCJC!P`LoZ3`}Iq-&V#f`p8ANOsNKJ$>J7$ zk^AofybcxJv^~*S19dHY|Bw;z@qKwc>skpUPuR3u@9~1_rX= zN0($lpumDG=7<)gv|JdA6xmZ|z0DX0by^erDTXbN-o2({ zED(L|udMqiW!>BBH0iNwurQ0y>8o1x%^36;(~ucdIjvGIe2F6}o)k$J9gKJ^4c)V4 z_JgqWMFmgui-nc{=anLPWfn#YMJ#>VN0uAhldW1O(f%%%j`ZmEU5m!td{d_q}y|y4C5y_i`u9 zT&Rz7@iKFm{VvRTUgAl9{!X2iSB~F_*ZG^^2W}|qDo92JPZnIIELik)gBDsXjs@r4f$_vS~VzPq5R<&A;x0y6j#x_+(%%u`tx!{z1B40Fatc?M>0~Y$1KIXuk=_eh;>)`}silcF&ZHh-k>TWTb{N(zO+> zwgynia*kcnNSoN{ZycT;NaaoAv9jj5HUqxOQu{Q~=Mj7H8C&qp#P?TNSI>oMp{N=1 z*EDkx4XqxvOCLohTvZhGTwpTpHqu&bjBq>|@Ba%c5NKqU4u{1?tYA(F=E2 z2+Hn;Ah#Sg#8V6!*64f>eCWFc3AC#)>1uH zUqk&q^5lHm&UlZ!_GY{Df7D*yS*L`gWf*4QqYT)lGGOZ{8IXX4`B?)7s%w5)(x>cG z)V@l6!{tt)&Ep2EsGa=-7`uKudrO6()5OCJG-TsF%Em=IuLWu(--xlmMLVx)0Bg+p z?eA3^Xb*sXd#fmFaPe9aFcxvzE ztG3f+PJhNV)|o##H?hvU!&@#5vp<9cYp@JY zf1uUG)=|_U@NV&TcF3LUYVs&pl5a-IcTdf9>#*ftleW-nn$5HDWvv$S!ae4p+6Szy zCFT1KO4QKzt+-q3($XHEw80?0mQDFQx)wGp^|TNvi*8ST^Qo~h=U zzmnZuR|M}fQl4F9E9ft@^@OVyW*w;Xh6OGvZJ04bGMcD)6pJks#G)+STUS8U+T+YI zwV}cSOBlWRW_w-3#%b;dBJ1ycn-8lO=(N3z>LhsaSjxnA!MjEi)3tsqlTO@D!=t6+3rSHw@EB3|S^HPc_3 z=|Ubqu%)~?68|s*5mn7ssH(Yrq|`+fl!YI?g5EzGc}X>80hV4(pEH^uwJIx%6jehm zWz$UFh+J&MdtjSe!b#QCD5_q=_eL z&uDJ8k2W_Bvp+)py=hBgvNky2fLyQ<6g zjhMcuHnS?D*XDxeworWf#u2UR?2Ou~XZ^zU+KT6@=63I%COc_7pzb0fH}>vPjVtbv z#hx{)#zq*oIRz`b#^#%Co9r!rdy3jcW>aO6p&8CkRTP;`rA3CPJZl#jEs!FmBJ*BV zWNI7GD8yTxP?vVH*Wta_wHCa=X>*5nU+>xK-=YkwT|^CEL64A47Z*|PF6MEMkna+@9pBT4WtJ4s<+iUf^J(@J4Ju8ncbg1%t2E-R& zq#ZrWFF;3K-)?L*NvPUhQplnJN%4PC^4w4ubKT-x=TX{Yr`1KFmN1XrqXHO&4L8M~5;8Q;iP?w}$^J3`Sz%EC*FQB+#W!xeAh*XuVHM_m^m)4{xJ zqWd(X7M#cdDaxSRkI_62_Ev=sd;*Aqj_&7c?$c4ZAw*PyURNTuvou2%SvpafsPQS; zzyGtadENc{uZRWo(1#hoC=)JKnQ%>M>~*9xKFUz3@-xh3e#Qa)fGo1H9746Q=mj;W zXeTn>1DS=$&rdzd&wrT5FX;6&c9;Z2b8R_|vprj@$o2`xp--4_1>KyLk^LF$zKYAb zxfh?Gk+8RiIAjpA_f5*)H^*9dvDfLpY5Yq&SYg{Xa$hXPd5I_ac?Z-n9yHpu(bJal zIh>^!xyVv7TlId}n6KBTB^yLf05x> znpNT+y$0~3kg>K@$gs{7T6+6p!8P^;$!GZmrr1)K-6bKeJF2)A>5T=w=h2!q{msW& znM;Zz-Sq| zyp%G~G`H`dd8h^VDx2R#7WXDQeV%5}f~<5m@|F9y?|RrmJzS+SZDn?()uS_^T9b$Q z4||?P^GK(Es7d?x(TlLDUUz<;d|-2WqCG{&gK$P{SyI~kww;=Co2G17$_6MK_kpsp zLsQZRliTjwarpW>VHrCJgFo7ku#BtMEMif;wsRYdV-Ic^N9M8*43DG8K95>m@01Ez zqhs(PgHetC-jq9xx zT<)T=b^pAiavBj!S!Pflhm% zdg_*4u~jZBi;`cqR|C-A`V0`vD98eq5Wp2MW-BUSw-`mx`={B(4R#-P+CCiL%JD33 zychcyP|U8t4(7#?@~gJ)xv#Mv-_~gqxhXqOUtU}wz%T;^6~0GR;j_Lb7W81ZN7Zqb zOii;VbnYRi%+GDjgb(s_x0-uoRu!2t({>6%XkFe|*SNgd&SjXaJJ)U=Y0&^{h6*bu zKFhzApY@Q6&>-`OUTO$L*%|`*xAL=m#fY!Q&C~C z?*gn|=0qc$>*J0iN)9ak5@lj7p8!-IGrxM@&RtYAT&%=cqo9N+d4?ItsDym7sDx;_ z6D5SjJdqNjp>+vixVVJa{%dGSofArf{0wuMpK+gB>@9k5CNZrNa|d_uAr>X4cYKNS z0ZA%i=2sthU@O(p(t|wGF471z%)mw&@#O*+X(FymiXY_jlVzj44squy22O|s%1rl~zTr<#nY;m-8#$cE`S{SSK zLX!r1bVx~i61$44H|pde*aTNr#LBPSYPyCC4T5PHn1+7CL?T4(hZRAWQ)Y_Gsh!}A zjM_hho+3?gPPb-e^mv3p&PzPW&wKb#yYV~|y@A!?u#BChir^t%(v2|3#YKH>xjpXC=Y!wx$i zVux-~Yi<>w!aR#3yLFK%a^RbSlBm}k@^HNHD3dS4VN@Jtf zT*KLKR(m3sh<0$MJE0CK^A|}nKz?ERVSeHLoG2lbotTJ)qSwQ;z>hwx5vws3(FMt8 z`30&=d7n%|rOnPG(}cgOh-~JG8Jd!5PIMo$mHaEP@0#d7y>T#6y%nh!Ix~5w!weu~ z%*&NAJr%uJdc_VF=+gHNG>bvUbDNjYEW{;hqC6GBER>~Z_!5K@dt%u!y;OFgMTbYx z<`*~-O)#C8ctX?66uq&NqkGuiINw(WZ-sa{p4BBqbX8Tf{3^Us;-#ThuSf*DLR+e5 znOnVy4%v?0Oe!r|F3fwWjLFy5h?%do{96s2wgOAH18`KX>{JuI&hK@n7Wu4OE?WML zVfI%jR;$FleAO;54Z!T+#*YUum7Yq}CRL&?H{~vjxUMrr%jcNvRQwrp*oHYu+V6H} zP!niDQs*FT_{Jz_2Y2(cA6C(5-h-o&*w))dkaWYWt~Q6rkyB*gQIANn(>4)_TSiUi zop<^)Rl)=`S!kA5>-(52G`Hw1bVMcTZI?a*o?h%P_V7L#+ut$fS^lm3teqTz8U%_! zNY=ETgGpQ9uTdICwZM5M(;fUU0}_>sJ*r$>Ea=8(XU0uEXGZzhE*7MP_l3s}+4)HY zv;mvQbMc;T(W^Z{*Q9UW+O#;6&rqP|n{xVZpy#?eQE8ul0;IPCUV&-c?*MUjJ&(Zb zG+!W)A|q2gSDC^({2<;sz9u1Qj*{PTvW#a3ck{FN@;99PRua+tVjd#uHqRM@&%0L2 zn+7p>Xd6VQFef4!+balZ;`c+%L)5dHMX#5YxU?h&eO;q_VeU}c#sfOJUkgH3&P`OM zUTaqKtP=NVV2iUyP_+<+u zT9NF_u0k4Z5`2c(>rCiTJ9Ay4JK=mZE?ywJ2>B(tC(h6C2G~6#Np$l!VEiivH<2{nEf3)Eqk4>zqL#eVo#}tT4ON{SQjJ9K!icCAVn2+4) zXu*ZU)Z8=kn&^JMhWgU_d-%q~9F-)oH9rY%#3yL_vQVHg9PkY&Z|19QuI#gCxa)6slS;XI$AT5rJ6m-Ph~86> zi@*MRn0*bU{|s}PpP}~{MA5h`sAL;F0F{u6{wE8Hz85z&J<7E8r$_DFQA!s*3CNJ~ zB%p2fQ%TM13oWf~HW}%Hf90FUC3) z6^+Q3cw6^z@$jyP+5d|oa+ZH9KWo3+2@plaz7a4+_F@B2flzVznkp{O3X4_{pPZ%J zX%Lgkk&{$XH7eufG~r{Rc!D|QT<@-uXA(I_i(q(eWP;|Aj&!DI@sswpY@y3b@pf!{HFBADiE3vTby&(YTkwgy1ssb{Cc}Ch!)2wi_NrI(nlP) z{nRCL@Lo1>`LRoEtf_P{Ixq2rR%@FzH`|O^P^j*!GKj~@Zy?f*hbk%8)Qg;7qm<{5 z+qt+Dwmgx4^%&R)-1u-#sK#eB8`prRrpdrl(^O!^TdS;S8e*DHrRn3&1bwAIBM1$B zQNdICT3qkA)b2I5d&wx@>|6H&XCNxK9V)XX=X*A!h0tnyu zdND<7Qt3o+)iGk4bK?j3x!VxAaR8BBrL_?W`7TV zdnS5WYLCTXekQtD`hpB>--o5a6aqQhOMgaCTrM~pOPmk+qJjtBv>O{@gQI)WOjh*z~{Xqk0)~oRJ z@s6nVsE~_J1aD*cCnV#~wRkwnl3f!?mW-TVBV?nBOAU+#Z9Es>fa$?&?02Me+V3!X z?02ec?(GIlGitmr;82&kT*#v40>830Hm?&kU+2nTqdV6iz{U{(HUQYrfK)i2Sz&WY zcBD%M)|bf?ghpjN>Kj{oK_Z6orQsqF*I%26E1s*rZ0Dl-8%@WULl+ptTnw{+K;2zo zuk#h=~@ni^o*4xYU2R?!}88TG62KRMdR6 zyqT|l4kFRZHfBLNloHxCFubptl2F{E@8QgP7)0TMtSMPVdKJD%E^XmZx2rxRWQ=pd z+xa;U2N4Nrmr!T2yErq|oa^>!;R1~eTTL3aVqZ;iUoAK-`d)6DL||`*eds#9_AG5> zM;}Aa&S>rLJ|T?!?(GnvK_WCDLZj8tB9Oyt!OdwA*#CJVH1>7&?ty8pl?t`ypbdSO ztgPRhnR#?}hF@E=kuI4mj6g$fe%7#w8*5GKwPT=a3MwA^(99(L(k{^5F1&n~ZHZ+V zZThU285@=H^0j*~jOraFK8rQB&|S+`(O^WsUeIer)T%GekS68ZWOt@Dp_wl$i;`ca zwN(IYPB``L3_xs`XbW=3Eoq z$9Kvms+vYd0Z40sITUYu0HuYznXkr*7BccY%`VOHO!}2c0jC$|_>CMHnQ>OS8~Mte z_94kKmP}8Z+|j_Vhi`1!>eU{7D0QeiW$-R3j*wqMo7o{TzPV9}@zob6Ccf*FeEhO7 z+U0{qA9Vr7)6)c4al?3ORzw;hogw_zOJy)t391Z{H}lnd)h^PQmQX(SrX+viN84vFHUvRC{i<JI@Jkt2<+^wkV%$YI`Y%!lXL;2~}rD5zP}~VV<^#_59fKa!e2&&#MK*RnpU=a}Pt`mWM@gmKp_35C(L+wfW zkQSMg{V2c@oT$utm9U0A23Q0Hd*>2mrVUOs+K&Sb0ioTuL^M5?)gRDn;8z0}0RcaA ziNFWx>}Zq)4fzv*L_m-aoB*Vecdj)H$HbX61U7Xqcv|D`lkSmfS{LJ*N}6)))7DV-VRs<1iSMDB<|B|2SP{YX@P$R z$Os5|#}bieTZh}@^QL2<%EZqB7r}|(qJ1-)vTJ#N0k{YVcd2!b%fh%`kYNn*O8`c2 z!U9u^gLUs(;9mhQf)f_lY*nX$-wR*_1iW{tImZ?@z=5fM9Rvu7VE6J6&__Kj<29ZD zJOYAWYME9!X?t+mG9Lgk0z%$;LV{!2y9WIrKoJn=Qrl)FF0U-rs2>I@f)f_Czet^O zRrfvuPy__J)aHX;Kl4We8uDX+L_m;Bt#&lEqNe_x(yEsyN(@N>Fa!w&$Up=pWv`R9TfI)MH%n zmSs@7NKQ}b?2|At0up;>sba6=4t8lqOwreHn0XmD13sl{_G$1VApW@#`DtHFwQmni zikpo{%JMLXKg_;~Y`<}oBr0~1VRspU=nVo1grZRB4GOFk$cO^0UBK?|RhaIyIt z2!r7Nf@#PBsxK*Qarrw)gMg%Y^hq|2%%s1EBnU{7mpsXm@TwG3lXO1)BjiEwf1%LO zu7$GD{4<0>K*CIoXq>~d?H0|~(}ymV9TFFHnEeZyr)$faCoi^&SmaT6?}Y^T)CP^x zJtri;5{%lTn^b$W4Av+T+tZJ&k$nrffPl0Z)wen@n+w&vuI-s`^$#i4vu{HR1SG|w z6S8G#&&d;*{W{7+_8o8|Anxvy!tMJ{7U8=P0Rf3H`=p7`qt`3i{-?Z}1VBInjM^LW zj7oj0y7tF<^>I{SEy1af00BwRe^N}KUG?}(yEQ%Dp|@|G6{kZE1W#IN@Es$Iuo5C5 zAQ7HBqABJl)eh8UK91rHvwwvvys9diicwUl_if(_=T|rjU(h4hGAbF!>upnB??hBB zlF+J}t%gw%kiesQ7~iNROwO~pAsNh^tpPUz;vRL>U6-5v8MB=aHUz|$6%`+z8(F}c z47F**Oq*Xw(`zKRAlEu|^WA=F>|ypT6shaENGW)?RYVG&-Vh@0m==Xz2pLhf;oUfi z;+6oTm=(@P*VRQyNCoaeRp6G#I7a>&#>p;5)*v8t3j2d~)lr_dR_w%Z51Ex+3V9Ha zJcVw*7K8QtwPJH&WeKi;1PDli#bqh1wen-kZ-QBn1_VJsf)tMKYAH9GDHw8maqdX3 zHBYZjRT<6JK^g=kO<}L>BuHb2FKm-*Aq4`G;;|<&b4<%TPb&H+7MHug+rJ4KWaq7)$VA z4tXRo*si`$XIY*JSrCvcOYmSzl*M{Y=ILJ9piGKz4LDjx3KNCExcF<@=VX zkr647mo>`vz+woGQfDr*PPA{ug9wQxOL+{II)v8*-u5$4CU`9a9&s%n8T9Dp9L@xx`tSKc z6iyy2$&^7io7oP64FR$3UskPjBfu;fSP(3GHu;X8sb)cifT$*yRiVXsn%`>k9Ok%M z6R$oSW!ibrA|Tpl*PxACRx{~>@^7CGvu~qyxg=~|Tm<#Zcycr@`~6<_&7;bq7^!J_ zi)vbyri_s%p-k3?sSuE<9voG?s9mv^7-J_7b7e=sfPfgjcNrNxhihCs^F0ne1jJXz z`#G6Y&d)vd_(BKIye|bW0^)sSne{a8or!)3LIawxs zEl3d%X_a51{oqRa@Z#w(`?tu+$_UcQ(k6tm17GE21sKNrijkb`6ZM>I1R&g?c&ebY zH^5W~$W&EMR-})nBji(dvM^WnCNLl%hN^yw#0V>md$3ki7$R2#Bt#k3I^WU9>ws-O(m|C#Vn* z)%PuP) zyVnQXed%qtR2y7^Dvt|x^0=Q-9=Ar>h(SWHD`O}HvnOCi1Z2kXrHES2GB!yYZFHuO z($3OzT}}A`P$D48s{UtW@|44uilruOV9o4<;6*^Z?USG?eeX@!r@V$Z5fJCesGsVCQl>f;R0xQw#t?1f;-Y8WnCoy5E2CvbkQiSV%QU1vL#)FZ!ty)6EE$)-5|9_Crv=yb3u}BUBeb4p5;{ zb`b~>5Mj-sjKeGF^SB79VItFB0$Kz_TlLB|G*!{C*r%nD8uMHZ9t6Zwv%lkDD%DF5 z5t;ZZ5F;Sss#*Ba6^sXnOu81N2#B<17hptf6Ml!8uK_axVy@Ze8j(5Wa+rEOs1Xo# z%_)`@Ed2#B`E#QBJ3RYO50+72QFM6~?wKRpm+;+-HyK*Y=Mi3^5- z%)ATC2#9(4-C=SN$h>>Ni-34*_UcC{yLJf3Tn~W@0dXzABM1h7%(x$n2u_Z6X86Zk zkAMpSaV>xCPy;b0dOnB{5K+y!`Vq2B55t)0g_{XrPhy$Ey&h_2>j^$3a; z55btc1#$#LUiDqu=&e-A0F2qEz>a{}AE+Ma#A4zCr=GLEVf$Y20LYkfscUj zYq&xOkr;5ehdgENufAZeIdCB$t^*_5IUFoXF4Hq%niqox0nxl*`Dmh*7fjX%83H1! z;Q*c3rS@~Z5p;i;=m>}q5K#@cG%}Iv_AuS!phG}(HJYuObOoIOW_&3a5fEdI>6n^~ zwlQXo9|8vg;;7MzjKUGv@8w`ZKupV5*8SFl6?z3|5D-n}TDF+(`r;lB!cnV)<{10@< zUIiiq%S_~FJ`)`W5dtErYpMPQ?>Sp z&MaG;nwu+GTouI_X8(!27mKUnNOEx%9fG#F9#nCWN1gn*c;W@loY zY9_w|FyYUG5CIWZ%^@$95c@5g1t(1Uiy%cnq*V(}mO{#lW&AI4ne~^!ihx+FULh}q z)votvwqFGs0%EJ0J3Rq5^MaK*-v>?v#91{cSPG{eZZp?!fC~X}os5#|`%otQO%Ng= z!m56zR?azoQ!`A<8Acdp{{;^!Ui(FH7ju0ATnLD(W^*?J zmv$n|^haPqKupVDR(u!2bbkyw1VmRgDTB@GO8Q{(@i05(G;$we8-O5&+y>xbLYG~y zs%-!yoN^o>CCBlEavV$4$W%2+pft)p3yUEji&gdOBtTTqgU7W0(acfJ@_DczAeO4R z)Bq+d+QH*V+FFcv-k)hdhLz6qJ)GWkkOqF(j1uAx*S^0ZZ&Ga=eAt0uz zdBV||=CDH~uRCP5z78@3L{_zCZFDj-|G-q=02KnFTHb;P3qm+PmP1?dn_xpgY*qcY z5fzJOTv@$ufe--^E^oCCH1Hsh(_K|nlJGuTVwp~V-}0H}4T z%y>E&5fJ0@Ry^IW5^O8MhJe_Xw@KAKE7oZhSP&4)^7<{mSH)E4fC>RoRZagQ!{WZ8 z8I_5r!|W;OQ;E5389~lvKTOd3{lVDH74MJ)nCei0kvdd=t2$ImQ^xO4Syh!X+4(RP z0y0&dhS;W0_NLrZ-I;>;*+t+$Kpa)eu| zDdxHyTnLD(YTPFkDd$ReqnPq4P$D48s;}xtqC_W(8PAVNSy%USq>&J%NufeQg~)oFTb+b`-m zG2KScAt1WtEbHlx6H{&hB?6+X)19xYq3AX-(`{fvKumR7-?~gur-|9_1RDZkt21~Q zi4EmfcbS;%9*`j*vN}zDZ8FngVwPut1p%=vXQQIK6U?z490-VGIcu@snP8%wAVNSy zRTCO?toFu|DH{2Bm^~HU2{A0uat2%6>vDyVt%+m%B zf|J8zGwu+05D-sQW4r`?f;>A6HUz|0)v7Fk?MRoVf!KU=AVRSG<}*z(^Sl^52$tV` zipR_(Fk2sN2#Bq!doh~%bkol)N5F!BSeDlz`i(zRJq{`aL{;@g!)OYXENN!umx37q zF;@-y!5sJ0%p8VzI?PT*r$fwP$Ov){1AUJDqs(ClFxBG#BlS4$R6UNRDdTrItg1?x z>}4<&0y0(AC^!;N%rD5N+~h;}>_@&cD!6d21jJG`&K^Y>-Pkh6yTE~fIF{2H`Asbo zy&FUbh^T5Q9^ZR#s>0X!L zJsoDJ!4HL9elJ4Q<=?b_#4f)BQ%(qsB`PGt%z6>G+M0E8AQgpgCsgC_V(w>>@&bFKV zZgXL>bGXxQ(n_t~+%P*G74G7q$N9z2QwbaWZbKv_hE+a;LZXV4tBQ2~hQ)<;Z~Wk5 zXG%%Xnc6taR)FnP{F$Hm2t9AykLNhk?wlaLic5H}Rd{DQI1R&hnoJO(-LQf0FKocM zx*UwZc(FA@s~EW`;%-yl7-lOW)GBc=U$ujxG@hf7O^fo{@_H-v(GmVE7 zbYmw&H`Z_8w&$Up*Td#_mdiQc>d=36sOD%$hiIXc6s*_vz399`(p&WCJ~%S+?r zm+vzWjqL`avDHA31nbKsaOZhzzB9c$`I)PBZzOE+WFatQ%x(}*acYDor>#Q_X^?IF2G5|}tCc2-m zu_99CI8(+zU~bz`pqA#E;7vnzbcuTQD`x+WcM z9n0M8_h>T(T5qnUIy<=1=ft9&r3YX z&)ca^qi9I*8we2*!+gZfkbBetIHi37^UF|WMuCIP##2-fp;_xB2Mt3QxPhQlhHpJ&XlIuJX0az0Sj$UwD16mY6}k>+la>Dc zn*}%aAE5~_M1*eC6)~WOG8dO4cMVlE?bJ{d6 z6J|$!ifX6g*f%(^vG0%_Y3V3NS~^6Lz)Lbp^5jSfyKY#;*6r`^g&Vtf**CgudMh0( zcPgC{+pN-g3yJ;mrK))NcSp^fgUSd0%xMDEgDL|2LlGd^ z2YK2B7YEscs&?du)Lhb=53XD7&Kl++lXEmDvBm63_0S#A*mFR2*)S84n?cBYiKW8i zXm-CMG63X67a*jp

1(zv&P(I`Izk}WG9`(50br`8>ep}-(s`H#n?(vT#_lS9t z>$J%#iOt$%?`#D(EUN~Y9|ggf1K*w74V&U!b+EB(w^^#rU>`k(H$nF9?@`3&$N;px z=TO`0?Vb2O-z-V-w$f~MG+{oXNt>k%x8G)o@ZjR5Si%;srOlG!fPB6Sh?ICb9Hww+}Is<9pQ~jyYZXeOXEQ~%SOovtuHkNv;c3l8xJIhVpE?HQewn90uSz95)tXX)l1FxB9F=dY$==I}ZjZVS91HI-C$#D&^-T+OvZe z^%tu(T2A-qXWaFyV}*Sycv1?{{Q76t!gI*A^$D0E!h*eG*jJLE1vd7TRE)VJ0oVLl z@01_Pdb!r0R(UHL91yKaj(a)MD3`1FfizmN++yv8W$B=K?r0q3Ua{=7qtlutmN(y$ zC6SV4C}~eqNs|QHvmw^z?TM70R(c|D%f$wpbVSN-_>RasN@f=Sa8D7m+7EgA3pUFQ zle@oAhQqY!-ibLI4{p+x`LIp;q1?!La?>uDcCp%lFB?1b&_h)$FsE|dfM=?_ZL_3C ziK_5Aci|KN4*iZT)*oL9<@b>JZ)zOUC68~Hf{~@Xf0JlXlr$ucC3(=RQ=%xMg~Gkf z&1#XbGhC94QVEtYOPjQZ#VR3t2L(0u?zAI#9u}XlKw5i)j$+(R7zu6cCS;=}*fxRA z$%f>aE5YhC#--fZ$q=BiQ|EXWtU}v{GvN$Z;+owZd%b5 z0zw*l4bknMtmqEM32S9lqgcgVIey;#nuIp?8*!p}_*aDEFT#e24b}4OT0i?ffnkk( zR&W##bALEyciPHTW6iWN>DO@RR_h?r8nepiA3aP7JgsnfgpTjR_UpVw9Ah5CT zh~OUbu*E^_bWA~E#91;-#qH{|pNric3dKR9Egg16gBm-&;KaKaI^cO6JYs>Rpc&pQ zqneD@1`G1v-gs@W!lkelcsd$hI%*pR$zk)$oPp}2RxF$*+xFPLFdz#Eg!~e`&HNHO zf%z32iq)58wVPjJ$j$H10BV0<>vG4u*$eq4hTRGS^DAWAEkjn))NBegUny{&0|yNZ zoX{=S2p-CNpi?f?$ia0(<3P`Vzhsh&{*ySh5 zqu|i_y8JMC6lgu5yH~Yxak_h140EbRlRohXr>j?bnsoJZjh&5Jy*6PKaqruOTaK~5 zbTz!ffj?`@@7iL06R*C-S3kfj{83>~;MLFg>M6Xs0?&~D1^fk3pJqVa{0v`Nzoy`4 z1^6ui&mpiG4g7(C7Z^|m{=`?-f2-ieikYdk8w+bDrVHizh8lj;vtZ24)(f2Q0=`gD zz|9PW82yd+z$+oex#|Qg>@J&v6ReSsEOmgT4z|>RmO9u{hk7*wEp^1`Z?e>3Tj~Hy zkl??d!YeTWe^m;tml#k9_y=EE|5U+^?u8}*TnZLUh}^`=FLBD0N?@#X5iiCG{Y_vRu?5?4LpDT$nK@VDr2ZjZ|c$ zwPKN$Jx653mYqOdA3)hjrOV1Npk(Lx%F3(YFtRfR*mX(k2L*hNqGTgg7}=Q)G17rX zY}qHEu4_^DiAtAsG6PEX3cj+sD7Y7a>+t@S1f0Tvy1$>VtN{uh7T`1j#t^t34U7|T z1_R2#S$t)^Nd-63TgzVibrbF@rYcqCAEcnj^JS|YS?w5u?g1j(emMtqd=O<8ln$%N zfRb6}E6Y^DA!Wu3Q{^co6DdNRM|`wCaQL?j~o=c<-(bQ*CgN#ToU>&RPrGd`fjDf zx{LuOw82-_2=FNa?i1iM1bhyGTTsO33HTxd zO2mVFWqp}~9}?he1biKVkD!4^2zZnMW#C(UWqn%(H*#AmNA!r0n>ctIpir8aQ6(N( zDE@pUiQ;oB2l3$<;EbI`kD;1dQSA4W8taD)D6x<8mGxs4yb!Ul5~IW-%R@WGs`jrX}CpKPy$GqZMWCdVfD-#6Us-=v!Hs;FGMk`ppm3o@8Zyvo zp-rgW(JtTq4fWiCa{sRMSpQ%^$^92!S^uko7bKURi!=+8>v(tD4}j8-q1;!(UobJ- zo&hCyN4~OlQo-TmCJUA7ni(m$NE1$OvI7mcyt@ST+=+5`ReG#F7*KNe;wx)!6}%w1 z>|LZ;kX*;R`=OqXqul+K9_t_ml-z^)$~r^^hm)Hsz#g=?co%8H$xU^j0hf1|qMo}@ z?rW4D>qrKa+@tx*daVjxkX-gI(kw`>3M*DF2NG6s~~7++a&6&y}(8oiqk z?;=e&xoPxn!sXo*>bV=`rj;Hm$AFT%oUg1msNe<3W$z-*g5)~hJqh)E66L;8>9JNY zpyYP*mDQty!*vpw0=&5|&PA4RokXSs;=6pi3f0_$V*8XDtDgZSc95^EAr-t3vFuu8 zS%_H2vm>bHQz&*+sj*fwpv0cRSJs&-xN$<59xaPw1$gxsK5=J{#E^+>wA!gg(w=Q5x~7x~I6so;f*W-lYtLPa~CuAr(pA{SYiuNv7_ct*okT-kdAD*GG?zfmc(Ze~CU zzlE=?kEq~<3+D_*u7wMCviLSs_IVV3yHaM|$$%1m7hhSQP{ARE#|s-wW8KUYJXhg{ z3%NoHk9V*Ym&flxWnVzypHj-K`xsEd@8>J)vnqJu!r9}(vx|C<6b6 z_a8>U;S8wzkK`-sC<;DCfMW?b4uP+ufer#<3@8H$zOs@kxG~(ShiIpZ$)i2K^t=v& zenWP$+lt?8Lp=WDOWm&R%?zr41QVB4>aFDrsKlMXSJsItxY6Hc;-KI`9m3NZ)S@>s zlg%~~=Ge3obuy~{1}3UgskXWqP>Jg0D{G|+Zk)29M8UF`dh5q^QX}RS@{+~SNrH7S zvgj@Ir=a40#{`|K6kCG~s00o3m30~gk0J0V-ak&j84RfV&%V(^E5IB98wJ=zzy$(aNWet`Tui_v z2z&=Q-$}rw3@Faa_{w@O1;0;#D+stsfcFz{jQ}4Y;CcZ*NWe`9d>1)CM8GW!D9&5? z%K9h;-yy)q2)IjtPY`eq0*|4^PZ4k*1Ipt4d}V!>g1;cZ0|Y!Mz?TVlNPw>q@O1$m zA>dI2zK5LOB;Y#?D9*?D%K9D!|4@J*5%3cMeoDZT0{onSUkdOm0-izO`^fog0-j|+ zasCdket^Nhr{L!qP{A+Y)ekZFj}-hO11k70d}aNWf?pEge+c-O0RKzCw%4)6SHfTT z!~uaHA;k^^?970oSi)D^0k1>g$7u2O1T14fS&Z?O6{p~o0BHhp2>b*M#hybGmtQO#O1vGX#f2~nllZeIPhzcd{tOjODW9OM!80StvK;8~` zGX*Sx)2qre#wG}g#q6MSDQNd%eY#kmD;w*oGp>jw3f+FwTq2g>C=~@-XQ7^-qEp^P z0?%PUIptiwvJ46?3t$qkR)8u269P;UFeSiw1k57v1ai(1u#o}9c|KoRZ=v9~3h*`p z-Y&p92zZwO?xM6YG7s&DpiuE)Disc!;vVKj$&kFEc0-h7#4+Oj*z#j>CQGh=a@HYYe zPQX6|_$L9|T+gar0e|6SMu6=I*inF;6wp{QF;^=W&1ozTxh<5WI;C+5-up{T)|vNC8XWotCOuT32-iy@i6dpFj|rS7qp} z1nx9F2M0<}BdPFbp6qlg&-)-#|)Y~(9z69r!&z=Z@{B*4W4Tq3|b3Aj{% z_Ylw!;Bo>s3veX?TLie8fNKS~j({5kxRHRH5%>)zq`vmw50iP4#^8|cRfG-j76#>3Vz{3Lk8v)-C;NJ=O76Q+r%x@F$ z7z0Y?_xZ~D0R=xUz>f)dLV%wU@RR_*AmC{M{)2$uAn;q{{7(XY$AIE|j<2jgQ1A-^ z{E>hc1^6=oe-q&E1pGsQe-g0G2buE~@E7)V0&GXXjsomNz!Cv=C14K$_9S2*0rn-} z00e%ADLasWgBegMJCv`i!zlQ00gfQxXaQbJ!0QBfJps!EIG%un07(Ke0%QqTj==9x z)f)&ni2!1stP%xR1Xx3WCBQlYY68>=m=<7$fb|Ic0Xa7ia6SWy^8&uIE~Ma#1h|-hO9Xf) z0hbE!9s(KyTu#7d0j?xqivU*>aIFB>5pV+n&!fy63AmX7CG!@(vOYq=w+V1N0e1@U zaRTlZ;FAR0E5N4-xL<(J67U599w6XB0lrMYLjrt_fUgVi2my~G@L!maZxZkw22?^G z<16ce%T=ZPz5s6{;D-Xdoq)#$cqair5#Uk+o)F-@1UxCg`v`bSfGY|3r2tz9cv^rD z5b%ru*Aws?0d6GVSpjY);CBLign;J+xQ&441^5^NF9>iK0e=$UlLWjdz`X?gMS#x` z@HYWIN5D%0JV3xd1bC2ue+lqa0=Bt<16b$x<4Vn zUkOMF@Dc$T0scuqPJnIRrzn;S@Ja$s5MX-(P7+`z0!~KYzfoo<`~@<*8Bj8N`O4ar z?q4Oq9t4~sz}^J(Bk&?x9Du*T;xGfs;s{?^`_uhn0vtrZY5@)*;0ytl5^$CPM-Xtf z07nyWjsV9JaIOHy5l|H1cmm1@{26td@E7P_%Yf2t@s*XN`zHj*5Kt2!Pr#G_ClD|# zz#9pe6<`Gc>jmf`V50!52sj^szo5*wz+WKqtqdrc7x9(VPxrrFfFS}d5nzOXcL^{~ zz@-A5LBM4KyorE@0Ot_!J^>5@HVaTD;3@&u5U@o6i-2ncm?Yp@0j3DJ9)Z7N+CKcCG_F4D~QuYM~RLZ`{SJpLj|APWtN5EGExPgF&1o#jE4-0S$ z0bdv3qXc|IfIA3yRDh2Y@GSxECg3{)e2Rd_1h|iY?<4ScOxX|MFG$(r45*a-gs-g6 z(fv;d@Bjf%3h*ESPYLi<0)8pL!vs7nz#{}aBfz5s{6>Ip6Y#76j}h=Y0e(Qha{@e0 z!1Dt9lz?OeN1nh&r zOISGeg}t=I9hV_$OL?3;YEZ-^zfp zcoAP&Tj>6`3-AE~E)n2*0^WtdztG~l;V-aw83W2GQ!@L>Wr3vep|R|#-C z0b2yPlYnak_yhsh3UChr*9-7z0&WoCegbY1;PV9BjKKe5LOu+CK|*e2KqcfhzOueV z_unDFR|vRMfUgm7mjGWU;BEo_oq&4;_!a^83h-S5?i1kq1l*6nHgGVq^;!4}WPX7G zCG(4XWj#*!KPbRY3HXWtPZIEu0KXvMVF8{d;OheXnt*Qz@GJq33h;XZz9qo(1bjz; zKN9em051~oeF6STzz+p@iGari_$L8B5nvnmx-vN92?1V7z>@-OPry?G>_osX1z1AB z(*o>Hz%vNE0$u)V_zPH`Wk9+7cYI~-P4_=1zbteUQfV31XxDEzXXUAunl~&k5ZN*U|RvQ1iVUs?}YR0ZRnvC15uMwnc~T4u63|_hLXfbRWL5PNDnv6JUUV0|Xc*;2;4;2{>4Q)dUxwJ2{>8+lYnCcSWCd`1XxGFaRSr`SSG-E1jGcGB_JWd1_Dw7 zoKHYTfC~x8A@E9cXdeCohn~QIa_C8XWnE17pDe&71gsF?-2`+Ca2Wx;0$fhODgibV zaEbu$C!k+|YX}$=;5q_^1-OBL5dl6#z?cBH5U^T+j}mZ(0Cx~@mH;0o;A{czCg2jS_rhNQypI7?)mUPG@4f(^T%NN(Y|mJS!XV0KjDlaGx2_}`TNqF& zyN0i<4^Z&+2;kSTtq&4#69el0oB7K6Fa_T#z()zVLx7JFaF+m|AmAPWK1INN0(^#m z&k68(1vGY;sKWE?7(5(S(!M}XT(@5fkCJ2X*j9mGqDQS?#JKqJY3oa5>?;hY1U$r7 z*4HTb>jFGNz@q|ulYs9afS-)DzDvOO8Bi8~$XC{nDEKD={FHzv1^77uzZBqC1Uw_a zuL*cofZr1EoB)3y-~|ExNWhB%{F#8i3GjCU{(%5~hST~d0o%Y=8Wf-svMpa(uY|v# z>})T<4g~Bhz%B&rCcy3l>?Oe71neik{sbH(z^e&3RDi=2(Aaen4!)n5FxIS%=X0j=1k0VVS$zOp_Vm(5@qYS8oe2cHFZ&UDN0(_5v9}4gz z0)8UEPYHNZfS(iaO9b%yAJ(r3c!mMR`5V5n{*!`#C&2FscwT`2BH&K~{5JuA5#X-` zyd=Q?5b!Sq@LYN8e+k$Yj?z|u67ed&vbKZ2pefo>fSm|fBEYT$>>AQ3M<#z_A1zCqM@QF#+NPqy$J4kP{$JzzG7JNWjSmjNpv9 zlYnjply`dh%34XmrwDK=0fPbz5ilaaC;_VlIGupA1b7nx=Lk?BpeR6zfQkTX2(ScL zM?g)0IswxH%n-0%fDHtkFTh&}c&h+!Q^1^MfM-tKrm-D-ta=g;k)3O7Tbojc$sPy2 z#D!a|7h(Ja|ImGNjaSvCI!Y@15D2#pgP&tBR@XP~xXm_$*5LpQT1TkgBh~Lw>i1~% zyZ>$&`daw=J=QVs`{pgy>(oDUMa$;1iRK#HS0~}j?3pc%UEt-FYHj1Px!LN(7WmK< zd=j??2dIwMs^@iAOS4;<73D z^c2*M*Z7SbKc5jff>k$jnBUCNx*7dIRXz4nf9%8c*v{FeddwsIF+IHcQKNe7L$(@Q zKlM|OeYijNF}iB+0i1gLL$?~=dlIG||7bh@Rha*q@dpnirL#oekAHmtf3C!zE%39s zu`hhQOr0rgl-HPriTaxQvYGX&6!hAruEU$DC>^3FC02mLB6a?rtwvJkKI)N9*=i(p z3Zour)m9^^GZFPjEB%oU)zd^L6zZ}1wi=6$3)Eu`*s*Rz|9udDZor=p;m`H>a})e* zZtUmFfH>#CRknp&@NUY1*XU|vaD22n+(xG^w-^!jChHN`Z#AME5T{4HqQ!_l#tZ!s zebpSldyFsi>Xh$pHKvbq!&YND$BF5jTUw3j5uKnYwf5Jo%+2YBKw#x z_D4QeFJ-=CH+1$(LK^TXsQC?eh8EtVCv*XC4;SCZfAv=5dkozv~ZM;sm;eX*=w{Vwj z;a(gS;1O|jWGNnhN~eLUgKY6AHaY@O9SVu(-qGQkcybt>Yl+8k(V>QTf-W5?i)SSU zjY$$bCV9p7G{I0ukl?XNbdJq~_!k~VLYYLQBG?)N{XY5 zwHzhQQHENMlHn-BEl0_6lsDT^@CDw@4Ns5bo7lKqeNM=T;_!1rMijT79WtUgzZf#2 zWPuSfqGUwHj)<=(`@HI#?zy~bhKwj_Tx&Y>Rcqt4!24a2vJRz6W1+^mPRGybi|}t~54Ujw0#2qU9)()+<|% zBI&)nE>>-W8o{Dn;S>!K6Fj2JjLiEp`wZJZw?hriqnTeMHBDe*kUwXZi&T260@L-<@G&3g;(Uk4X*{&wMg$OyT@^ z*qBmeJ{C5nl$!hPnD~CHZ;0ZX_PLtY&xDL9sr-D%h?2s4b-PXM$B>N__>e~^BnO@c0_!Y*jE6wbq7z~dN5=}DF9y%8Bx6YRXZZSU+inW zJxf!rlKQn!(L`p?4m2Oe9Ya1g&yyk-TW_dn!qyckn$(FtI~wj{+T8H08U?I3xP+b( zI;w~rv7_Qnr_GJS^ahz$fjxy~u+);=gmk#1bEt!o-qNy2g%$d&YcoE9V18?zvT^!P3|((W!R=_ixt60yTBci$ zB59dvIf|s^yq2R#$((9AiWJL@b`;$A=JS~Ap@6G3xS-`I;^a*&M-eB#rR6B%A{~-3lt?*OE%k%N_CH!kIwD(KAd=@W% zh<`nRfBge*9>Txghd+P8%Udz@i}>?2Vvpg^e`7!v|H@&&{`k|4KPMvgCj9wdyyYDH z>vQ_}7d0*SGQK4`^jyl=~kTP{f~iVt|D| z2L5~ku|MKpoA9R#f8K^ad*jbn@#g~k*%^O6j5q%sjb4wJ{rK|+#E!t9Gw^aP{`D^W zxd(r4L~JSk^=16|E&i-W>}32I#>;j1b1z;N@UK_lUytL@O1!)a|GF7}-h-E;_;U#U zbmGs2`12%&?uLI|gg-yP%PshGIR1>_&kX)tia(#mTlU1C?a?ofAU2La`yiIUpU>mZ zpYf-GKOe);IR5O2mw&>af5V?05PLiRT#J{d;Loq|aykB_@$z8&>mmH>z4+IU@vock z=OcLe3jFECpWh(%FZ|gZRs9$K^$QGm7=LcZ%QNxk_jq|V{`DHX?|Ho32LE~`{v3w^ zyCQZV{`?Iumter5`147`?nmrO{Od6Mc{K)XhuEWd`A_`m!=G;=whR93gtuIUe|-;s zQW#ppzmCVBNxa+xe}0NT=OH$WKUd(-bNI6i0|xM~&%j@si;W%16BXE!Jp*qXLs4q% z+FjpJo2VOQ+^0Rmo3mfL9jz7NzTC}?lT0I5$`rH3e4>;t#^PovSxzQ1#ayD2NfwL6 z)bY*tYvWfHV59a?n!(OQHj}KRVkIMC#&ZT5Dd(~|BawpU+@*YE!L<71HzD_gQ6-y`L$xN)6 zh{tlJbjmE1jZ!Y1E5?mXwvvmd=Qk-rm)TZvtMleYHV3wH=}Nk2CgZt$DG>+HW>S@W zs+cXOO7SvT)pwlR`i|EuEr+C;@nWf%&BaQ^Og<6In%R6jlgxqWWV&1mv?Q{UwlUmo zy}6N0WOAi)wp6Ob(%{K*F;#^8&Q{{tSTU2U*`Q)eifdLfMl4k>rHU!||Du^s zm*R7>t!$VuCVXt#H^Xh1?rWz$IHie@|+&!!SaDiO;SQ)V#>I2qFS z$J>&!nx*AtI$6r5W9dvHlg;OiM5bsOP|l1*rC3fUvUVoI%J-aEtZQp zh@4EB@Lw#SP9;*sST<=Eq4b${`t;>gTUK7Pw7gPG<+4W3%tNV%6vh%}5sDTR*_>%Y zniG^jk0p`yM%&mmN>)CWGqcHTJYC9Ua|tL?sdPD>Etw@SmxUr>mnrYY7hBkgnynME zxk@Zq%vX|7FB3`dRWVg6B{NX$vD#;2B+O?^q^+>c;RgQAjeIGUG|Jh0Ih{|KW~r1d zo8^R=$)oQQ*@TfLbKcz}wzMwI)(P1PcpXYbzFbL^W2tN4bQW4K*OIgSgD6y$Hl#fcOBuxgqJYehT*9^q7M#aoPWlq8t zR%ptyiEJ)|o{MElsZ1^>?HC#m5vSQUaHl} z#2K0a5M7EFE2T6vV(C~pmCuxt$x6PQD#t4&Bc8TBK?X#`*|rUO$>I1+JX4D2OWABJ z3;l)}gYu9|mx|E5=8X)rB$OSrDaTfEj%ERF&nNO}C>!}i5h|i#rix`FSE=NarFgEK zwM&(4L1dh38^O0OHaCthSIW?`#By;nRVo)NFtf`fv*}zeQ^}_@Q2a>-?Sipo6g3Np zR3dGrpf}BAi_rMNpUHI2h{y6-$e=j%8JY!=@gCaQ%a?hx%BbI+-$vIZZsz0tn`_})TY_B@Fk`5t5euPTbixqnMxdb~18<|WN!B2@y2D;`<5jvVYbb_UL z1;!|pI(h5FcG1T*Bk5u>js+{1gTvR0;NM)f3?|}n&<3y9=k2_9jEI-+vF+dnRuEGu zm&|mc4EdFam2wp`4PBI(%V$!CnT8I-?iA$Vh%M%B%}6?tfdkhQ<#;9!9d9O{HB<2- z7%*c=Cq5Xncq*H$q)TSG5`zI$IR`x;Ws|HH+G0Md8A&HACG?q-oGmyNjY1qZaWktO6kZtH= zBnP|+O~08dL7|0_0}R^A3241yxlE>HLeZvlIqw_Uavs*KWYSQ^pzP(#$(WhVCUTiP zC@MoSRt;Ch9@V(4h@7w6hVCReFb0L*9me0~6b#}^#drmJr$jNIiW$%;ns#P6+vIFH zk7!mhsbn51fRQ$!tB1i6xTu)VrA+8h;?Niu{Z>TIH*G_>DIG?~&@;zl>3AMITh13D z|KUR!rcr`XUnL)h5=!22-i)&4JgQmAq@ZTUVig0%duFMU&qIo`sbn@;HnNEf_}phj z5%JA0Y&-Y@28w|O8TzNP5rY9qvRF#S zQk6_Po-ixLcqW~)eIuJ5Y%x!1M$(W|P|ah|ZbFvB>;<$HahR5d5ggc;akyFZ^i}_1 z+rgJUHaDQ~Lf-&o4QB0S@O3!>O->>k%VhE}M=tTO)7cDae+3)H7Ef!2^6@0h=CFN$ z=G@4ZjBF*7DW;(POXMMOdAsQ7hQvevY1_j0R6tZ3iU^F6l12*t4>}xZ%gV(}%&1gy z&>b3fo8j1Un&#hVhVtoT5>f&40GOO7O_=xO(onpiD}|+se7s~23v@#w>UXv+dh!m`ulw zQaTCUa~alTvUY!=8xm13*tYP691xYt!wN!RA35FOy{9_EZLrNZH{#c)wY_Y<>kBqePR~M5J)kgCyJ#jF_>S#JinMp zBxOYAet*&F?YFay;TuMx>SbduLxz;XUi#A`)Y=uuf>M1m@&)cSSbN(Ato#*mW;fa zhAAgZu*g-8D9uv`*|xrR7T8gCPN|*1+%yI}2F&%x1YX=$oA#Zyl%^ zJ27o0lgS*G^_&S+GHxdG28;+`i6Cv1VE9hL{Kmv%huHS;<-g61Oa;a)u?)=FOEB~?U~*8Yl=3MUe2_hDC#&PQrJAi1VBB4XDRL1y zTIkWBYsH~?65454)QiE)w}~y0cBE|%-=PF)P}oh#%AApeaaAgvP3ED)hCxUo2?Nl4 z&Ms-1G{a0RPUteCK3k%j>^EHT7nDC~S&ULRu}W1IUbNrV15 zWt3qs3=7t(3Q8^G{!j#3D6v;lHmEG2@3(~Tm=Tk zAQhZnDw-+7kl~~A@pbhPck$XX+uTDWEnS9I%giTpIp~VgDJZ%yCdk0z9IVH{0*x%? zxXd|TJ5IB8f|-NSRWXr)2PI|(#v*YTx5E+&%mDMLO2xD%pIS1tTAHxU(TlCgBBT$N zcv6)zj0WN`v4+8E5*D(dBZo!pirs-b8yXU?Nzt9q(*?&|iVJ z#Vyxtc0)mhSztK{lZb34U4%-Ig3)RWrfy~qii=&>o7xnqC)sA{{a&c`$(#v=E*Xbu zMj4*Gz|ag@+n5P0Im|G9W+4~sT^hE`6Eu4#ml8%2hN`&~EFr*vyp)2L9ESD9d@>IO zF=>}yN2bf3NbIyt;>*aJ8*eZSSgOEUm4^lHVg*WE7G}N0T&|2G*`z(<@NcTN1+LJn zodlHtR_=1JbO>uyu=tiw;KRFE!hnMcq35y%23TWxbB(>=gNV*U=HyfXAI0I-F4JZO-f^$Znj2^Fdaqg$HgUm$QiWQ5)-2ZR>+syG#%==B(@cQ& z7D$~DRWqs+c~3>r-E4j8Y<$75qg*e|oDDx`7mDyb#4`SgOGz_l zvzaZ8J*$wgX*)qB13uV@3L6Knot>SUS$_QSwYkZuP0Q-jYmSG=$Ir|f#R+puV><&Jt?&1tg+YX+qbW2$<*F+FW;TDEp}a^i^6GOz8%D>}B!f@2(fymx%C3!J>}4tT~q z0Y4$><|=cwlAn&uS~V~Td^-*fpIL|(hWj+4o>1v3)u+u#V|J}@u}O_25j}}A$t1gD zN;>=dhfXha6*@f$YA2&SW|?nq4_~3Xr&n|0Kqx2bg+u35rkQt7hj(n%NKa??sK$C~ z6s&BRIrmYVL(7IY4HYf3G+S5&yc+GBL($G|nlfiPj9R$^KK(scnw^6d++BJ)y;LlO z5|5P;vbt~OV2`e%-Nb8#12|Xotm<677@TaFIrmTwS8}@Sw#U^DoD#~}{*vXk%ZyZ< zT_J^$AuWg7EzTa(%)6f}rG>7c!Lh!T<3r9Ew?kZ1EeLKhd$Fwv@Ql8i_ za~|NNxTn8opl5JwbZn%ryGKv+NEB)I*k=X%x)cnKjzc4YnWLqAC=z;?aptC`L=}b} z72Gv6tWyt0N3Co#v#U<^`V$;UowDsRqpMC)$fDFK$8-?y&`4KLSLdi+t|O_-y<(bq zU3IzFUEADam`LifW}VqxrMho$Xj}$uu7)#`QtdX*+{ZaJ$`!oKiw2atN))BN1x{AF zms=B$Yh5ntk4BGenOTqavue&M1bF7$D3t`Vu{u|qG&nRidV1&Zu&0xcq)l?!X69oZ zzc`^Tt@gN}FsOG9r6^ppHA2?tYQ=(URV1y6W14x7aeO0zF4rIyP-==%xMnMStk5-j z7&?8hyK}5l>q8?MJ+NWsbd}ZdVW8~6IgdsgNm+H-W@cA8IDMpVtfzBDe~(5SNjY## zGw*>;IZ%NsI=fEo>-7yAMx)4hF9B=doGz^D9EI7~XxE6A@>V-FH58v&rj{z;DVnLx zc}7ND)|q&JO#F(Tm3@Qu+?J4qTYHjB7!m^oEPt_At#)@^p= ze&fu&gYtLZN-cXk+w?D(WBa?=_6t3O-F=;d8cn!G3RuajRM)sm(2Bm5Y?kSEQFP(QNeKMNZ)8Xi+{lhv&}M{DjkY$Sm)}EAYsE`^Xg-^ zdBryPA2UkEL8!->QDhuhWirXQ(PTcR6_O}2P8nq?N!KX2SodWV=_0F4rdB#J+Z60^ zW4L*2a4})KOep2#j9fBc4mI#oHSKXFgU2|4%aOEdH}as=G#fRa=hQu0fa3j0q#^bnMOUc z=Wb_s$2w6ph4zP!|C3h&M{bjE3EDr8SNX=hXZX6 zr@f|`SG9_(I{SMIgKdsK{P`qinM{>HLVH#Y4eIU;x6}~yl*w(GDOFQU0eyq|6Pd7W zW3vRJU8YlAHqo8c<5@Bf*IqSGpfb#aPX2lQ8Lmb*r9-n!<~VbBk({aQGM(eh;l*+$ z8D>H!eLlX33X7I^J7WV0kFADA^qSD!Uc+Kr9!*f*vxt+!u7#H@#GY`D-n zpf56qYxc|dOwc`>=^M0dGLvdBVclV%&^KBb9)fUBKXY~{FK+D_q?d_hs4rhk*XM>Cpc)CAh19&wBnSWE?w2+;;9OvW})hl3;1dz@M&$h4z3E@ zJB-=-v{pvkrkRv82ub^gx?qV+8?z3Ea>YEXwr!?W3+t3te7ZHzIeMzb8*Y@>oL7u9 zv6EhymG}0Hw6%2Ilvivsts2;>^mYvm3=9nxy2s8O)?FR$8D>*z%|6qsk%di<4~;cn zhZ|YUL#!+_rRpqfO3yRPaGk|GgkYEH)N^8?EA;gihG3Z3-#M%$bv&BljLWHR3Krqi z;I2a7V0X_M8hJ!Dm`yXOTJ%&Y@9yb`tsYSJR8`iv$D&ENhk+#=Y&WPQg>KlBP#El4 ziA(K459-g1NJjt-i&4*2l|OpUfEI7Cv%k8AbJ}p&cDQ0>sI%L*RUo1^T(i&gJfefN4i!enSNJ-RR-dcT{>tV_cC0h?5mLYH zMzzp6IyyekQ?R$poZjb|`-giP-BijvY%I;`*+x1CS9*H$h@LXXx)cwZ~JD!#(x$KOC@4GL34f`uj%5U~6~Rsh-^cXM`FTZEZI0W?_0e zm1AQb<~CPT`umhcW>IY;Vf=K}{p>wlgB;{iWMj)rN=X}98IS2Rs<02P{41FKWR!{2 zN;hB$ohRJdP0&&z*<>0{PfxtP2XTSvL8DB>>FG&mJxL_#0h>&tnw9>c!Ij-Z~XRQT4uJeHYN^&S|8|MPK%n}Y^&id|+@GY_0=*n3cd9wdbur0H*^z@#(4Ium#4dLAZi|El6h214dghL z_U#1;H?asxlbF@{VAIlK@VU$~pW3$LeV!Gr9|&s1&>~Z)CTy^CtZ%j6REA^mdC#`U zEb0l!U{6o?C`>#1^hMm$BkfULBuuVK3E{(MdS9W6wm)~XFgz@qt2b|4`?cFG=B^4EhU=W|%ou-#6%ckkx+QM>d&8ErZGq zS*@E5H$3qr%Q4Da+v7Cd^DbYwr|?158VoXl+DkCpSI~zG;ad4%3NYy`xI6!F(`8?} zyrwyMs_J4VIn)b_zc{?pvMt=u&OhMSEi$hp8H2 zxFJDPLNv>Cs&jGZ^wsNdW7qlkh64$4V5=oCB0^=CQ>fNi>=a@^K;a2DR&JV3mvttm z+CrrkgOxIOZ3#D2o|jtLW@0r(aHTq^&V*a)n3tQ)2hrmrEZ8+LHd4?_b42uR^GvTE zRoSUmlNp$p`CK1vb**XgHTx{U-EfSqg0l*=VjfY$L57)9P0Q@%`rwv1Tv_wC%=9S0 zvCYhCS~fb~)dd4&EuG=|(f~p-$vkRQfbW56ByH|6RQ5E6v5|4TZ)uZ3*<%JZOdH4g z;9DsOH%#*ls2!usrMk>T(7_iD2E_wdyCPtY`O-#lI$4A>L zbwNbRB-5zU4G6qJq3>G^SGxWFvrRIO>WP7;u(D?i9&-+8g*@76o}0x-Kl-xJGYiun zhEodEWe2GJOT8mQFjed8>Gzzbu{P2v_k64@PrWJYy^(fw(GDA!QFeM3rRs~SGJu@L zsuCNtcR5^%^|i-rl6m%nEK{%S7sdzsP8)~3J9A*gkiP#r+|Wv+Y+~Kbu1?K~j9puZ z#NvoY{dlZ1`!2(qI`QD3LRZgeT1{=k$8M8;o|Ss16a^2M4B*knDv|Iw^9{#uo(WtO zJYdqF9?#(+k?;hi$Fq$-3Le*%@BO84tgY8)Ow~Mg_4nyRp>QK=y|Qs}_LygX9uUAk z(&^of5pGDmH34Lw6$E+U^byZsFj@~N^UVJm_CW7+eX_H*No4^we?f;Hy(v`dALxqa zL@j9Ivy0r5%|+3~M679Pb3X+fniOthc8hMZd05dATT|pc04ChAS)oKB73(^B9$n22 zY6-XDsa0uiHdZ%JdFQi}7QJjS5od^O72p>C@qEm2&Z{k3hmG(x3ooRDKxeg zyry$v$-F+O|Ibt9Rl=z{IecCX^o@)R!BgabG@bu)=9EVVr|87+ zDT0@@1Cz7i3u-L%@6m@~E3H{5P^eHAj$ICDb}L)-(^+T6@g zO{Wdl!vxZbU1nUujDvL#Tey8Dfo#eqGeKWQY4av4TptrigeI8>mX(NS#H>%3;bmqx zf!>$6aLY=8oL=+HFCIP1oUUudCIXKto6K||t!H<^F$V?MhFa+A91J@3pctxp&-aEv zb3T@Iu;&(hWDlDK;B{&5`_krOsnRJ~*lr{Ybby;YCpm^YI!Y@H9;?i@hl2+kL(xV( z_St2|-JKBsDsH%KMoki^FW$QRd3xuFK4^@@pUNtyZa+$0?=Tkh)o_USiZgxtFT*{U z3P_~SI9$nSfJJvj-!##8gU=Og*3T&U#9YI;$w$F9b z%xn9c0s}L#S1qU(uVPxO<}4{ZGx{Z zO>LT~uBmA)Ww_4IyI)!}tC3Y_D%BdifF3cKm}Rn^P(pR4TB~SG;T#y0EVAjLsTsQW zqM$*WOtTB72J@&`oz>D4ZqN{v9=2*z%{7*kmYeY5DLT(ceQHW=X6qb0(|>wyxY2`F z9&xU!4AKK+w$3S5n;cgRdA8An+k)uZYo_cmgW70@NP+g+Ykm#4(ae`HvUn<-NuyHd zW?_0tAeyOb+INk#bOrV@Lb}Ve2 zh&3JRy>)z0)9&v3+N>Y$Jn*ov8nt_`E8s1Ka0?&4Hh@hskJ>)l<$tTC%{T6Bi_D^G zyKkdXxDkZEl)=WQfuZgmRk@XMrc*C_AfgAmb8ykP)hibow|{EgX1@_&y?M%go1>yk zxwbV*^(bAqA3UJgh8s}%i>=Enr*$_~VTT5W`+LraCvsW?7H(kRr*o__o7%Dur`;i& z=UDG>d)k|kfl=mCCm7gVLEUqk?V+c8_7JfMY8m{4o^VqRU#)cpJ+K6cpCe#CHO#_~ zri}Fs=%a#g!%3fi#U?YU*K+JlMFrpMzu^|z{A~28I zQI2}|)ZdkadnefEQ2oV7)h{Y2t{->bX1~ZL*_RGavYpqDgHr=0{XCvVC5rU8niN&$ zRU(5LlyK)H`s%c&LD6V9p(Fs_frI1C{EbSR17D|6fn8G$19Pk42c842^$~4OHk3VP zP>mOScy)Nx`<7q0vmgDg1$#1)5(1`GM{9WB4-WT59A61_zZa}(GytBu)@F?+gPaED z@YJ*RIb5}jIXrc&eGXR*Q-utYrVm8gEM&?adrGzMfWU#LL6x|TEt@!!@>F7-hb3?# z^*0XMPo(o^I45#=X!K=Cq>G0WsRpu;emEKqPMq|d*4^gRk1R@!cC#?O8fl)|(*qwj z_kOM^+|vwSW8yTEj(KKPIg6w0DBDP7j~Uc>-8GJPPsiFEue+==n`)5}R~p=0Z4M{J zCNn9|;j@bZ$?JJ3%#zrWZ zSd|sm5|%sv+Dx*0@x{f!%xau6=;+fAB8qmPq|vYdHCGtKjM1svtovF{+vYXOfG-oY zIX$s0GK*^2?H5)9N>sGnm(Ify)Z&cO3ck#X`s!>3huxn4x{LN=&8^k?v%{3|j)Xl<$Kt1#DsPQblxdpu}Ykcaw1&=0e_U={` zZQrNSu#c8*bt2*x6m5?YJmG1g$Te$NR7EZx_R*^Yd?e#1x0pp9q6L*5Z9wDJ5^dSh zXxJ}7Ii-&R+=8MlJ30?5QiIsh9{A|!s{Wo{{Xm5_A32lNQP|X|S~V95ldDNA;Un;R zjLzO}Yp2rWVJ8-*S5M!Yt8{0@qPs#p*$ve4f8iNh4K6H5f8kyRaJ#1Md}_+V`J{#> z{=l6m$ zSY0eHI1KCs>cQMzfY;jKC{N$0yxktG2?gt*_WA#WT21oti&dWWwl-(nwna{$n(*M` zRQQnASf{pr)8;d4$0&2DhQxnzbDIr`esHtm7+>MtHP$8v8RT@R)jT{!PjgqBE8NN+ zGpM{r#Pd|8&AhiQ`dB>ARU%+iEj(gM!ahrACG0I%(Avv7-)&;w;G^REmUb9K&QTt&$8|B>H zRhz>k_lmHGg%waa_m7j>E$8|`Nwqzzhdi$ewb}M4dz=o%@Um?Qn`>-eT8{4qs(sYz zy!cN2yLsU@qs{l4AuQ&t;pL_jWP&PMdz>aIg0?NoYY#Gw%+-i|1Hqi45md-?t2Hi%fB# zO;La|Tn6SQW~+U*vboXc*>EeuO-KVcSO(@TrnG=RgXYFrpMr49{>>C<=9zp6laFCb z7W2q_;QWmUZWAZvu!|1fMz6R|9ufjFO(}aBFcb zNN{Laz@D}^%#Q#kgj;-TMS;V^685ttP^ovq-T5ExyrLF#c*$4{A64N!HzvS0mB^ZU z+W}2DS=z4lZ2?lkwF)h`$L3&aE~W+O^{_#h(JE);#nho;0i5ZI=SaO*8CWH?bUF|-Oeh8Qp>3#*J;dBW54h3f*!V5u-^ zPS&S4En7P~IdMd3ncqA!Lt~(h_gHDx%;{z>wnH|!t*!%1C zseo!0Wozi=VF^&uRZswZl*P@>!PI-()FWnju4D!X2zQ#@{H0C_(3n`pZnlg9=0d!z zRrYXCAX-qsBuoxxZz^Slp;}>R5(+9^4R6Ad=o?puD-b~?u{jSb+PPS*)hDaQgl9g~ z>dbu_DsX-Bc=d5_u756*OtT}rvAf2sc}QAa@CYWc4GKjKW_HDTeL~C9HYUwtPiNTV zd272}2DHZv>ILUgxjqNS4r$3~H9P1d>)Kv!Oa_}|o}Cp~nW!83s5IQ9!%ssNnPqpy z0#mp(0VxVM=Jr#$%rc)!RRC3+sj@9Hi+ZKr@48mYa+4g=J+~uzZmlt)zqQ|HNmKSX z6+0k9wWeo(8*dD-Ikry+57cHoYujyl2?T>dFNbGkyL}GV!ZxSFv##Afhih3|B~0W1?hG_LyNeEC8-L>7HJ-v8mf*mD!ds?n_e}o4Pfd%%t*vW^H|1 zuPJTjKN-|G=8E2qrA-bp$Q-H!%y}z(n`KPdV+PgwBI2p?ZMMF)MIVc&(nrAJs`Zi< zPqmML#Z~WB*~0Yc6~Enl*J?g-_^L^}99rGq6>H8MLOz~09yRGk_5Al&$aZr^tC4e! z9ZSn$PFaMR>4jU4X{hI0okPot#*98J3%5&Tz6k?8wjc&hE7Rf>S8KQg$ zhP2o88ELrF%vwk@*k?+$?FA@jW~Zx=5n5`an+e-F%_K~&9_0f02GdwKZB{0#GkOOb z-TJsKz)i#=)P^+ob2wuH4wr($r)w!jwiJt6g85jI?|Eej7Pn>%UlUMTG)*o-7NuU7 zaqBiGW~%4wO<{Cv=w2t;WGqIt5^gd2Bq`cfLg!%#K7UlI=0sVqL5t@Pn~cS%w~5?3 z@#(f!nZtcxV{46wkBWsH;LW(ef@>^V!4*0dq~1Sq%dHuco^~$WM|Z-whPYUY&o}(M zUCXG&^NrB4pqMwa_zqZx}jThKK2hh z;PR9k&tN{v2V8z8mf01v&qxM`Fz3?0rvu7bp2jaI`+;!zB^_&=pR~$ZnP9g z#X|fA7@OmDRZp2&!~!gQEJ=JLyJVIbi|reYiiPkt8E4xN3_(ikf{IS$+hm$>vb2La zQyt;(aj@Cynz{O%J^?Tz8)3{#$-)ABR;t4{OsX|w)-&i`OrNWLz72Evh7&ZyrgoWpB1Vtrx4sl*D{2i9fRJsuR#YnHx19h5NE3 zHaasMuxX$JYV%xac5d37;e7-Ca!zdX$f=dRS+hh)N9z6#>6uCqn@5kq0N@Lt*HBr zd3aeO_iEl-{k1*vUM-k%tHPj6>Fwg;3saOVjO&|M{$dZ`0{B?cp?3S}yJc>&3fi?s zd(C1OGFZh>q%7{$O~m1MG}m3!-MB2l+f_-|dkX-J`B~2w4<22<{|!9!*Bx zAb7Y~3U@JjaJlMvlPK~bT>u|T@)!0}eR9f})*l5fVqs@G78Ky4I()`ygQ0J!Sxg@> zA4>`-*7hxW6SbJdS_oN`KjX^v*^2kY%02Y#AqfEQvc{r~KnB zQ**PE#*F?_P~;tOFeM8M_SLMhPOo;0Sjf>4ijO7vo5@ObLf?76h|Q$pVkw9DT6GNG zP@P>%9iBGsUAuT)orjg>`D#3tJdzh}dpjy3l zzW4jbi|8SyV?jJuacZSAbkcGy^0`VNBg^tP10bvBYs43^84x~}8TS$2c%ogE)U>o@on8w7u;Ee@#;Do6U zg(BZr;Noc_!Ta!Gu_Pc5OOS~)?WzghY#9B_)yvjI4!(b&zIm@Taf>C#VPiQ`R7vm4 zQB>VbEJLa-1^OPyMqh1RL`_8CLlZ4m7E6R8ViD4ol0Xcr7cEUk^lhom#ZvfDf_jg9 znYa0f{855K6D+{ncr20tciSN^>yLTMLUbF`xgSv!oN|~Ish5=Lh3#ed?c4%voG*J%(DaUs&3RD3`9B4Zc50ant2Nsopo7@?k%EZVL{$9YX-b$tiN!usNP~i z76p42d>(}d2daEk_4VZ__bklE$;i>F3&tu8Os_e+a61>?_pVQxFTeR#zA{GH#Ni`?o zpL$Ot2c7k*dtBkB(yecvE?`)0`?3%vEmd!bbVsIXA93_4Lo&5_L8T4_1EXc zYF~+oWq2}c4vG%;iF(trSefOpu^gC{tG36#M<>czxr>5{Uq9YEKG;=&PsjBXy88wS zqkU)f6#52xdqzfjx|i`Fr?B3bnA1Ds*~rETVHDW1=Ndbgmh*c9~Iq?qfyI%D%zE z*s779&hF7dch6|oh?drH#~%8KgUmC(`UsDH1L}Z7$NRf`x-}KyUi{yR3O5OBQ7`58 z40g}siExL3`!x8CGxy=%cSh-?$T4hVd;2?AcCFIC-MTJR@l!2TldbJ75VJ`2eK_}9 z%Px^4J-uFy(QOx=N2ATl67isHwWGSTydL(JndL!qgI0>douP>vMGctHNYxFn&eU>< za~JG!(Ky2$DA$ZrnPsxWIGtV7CcH({g?pW5tFUG^8gOJrxDK!>e-kE_v=>Y2HjRmi zdI@A{UIr8#9 zEB$@7>MWe%s%4Y=RhMwH{&~C*M8txYYJy;bxcfF@j+xba%@`Q!uctmHoY9WZkmHz!Kbbd&D%# zy}rZjBCFeuc_!b(@)qIlIHqs-QSW9 zMpLrIHq$z(#vo~B-Q9jfsn+Z>{eJFLHyM0|`<83d{04p(0Sk~R$tq)}+ng{qnPnJ< zcjB~2YgwY1k_3>j5UKNUPt%D}GkBQZ&wGSKt zo9WGx{sLUMk+b1`F5@@Moc#Ws?`?G7yewR11knd`uo6B?$#<8(NQN6*v?N6@pS$p` zTo~7AjZsgiQDqQw0Znq69iE!Ljv56Im}H*aBt0-S@=W-{wdlb~BCE{CcT$_vdh&V|0nqgxaw(WU8pB8Si(0 z!gl~h1Z{`dy?U2zUa<}S=c9(b3Al|yuVE2Ti(O`vm-M>&dpbw_oZ;4z16}R1%&dIi zU!lvWbwTA)rEW|=ODEjqJD6Fw&g{~#*zBW5#hlQGY7sQmx^d=~hQ$u{BszkI#WBpB z-t=M@?BR_ry|!`YmL>&d)y?UWIjRm%(wfr$pvdwU>Z3$bcC&c(OQxA*^kc*_^gRvH3=JQM4V7WoDIb64k(xN^lnu zK{x5M&kAG^&))7Rw~@PiWfy|C5D;PDODKM zvk^}2)hbXFrOL6)tTG)_?(c4T zJ_6R@*N-t0;z<(gK^tQ^e2 zO5~(6yM}ey^0hV{rfSGFD)_|+#T>ownyDBOdm`Lt*h ztixS00~Vm7DVerm=5)qm^{GvrwelFO56?__+w~~MV_y5Lz}51=e)rm}K97u~<+1HD zqccVUO#$UUiZO~~nOR-AJ3S4%G(4?cB)Q9mnbVb0J1C)5u1HcUmYLPni_O($2LleV zi(+h2ciCoUSsd@0n;f35>qmM-usF_UnQu2eAW|OfHz9pvRV+3O% zWs{j?j^uwmD}p%^8D%bc;0EvSX^D#9fg74+9>;rq1NzEb6y8Id%;b1)?95?(ML!Df zDWl9KHC(+HK(kNxVrv97++~?rWnN2Rfdl0T=CvN{%r2`^dbr-SMX)O6H6P61WDpe< zzsr1c{(yOBl>DB#r>saS2cbaUNGXC9N!>W7T}BHk*t-=fg3*H5WkwmhbBH|N&|0eq z#_oOs)*z!az9rD<5scD&_E~}B_o}g`4llfEiI2kXY?m4NGahgV-Au`tF01{<`1!NG zitnAraPNr(4$Paduo|cLn48ph&qvXFpiO3SdJjPLX?PU9hcfEp>KPawJ5$Tj2)M{7 zbIE+aXRvcce~KqF^1;8uV7piSi(vJEu28 z5wr#_%gie6Z!dgif>zP|{Z0h!uh%^D%N!JMI2}H75ikjgU=HfB&g`cu*Ok*~7JOis!I9^giiGTSWk zIsF+1_{L08^k-t2Ic3y& zNiRcDw99Ol88sin69sb`KIp5{M&x71ICE=0UYutOn7Ov)K-PeEFru9GtOIFj#ccwf zH>9FsCCi*vr`H8P04sbv*~td?(q|OCZU6=AkW#j?XRK>zaIA0T_|W*MR-qy&WxDbI z$K1RANRk|Pf}<~orTBh|Pl*y=BTAFa=^0VtVE03HS9N!Z-Bqos8V-khy4|cbFH|@ZOgdJU)MTaCUaUXJZxmN|K9+ zl$G&I>{NxU9EwKVpw&D)efIq6(XW|XRay-SMob#I9iJcl`T}kWj@+s+bPFUSYT(mH znSAQxB4Xgv`b!p{deMj**!K}Q^cWUAnNwBlOOg?lh84%>kDi_$s86}0Si}n=_tELu z#o56LQ&J^zQE&qD_~hc~@zI$+CJIK(Am5*yUZm2XO1=+dBXZDUPTqg^AW~K(3p%+8 z#M1|VfAo+CkqV-di->`B;okf6qsPyVPB^NHbpzRm99Z}HhZj#ydHAa6>f|O6&t-w6 zg6QO?5HHS-Pad=8qJvn=MZ_TYy?>I>QYH71WJC>e5nLL7b{G}AD!B*+BWBRMd~gQy zaAsc%Gp|a;;6)=YExjF|56$Bj$;n5BrMFmo3ja}Fd?p_8eY=IZPxIslGrC4hqg+Jv z(RFcjHWd4>HKL0Ir!gO&UhpA?7N!-9m_DKn9rNjJ{w{__LEnTf( z#Pt1+Aq1W8Vf^fhM!yrvMr5BM%~yDU%z#B3=3o`%KsF-#5$t@uaL2p!@AZL6ra(Ai)23bX*-W)3&$lUT+7%O>CCnYer2)|nbxbq zuV%ad@zp7uT%8tt@4do$RWlHBqSobpDz4#FXkDRb#HA|VeLR0vEDl~rd;1is{8&8V zQ{VZlfE^gGQ{A@0>@OFN*wnt+XTA?Wp?ycv5uJ`C#@ALV97!}H5r?+cJu3^ok56H1 zot245UZd!0Obv~Kdog{?z&Q(hRg_rs(uf%*9Cf5o;WN0i8fqf-gXAO^5q+NAOxF|4 z+Tm6TjXW93Mr7YU@T(k@YP1h7y#-wiPgT*`7?tYk`g(BapHc%=g}PeEZ_!^2SylCC z<5u4&fDS zKs@5}%mY6V;98jnWg{}JK%dA*GzJAgtDX=Nf3Z7Yp0JCEyog>9uN z2;@OMb&RXfQzyq1@Q>m=t-=@v#iCvmvGBo6hS-zFthp#eER&r=emZ%PI31~j>}4Y| zRV2V`CEkEin5QPWh)5&F)U7KTUUiqbARf(R)*I4Av8OPT8AwJ{Y9ps}zMo2=jTn)L zLsi!4a$GLc(}xQEd?X#wsgFC|tQVVg8eXA~i^U^8&19u7xL26T@`4eQ^1ZmdMx|etxI``Rv{}e*@#Th`+Uu3GZdoNh(sL91~=g9#e)@j2J3^r! zA-RZ1zC0^lmi(>{1z*-e5sUKNS$Pd5G$h*k;%`op(gW!5tG^rY*WZ_*bv1c z9@$gsr(n-oC}L5)DRvPl)SFf&B2i49!*01lzGF!tCY@A7^FFg^{N#;7j;rDPm4{wC z`96e(cC}R0j#e4!B?fpUY8{`fQCMZ*!V#M?TK)N#lc>onWVApsqS9#PyeyWZ8?y); zJ@TqBT4AygndZgnud7MZ#pnw2VkrpZ;eB4ePMJ7cuihXKF@S+ljI^|sBLh7 zFkD*F(KZl{*fhTntm;$!W~Z2V;7(zFUjiTps$$?LQ3Ye3CS?_(!sUMrD9Fb5x|7*r zTEeUwBcRdil3>L2UcgUw))WQ?3|qqs0suMCN!@eylX5j$G7<_WbrT54!uQc}^{mlH z8<`R*eppch$;d<`?_K!U7tn{KXZJL`D*%v#uMyzd{SwR&W*3bb!HGpYn)fq}xUDqBMzz1&4xeBo}p~ z3i6^7mjo$PkWOj>O{|=%pjoMi=B-)PwVk>(QEm!RUd*H6zsg;)qx%~F~<45*q+qcB(PF;^)f(5t7z2fQ!bm!z)BOAUi!r>P@n~9H^8*YD^Y5W(#HD!q6}cmObRWx7K&I@bEGzlE7Tk)7V#)z+=t=O89y(q z5HX=>#3h^l=IHE{&%P+wv=)k36e;Gs0c(j0kz!>clGh55c+1n!$_hm+(&{S1wUbsR zB2ndG7CovFv!FsP;G`lNwSZ+Q;S^c`ibXu=x6EqKGdQ4e^s=0;6CKOUk$?YDH8@E}PVIYUVzwkY? ze*=UF-xLBve+N}KeC{eJ-kQwk-$Zw8X|*Pl-GH393`Gsu$wp*T_e^G{)D%Ttzq%(7idZl{ za9DBC(`(cd$V4PlyVe9`fz@k#z@#D?)a%dSeuQZ`JQ$B*TO%wCtky-ey|I0*b+am$ z_eO6`=2z9=rh4_(x_Ya84KD?Z2Xsqs8Ui^$|KopYT7ZD*#`Y)+6t5=qkq7fG|mH(J5vU=r=a0Rq`*2MqFsko>HQ?>Qzk&$w|~iX{Cf3 zRaQ*bL}8_b8r4+{HBnY6p+;2|N0mjD7Ami)Shk?5Ck$hyHcPTGqFDREtJp$drS^lO z5f`4Tf8WfQJucybp~(n0!wjZXwYZ93{n_rh`i=Q}-z&GnARnlF><@>BheLij*LIap z3cQwyNU&n>kRqV%R?^czAQEv%qeqX1{Elh`jjT*Wg6OR^GXFX}SV6VQ=L5(U{%1deXX(Tl4^x#YWF6(TT@EK#Sh z?s>ef~MHE`K5s5gIAIC9}LVmO|5s5S^hdhQAG%_L)hoS`j(G-@kUJ6kX zNNz&C8eXx6s)uSMBPw~XjE$<`Ju4HDs9rb!YRwwkRiR#IvKx`FV%sVrTiJ+A5gP+4 zL~Q6qidgu^Oc5JMM(rqeggq5vhuM*0$NX!q*kQ6!NAlqH@R~J81rHjLh(or#j)4?x zX=Nf3R0j46-k~i@4yG`sN}pKRt}=+O^=*bg9#AVa{)pcWxm~T)m56^b@}G_1)j~1- z({A^0UE;F5t>)vmE{oMN$3m$cDXx2%eoSVJWQ(;PNUYd% zNVQBv`ucovI~KiZv{6tv7r(;dWOYjH+chE7mt?#k72c|6cO*@DfZkiFS!? z_Yh_$8ia#%zGCQ%s|~yvKU`PCn_|j)@a-0;Qye1U2>fjid^uUK5ZwG{=Kk&W1~wBA zAV}oPhKP*>t<88*Dem>Og@|kcy1~6Z^wawYXhD_o5sFTsFdf)>y!PDnDj`+pX)TG)Aci zAr~w+m2>8W7!{5fo3AP(dwy0<&BczYeDfgmM zgo0Fr@?is=ZMHT@vJp1WFiXRjrW(d{ol!%SEj5fTWK{BDa3`a!mu#+^!=|R<3hoPI z?XZ8n6bVNizeG*LbWhNqGuZ8B*&EviicWwoiqT}whm%^MPBemg6GK5-SC33rB@=t$ z2<+P@e6v*>!&OS_BpYFEC2YKoMOv-1`ELxre zr(4%{``%Jv?&Tt!9gwYf1w0&2US8gc9;p9-tQiOC*s3`G*<}9G9Q|bB(7!5fLP09u zHI9gX1dkgmAujk8B-?E}N%^G_2FWDd1Q(tq*yy{-;~*W|sjd=9v459?QVD8V%*WMi zcv(gp8oJKG)PG;Eh7H^v+)yS0eG&h0GOuQng5SH@wdu8ip@+%Iqe7&gVX3Irn%LJlGSm&?_p;?ojcC%fCUO+X-xKM^!m_VzbsfUZ-eoj5r8 zNZ|8Gz&zi_vr*S9+Xh=pMKH`oH?Y}Y>3tH;Ln-8+sk4(fy+>aJhEXPbrT&L8ujmQ?gm7Pf8BxN ztXN)8=Eancvaa*e^q@%fn~v(dye`(0m*wy><;t#Cv9%;T34j#7gA^**H8o!^i|No8 zFJT7kI`nH}k-|VCUzJ37(b9Dc-i?5-U$Co5BnySE#z{pj5o`fP=bB%cq5$TkA{b`+ zMKxKiq5?u8)1z2~Lk}*h)x<_KbUiHhDtM5|Mquo}!;kOqHF<^pJCfc8u0N0o!9hBL zf6g_UMfED0j8v$-YoQ2*{rIxDotBg98|GPsew^eY;5VFZ<_zk%SdNFIVl%qAWw>4U z^|$1NSUkdGVx;fk@Jcx`CNYr6_hLH)M4~ZJ*Lk5X=HMtu=KHN=CR1K)b$ujvYd!`D zDgDJ=lp-T_J%6zasbKKRIQ8l9sx;ww~<5~kzLp6w&D?n9WoBD40E3pnpoGcMVt&1u z7JNlqAt(dM2>MxP1G8kn0#RX6#L7e<96w=DhE<=!_zA@#99GybtNCoQiYAd1Dr}OA zfN029#gwlvDj3qrL?ATet8#L=iE2azL!wxOL%n`GS@0-ezXsx*63u@KRsF89>e+)-0bzTfQjBQJR~!?++4wFS&=GApJw#Y}|%V>m$aQ`Pw(PYZQwYeH6L@|e%Mh$Kdi6z2d~OV z+OD{4a-c^bpZyuy=4f6(6dl2hpG#O=H+N@97TXouO)MmmWCOS39K4>a>YzSY!UEHv zfd9_iqr*lbbz)WA zbyn|A79kAr2yIcHEw>>eSg6^;gAfO5IbaL;-)Cks&oS(WeLaAyUS=zP=A!GKzdOyr zkcbOa1cHk&NoFSB45HLp142Z`s7{Xz$|3|=;s*>L_A(UHFoGnNuIrq4dggd8(1_KK z7%R9C^3mjVIS#X%@Ke{N&JMg1c*N|l?_>s@<1p1b?up>{V}hn@GMO(KSY6k0x>+rN zB7+G&tzOjS6F?Cks)0>wfKI7SK_Z;Co3}H6o|+j5F^B<8P=sI4U`+u!C%8VG^^#qe z{qFV;s%n9V3-b>9$pCh+7Vws8xDb$=O`Bza++MkaU8aeX6F3K%>Z$ZnvjZXDu&x0a zh(O&Re!6^8#WxV7|JTDz2Kt-l^ac|a1ghZdxxU!=H8`-?6aLo%U}8OYogBgtkFaw%D~qvx`%;=-t#cp@ zV({mI{psrfY6_T37|Xe$j7-AjcYaeW5<{o18}IK7K`WnZ5PG3THWLnp0&9Gk(8I+4 z!4d+vAqdpQN*;tP5LV^>vk8M&hLMbeoMdRi<#DyHT)AY%ZOj>6_dDMa3Wz|Kpvmh1 zJkG+ouze<7cS6D=Ha31R?$Xs5$&>Q_@5@Atw=9$S{rw2Ja@rvq^BP z7~(DzBmtd)!|{qB$O43KBhc(U zNUi$ov;c%4aOy4b%RrV2nV@OFLeTLddnRBSu@G<+?wN2Y+XT3&CFM-;)Y3xuy?I*( znp{TCq&WGzscm&VT-aWKfOKkBv}|o4D+fYd9W z!F%d2OS4oe*GF}FWsgANlR_6|b2fBZ>#CXAbkR_k>8y3dIAjN!-aRWn-b`S}WL+V_ zjyTyt>r6EZAmT#Z)maI5GNmSVx7#>u{Fzz-u;K~zE7;6xR1pL@FloqSF&`AG@_A)1 z%2*BHTI_PMUh-`MT9ya1hG1j^T5^zl5(~k(*#t2e5zZHr5fE91_5)eVTvW$6fcH;=Wa2&~|p!stLdt#2yUslVTsv27gb{WkCBAYYXu9c@aB!P&|Uo_Ea$iv%B z)^y@yk%$nydu&ZNgxMlliEQ_PMGD@?C9p4sU@(WwOs|Z^6kC#J>x`>>404y8>b^y9SWo3W5g?62pVMaH3dRce_R1h9rDV02I65OTxcc z-&hf>G|ELG$c~<1T$bko|8`RUS2vRpzve0zeo$mwpTnbD((~J$0&4QSkxfn)pd!vQ zfChmM=P}IFtAiO#yu>HORXPO+kWv`2bM!?qY(izoVf#_}>lE0lhqiYbz!6J6wYA;! zS~{|vaI&<|pa>gn;oT2tCE z>9`6JD7buk3O^4jD7C|V+1c=E`1#=A9In@ho@DNN#Ynx-mQ>rwC2hZqE%?EQ7f0s; zuIn|AZE!{~;gNM8RMphGH-mK<0O7-Pp9f|-ZOA?k;9~3z-|48}Uj{)8C}%!cR>jzC zRDdpu&kredPb8dh;ek=7IpSVa^-j+?#zmm7Y&&~_Vm(r)1p*0gjb!iu`4qO1n z^6z#V>eAK_KxB|Vr7#u05jM%onceUT&89I#aK z!1Xrf>LA%EDWIZkQkLeh@JnJBS6Jv7m{Oh{d`RR9D|NS(*D^<#4+edB>a$#0xp^lO@vhCa#Ws=3b^)kFfU>JEw@1`)MF7+ z+9e^Cm1V?=v5YjnkM&Q)bFhZT)z2G{}RI`M>eR({{&v8v5o4iPWdTfH4Xu1CyJhYRm`gS-Aue7;{N9g{)L) zw#JwRax^UQgmY2~3v#t!@&m1oIlv67V-cb+#I1@KCjKCJn4TI%DM=??gZ|$b*CNAZ zwA9s(yO7Z2H3UeVw#Sn*F5cI(O7h=$zlZDUp zsl9s&Q=)cHASq2#qV}H;=C^geix(#~1^`AM0w4mu$=UD8jrtmuCrT$^nqjClH^A{k za28x&Z6c+?vfdsKQ;^Zq*jWg0#gASWqjl_VjVxodv%<;ZzJZx9g@Hpga zJ_oI^7Hz%iFo=QAvLORm+2+FMzDEnpir2$2lsM|^@ktvraG1>Z$ieqFp&z0p&0J3K zbaKY4uIfk!r#Ux!k5#PxeO>Q zDRU9v;fDmGWtUvwe@0_U>lt?|?Yw-oO5CuTi-ezcVI<(`U^CsmZzojM3dVWU$zm3d ztuzJ|a1>$XFPZYA82j&W&!-RQM=>=Zyp751tB*)KR36rdV(*haq_0}Riv#G;n2H*+ z1t6CaNQ4#*M77a;#2DR#F}30RfXFonKO%zqv>fs1(HQZ^IAmv^CE}l$JqygmS$X(; zZEo{kmQP{wZ8ey_%@}B;%0N6Bp#l8#7t zm5rYqhzZ9fT2>l;o!MbQQn^kkWNW+b^-E}VM=^_b2F7q>o z@<(x!&P>J6VAWLM%C}-XHbp9{5p{ZTV|BQ{0MDKW<(hQ}V8?|^7F<7V2Jamm%*Pk7 zHn>`tsgo$hX)I4g5Gm#1)xG(;GAE4rkW{5st%Vb8P?$T|)pEpKodY!}QWv+b+ZF0+ ztd)SZqkcB1QSsX#RyjNJatW85LUk;r^RvXTQomDv;zKqmJYY%_bltj2Pr zt#BgsVJ(|L{YSx5`J!T5qe5_!? zqbrOKkDm$U6s}7Gv4r(`9B&#dK0r}M@;*C$CQs^U_zdKdUfyRHA3m3dV>Ntc1QQ;0 z(ud{_AG=mA1{w-orI${~G#6KYqal{uD5J11jAIZ7S_a_Xg$434pn*4Ma6fS&u)@yo z2!!lFqrT_|!Vnob&;*<1V5Y3yU?_FHg%%GFL$=^C;eQYhfHP8{IS?|1+qtvKaxfu6 zAxrSsG?uW_L8<9Qh2tW`!hjG5Dh%vrdyjN{>MBgp z3n*g4{Qx%bY~negtUPGb08(uY355xw7>6w4d#y=vUBOGqwkqaBOO3d2((l0K1Irw^ zG>Sh&eXFZ0xbRndatg(h!ZgmpFLErKLti?nb2x#Nw;bEosxFJsi{mT%#(Nz0+dc4^ zoRdx?ks*9twwWykSCc8>Cs`zFYZAh-67z}B{`6dh+uF@)M zRJ%qxnUw~%hZa;QnGf*j+4GAJS~>F=>QUV@6wC)!`x)Q{{*{ zCMDpblY<9OkJ7goDC{H&#FI;DPBHkHxW^z9It>kuCUdy+bTT*7GpSQk8u%U}p}qf@ z7#w9n_kIu1=h0GFCT#Eb0J~bidvvVZ-z)lZ9Nn>=2|a1|cwRXZHjTc*h+l0kVSZ$? zh|W%BqCoxB(QL84&C_id$<)edF4O^9y2ju0suA^uJEP>ZV4?{APU)`odmZlNo6G>d|C6trwK*aTqKD zumP?@As#{8%^~haGjgEuh#~pGWPRgSlw&g}>~!D=WQ8UMu@Uky@R?x(ONMX{#G}o8 zBsMB3?9F@>$S3{N=&|;>(0xe`o2}s(=0HA>tkKig!bxY}0XbB$;*tTBwxK;*mg3lg z!ZMZ-OB&LYk_C%z5Y$HViL~WjBMp<*;z>&%Jq}lH(#n8J6X0f_fw{#geHw8u$jLK@ z8Ib)5!08;#7iNI;<+y{)T8`Hk6j|KIc7_yo*qDlq_0Ag81qRsw5Vp@w_$l7wl?9fj z#B5kwl^ZRdg@7;6QSXEGdYQZ^za!`2v+g1e1$ za<-rDa9;*j{3YBRpe(UkW#hTC{h+R*Ct7o$vepD=RmuB7bXCO-GLy+4a6y^vHl2Y57hryS~$8*LMb)?An6(B2NqPh><7X z$>&Lr8F}*ET%LTl$&>Hq@?;BQCQr5?@*^#3Ez%=KvGZ=e*zuTe;@R}aW&Q5o^I}=d z>@AFLpa7SRisuM^bF*GAR`1=r2Lg(JIuegy*;#zf&v1f(aF zPq~XGT!N3O7bG*m)6gH_?LL#lq=UlzB1$K<{XhtD6LZ!%fN5q8DP=kOi^7xoK3`5M z2zEFCQ}Tzxb$pEC+p*)}SSD;=sFdsHuo_pyxC(ne!Pp?0)TOoN`rqNLy)kRZ`iK-$ zPY%u>9UnbCgh`BOw5zb9glgkA5wjtkRyGaKfcZ`uP0l*B3`8 zhv4M63Q$;2^3n-8@bROJKCWdGYT)DgOEw>qc)|{B{RkX<40l)Lu{BC3WU6P6&mTQK zJ;-v-#)&4(Afg|go?VE|C_JUKlP!KI>eEjxvJUKd+&j#fdfWhYTD&W=wW=h5}t$|lsH9ld|jpsh-egwhE) z$XM^6ADtbVI$D1~e0=VN6K>EaeQ*YA`sPw25zs1i2Z<+a+WLEZK72R~_A|s&{0hgR zB8Vi1NBKE~5X8Z^YuHn9e*7Eh0F4&rWD_b)qk`AZhV~w6m`+|6>x%EK(CDxbfxu}3 z#DYIQy*RZmd%$t2^`zoEinQ%9%sxXw&!_-MF#810f1N?U}Ds`7Kllu*IUlpx{%rU(j|!9S3v=4VzX?~ohI?W7Yg!7|2FEyL37-RF zCb2PcvhcYmX0cae_=K>6vz54qoKNCvbOl~I`N8Ld)$`l+O*KD(H{nf_;OGh`!H*e0 zGl8`FiUeu^BH(Mk)o5R$in2LD>ZB4G+6%hi>9t?sL#^y9Xe2Kj`ou2l1ZX zOxV8qFxbC7JhE#RQgw|^AV479{S-p*RVbeeJ=A`AFr7ZwtPfsK;6A|U5)6%ihmz7G zkp8~|kyYNt4R4JVjFoA2$j@ zF))E;z-^F^LfQ*JA=(<0j{)6=^sIO-OC5!W`9LlO9o_R}z+xShv6y1w5-Vje+FA9i zEauXT3YSV5!DL6Tn}LfBsf|YaimY<-olk8%ZcO1iZ8&etNy2p+fdbe4;v@0C1prv= zIAtuRm@uOC4rKyQ$o9TMuMzDkUS_6$?Qy{+u-7QM8%0;8gLUb#i@M%t%w6F1J=I49jK+m0d z4t8yF3u?2a|d`~WxD$LV!n+GeV%{-(va`H&{#IBx7 z7OHW<)=zyxCZCw^ljvBq#t?@CP&=hn6YsB@fiy!#7Idp}z``viOCAbmI0Q_aJ?b@O z$wSp17KB*vxL8bYp|gBCS*-_rGlv!f4?qn3xXT2N|AAQF%*eq{dpZsY6KM6HprMgY z`t#n~eHF^*LZ@o}#BSLaQ|bz*1Zv5oFV&$ZsaNI|%6TJ~(5PoVDJR!Am(}v7s>WC% zUBab_V?L*@a1l@fiRkda;Rk~=Q=--V6r~BQ0k9hC(@S+JB38!{z~|>icwFim3~QViClWlHSDT4fW<@019)s zrwoA@P+!KsCz?|}4m5vyx>+waYj1{PJYK?kc`TbK%-BURWDA-#jD8@-U>P}3VuR}; z*AsI9POkMU>;fn0q&$TpeHy%2-@xK3yp8kbM=$={8*h9xh5z$O7Vw1DBClovrYhEJ z{pw~iy2-CHO_!K`S<=S}bCyOhxtFGbEL^-TKpTx_fGt{<{Txg?ZcGt6+UohX0>j>F zU7D`3enXw_>QX4YKutm*XEx)jA6`r1`(Rqb{$)5bz?zFfANhQ}AZ4jPhJVblpC!a% ziit2%R*Z_e=bQDjV)X)^Xj$>XU7@IRvdNkPRA`w2)Tei+sa=rZQIi?=q8f~*lZBY> zS9ty%Ongz1fvIk_|7?yLOh(a^sye1mw}y%w9H;|^Q3QYqcdA2ryPDi>u<&5X=%yU;QI0-r5W&{Qc_Nq@nD&H$fvf4u@&of8!(}mgaeP(p z0*Eef`*r_wzG);1@6hG21JR~yn9k#)E`=#{py9+5G%XDIZ}nZ>`v9l4;Q)NTC&hyf z3XKALg-jW>56yiYU9LAvm^h9ua!_e#Mlw0tCo{9_5z6P$1o~vItHyA_NGDL=AzILQ zE>j)Po7LipWTFm8z2W)6v!nAT2hZUWKt8dkFc(g;$*w6_KA)HcmXbBxeFoRiWqC-_ zi6&JkHzKClK^R{;qtN-sxI))>%Sr}JYA!C4qNJb@y;d;UmgZ2Cw^u4m#T&VVMvc?l z-g+o+%T&mDwPZr{`qhZ)rCWsOW5(j0i?ps0Gqq^a(PP@Fh{0vC;)St>S?gI2tWaY} zu{T;D(kHxHOF5X;$E2ZjeS-C1_0UuYgOT~aaRO2}$;wd3y|n1hKBwlLvQePQp{DRl zm?sy3tx%kL>7+c>X#U&4SU=tuoClpsni(CX~Mz1EY0>%Aqm$(*CI2MzDp-`YRI*A_*3^V4E%w&SN zTt9%$rrz`=GJ-}rDgyvAMgxBAl5F@s9pZz2vNKXx>^XPRNpD{WBW|9D1O+fnzTp?S z?2|)Z-{qseuy)A;T@&^9|I-_P^oIE#EOLC`Q?B89({ec(oi0`bSR&>Zbm_#IM<9Ru zp1)k5!)c%SwYl=yZZnIP78TAZgKIek(ePDJ{FA}5T=4T7S&7iJ9dM1N>`WRG2}ohu zE{#N{p&J9!zmuhSeo8($O=gQ}30tlqVxz-^8dC!(oowM-D}IVk-erOHodLn73dAhf zzGWb`Jz53pZSrK5M$3p%$o6eSV&`Wi;!{@4H4cWXG-!SLT+m1bM^-MrbYoo1(YM4F zhKv474P0k?#16YOU(zPH#DS8R3T^9je5TRFV-T{kPrva`2Ik^sX7a2=d>{PrrYs?x zg$p$1A8Xm9y>CG4#NK#?eYodqzn(-JjNu=1Y%mV7d|L%9xi4N>GiFBNw`^dWS(Z)V z=bIS?i1!(Q#VddsiUnBSXMmN*X91e`8K7nHSpeoI-SMjCXrWPKH0(r^?-HPVnK1{b zpKm}-g>7@dk~c3tG^@DL+M7b>W#p1&Ny&@iMQO$jvK=ZYiNXn%#!L7mz12PkG;Q`E z=+uV$9LUr!5^{XCcMeqP;T&O%Dv^ghZ1rd|wVT#v1usGrmdY-yZ~~>gTmSpuitoAC z2c*R00EKDwA!+%VAor-Gy^t=ClI%7*-&Cr4%}pdiji%ycQ}_fi>rlm#at>IUEW4=c z$OW`me->RgrzvRM*CPfp7ynIkc^zmzTOstTo zL;BoTLq?bNtK&sRl~t}fqR)I*Ly?Bm0ezJM+pSlN3TF4svioMu7djPYbs=7B0E$_k z6!4R5omqfs#rpzwIKX<4DGE=D8I0oBe3eDvWKRS^%F_&?`9Zy~YiOANW;b52xeSGg zISE5lXjaAi229{4ci@2%e8F<`&!8aNJEnvFm(h>9g}9F zYRqWWMjehSo*K^N9C7oiI;hvt+>w@Hw#_`tOJ4M01OI9^@kCo9G}JSa36P3(LjwRs zB3DQBfoc(R1uD~$IdK&)+^VZca97I`Mg&n=tk72(x#U7Js5!b^jRy0}+jVp{Okt9# z7EYkl7MEosszOS4(g~Kr6=7rJX268;jyW~{44!j7dI?4Sld5`QcDTVkEPP_^gRM42 zn3<#D3=W+yZwEK)+4KjaK?4wJ4;5~j39MHAp-{0WSi^(I*{uS*Xwp{Mtjgukn3+|= z+4(>YM?R0vj*dk8@6{MX$rKkbnS}p-a`Zte0rX07foy_=MH2kyvm*;yzLI&TS8HVQ z2^cZ}`ykAl0TYJ!hzUC=DG8XXY2ld;e)9ZRdPyL}BK={YpX5?a$1>J)lYvcRNiyk{ zmzzzH9>H`^iurh2E(bUD|7SU1yBVQzTc-9%eD9&=Z}t$o*u#wz;1C1 zGh?q4ArgV`VcbJskIx^Ro<2>0_nL)>#1nF;`SJO~(`V109{oB2uA@025WefGt>ur; z;oY#Klf$FK1c6?g;REdvqJhC9Q2+SB)1!9x>nfClvEA6`5; zJxQ2e3%v$tKtDfze3EQ;TIe-E6FQtcK6#u`cXOKha!qxM=^2O)?7Z+GVN zZ<6NMYIhEy3IF`)?C|JO!U1adH3H$o?C{}aW=3eqio0L+>je`YOw>9&Tly;QR`y~E z%vAR^2dcEAnYMl-ia<7DnlVi9@1n@oM}!*tSvB5F%i+Oz3>R_2GTLfgz=fP}y(;`G zE8p4=j+)~0-sr8#{HhwvrPdGyCa5f1QxFX_u4qcWs_5&k@zn-`ig;j zm0&_VVM7b?A8}Zu`?$N5pGLJC z1q%S4mK$ls(7gtkv2@a!A-hplCgf;{#gN?yD-&`wykf|1e31z`8d`DWdSsOgnGdU2 zM!_LZt~QPGDau&edf$y`V#Sr(mJ?6dKYV`szFA>y~|SL$*i2O;K?I?f#e>j{pc=ga7p}P@2p^?Y~4LP zJRBa%INEM)Iu%D&Fa-^?q5!VJ8QP#+M-%I8sH6=CW92|c=~Zn!*j?c8QXbsypkmsC z!$Wc)q<;_A;6G(Zrl0VhGMJAQFsAffF0@CFhL5teJ|mc%N3GAoHF!@UJQ*li)Pf5C zX~R+LvvAUb+ITP%Qa1>LH#}H1B+~6>I+M*X1R$5fxH|#g;M!ay(l!vT&IJ#%-3c2= z*XP2g1eI*W3MnIO!<2vxSc9LHA(?){tIA+LU4VYlhstO^Bf7?$>O!|0wx-)IiKmte zlesQx>06UO^AJesF1(uu8isO0cj@aq*f5*#u;GBvBPa$B=3}#lEAPJA?z~dk?;L}i z4@-m%Br0B(qUoG(D6}nMjAdx^LA{{6z+{hqcJvfSi0eh%^8jHW`j>4f1XdS=LNjl zQOYFxkG*H2hUO$^kf=jEN~k~SL@r9Md*ar~a3bmMiQHdzFxm@2Cvu&_ zE>7Ni;?~V@aZ=wCIh?3%YutlGvfmTEx4N{76=pp)owz54f7ylM8rGb7H?=2ro!pz~ zzV<}#oesu>Zsyq4pt4uH$=a(0(A2@*-FcDq-{wZ(U7UKe7|BSaba$FYdpYq>q8PthlVgIE6ZcEbX5@P?n-`$e8 zEG+iVdD{RFMw^OXf9# z$<>s3EnGv(RY*+?l<4OrOz{=Q>T<{yb9e!*mkMYHDC=*R~eG&CtRuw=FOGHcyzMGLe}DJ)haii zAGh;?Biiz+!Q7mh+-6RinVdD0vs~>b&6njB+zvY*m2lj=SWND932XyKaZS6SqCm2Y z#Ce*`Wbo8c9MzUgGN>~XYHIbCkPPX}Y+B7@j#RIWXT$rQG7}1#*kTH=8JI-<;MQ-= zf!oPM2i1P^xnn%1&?uzuVg>hht8vcp83}%?`ea2iyBbjKW#V~?N}Y92et7iI?JK0 z$M_gSAznbPY<&hSU+W7YnSR21%KA~P82zO0l+ma;0Gc@zmu!OyIopdTN79^+|JLNs zJOom@3-9KErfHBscj@aq*sOq6}Mwc7th9;bcKuY(FE)R8&U2b&G>GBZU z=M;!H>1>7mpaj9>W^ZK!*Wh4nP_CnJsx}<;u}1TRBen6Uyf%0?Qzuik!qM3ffLuz) zm&313uFXXvZ3E%zT<|o$Vm6R%I2XQ9|H|YLF=wv`ZvdJ@z`{4Q?p!3&Hpm$Q%myL^ ztPQe;0K=zBH0gPT+AwrDjdKlHgP)ZlnSR2n%3#!E82zLVmC>kE1hkx$wiiz=mnv=l zt;wGXWtRsb0x8{vck@6~+2v^^e4Pi|2N;0MM6FOFu;k#aY~UIitTrguQ8-l_j>@iv z#H)=*{f)uPT6Tp1)NrWm3cohFR-w-gVTeT92Ex_3;Hl3I$tBuwE_~{fu7}sM5i9f( zAeU@SeXap(Xu`^nOh4gOWiUz?M!zh5ZfH%9X5d7ntdK0OLpVyn=3kqiLRL2@g?c1yQb@__EsYy_g_3HiA3N8*Lj z%v@mSNF$f~3Da!1OQWl4?vrg`Peco!c;|XtjgDbd|f~^j>hiG`o`ek_w z4+y_?S*#|b6~+k)CdI#m|6-xQ23gVmn9%r5Gum2xmT=ZpR)xM00OdB`*XE1c;kepd z!gCetYIsvjp-^VpZTHm6s9Kh@Vts?LA;nXaeAj=woUB&}Z~k*cVY`P8n<>OFMCGf7 z%GIXhMw>9}N&<)V?=;qOU=9#RnCiBS}yvLe{ zQox{eQu9lc046JVVktu1?wO0m6ktUsA#I~%imE|^XoCE5pyhAjDe*|n?dJJf)HJdQ z)JM=XS6hUKv_6{uw>REc|LzlxmL*;TG@s$1WXhRaQ9S9HLgv~kH5GvzSU6Yynfi>t z(YS_6xivrwth&zYPbWU*PeSI}YWXup_7a@?aLMTW(Rc%+t%O>z}3|H%I{#(SL|8O}CLsaajHT;dW zLxM^FQEL)~hDxL#Jb(Pbg7Uh$xVQ~apwU1ywPyw+7{QZf9iB{NxRQ4i}|>k z4KGW$RJ>rdY5QcFKW%Do^A-j)Uw*l$K`mqnatNe zf44ch+TT;{)_fQgHKcE+nTRt^`51gF&7ivCQ>c31 zACK=j9;2Jd>f=oTmzp=GyRLH$wZvpTClrdsuL}GzkAWz!D>`QuYG3%|GG24RkOPvcAU^|QQPl({Q}{Qui&0x*2uB}#Sd1h z0$~cfE@rc$*@|7SsA#dGMWC?xinC;mD+5LwaP#IT5#&t~9rf0R{Ny{Kj<5}{F(n=M zk5OyKV2AeCB5Y~leSiuZX8^_2e_d8^yBIvR+H7ZqBupqWk_n#|VOc7o;bi`@ zT$)Exo7L~S38j{u?DO1k90XIozB0m(yS(U|dbkl5^Gld37o~XgdER&@)4G~=;`5~1t3x-CE~1SyYWB8NPUF1XhR#6rvg%Cx5si4MMjyF-=~ z{DaGa?C}OZGW{apK&1VJV03+ja3D@;E zdqQDO06{1kum#|U!K~o3XE{Kz)R`9c3Y2Dz6$$`{K?-AChuCqF$pDGf6++51lK~XN zYFe2~-P-CL1rH+#SsB9$KMZ0s=K#g=9f3+i=YYkM5@6>QT$sD@>jQ7^F1L9tGc;&7O$^Cen}tFBLKY|A`Cr5O_A9@SZXgc1mg9x-$V| z`wo>}>__Ln3GMx|SWaLSYRHQ;*nhj3ubV?~)PIm>6>meQ#&NGR-%&NKmi(Hdy)yk- zXQuN+6}(rf?{ufSnL#*wx`yo@vM@sn&vMzA{uBdY(Am1{YF$iOIkDF;c)K&vPv5A& z=)iRbrwJ$XV%k!*T<6VQ#DMZwm!?L4HApnIy)%AyD@&(x+1@Gt?RJ#YIc@K(w+rdU z+_rb#_qVdP%yD}s+@%BYZ7`YZ_Rjf7&dBrfx>!$MmP6dU(_ELG_s?wtjq(`ID2iVU zc*XoFk>JC`tR&t<&s1<(`Fy=BrbF6?(CnP9`w(m4$u%F?=`R4uKY!ZBD%t~)n+tA6 zNf92He`F=kr@*FV3ApRt*=~OFI~H(pBCrV@a}}Ex_6#3yX~+eSn^TzfA`)_;Q|`KB z4pCuAs-7mKR*B1QZuT&qs?`U?*xTq$pRonW$!kUA_Agys?6tSlTzds=ZBxdnNwVK!p1QxQI`!|KQ8v>EyxTYF@ zeCK{M4~5l44%Nye^M>1y$|wSb0Ja(i*3R@xx$Njrnf<9H>8VsT9rz%*VxYJRB99(amjhwEshYZ%0^U z0W5Rrd$_T*F$@%nxfCF=`e|&TfK}VhzOFBQw3KxzUcpAcw_2G^rY&oi|5DM5%pQPB zmcz|hX*CSL(R|Gc^FI(;)#g*6h06|&)@lp3f6VC5AmV;}SHuCw*r$I$)MCHxi5gCN zCp`jhBspn_>e@|`G#0a()pay6gwy+ElKOjFMpBs67HAZ+qPIalt(~D}wI2Wyt3Qt` zoZv^WRtmdRSizc`4sO&EW;8~MQ(tZ}qSpv)(-uaWBOwM!UTbJ)wqP;cnDASEN^OAz zlw#lICxpv26iO{qYh5qM>N0lqR~+FCN5CLjCdz{=x~9#1as?Cf`{|k-7{#g>L%AQc zwV(^d(vaYY(OQ>GI)=)`!LSuPV z3npt~N^<|+?8Xe(c;DM^CkuFui-oI#U5!*y6GPQPHO~1cqi#O=A4cz$W}DSN{qD_A zK6~=~!{Nh&^NZt?$4uAlUi4w_fP^CP{y!+6I_fAYy#MV4OcZczSU5%j1(n2Gn(zPXkaOm7^UUoIQMUejHh^ zFPfJcp*=l%c%iP_5lKZf8yDxNXA-MtT#!tMwE5&Sqs8LA(X?2tAo4%?%whHV_UUAH z$)7E0p8y}1FYnz{uh!LD;|ia889sde{N=mHKO3H$uYbOp{1%=JIXe1=f510vR}5pSeEA(N#ynuyv@jO|E-Wq z2Ht$~<?USS5{r|-JpVwlKu&qLtT-?4_tYPqdxq-`Q zO_TYy*?0!K-Uh>={r@m)4=3tOq8&14v@dVm@nBaA1~w7FW3il6%gOpSCyxLFd3+=0 z`f6D$A`b0~mRs7w$w&OpLQ+`34#29K{vC5b*B;w?ab>T9ESB!Uv`{7jeck=zvMR>r z^{>GMu9fA-@Vl<&!}Z4H5*qdRUQ*`3Udo*Ogpv7)WCK_D@H4#%Y>dnXHWm(T^OczF zoZpSmb*EgjVdmpB4*)_EUy~#zd=q%r-8F4ACbK3Y0ESflL{Qnx;ME-7ca*LDs=si! zg-tEBfslhlP9kFDevAGQV`ZlK)Nsf~ILp+kto`T2}R^#Hxh~?*MTaN5&1I(RW_rEu% zVa8F``5&;;=}(*0XWLhueJkL$^fF%;n%xh=FT zESl;&NoJ!p+ylttd#1y!mfXV5K_kDkIb(%q%S0 z%=JW3ONYW?CVIzRb9{sBHiig~EYsO!etEmjlTB*LEestr@=N=74iD3_zCp>qMs6E7 z1KZAQSw?r!jjjDX@`m?p=7qWYK*CcrQ>&#-2+S# zO~z4MsB}6AC%VP02#%ipvZt7;kh*RhNmWQrUQ7mIkbx`pjUDSxq9oe2)aN48JXj$V z)QmNiL=DuZW(!vv$xK_OhQpu{Z0hPF z+!oQFjg^^ZQ^O$};U-gWu->Gb-kzuB%#J--A_`d$3Is9<;yLJk8;Q2F0eWgI}qa6^%Smn)Gkv>8hl*QdE!#mx)@W zzspi(h$9nLAcBf0KKfHh)g3hzR&t0IE~}0HEj(Fh)MR*#Aq*qRi~fd5RThp*SX8*l zLm&UxrH9FH*U3X6HQlHX5)Z^fW1BV@G!KAnSrxXm* z`4ZBp=GStnseK96XB{yCs{zp?1979&-e*V{Q-{*@B3XooK1LQC6vmQqe5(K9q z@Bhuu^FSKG2>C_l%UXZ9#UqTR_C>u;t|Yk#_yq>YSM82Fc2+H+Q{xRuzrU;D#&8w> zW<7zsH%BA*$z)nCht*;|c=*u$w^R5pqiTLN91RzsSajR*|J{*TT&Hgj8#cu4|C-eP z#ja{|hx|W#(|g!YaqsYdv9;#K=%yTA6{B^0KlA^WU;7YyM+<}^$p71i{RrM_j;Aj7 z5cUpsN8OP$CKt0u1(u_?XgD|J=*4hRtZ!K2`+xI$o`82$o&J7zpI?>5db5nCO7i<0 zVRus;|C-eP=iB;xHkl7eO4!}~_v~H|p?6b1lt3o<+iguSuSOc@lQJUC(E5vo8zfUB~K?Oh(wOb`CrovT>uo z`Y**~a@V7*qEfbKMx5lpCXtyj%&J$l97kJw`Wb^{CWsJR(imoR&%Dyl7)G4rU_lVx zEicr*fJKiH$L~59kamWZCkfOr$iVGAs~KEP%ITPAn_c&wg#sl92ZSV;8DtsT&kR;x zf`YAGW&EBs0Yc;gF4+d_hvfOscIPXk07IBM_MB^oqfz&?;iT%AE5M-`O6 zJR$7bb4D_gTpS!)#l;8xr96|dYkY8#NiH=QQgO=)b~!3u9_qiWKw=T@^B50Rv3{E` z({w$B+q{TTqxm(O5bPbk45b7HQd62m%Rx$D!Bz30X1~Z{Mv#h{x!v*Bx_p`AamR_E zJ6z@$Azae7jU8TKzF;|X*Di~sh0THfk<|S2IyCVE9+b21e8Vb7d{XYVqwZE-aB8YW zeu`g;20G^ZX~qo;+^>`fd+}|2{jbQtZZ$qOKs~&Q&fcw*$fEEzs`wis>c-|sRPTY#ID^plbEtaT{2;$M?9dHiw+C)l7offrX#bj!1}|bbU$0`{>YDY!{u|u14Q*7#voYyKYyDg{CYb z_RmFD5u4TeS|#49h9udLDQgdSmfxdZ(|YTFQmaoV39Gz*0jFH zh&QGYi*Q?-EBxtOVw3x>g?}V76{XO%*gf@_Kisizs41f2xBs#4TBZbw3SSkVpzQS; zMMbX)P*C#zab4_yntTsi*E^P)Yfvi^4d-F_g%K(+3o0?({D|4GXZBUW-aOWibiI|a zS*cJm>gK9zze_Mo*8TUadASJaw44=#XT|Epg*gQnLhd>X6vzu3UGUFjXO|0uPtl-a z*IdXXHn0FFw1n#}!@m+`<*wajEVPLYD=!m-M2V?EC@wQYvaHl}`-jJGd zd#XHrvEvvsCAi5_qD*zCPeK`qgC5rk)Z|f*1ZYcCi3(c7iE$OpD1}Ep5>X|pX$?Yg zMI91iRdpg4$jVwH7l`UQq{J)igpov*tzo3N(q@dpYTKQ8W#1DO_pWDN6LOmxUR-(q zq%I$wgmQeqZo>*@tHRX&zx8W|%_s@h%|E6hf?F5=K-3XEtsBa1;mN8AH?5`{`^9|zaD=%argXQKk)%5a)o7U1+;)zLRpRjMuG=}1l3OT7$7s|36lGY~aq_kX zW98SMCEJI2G;jE_m~MFC-gU&hEu#PqeaJg=jLo_v3ZtrLXU+t-c#zj(?&gaq3}E}& z*l5m5vaSny+nS8P&|qm!RELB%+x0e%NMDrQVmAEA9jQ!MEm!DUAhcLIO(d!^r8Lo4 zm|+k)Xylhp6QVp*O8X5J8gUDYv~~aEi5u~SAs+>8;htgY3zC>NLqAD&OmUa=w@<3PMss`i%eOP?HXcs<~CT9 zjbuio7#ytz4MtQ2)%4Q)mAU|MY@(S>n( zVIS5&P9$Y5a*3?W$g#BSi#h(A#F)BAF_)6v7K3qSrfGhl^;)LD-KY6U9%n=UOpSo1 z`R%7fp4)wzKaiMU5oI-Q2{DrEX$d1Q!GVqA+@kBOu)O8Q)2>|Cu6bH8Jlar7+ zy(bAPFhPQ6aPABE#^=a;`ohRdQ}8q6oPn4W@5w;Uhg%P^sc@>9>QAXz@ZD=BCNp6R z(N*zQn&_c=w$fC`WJyN-5%-JehI;x%_C7U-u+!lT#Kd+_269f@GGNo$youJ+%3)2@ zvx!=PiI}K?uukP>5M6FhGsvFSnt^q&ZYQ=&m)Nm|hUhwR(~vNo$doC7jk#|Tjp24; z!^;t~ViB!UcYP#WkZ{5nJOUsvdZGSzF`c}#7reX#Jexko#8Cf*X7?RROt5I^zU#lz z>%P6b1czkz?fyb6fbZNa1A!?H$?m)Uo4QvGn?z3%R$zie4U~>b)7`S6e$S{h^3oJ! z_g$Moulx4$5)6{vxBCm#?wiX@F+n)=2ydmD-FM9;(S3&>C{gl!rPqBsFzBZf*03;W z3C=*T`>q*??%V$}*#Num`jcY!9SBTVA>DnuzcCBJVVdaKL`C-KWzZ@0M)-xa!Grr7o93P}qI&_Bk}fFDE`zH7n`1*RCVPTctd|0dCk@9GOK zGDRfn$6f2dzY`sKUwasVDH^ORcj=Nyh`xN+(GHWCq``Xgh)3PahE1d|4=XXnqlUt^ z8ac)Ez^sk*b&3(#z{2z8#4=u!blRy?b8=#iMhg5f0CzC=nfeUlMT-k0dM*S|Vz?A8cOTN2n0*RbS@PYb$ zvWoo(PdZLkHzmJtWOu7DnF%fghXLyj&_W9{R)O1fhU0Qt+?M0v<>soGPOA~i_qRK4 zu4|E>V40+Wj42TlV|fyP_e9KvHgMyo@!euxpyF%;SNsemtz8%M(xMy4h2Us2N(WXw zNo@CY-~}e=a67rxS*MKoL%3g}n$JtPtqEQ@XK}Xc>THwn6gfcvt;HkE5S13|8DS)} zff%=(B(yB%*L>inK*$PhAXEdQg?J7#%7`AOXAVP|4RlyPLzR&EqrqhTa#FtHseSiK zC={9GQiGvk+(`i!hGA0->%?783P`aDN+BrHa&sT<@8SRPdxdr#^at`1L@W$4a97&k zUsU{{-mX{LcyTFw06};ju+;)`&s^y$8OH%-CWzoCV#Cw1EE0RB<3x>U!?>YDwBO`@ z;hrR{z=SbsAoR<T<*#uq@gPVFUZ=oW3Ie19_38pM2tD(IpENn)<-?13! zj26=G{72;Fzv`shxSAEwb%6gqk6ty>7CJd<=&QFn=`$-{FREA3C8hr{k4A{Kg--Y< zTYBjgbjZ~!R-$C`QjN5QMvfYKNk-jGxil|A51zRH-_V*A^l3(F(5Lwi$Up83P|*D1 zKT5QqUC#jBiPBMzsO9{nXgRSC6qaFr`?vjDO%qN>J%|=Y*WKPow3H0qXl*62(oqW; zGiE{jq%PIkc(ud zmVcILK?<3=38%9*QTvf~fJC4O4V#Zb9ng%_SsS8;Jx>?UB-&0E&$Kojsr=n7r-VIV zW7Bf*KV)n<2$8^Q@=nX2w6z@ZXPH_~15Rgc?ru2(fx=U}btwspT}_ zbk-$mId6-aASl?M`#FS$*7KkH7Y29XHE4F%pHVB4y=wYT6D>)hS8c=EO0%d%$yuH> z5`}KqsuX5<+R?Vsj3{F3>gusX3(MxQ8fz=PqL${C1} zm%A)DN#E=j;;S58E4LmBSkOCFsHve6Ek1zdWq#vAejgafyA-grkiI*Yp7H@aEWYLq zq3cj>cNbX9yA-I2p$0#!yG^HoZ^^6~vboLwy<<=5)M#kH4M+*{4Zoyz;LhMX4W3=R z{fl3`^S6Uh+=Bo0cC?xPjcF)EOHdC#6JK{wI_4{z?EjjTaZ_t0&b*BjhuOCy9>S?<>wC{|NLDU7XNb&z8)(P6#gTH1P@{N0~rumLO4WgX3K-YtzHe5P#*gjyLM2E4u5UmX7W{Fw}eEbWcsH5u3w!o2JbiiakyeOlWFx@#z~&I_FySf`>&KVct(Eiej&pn zOGajJErfYsM0u{JETbY%o(s^L3G;a1J;?c^hkNTmJXV6M|46~WE$e6yPp&wGB6x?2E$m1y<<)$GNbhNj*-|z#2>3fcy-i{yCS7Bp&^7Mhj%S%T z0=etKomgm^O>_v--B$#E3%C77Wx@IGjoAu|2-E;*33md;0gHlQ*Apm#yaYTe1~>!J z`SxUx=z5I-SjX#*eK^i~*ZhS76IS3|E+o~94z#Bk65Xez z5WY*}>k0cQ(RKEyCjya)pu{@`F<-gXv6{@Ur_goExBpH$_MOdd|8dy}{P}vC$ncq8 z^LM=aKTwWR5zHBUU9Q%EHn@QQAD!dc)!t_%8(DpGwV96waJl4sJz4X~vR$pt zMTS)Q7qYr*^Yzzxv5ekp-nGpK@+65G294n^$~5}b)8+aekd?Ofv?%PqNM(t)#Q3!tT#(OIkan063LWQJRF*Y z#iO)Hzj(CrBnxhj&((QoBOm{L+%dm2XM86Vl?|Yx=YMseg7<#|sOSM;9jM?1VE5Fp z(Um^|-2bWJS|*w=0OEHG=m7bv1l$mMGoOsAamoASZ2eb4j_=B||A z{nPK>{Nyw9@uC8IMtyU;o|{#$(bgt;a_GSQ%)sY4&` z0Agdat}4d;D#!^Nn-Pmh&Z6*7qiGeb6zn=Ffx;rp8UTUayU_(~>Sj9rvZEV?jv$Bu z8o>fA>eY4!o6I>_(3iQ^0Jp?MJGGzfs+y6+;H+p=4ufURE0>*vWq!-CZpn-;cNL2T z9GPNXJKa?^D~jRO!cjRliwBU?+hJi|%pMl6C%oL;brvrc8qwf@NXYfl_1{)6ODK(B zN9FIXy>ui~((!P}20a2R&(WPkJA1^6V%W8C0eKxa-Q6LLC=O|bCm^E++y^ph!prMf z(1=|{2zB_PSi-2lbO0Jtb)mpWV-JLSyAh}v3{*>A692=l4X&0IL0j>Nie19;`W2k! z=LP7_U4j!9;nn~MOu<}jw9?Dch~l7DI6`8sHjmpf|L&Zt?K8PI>)F)pGO;x%Wl#z$ zz`I}10WjEI2O1W|3FPVqK&Z4U?d{(TVW(BWtBhSs`#_$c;9!~%!mXm4Jf>kOuAF(S?5}2@fC$k9i3O6-89d@0^!vS%Pun-sjjns8Lkl83O6g}{+JrGIb&}VyLU-No!6YVV zI4Cp*Cc)cvIlMH(VjdkkCqXZdaq$04mT*aMRKQ^qXf!MycFjd7EX2lt6TtAo{h%20 zetu_QCyW6j0NUJDI3xS-V%A~T0?Uh&;A{}$8e#qWM6JJT{D%T11qXySa8s!EZ{S9g z$-0=vPhsskg&N5eR023;<61%em#_mMTH4vQ6$J7miy8(QxUJVp+mitym_y zkdJqq_G^$WnMrtL8Ah&5oV_B~ic4@YbrHgcZW_ZrpfR7A?B%9fo*>|0QVig5qAG)0 zo?zf$kb&zstTSN+X7y^azF|3Y*N%fpOt5fJ$Ri8|Ie*wI6s$POz)n&ke3(DV*9+L1 zv@R}r-_xC0(gXtwf!JX>zlME`aq{Yw&YeKP0D+K% zJ8NtyyKjkE!p*DM_?WC9slrxlzT&X!yc!poAc9~>g*#d%Zc0dFBv z*s!UX_vyW`jWmI6ArL#PD$IvOAJ(g?@G_G;T6(YPN1JGD+^hGp;v@$Pg2o6tPnn_m z!JC99;cXg3_^{ZYnq_jnt*}?IU(1sOY8YgIGZSW<4qMz=Bj`0j0Kx>e0YKoe#<$N& z!NwiwcPpROky)3HvHo zvw$gX#lFf36f_VBT@yCWr5JMbYMfS_B)|q8VdG4^&eyAP*776)URyH*=qAUd5hw9k zatwQlrH_#?Aba%`UZy1C;V>GQJM^}a*xGt2wvq(@OpSsw(9PCMo0g>=c(x7$LYkmg zi%46b20<5u0b##PCv&Aeq1N7BrZ9y6MDAd0*08KA=ZSiSC)~s1WJ)&liP(f06Pz}j zmb{|uRnt0w2_7{NI*7%G2+)4 zb~>;Udgq)I2xQ>FzY_`U6|32-nh(vsr0oUjPH z20&m^eGW&4OE|}#u@bu4Qd{TY>vYNi+@Vl#C3yZL808}00JifGY=QsyJ91w29 zL@;c}@SA8e#m?>6ii!b)4HURmS;31*&?-t4+E(Iov2rqOCRE}s}_^+hhLgfVwsJ`rLCI}VB_3>}TXxLU%4xn@5BpP1|A zXeqmqU;vLS-R0xf(V-;hQ+cDG^>K16xs{=XMt<(5RKd?lWIe)4iz3nuHu^RaK%!0V zHsh@MHRGw~?pk)MF&#Xzq_nfEMvrTk3ujaokmwe~k&ZCD=BIgi7ArE)XbX4)fI=h}T1vwnkAI@<*MMujjS_0U0 zr>K?0(5z_G3{$YZe_%Sf92Bd1|0WBtu4Or#IfFY~O1L0}^iCFQE>1k6V&S=&t)guWI~Sf-RD@}S zBcyAiaH(Ipp3KT2w2egHv}>6p#fDVmSEA*TGyMYo1K(oNwSB~1U=ovLEEJl@d1PF| z84h0g?COzP6hp3sBc$sS$8dNOE~<@CckL5N8V5#*-@pCFAH8Az2T5R9Ac>*b6E_@J zd@sY!VIjmOX?akj<%WUdNx^HUU59~25Q8>?5zI|@nBNRxp=2_O=AOG|L=l34z!;o> zkc2zl7?K#8f}M4tyB;MJQk&@1kjTlEi{`JzJ(s(dizqB+U;z@q)jZnl)CbrIi-9cw z0#n>w@#1**xVyUIfFKyb$h@$PD&D}oyOy;u4(b39n6zB+eF3{`xnh%v;|T~xu)l)+ zN-zfl|F(v@ZVF|cxr7kLm&?J!hweYYNfP@{EZG13j{R>ZByOKB)KH(dI_U$epw%pP z>VM3m5n^qj6aEQ#>Fuqw8jfasOUHlCtC_*uK|4zm{r0m?8oqvwvBhhyuw7vUxGviyLFe?pnrwNvi(5iyK!r)vMvirK>_*BlLe| z@umdruCDxBQur@BDQup%V(s$Z=F!pMY@wE=g}Jmv6DWesw8F4j7-#Veqp3-RbC)L3 z&&el0ZuZH%gvfIR3Uf%;hdAYUK-L){$Xz;wza<6UY*xVSdmGM5xHFOW*Z)Q_rZ~)9 zO7LHk8iQsvRugk)H74^RoEjhTQ(ON@QJECjT`Hyih7@b=tV|ObSf65)nSWuCrr24f z(e6+!{YRvmNCT#{Fl`3zMHmml|H8EDp9VtF3@5EmiQUF_rGB^<0@4c8UShmPZ$v-{V?T_C%t*gzJ&_tRGInM$+1ITz?K-~BsX-!Y&L zYO&vw-^7#wGa|e;vaq%9&=kK+oBmSET6T6iIUfgw^nyBN5--?}uLuNm0v7Nn~SCAWbboeghJRjOU2iTXiQT>G0Xwi8-NFql`()<SGRe!4+_L3d+X$)#Q2z%P-u=U3VVs;NuiDGH%I$hT;$|n~pE>&X@s1NM!gI&3R@F z2hPOV)60BWhVYP^m~8d_wmmGI*sF_axXet>>MZgxZ9qrfVl?e}Lmds*Lkw5dW*ILK z-sIyOp(0OFtb3j~>wpa^di{Nxk81)M`L@J^DFH7x@VGl{8G=XN*D$jgKiiTq9vaY* zcS~Ps{xV($$=FvS95QQ(RP$4_xxp66yhzI!sSzsj6a$kmQh{e_(kR^1Gl{0LKgt=W z5iW8SlTe&1R3EPSCoDV9%U56{=a!nuc;spskC8I=`yLS4we(Tu$L2{FR;Fj{qX-YV ziK$=i?I}D7v5D`Iy~^ul!bFaDM5LK$uREmuN2I_;&Ue@q=5KG{Z+TwIY*)fWj;;MC z>=NG0T%Yt&6*0})e+p#edq@9iD?w;Yqv-~obsA5W+`5_j&jdR1z9SYEFU*dsC=K6^6{*60lFxuKEHeE`vxm)}TqSvS-JiL`7@312%a%4Xfk_=0 z)WIa-a%55w>)$iB8G(yjTSoHmH!HX?5z0?KkDPHNA3`F-mKx6dTpl6HSi^ZhWY;nV zf)}5zUq$mu8OJ~fhs;{C4*V2O8trqYH9$mu?ieMtx?nzYE~aO?p4}&D-RClEFl5zI zlP}A$%+wica>7GyEp-{ZLu0qe+GGv8g`)?4GuCAZWaQg2uL+Yy5E76FZKkiLRaBH^ zoYzc2Bjc8Acw0{4t}+<_8M9#si3~-nUfsfD-ZNV$4rmk?-WK$)J9g7JK{XbeGExxf zHM7(&Y1vGKL;P#FOJP1Xi_T_Mp7o6V_Xf9ObyJ4ZLx+6El_V9Pm_Odt>J_^n3g(W< zexGwl_4PoZi+4VSV?{CTYvHIIL5f>0c84^gIHVPhke{!$EXR|ptLTNGUC*33Ss^Hj zM^vY1IhkvnIjco6%vv}?x_d0@-wj1)yz3PnfjkLb!yp59w5K!^0B|b+96jJ8q+O5p zgaR3d5U7d7D!LT3Hwh4!Bw>J%gga_hmIQY_ z^+wVpzJWk&j7RGv`0)1682Zlf=;bBx0R|a-$u)iai~Ec~*AvolKSt``PvYNigy$QL zd&4K95UlKDklBABE^h8;e=ASwU&AErzxp_O6t@%!dt3YkuhZ*^Yhb z|IggJ|Jt`C_d(+ykQ}hUudy8`PU6H#Y-6A6x#I^DAj$Z8VjFqv(agk8oX!63v(7nt z?tb0<_&%<29AiupJh2tx0U{KkfDj;r5JCv?1OFS)RnBQC!r;vLPgvb7lm;OU8V9%ZJ?EW6)F#^M% zvjT9ceG6BZiMoQ>Q*AGcBlqI5-6>$|-f?};4VXX^=Bo75Aylh2x&yBTD4d#YEEVWzP+uWEN+in_M;J_`8 z>Oh%XlMXDK+cKl0*k@qI%)JRaNK<_uA<*tp_!G4i9&p2(8~zO9O!UF@Bs{mhW_WFU zp^by}kqIVhg{D(l{7eugTOI*W?WD`Y-?`RXx;#p=pa-234-@Yv^_KIdCa1MBM9Vb$`ZepF<@w70?GcGR1%~oH!3B!mK-7r*31(^=>>F zPK0tc0uZe-1?5lMx6B324az|dhkcuyjsX^2bZ1>RH#@)@!#le()9u_0YA;Fxf^h6h0(s*HTU#J+?2d^*0)!)Ey5JGMZ4bGd)f3!m z21lyG*&R6LEN-azsJb#acTe3p>^Q%t%-WXC^kBbIWqEgZ*rzsy{lU7_WJ$rx*@)(=p&zS*E&G6{e?Fl-B+3oD9Ig69{2?UJ^r)GFxZ3NAp znv*aI9RUy+r^oQ_?XXezDa@W8i9kgFfsh1gJ(PQM)wi@h2$SFu0D(!bpWcP`yY+f6 zPJ$;8gvYP|ban2YJ3bH14hvA41n(gbn>5|1CuuSGUYtZvAPA2W(oI~|KljF|ClJIS zgJ1+hJ;UF0(sQ<+QJRG1DbJ*5aP8r&_*I-&o2%zR97P}gDx3b?9ryY}fODIkrEzeC zK(!~YPLp|b$uZZf6L}mzl#lmGNMw*=&hU#9T)TX=?jV^Pb4sC-3j;(#*&41e0bJyD zVDqg3#R(D!g77I!0_xqFyV<#6QZGut2H^-fv>5&hRe=0Mr421k;xu#wLHIQEdzx_b z5OeVJ?LX)bq-pQ~f!JwUdp@rpL%_wL=T2)Vj3FZc0;l}-%X%LQLNXK{9FYT2?}fEaR3Mg$g_N!>g;>*kTI%`#DdK?cd$z4+A*^`e*t%-W$B z{e_&l{n;3${V(agILwgEpLdDI9w2ocxlK((OD-dIp&VPUKB@+!WATh1pM;c`H(>r zhm67zGPzcWXW=?aI2|pFb?&r7*`S&k%@>!{)Nt z$&ang9yYx!j@yez)ZF4wRIzhfs>2mJy)=QGAP_s{X!6@KjGddKp#n_?G?>i_fP`oG z{2z-d=XZIM#^DhH6@WfV)=AFxS)x92OY0(Wrn?-vXE=(;+BtisOTu_F69Bd{1BWcK z8*nd-11A6kMz47}cOr2;+l56@95f0?$ZSpFuhO39TT_yzfvF{DJzrp@xaP~?`5oK~ zk>cVB7q|S0^@{nftw09yEWWX$gpQm7=t_kpJ9+e$^vY|FCJCn z=Vk#0aSFc&L3pZwUSEC+F!g_Xm0*wo_B~A5;i7E@KilY%FxGekK;X2?xqZv~eC{qM z$YF3G7Lk%0`Eb330Esnlt{dq^QM@D^A=AY0;rYntqq!495X9huU<6Bn2TcAKm;zY? z=LQ~07KKFdh?DM?!X(ybriKBxYo9LUx8Uo2aFX2qA*|EyidWu!tI%0I~MNvUqq9$46l z9p1UAZYi|DvIj(CNFNv@zdgduK5+LmTn5Y+O2>AM643>6)W=bv)B+#hBbXkTeWtD6~n&%(1D|28%Kt@@Uce8@0G~j(Pz7}Z!fJ|;c zAcQ?oun;}8yeuS2u2CHuWN*%}!)=(b!yqG~3k=B{S%vBT3Sz|MEowA$Z}1P>t=L8x zCr&A$8BA(}G~{L4P_|^F!PJz~DeBM<@Oe2b_JB_#$9pT`{BgH?no@K zfuGh)EM%B&ZBW{KJRiet*s3?b>c)#AARFT8Szhi<*pEn#88^e^nNzaF_2No=0i0>-)YzLO<#EFXY&RSa!YqfDT@j}(VrFivYR~( z@{viplcLN7>MhrN30BV`++$3cP7i{d(l>k+r*LlzI09xxUvkq8N=FvyW+264-<_Y+ zw9f}wJ(+foUKj-ONwjmVZS`b{_eXdGl#@<`zq)PvEm!_Om06l6t~^YF?r z3y1gB4M6p@!aaSL#Uqc>{01-H;2UYLJLop3mNVuNzxmC^LWU*Z4W-g>gQ>;L&v$c- zaYmtHd1*!z0~wY4Bpl(qZO^8X{QRTB2;g~?JLia{Ws&lDm#C`j!mTDalr zxVjyN|Ib``J!f*y7#si;;22lRF8p{9wGh_|AaW(~C(wafjurg(=0jLe^f%N!cD&-} zcd9Hk42_lzo&CoOeW{Z9%b#OZI)fQ5|T77c9-jg-|bBk3CxdtT$i_E@{ znQeLnid;Tqy)^Yw-Gb>7v1MKn6lvu>o#=k{@KK!YD%_4omn`-8WVGk9P>WIqL_*xb z9N_FBEpoc*nq!}oX z)8Cw%I|F5D61|5&>=eWGZ|BXk_1i6v^5@2IhFr~u!y>cf`?7>1d`oq;ek=Bz=K4M@ z*5oySBCRw}b0aft?3(MuEH z2?DXx0v!4a4rRj^n)mC=hax99cL6SBN*)vr*?e!m#LK_D9SlBGFSeH}JSEj+lp&GR z_Ya)<3z6cU3uG~FJeK}&X6iK1l7b~O`8*Hc6x{YQPUrA-`^`}#bLIxOQm7_H08v}R z)Duq4L_+7|8^x(%>XC9wv=A1V8LEO;_>AbGsvxw&>5}_yaK6|iG4L9k?;x>21)xwd zX}ub|`w$914)7lqD$ZT6a*>M30ESeCux)dMiwKS#KiSg|wxK*lBEcX7;t!9v!`0g# z5}Aq#fkQT_T0iQMCnM)p>-VA*_K<{3#gy^)5 zbnc2K$&ws`ctjmKLZ{-rw>xMS~iMNX23RLn`TuUeH&e zuIg~S_OVg;V)S+Ud^_IwT=s5$JW`S`NtS3J<8-<}G1hlq%q@JjMOS(D;7D;8Wl&KT zPL(i^(lE-BI6(zLO!&~Bj_^U8hL0c!Kg@POEIiSRuZHNK%Cw2}aL8s@2J5>B8kWK8 zIs!179sq#{HN?N4&c{cnI$>SWpav>asDVDp?rxajwwEt{p0Q|{;esrQ9>k*#hVU5P zjElg}s}nX2;V~1cc@RJ(G>lBRb0AtRoqQTbW)i1J^dJbIwoZbr^zdTdnY(pD1=56D3W`}K#N?t}&%WPyT0{(CmeA!V4K871KjDMKN)L@0rxeGI9J z;rDQFFkd(|q$;@7BB=<8oM?YtKGd0jrv6F-6%zzP5`)c#LAw&W4h=SZIY1mOo? z9^c0-0QDUWzMRUmh#(xY5j~<34y`?6BpZ;Tm1qdh;A5fkg1?4D!ywU6M}k6S(2OwzY<#m-^GS}4BxwJ@+(xT%?Kf}D!;)R)m*A1*5Wyr#u#*iHuPlISh+vpdn^yuvLaHmR&AxlED>q5iC{=&NUW3J879?`SXY9}w1hDYdF&(u*4qZRhCH^E zYf~FwQEkf1;o6)|tXA61yccS7N`Od6nfdW{RRgcx%#+jtr38tbl#=3p4L9_5CG|pW zMhOrJsY&L|3w%$2`KI#NN4WX{6h1FbS8*W*u&>FhP*Pox82|N{n@3c zCZ>jlyt0<82}x*F$&h5+Ln_qi>a;LpMro2q4}sXEJH+SmTDpUOUN%r6AC@KEu{}tg z&|tZxJCtOp2K7P?&MrW6q=7?CHL$`JjG=3E=1A4|3*XQh16hKAsJ zkfigh4Z*b#Tja*`t3yr?{I`f=8*+M4n4r)DpgsnN8~^T{)1xvi8VHAMhDGt|xO?}s z<;lf{MR5`*I3NhZ551r(`5SsceY_W(4F7WP;Mq=BexFc-X9H2Py&xRhI;a||4_?;d z3cm(bCvgHAK@fhJN8pM4c0j{sRWD702MEL-y7>$n&3v1xp_`*Hi5vkCcnAS6@rndE zl&mNAh7gcT6;${`LmAo%8k7-*Ne0o(P#Hu1UiE)N{yxZ(u(a<9s@KJLFq%Uxq(lwk zv8_XXD_l2wfjdiiOxuv($^r#`{(B}d47t~9n810eq+!VQ(gb{hKm`m#P6zZ2R%S)= zJcQ4hha9VQJNbOg4+449hregdr+X{m&=d>de{psaNEn-8XxDJmSbvIresc$byt%{Q zb93|5(mxX)3ZFljhyo23JrI(}>&8CEVB8}-Kfg&uaw7Ce_7*t@^=<`016=e0w`v~G z{M`Ti926JI>F{TnP&#O}??iTE?m?>{hye$|*bx}{>txF8$X{ntcp3%gVhH=6;jRnj z7-!GLNf>Wu0>HMSV}?7X`rE`;>h|o}j+x73H29;ed34P1sR+2&cXJe5AhX@#AWyK! zFsKjg2smh?4js+zh$M_*BLD)Y3Hq=;gbP?8ZNzL~?gTxEqu|3|v*uGE3Qyn|k<6^l z4Mejv0iGbR=^R_65gW02CNU8r$;3hJ8#qG()l*(-PvS(&5kxl~o?JwyH#EJMrojUQ zVkb8TI+6W7*Uj~!1ZohDkZGkC-jkku?)oyxlAzR|5BBAlACI^p+pdsf3LaZblq?Lp zMajylX?{EfRY366oj2ioTH<>EbAu`-Q8b%CVbh1sR^zInvx6*&9fmEUrYQut!qHjX z_PJ9CktfhI3^EwH{Bq^)q@l|}l)w$b4M^cbS|D%iwhYjK?LA(LZ=5thf+*3-ARJqn zmMpMbyFyt?_|URXluiXQcnX9h(5jDz5WTb6VzyQHvKVv{kEm&yg6-?~jdj7?=wJ{> zv4_8A&8P5Nt(516-$4+A3`=lqYjW4&9bIBIcTUXGBrGqeN*|Q#_haZ@;umM;g`y;e z8TXQ~tts3LcQ3x$Ub#8X4L4C3Ma92mC8zY)NnBhpH~j^2INacyQg@!#XZWz=R(wch zZg*yB92Fr@y=mBx$%*#q++j0_W9Y+Vi}2X=ZMW&(z*lRSx0u~@l*YjEkGX@BC7*Wd z4ac2p$x#x+jH0ov$wh?iJJ!s(E+PnGXhAT7B_|x-S&I+9&UL~`mV^xA4OE$`Z$SlF z5;cgoP`CUfWfSU_-9#0d{|Mp@RJrBbf(o)^TZ4E56_)JGj#^MbmP8HW4OF2U6ReUKB>KlY}cVJ0;ozn#ryO!v|=x$E9=SEk8OA2v!_I5vOM z+S}Qri3=PfE&ZZ9X~S8Xq^SoTv+^hS@Ywly6rrZOm1meqR-WI^RzBt&pVv20`|a)= zBg7>7JsEV4>CW_`p9%T>_jz96_r0A=k1>sWPv;)?pZx^be|DOK4-Ex6$bM|d%Amr1 z$QqG`Ib>=0@uU4MJw=0ocj0^8M>w(01NlGlwi*I7$#ls3xd+ni{Kdw=wTiqIzw6zK zfG~-Eq%zfVWMJrSIYzW-S`G~%$CM54@)CJ>We0>w%8pc~DjNzhS>WrgYygrqK>m?%@6Y;=JFV%KQDydn^RdQH*;C5FsWp@5!Lb$EG3pNHx>A zyL|(|B-()pk{+{fxJ{k!NxR#3K$t{3QbFEh%7$v*Wt9y8lUN5LNP5h;;aw3Ux*KU^ogw5k9KwAFi=bo%He8MX9XnJInKK3s+P3502uG=0^u zKzB$-(tWf)@Fkr=CQ#4sPSm%|jymhRoExRRLNlXv^9VaKRMXyci&;@dm*hn2bY(`= znQl2BO6k&UXx*BJv?JBAvo&Xs3D%t7&DLCZc{&T~?DA?kP^xpD0o5xB_O8xzH-_C;)#81$4Ac1O5mw^_h7?mJ==R3Pp z(t}jREIC+LaLC9ls9+F3LBWBbq>uE!NA%R_C$Ij-mtCh0n! zK}QSG=`w2jIk!WZJ0v9*bQ%jxBE%})W!>ChduV(f|Q^D6|lF83h2*NbxG}ZJY zs_r4#6-phFJJiMeQ@8bi!kN~FffhQ-(H@X#C;uK8%{*aaY4T~Dx5z&&znu|i-G#xc+@k0V=S&Pp&(=0x}o_)@!$JD7Qe~&pKJB7W#6I8{tV18Za zsQl7`9AsJ#h)mU_28iHhnFfqSH?*-+LSlShX07~3@Mz+SQbA9z_wB`;rP5apyJrT( zG^=4rtWl>KQb^S8_^TWcrV$TRzVYc#eaol9Ka+JIGEb}p{<;qklbbN)w?=g@Q(XSK zAI);1xzj|~sGHZhE`K*aA>D=CdB$s0>oV!(ul3Qq7c!@*uTdwXvS0p&KAr$W<}3#` zs`8M5TGq(`!n6?@sGx5dHFS7cH{Hk`E`BEY?-sZ%c(NjK$<5Tp(~PP z-gJu@GDerA$Le%tZp@i(IWb1*(yUnBnupxeg4UctCRlTRH+zq|%hQ=KXO~w?gHfIH z9GH&O*}FOc=CC-@2ov-zQeWe|MS!vZ?_z8s8%Q!<^+74qUCx8Doa>^D0}1rdy8ME^ zsj^%ScyUMJe-?Rb9t2U*)Xha8UpsFhv z5)*9HIV%{%PZ)H81bT_O5yP7zDdlX$5nvi+l1LaOEoNwc(vv1=XdIcJ>v4sVf^v>4 zs`)2s&WQ?Ih|U)1mxYlyWD6{eNp>P~PE*(mYgvT-M1v8jrn=1-c_wF@sV13d7l{m0 zWq`(v4*Zn4LC*n-0AtpI@6}vk_uL&GLt?30D6u2~N~Gm`nY1z8kaw3zEOGG@2#+L| zh`b?>LnCRA#F7Ovf%-rQyc#1fUcOkznPOrhOV zLDykS=0d6nL_8*Qg)osf30&)ga*4zeAzeu<@wc)~8%sv=<|2tDA%B93#}Z3KV#w*x z>Cj`z$i+|KJCa!9^86D^LjE+u)x;8!xI|)!i=V)EB(X%~Et6Q1023&WCYFfIB@#|D$C|)5%W7M9= zWYS`W_9tD=6Y$27`MDlfER(G!Stzlj5GLq-Jh6mQ`+QF4pIDLrW2`d~^eTFQhF8+%tKnZ|n#LjU*9ZmL z`o%mz^=TsU@{k^(Q;);>xf0H_HVm{T_kc{?`1e5BMT*8!7ddJ$xR5H6@yzs$OU_98yyz$h0oVWsuXR9}#++tdMh#shUi=L`KulxK(l4Vb56KTYoBFF95T+3iRM4G|8hW1rq0Ida zJz`AeUR`C2Aq0{|5U>dQsWCuL2X+5r>H-qYehA%Y7yL>49V8W~$vrWU!zPV}Wk$Zq zKP;=(GO32Mtdl;3X1*^HPY#FB3NTaqA~b>wjET(KS5`dVX^f_5J#^H1!NIN*1o7Bk-#Tnr0-5`x?NZ6-SP0eTEE?Lds@v^E)&UG%ARB@IGk?R z{rd7DQ}OKK)XNg!Q9LT(-|iLg(QSQzK#F_0ugq*Z3ZuCAx7^(C=z-7c1B4I{ue$4+ zHTgf8h~5AGJt!pY&hSmj$M=+2%7UVy20qPyvF-QT7?~FzGD);W2vLz#@^Z-c-Bk?v zS3Zn_T#HV`LoVOL6tsESUZ6A2+*H2i!Y9i%IOS*Af|6fMI@-J(w;N9C(TP+LY%+?7 zsHX2@YQg~GeBhhRe}5LIBP*FmEv67ig7?+q_PpJ^>^km7eflcPHZ+r;<-X#|>E51> zhYlQ$2pbNwlp_Z{k#2A!PcysZ1e0EQZ2g-qoSqCOPZ^(&_UH9}&z+&qXpeFY9zC9I zLC@WB-$CrYVgAs^g0gIjQ^qavx~?u)`4M6-UP-pe3vrPb_d?IN{i}}0!aiQ87i=-= z5s}VcU|#42V#RaTGwZ{vi(PX7gC2h&TYQSU(umuwPrJ2n-cK(4l4OGzVxr=B7_d7& zZ!cG2_C8?%incf*Dw5*v9DaE?p7+9O`WStdZPQA)MP5eo&5c(t+vb&Ukr$t4V4L!a zffY>)9$ZX|NH@5Vr`hP!;fQ4P@r~E(^A^0=%IMdB=*NlMyZZ$-Z)ENGe4`lyb@yK6HA)2Azb6bhz(jMKrT_lR_h7{Nw%e8N2)x0j1x<}=|Y$rh`GiHvyA3-uOI?o9`#PtY6Xnrs3d za^cB{;5rx;pJYT3YcPpuNQ8G&cqA*oe7Y$~F3<^>$cT4S_#HQBpKgkB3v3RV3m@^} zH%I;f7oQQ|3oft$L{!aRWDdLk)e3Y6Mc`+iM11Ws>IFiP;J^Wye!s=^vfiIW#_#OO zvzK3HnedUL8iRb=a~p%!bO)Lpra8V6IIm&z2fm@r9D>hE07aWBN~owEZu&;o`IvsO z&#Iku>AEExW)N%WCZeHU_zEfPlP#4N$g)jJh>N_qBfq@do}R>5^Ks-!vc)N3A|vjt zKud?m_4#qNS>HA<@0fM_cq@TmF%%q-DUaZ@9GbbKfr3v2Z^6_!Q#MGPCttEeozU}1 zzHopVS)Sr6Sb`DIJ6l3Avd=9^98jU(%jT{87SCtzTqdnScukQ*T*RqCigbN=zU|gL zhV`K~2sfw=4|80?eb4Q%eS)kJ8{s~_CrLI)Atv@CpHg2R5Bu#!>}dH+sVLgugpabC zc);;yy<1`q3t|m25e>D&`wLDnzPjyr4%w%_l4Ofc!bC<~H6L$JOT=P9tidIsA(4Lz z9l&dmRsZ6|L9aK4K@vv|q7g5TYWU+SX6PW8e(d;ximnBlN>x1Q!^|lao18n5_?=s9 z5(F{iAQ%;ZaVGq2wS8J`cE=0fRGnLF5>T^537;Qi9^aNazB_em?(TnOuJ)rSjvR$! z(^CP)x%=q072Df$3ow!_4%&-XsF#=ZiK}`(YLvxMd+~^x)qB}~%t7a?H;59LK{!I9 zPw6h9ur5?Fu_@^{W_N3rC%`idGQfd!6yA0AKmtJwGYCd7+*5|XshXm>g*E3SOoB!L z1V)#6JYIPcVz$c+k~m}#t?;g&`w7;g^YK6u#|xqn@83zD;rJ#j^)|dxYHE3fnifzR z$3+OlP8M`ozvjj}*Mfo|iWmhWSn@~VZ`Zfn2hQ~jNtT2R;t@5OPk8fVm+p*`B;v;z zFD>BXTdQyy|J+?JBAu|A=^La_#exE&0+OG)Y=Vn=fAb1U9~ISeq! z0H>eui}MYtH1|B%nLYgwfrfbZGv5_J9tO7+@5Q zco;r^bn7~?#+@BL_p%sf5|60ZO0_bX-O3<|Ax6=Nmk#Azu6z!jdsGJGaIE1N5+dDr zDtR{2joqwp0kPO7oO9l+PwTfLO+0(fNy1p`5CDOb)48rc!1;}hhL3V{*hDVlZ z4^~OqA1~JxWJpCWdhW-RD)Osr35^lPr_=fPc0tBOevL7CE!$-}dMtHthPn_KqNIs* zww!zPcoe0^UQIbXCZO6}z{)v-u+faA4rYDC@N@d!n!nEbjy<)vAew2Do z0_pzcN)PNHm&W|u%~RYMfX023xB>@>WH_&VQA z0((Ez^oZU+uT=rV-lzL}$rX|b8u{4<(7&`gLn$iXyLK`FDu0w~qETm@GM#!@IWea4 zD~#!D*<@`G5KM&|tCI(af-4+*U{q(S=0XE~>^2XN9qgiP!f|*u_>YYi%0*iQ`5Re( zV#tTLK0F-X9G=$O-R<0Md38zakk{f%R0Rpts2K7=9;7VSm!M*%(AFW(B$r4I(8w>H zG@(6y`EYv@YJ7I+?Otq=Sr3Y|()JCbwL89H8k@U)BZU?z1wbT}POg#P9>X0Gklek# z93T16y|inK2`><2?_{E%;UQf27It;EP&XF;dj*BMtL^?2(tGd(R?qTG(bRe*RK&}5 zze{&a;h&~JqFTjrdf%-tFo;<pH`db`=VHs7AmJmnii#&==6}tDQ%qtr~T^V?tJ7P=lH zfglJ!7{QHcp}`1l0`itEZZLvd?i-rAYcPT=P=aS5Z1G?O`8Tdcz@?Vxa3e??I-#KI zuokg z(=fXoPOw|}YAY%~=MJ+$9EZ*z2%m~4Zih3J4Mq*qtt{rcB^l`=x6fa}dmC)P}JgUcw1wy_tDc*$7ayzsj* z<{Asg;aJDqf2n19mY>_QD2bx=qOoPk=fyv+c3ZJ$KiB6C;uLZZlHhM&|8u8zf2&`+ z{ps)i=?{PX--wHNHX^5PV8_@nJD_$GTuzzV{u$X^sK;~x|GS&Fz2M?Q2 zgbvF=?p&wdx+BA8LvD>0LC4Nd^#X>V6%}fE6pm(91Bvqi}@$ z)_%u8+!H$$F5Cd#!R;SlLl05&TdTbw9N|(6p?5*U%s)>UXP6GOFp!}#Et1|>cXb~>3fCM;zN>*cq#Xpc6b@!)ZAz8 zAlxR_27}@eHMJ5}c2LU2K>yxEtLT4fXgA43B&>pnNDupWr+2H-sDD0N32a*C38^9R8ZsnHF%b zj>jE8L@{-Q_luW@3mkG?pIHTQFB3<28ceUw$Mxd|%CDF?&mBxz8f|6%V{T-+lj+s% z^0rh2z+7UfUc-Jh(ws=xdY6F_v_EQ0D(}1 zN>kJ3@pyYBZbkfsW-OG7V5ui#>NEUTR0mV!+@9njX;1Pex!ssrHCfCx=-ehrpl>Lu zAw1t9&cEJ;PM zlz_-t^M?)W%!@CjP3_?vb`8=<$=>kC1c4ONwD1Tej^WJqPyZw{@~OGJvYv@xg#6Jy z7RkxaA$=Y5#~*x4E8-NP5mlFPZJc_rZm z(wqQlJ=JawvT|AIpGCIml-s~Ir@kLPi1!=ZpeR?Cv`(!T7^IRBGW@Xwg_=xrp5YJM z=e#5op;FZJ81}r_z?_=)R%0PZVs;ZnBVMYxfusg(C5XsjZp{q}qp0||Jd9F9pSFi5 zzU4f(p-~cr>_v-)KJCDY;2syI+qn%zVGI=k6ma);E5n$n+5fV)h3lewu?o(ZL_Oe= zScFU4QGK3$1>d@W{5aF?)FCSEmPup^j@t(ag*?(M9;JxyF}25vC>6m{sQt3u@gphi zp>`CBFlmTv-G)e%M0MGVM!cj$C;@o87MFRo>ky?PSkfUxKYSI@uEQu&!|)4YTwsQ) zVY2GtR~^^@@K9YZ728C1u|6L*XTY7UuOf*w_XJJY8lys~wa91LmlHz2eA}Pi{VIIe zLQd5!gs4zSh(61N(qZR7c=fs`^T1xDIh;?FSqjPmv*^@Q-!Yvt^J!sscSoiaSYWr` zzTF-!55N3#QOK{rr-XuyUA`Fp%n1I$%piRXM0RwQ5DtwLoCn!qr*;)}9110_Yj8k( zW||wEmxN2gCIKXh`{DL7yL}Z#*6#?JLcQ=L{D*a7dt{KsB3w$S?AH%pjQhyZju_~# zPP81l4-H%IT}*LOZ3_%!kivG@F+Okk@#d-9(K0CMMRDjTTtaqG$>dX63|Gv7CfMZ{d2>P7L^M&S}Ne8H7_u=dp_G%^T9sH9W4*%5AY z<#Abi7=uy~EU7Z=X^2A?b5+@kqN+^75%P!nP7QzUzu!L8N<4gk#TCque{Z6Xl0&Et zAt_eKAoX;BmB_`4i(fEGIo`C>7UBz(#ar2uQkGc zBbgg(5^a-z9Y6}?&3AJH_=i}3c6vR28NK)C&$^eg>a z4-}1(Hy&rcX_b~sKH?XKr`hZu=(OwKl8cIefDQq|4yv~P4Gfj`)ibF za6v3&l8#^|Reb4#pBK9zzd6wv**s30=b!#bgGG;n9C&xcXFvDrU-=@_$DLoz6#9rf z9^YQr4Vtvg5fAyKOddXe+3t=!X#S7eloAD6TIrFHMk)?TG`<`M#aC2ndTPB+FXp`+ ze2#ka&H$(KkpVZ3ul&6aT#e)Mv@wmN$3YIj&*O#}%ZF(PYld#j`MAdB-p(=%}%0o`ep|KQnGE<&l%__i$+me4G2r z--J0S1=y3UuCi{{zF5(`9uANmcwLmICqIINEKsX)Y8Z+im=3ay;WES{DIKd_# zSb?+Za1DS98zGaj5sz|zB{Sm39UkNd^5&Y67E3wlr(?7Zd=uS^)`8_8B`pBOzDubP z`NsJfzBs^oa6i++P02N#_0Z$|L}id8zwKd!A3!6&l#A4@gz8kN{gs7jb1#ms$ggu9 zXdvTs9gdb5zUs=l{OH!@L3EvG1V@Smqr9j(b+1m3l4}HeXyljDnnH!~lp1`#i|Ozq zA049X3P*e;n`TvyS@yn(UJIiUw%1F$4PXJU;;;q1?PO*hYw`Z z1;3Z`i<0XE>9;v;e()ia<0DU0Iq~ZySNJ7p)SvAFAGho0BV3@xH0TsApzIn)gh!V4 zx=G%$>$E@-ckYUzNpIk_-O3}FC{vu1TM2S&N(->4Fx#yJ34B^}aw}2r2)9cnXO9V} z=~!q?^pY#|5;Q8$9ush*#pTUb+`;HHCQx>jV}eJPb_m_QJ;Co>s5|Wb+LLcMX$#*pVx8+W`6kgd zehD0vXAhL;?)tRtc053E8Yn2cLK0ue?#A|o`mltPFH|Qd#00{RQP{n_y{vbz@w!AW zC(#uJA~^PPnd0eXy%a?dJwh>nBSm{5vb{jCv)zj@#%Upvg;!}J0VG<|<>U5w%L9I= zK@Bv6=sL*=K1LC~6esc>ZWN>FD#acgDVDk$hD>)Bhu+<~I|;ASL;^^()ZMUkBnnvF zbQwigN%r7l6d^$@E&+0*7)4hp_TXa_q4;Dei;SYH6nk)_Xa_iOdX4*Vr!XSOt&t0` z$gE(3@QU0A^XlJT^a#HIjudU>eeEcAQJj<) zkW+5ji(C*~BNu^@oV~`|h0g__{`4E)_Nj0ARQP9s1WgZ7x; zSpY>^_LzW=dGgTTX-ovUHDUo4nH3Z!2CJ9Cs$+FOy4iW?-h{m;sHzn+h0|sym0wXH zeJv}}_RNRlA$(G2iMTq6uJKIZ*w=QTHSF8c@#_?5W#JW?`JJpwd$_1HwbO73a%=QL zb{th`50{g;>dK$#sGO8u=B5NX#8lf9y3xg5VlEmb5G=Pbb^FlsA@bJM(l~L3v9B^yeVB zro0F|(zCE-%X6t-JsSkq$VFfzXKy#0hpCv_p3`>2AiYL&pnzNpR;WLe>1BoLyO|>A zd*+|fEb)trBdSL?enE0ghkQ+B7Y<(F?9%2X6vK7g9-U%oD!;;&zLuS$y%PaRhQ)Rw zP%rvR*YdU7oB9+Iu+q@aFkiXcVGAbc4Qf3kFbpJ$kLuju50n-X{U)K$gQx8 zu*l3F8G6ghX=IFTcum>vx*lT@{SwYOiLNOxfusKH0QP!>(i(1kP62E$xk@lXkMY~V z;W(y2H-15Km0yHLe)jmi9)pV%7t%V7UzA|a5g5tYsp)Vr z$pxyExD`63rnB%m$wXiR(UUx(;YlcB%EcTGIVN!N4*B4Mu&xo#RxfF#5yw4fD!wACaews?IA z=?&h2EZN>AE7tscNc>TQZdtKv(M4?y;Al+gFh1)J#Ftq z``BqB%}<>8ja#S_exB7bOv6)sV6-J>5^_sA!gH#~%utdzA?l$deK-{9l5?Ty z7L~#6Z^FqVhg0?VNMnN%X6IVLAP;)v+pu`dQ**d zb#SwNv|DF36BBw|Q;l|gQnP)un};+9GQ;^yWyr?S%yvVzPi6Le#DPp@$ar4T*^p7J zZOHgEPh=`+9F9jaV(mfWAh0+O^3^o{99~WE_VaIMI`kD!9()6q!qE53aLZ+nn;_Y)^)^^r=S= zZJ7riQCmG^r3dvfM-NWs2}k6_4>uY;h{p=4t$Xxf;YcI$LfDG7^g%`sZJB2nkrh9_ zXjqlr#`WN2?%^UQzJY6S(z_@goXjm0M;%@I;h7! zhd2=L5A$#J-V( zN=lnX^gy86F=B`CsKvDJ7*Wx7JVf6pheX!lzjjYpIQQ509YW$HufmUEql@aSJ^aXW zZH48>SzF4+)$zV|8@EpO^?G8tM`h#kJYTzw8%OyP5ps%8^AHF49C+xndx-}*wx?zZ zePXYDmM{Q-sffoqlh;1Z3&-&?C3X_e;G_@Xd2lk% z-ytV{^v>uwb?VNex5mR!;)88Jvt@hpq@%jMx3V8>QM*j z9Mof-p-bvv$LBN~b#l&ujdf@)v0>-sRC0JY%*HY??aARmusxFw&+}BOEvY}tLT7jf zONv4Zqxe??Js#Mr=#d>eqk3wO9;s+sTl9_Gi7Ic5N79&mwdajd zY>ApU%S9)QUi! zLTg_U7zfajqTs+=*~XPWcd+rYJLle9Yek$hbI^)DVwSW5P^cB{8}VcpH5>=uSU6Lb z7$IntmO4r1L(4iuHqc_{$CS%fN5|S-wsmT(r^616DVMD`8QRUcvc)j6!C)N@YxjzU zb74t6;z*c^;EdB??Gc=P5DXbX)xmI2ia|&n|MDPYo%}*V?9i7Q{CFnIIbK7t_MCxF zvrp2dtqyoOn6`DcD`|-x>r&~*eCUd4sXhIe95yEH!(mQ(5h^hjkz;F`;L%R0ru}SnVBT zp1|tK@WWTgX1Bgv9#*UP%8Gv!`_9jlZi1+eUos-3<0!&oo9r=Ux#Cy91dHF8ShF8n zaCsPIL15~1;4``5>v&7k8DNkOo(pE$fsawaW=JR4{JOJp1{5TNhrAh?_{m^F{Mz5n4o zt=+5+$1{9c05%Jtm*wS6|L3BuR@nEqUWv$k{_owVg==@Yt~OAf%)f;AKQF9+0d`K? zhhH}}Tlf1X((DL3yV*TywE4e#Pj4R&Ppc=m>huP8YOdn;y!f)l|FdYXTk!X*!IF}# z;4T+%x~*Qpg*YKm`iZ*$g?+ywl!$gM9M*erMbfg4kTxM=w`rlLk3-{LTYy;>z6ZZ~ zS$z|bm9e>;Lvi^nL=K-SJ2q?SD?=w|l6t5=-Q=XxOiTk4$X+C=;j1Jp+r}FzT^`LetO*5-JWP;hu@Qy zL*1!m-=b+biaNX1Z1Fdzx8V-6?Kh*hd)(RWPPDPNKe%JI!;Rw=WC{CxbXfn2k6-?O zOHO(v26tit&({ z9xaUkdT7}9%v-SGcfNoSKhC}SpnCOq?jFAI_SzjTP)zm!#U`uG+qbLB z@pgu+9Bb;oXz$W0SfPd0-{gk9H=$uq@1Ne8E&Ik2Eu(0Yn?`?>+oqm2dTZZDIol-}rLf@BW(9=_FhnUaAsp^w*&>o}1k6 z6XM+?BXhOeSYr;ku72#Wu`=~oRfEC@VC1bflWM&Ch>NRxYFT&#YlKD4YId!0-X1o) z+hZ5Zn-f1QZzl{J*{k}CI{OQ3O7FVI)o%L=J}L2zSBDEJ{0RP%DgLy)?Fe*i!ChLvY~bstBB=ZXw2rXI`7W=1xxG5A zHy^H_d9eQpcy)q|%qQDRNMgUbZFi3=xSZ{z=F)}j#X!dvOxAsn(Oddzv*(M+g>^5G zk@;jVAATP^+3%#sgLkaHB{0!gOd0y5y2GE&&Klc;g1ik?j z`A)XxJ$zXcou2p}#=_Ptkde9C`zl#R{Qc$i0Zn=(=uiE);>^gGa0->rTiL200GYJrAk_bQr5<72A z1c4Tb2vj2Bt%+Sh6XEY!6W_ya;@mynHc}f?2YtydP^hI5e3l7)A14HtDZ%pgDk)8! zVM~+-u@We=AOc55-AtW;9P^d)+pJl`UH19s^F15M$P@sa0o7BXk%;vB6 zY#{mgaJ#@E`u?s8NUmJhaHjJ7u-2a{{r#E2(Fg`r-pH$&{ofp6pRIwK-yeGON0dn| zz?X9y(k@i7$!gO0U2pyYVG{R91qasO7}33T9o8RsQ#WqMDk>5QVFSjDCtuREsPQ1m zqz=HBv+*QnvR^-Zaeevlt6|XvQ4e!&bDfEhN%@IKRW{;V-Y#tT*Sr}U@;&b~eY3~< zi{5hsRV}utA^uhG0xj`<1}|FtBMp)?`L=huSxdYTN*&2FcB~YZ5qC?uW z@I_~4VRM5qDYQr_03soy6T{(oxLkv0`#d@k1s91SFp{&hB|jMLqAl^sXr@W}(dcv; zm3*#08@-=7&zq9V`jVfHHWen8+&&890TZVUfY^hEQ?)+Y?BP_6&o(n!;=|2`Qw0g( zOUl%Dxi|>*@n*q`e!kflkN9C@M$BV8qTrH!;q%;^hIy&46?>SM{9ZBDR|G`!N_idm zoV%{Mc^xISs3$Nj_1$9n>-Zg7YE~Xf3PMYaA|NWs7=s~8232j$qCCc6l3S!DzBy|c zJM5G^ZMz+>Y49+16kOtl&uhl6zE6m_whmX7SF*7qPOnn8;!@}fu;3y~dB{;*v z@h6bCLKO z5o4skN5meBjDrgs{uLkzhq|$B96!oKy@ZR68{YzAybu`488)syyyIcx^3yw%6#Mv& zVdJ==MwR7Z3;(_$~Fx7Z1NBKl;M>(9gc4Is;}z9F7!~3OBASrqn3APPB(drIv!G z?e%=?^wi`QG!63WYzG?1xTx2+YC!oJYm{AQ+QTEuQf#j-E^rI&4Rfjz|s<5<*&l4)$269`)qx3pa^f<`1*xhm(^6PGpT;~{|kzc91b;#k? z-Qy7l4>*bxRlMOxaWveB0ZGq4_DO)r|RYhfJiTXjBX-2GMnj5gaL&M%CaYXt%qW zX%=6ln%~N!s?_P)Q@Lq$+)?%5s8L?`j^#1(R;tFjcOtf;!2pW1`1ytW`@@mnc+q%% zfy%8B3$VznpfGW9mY2fJyR!z`!`&rzMhQOsCeOAzWt4i!HKp-;w95R%;c`cQ<`MI( zJm5zz)Ut;vv{Ic_a~i5ibX|k&X03t>_2pV#DlFZvl~u^E*s=rOeAyNC%uXvFlwDCG zzLLkUtwrOyEhjA&Z`?vHic7a_&!_I)a`JpZZbf?$7CoQczj#j;OSU-mFUqbll-F?C zOGK0;zHIBXL>#0~UE&m(JIvRREim1o>`E`=E4ia>7o#pha~dCoyU^d}ie1uo{ zjc88eBMPo*j@^r9t4&>v=A^d5?P#brc0rmwEW#^dZgUzIz2u7G5_H|OSa-NNd6x1u zZdrfgCO7*?9~7{!LR(g^*Si}(!|ZgVk0Vr6%3sW5+0K5vtj~{7t`st4Y+iB7eh~2$ z#^kL`*Ip@aANlZhS}B9r3cUb|25RRH;Ty(qi#~k3_;};|oHE{2evK%lfsAcu6w=77 z!=0Q_kXvIIV3C>K#WLmK)W!CVdN|1GrFyo))V+F63M*W#mx?#&6@Z&QlYw{&rOAeTlxsW?Z?AiL=kU$I5{S`Jd|a38jE7Y_G1LX|b6f@W%m`? zp&eToHyk>}7R5^r2ZE5)8e)qgzg_p1WfT1Pf#iz$K?4Fb8efT@x{A?_U*R^!L4WK* zMtfuIdOUXv_BHtq#|3;1%C6FcqO|SdId``m>gro0okHEx zMUuI**PaS6`#>niBDytVKH}za8LO@^hy{E~l8B%CFF+uVu#e1TAmE zbef>;%P_Ie11Js}d+JkHVmeKIg&T`C`Eoee{n zzane(8iueET;)cq^-5|J<$7*vQ}ud+`cSYp#4`L9U9r~?%NU}os^c|#6^bHZ?MYE3 ztyLpP+1_w)O}=$npP|xzd*t7ZYB;!71Q^liKm@(aFf~h=YSr1W46tO6P%W%Jxg=e0 z=+^sI!J!3?iX0|r_ExU>qd`u?1Z@hhsWKBlqJ@!UR2_Qh(kwe<4H0#R1vjn=553&D zQF+Me(GPzXIvVTl*uurDqfvORqw$?Q84fu+-k4OSC`vRMQgsFKQ^=A6#8Rir3PiU~ z*CmLeA&0MJT@IC;>K$E#*igx7ORsBEmLV1uDe4gY6sZakMKeex;;^O`@5oZbhBdX8 zTvs41Ml8&SRyCs6d}x;=@ zLRkKI^DxUOmgm(2L>tlpRMgCB}9hJQ% ziWcc$`Mvq~qgEhliWOv#dci@4x3~NCGc!`JI1+`A(TxNq5IuKmKAJp<2H|5wBY|Iz!c5L!Z8$hy!P zS2mQqvMv;$rcL@@o;(XPyDFpgnw*R}TCPx9NL%pyK?anOFlBmq{v^Aq#{@rOk+R;` z%OZ8bFH<0`_$_p5usrjX>(ZcA7RnC;A*XRj? zs|?|JCRgZgEODm%yt+Hd9-|n_yRo|qV_cS4dyR2jW6g{)z>YB!Rn~6IRGBqrM(V5! z%UNA$?X{e>Dy%vUU3ZAJe^qQ$DK+PZ0_p<9LWD0m;G>d_} zG6fu>PTVZME@TQo?sDr|6h15y|{Jjkyy9$w1>t`NwnvI4I_E(or3JP#pKVXm_3*}di}yP%!9S%k+K zwGhb3l6J3fN!PSg9k?c%7-J zcP}h6biupVGQ+BP=e^EK-bydUwe zxz_}|s2*>Hmqp_}Jb+->@?E_3x7kIvrC5rqN0Gs4$d_0_;YuSasJ?E27-`JD65fmGy75X+#%S_Z(P$?VuK zDAVW{e3bh|=tCADx9UUH9ryYOFleXW!+QiC=_=z*W4EACQzHn7grrJDDRHw(WCd|j z2`L=r-ps1UZS-bl8E(%*RNr!M2EPk+uhdps$E{Ioi$rLNEgvTspQ6B-sw$M-u%DSY{LW4X@3A7^iJK3P^t5IoR{8rn5jRFfCh8qR> zK#fJGltZH$f;@vlgu#yB0~HH4DT&5`YLJSkb@v4yTwYm6<70<}ni*QN2bkWr4-xE8Xi(0UrY z_>2!!tLCh6pqiy-i3zVTlPXb#Wz8zl^<+qdmXQhjP}O6t_MwZ$dKRo!jHgFgWfpZ@ zjjo-_HGCI+oZT0X$FSas1t5*_7|JvmrSK13nP#IZrX1MlLaEqgSVNU{!(F?|8#lW4 zLeiLJjQM!R!We2YjpNxY$LX~p?v>S=^w zVigPRiB`ijt7m#52#3Rj8>Xt2X*5h-A`@A#${22#RzXaoVVZR?Jr7a-!Y3M|>ZNg_ zv5H+15mw_Od8oRPW*)j+B=KNXBHUE5Cc@LBqfEo2qnM)C39F&t ziw5|Oaa~~Jq9F^ll#&5)0CR69OAQ*mnW`{|8li;++<&Ngf=2(L%LsY`R`o!)->*-8 z)dN`^>xKN+Y?Y}0^u()rAd9o$jp~8)zGL+Om1vQ$s|SW(iJZr5mqjHOco@|K`B%d- zo6fMa!(%Pi<}|?KK*f13OHfhZ?0JrfwE3`D5a*ZlJICq)D$ychR}b{R%G>$0qh^Of zT&BS#!(j(;t$0=s^jwVU0s0_&6m+TSVc6EE8ky}<2YH4zVvz!B0_Xko3;YTzWzpC# zSR!CCK{#Y1^bxl8DU()xfIO3hQ9XeAz|DM0WA>ykgci8;|HiL+V321}FsldB zFVfdCsZlnD9ai-K2ScyLd*o?%ySy+@-q<5iprwuoge3UfhC95BN8>0(nFbYnl#P@R zlenEryQXn&3-SyW5eD_a9XW2~QWA~!kwg}FK&CV+gS#xZUE|&u<*sr5Yli22;kRp? zkYIb*&_RU3z7Pr!E2!CP`9whM8t1=e1>n{~|AcMdQhR7zJ5jlYLg?enj2kI#LcBVO1XwiI$Sca8B^e!Iq0 zqRGSDHO611Q}VQL8ch|qhD|QwP(BaO9CwXV^TO`1#lze+&cE^8H5Ni`G6@iEmU}a| zUE`jL+%?XB&C?2>*!*^l6B29>8(N4ksDKo993I!_^ZMPxYPEiKS*=|BsgOyTh(}o; zn$6>*Kbs)4z$U_#b#qvNO^{h&6XB4}_x7j2i0VR*3GH+Jjs#TZgaiR5~&D?gp{@(yY6I=YS-2v*d{hS&rUymCUwyGwVQdCTi}*qk(stFJ-Ik^WfWTA)B{!s-TWic?LG)C5sH9FNUgfI2ib3P z6BWd&g3JP)2#0J`IIumu?#_}>dpLk%OPmrY($Y#gp2eKvprjzPKq$f?8*S95;~PQ8 z!KkCq0-qib3F+~FUTFNI+yX6pT$x)gw^#nEib4yVdO%c_ik!CB^Q~JVavB5|hz-C< zP8-%+W#MYkL zmLKOHR3R+9a=EUr(zM!>e}mv6Hv~qtsWAvU;qHz*$}CWdaAh`X_0jI1DvJ-k_E07@ ztN^H~x0_U!YwIXK&L*XLO|LuJ^;B7Q@Ks0Jn8);myo-Hq#Tk)j=_SCR-AD%FKy@<% zejj@#MvhdANq()*RJTs@y+~6N{8Y6;MH~w7pu!IZWR(CFa`eZIQ6*P=+13qN5kLXLdqnf6#~$bmvFI`}LP zZ=oCGly$3a^f7C+=mdsFlPbgVQ+d#O?r}6K(9#JzYArel&qcG9dTR%vP?L;2Z7sDT zk6SluMVzp?N((stqKtaI0` zj?TEYJyQ`UujOFYN3WX)v%0yRaG~|lVjSh;(4LMCg(qlnE!E(&Y%8LV!jhlOgROlO1X@HQ5NbvA zQFsPxamJ&ykCMz1l>moqgcp%#qFcR)I24VR5@3*l=oED~?Ko#qywZs}+m;wKD~B!M0=|&Pq2k;D@C%19Hc z>DG8aotH)yJro+L2wja6)2*RvFVZs41cp?^=(P?_w~k)puI;Rrjvt#=icz<1w<|^- zoF-i8$!TdT>gaT{tptf?53$43BK5_NF;kz`>iel+ixqvIJ)4N)Ab8N9L1~TRP^e8x z9HBM{shhVw2+2d#XheZ*1jO+re80*Jw)%c~jye;e2dTv%w@y;G4szoH?o36Tr55vm zyn?%R9uTLgGYfJFw`3r0;cjNY4^(Fc$qF()HqpGWk-n09;KEKa=yMUy+w|XAbn1?mT?9hsW;i!{Kpz*qm9v%pX2fB<~dZMC$|c zFz1KO?s(z%0?pUQAW+a4fUr}tS@gewbCOIM^UWg5vnT`@WRQ!0;x8V%SGVWY=?q68 z7?Jr!Qc|qJhk_!lAH?I{@%PqR2D1!@Y+Vbh|*r4RGkvK z%pC*;;Y?kHcXH1r^FJMT?>_Swh(a}wQ`wo2Nok2knN8}u^!TwmZ(qCg9TjNs=z*~B zI0A7qnpB91cYE77Au`xe9$=IH@+@<~FWh@O~?r2CL zh0S=F){OIUe?A_sJh=WB3pED8?r9SKCO7OelN$E2zN{|meYZJwPt0Ba%VpX|@$P6I z{aJ3|XYXp^<8cqyC$TpEt7Y5RBhF}LqKYPZUr%1&owzexxF-YNj5bD^*uwjI@(nB` zk8eK7p6n54v@%h}c1{b`w~yTc&Oz}+(L$j*V%^a;{7D{%)221OI$CI2GgnQOr3YV4 z{lp}v5`J@rRS=vAV|Mu8EaOoK+&vvdNZx0GJGf`=1oxe?wk>3Vh;>K9@F&>3_`(l0*NLa0;y{y`G27-%uW0 z{zPYu{-E7&n;;Y0z_UeveY628Q}p}({3}@^*;JMx((6L?x{)1nSQi#xCUyZF5(*b$ zWh!s%3yw3wZWtybVU?XMr|Uvp%v7BI7ge zi*&YU0bf+h^yn7QEYA;(8j{TL{GPuRm9smNJk9Lr@JYR$lO}YN%^`d$0!?&APnj4_ z&pPOk7%W9X+v5;))UYNtiP6JWy*FxI_%kDW^9_GP<7jubOk{1Q_n6AqEZAd}Y)z?? zS*B)sj~Q8-1$(TTp((XYWM{@h;GFuP<7O9zaO$2C87ybh%UWu!YA zBhnGmxN;%v0~nc{zPUi{PIQuWx93I+(mKm$fV~i0d-)0i$@ddj`n1F z*fV->)o_)#23Hj+4tuL3aMRnyNMiHeFJ&{RBJr0-LgT-4OK6k z33(6NOFb?0B9l5Nrx}*-9E6(QIrxj*Ig^@{^9{>438AJp34f8BG|Ap{K4cktn~)Nr z_Qta!lU5cgF|y3cVmvoO+riQ!lWZ)fB9^x?gqm(+_={{~dJPNLUEI3!xqJ8}{1>w* z!(k0uMk+L@{Da&cZE5;PI!EGQX$6?cE#Vmwy}r=$Rf5D}ePN?aZUjq@=%uS6-6+#= zSh^O0rnf}oMkaNLOpPqlA?3`7)ohX&(esJ%1DzLfm`_SL)4PLbMW(dGNQx}dl4?#w zH(aDdruZvezOjhEswG6McF+Fv`A=4oa`!*)XWTT?V5IwaUvU9S*d1|jfO>ayl zhe5vHM%Or)DNu7Kj8 zW5{^mzbuyVKmdhQYESV8xjn{EQ9oKH<6*;0ZpmoIL&;wx<6)vqZp2u|LrY&M<52>d z-jeZ*hk*g<1v=(Ee3yxGM>Faf4=sI}j7I@ydOJol9tvThj7I@ya!bZD9tMJ}0r8mH zZJ0aSF_Q66@|VbXSRj*|Fp}}mvU5^_4swSL+FcoHdSfy<%nBH5W`)Dj3A9xnYvwB2 z_vh@z9M4$5y7dgdK93vf9aMg~huCktR0=e~?!@Q`(cW35&M} zktVkXe~{ZV#mtsTbSN{cCOYi5b2E%Yhx)}Li4GHGa(9d+It=N?jT?)2Fw9%r(H3#r zhK`2Fm8xGFZgMq~9S+e@9j(x=`j4``>FqlEhdS}$5WH5P?rIfJfN0NV_mg}f;Nk~ZzBuS#r0Th0u6D1Dk0BTtG zbrVmROl_5sG+C@wJ=R^V63LUPeovQ-EavxWWg~Xy_T(_o)@5S$uVgaCp-ij@bXOPA zq>4VdP{7E!3mT(3oLm@zyRTuHB=(iQL(|4%84TJ&hucuc5$|dwql)ePDRs)Gj%p-a z{&o97n<<#H+A0z+_x7qvzAWCW0dZDKSrX>nUNsUii}z}eIjgNAAu~1n&zTQ8P8SRR z5$&!P;*ahQ|8;_9v1zbYmSPWNUYatsyK+Y46X`BQyQ{nKN4dMEwk>BzK9RN|+FfnK zALX`9jmUHoXE9T(C30+2?8)KmH+6xd5;}`5a01d@-NX_*Q_T-kE^J48F;9qSceYC; zdD7i^=QUhczJK`H?e*uoLw8#f~Ut>PCLH*C)d$ql;pgg9Rd3i7WYxkIx zS_h_WtG}7Y(_iRAuk`lNnpfR*%{t~fF~CagC=llW24DU{rkOrLrfF{bTfiCB|J0jm z0;$tQCOEABVo9^_t{uOx`n5OTfKVqJIUv)&Qee7y*}`{;*Jplb_&;=Jn^CHa^IO>@ zexS(uxE0r&zjdb^AV&B`7Go-Y+@80am!0@XowtfJN|kbcE35dg7F685Jsl6>g9hsz z8+iYjvz`e~l{tAYb5Gw=R33wW66N5`_^HbCDYGj%hv)Tv&;72qbBG94mOY0t%YE*S z`wr&)4YL4m%grct#+eJUE;)zi@I^#!wBF94hp6-ISs>YTiJdal7g&a$vj&)+|B18R za;PeK{%W@9(hMD!UEP__c-}KKf>ep)OPO-|OsCTOZhhLxFJ*k}tnh?UC5$}KPD(1? z9iQRj<6BMCM>kE99RD^E}u z4otnR#_0I3mTY5>H@$6Q#H6|!)uu!DyuNPXE7q@Yc|?2dkDXhj(5mfGZ)a;v85!N0 z<6#3~?-@R3KCDM*gZ|XJK?Y#GO~wy$v;JBkoIead;?ePczFc$afih!+go8VJ2U-yFIFSM2-m;? znU+Rf@5vce?@^Z~i7EodkzcNmz+ayqSDW>1^TN;6{g=*@p1`W}7rd|?rGO;MrWvp$ z0}=~xT8k({Y*s1pkx_Iy%scVHp{6y3C&)%^%!p4Gv#|+*N^Y@;Sbne&9p?A>SHJ(! zQp1FO^}9TBhtIl|h(mI6eR#g@)_jigCO*Jat!H>`)SKQ8+b2klF#qrEO%q0yGV;LT zTAHw49}oNOMPx<1CoBZ1GRBv(ic8y@Z`L~=8G3JT27oHn$N)84npfX++gG<8&sTd} zLc*w%O+1iqNv$7mPkaUGt=0fgWf~dSG{5-O&wTE4pZ%GKuif@1u`ZZ;H(KwGCT`Mm zJcBiVA=~WtGe`WT4}SiqfAV4d_<9Yw2j&u{e#qu7(hSbv%${e;f8L;MsCnvl1ZObr z(Tao<88i$&-eQ}6?$^KaMN`dFZ!x@|G=(fNr|)ES^JUIJ-%$C~gZwku*VP`$3)OSi z@uipT?)cW!`yykK<5^1QgwSBbnCxFN)V<7@q;O@ad?m^Y|_^gE` zguzt4k}aCYaO^cJaqJVrSukUykqsIK_ascBs`K%gxfRA3WmfCMQ+-sHozeD5^_e&$ zyazt0YaV}cnX2Z;C;rqRqpVroPg&hVwGCab`>Q+Sj1bT7ysaRW<0Hqi1JTJ3e+LpVMl{RQ9c7EQD^>h0I^&G-R#ibY z?$;G0I<7pzUV?kV8Rd?A&`!$E&!}ngcYejHCTi7*2~tkC6rB5FY5HPiC;#j2W08Z6 zD4xHZeIc)7p-sUe9qI>tDnbmD5%S0dJD?m@VKon1Q2Iwz2s6f8mJO8$YA)$v%>4&y z#u=wB@~BnrM)}Yp+=~T7%&3mfqJ*eC<>H)beQFNYn*5b_T@dXQ1#v62+^UZ!jm-}qB5 zmfz5B5d}D9ze`GE*o^1zcL~ynzR8=}@0J53tE$C6Kq}X@Ftv-ymh$3D*S7dCzDm_C zoN>9ng}!%&36B|we@-tzj95lwf#a}j65%zd#%Fx}O(LO8pd7d$>#|7%dAttJ-y|Z& z1jdKVmsj3?88{yIeVRAOI__8b*aMwC|JZ%@6lfFLK)Ipzc`=32n#+2B5`{)S#S}%X zX)Q^-upQ-=o!B(>_b>rsgm7emWXnsfONaRrs%HPC zR>m2njeL-M**jtp8)feA9n0l(bR-}bWL@?)xlG6?srzGhZzIsgv|lKzD=$B?e419K z9pb&qQ>Mq9RXI;d`Yz)NF{t+=Uo-ksy3XJUn31>CUn%G=r8dG3k* z;&NKQ;mgOVS8C30Q^Xu=N>2!Ew?8ZHrqpy4ZtBAtm4a^ zcYcPH=5?!%3ho^=lqHv#cb^)gL92@W;%T|z^f-Iiogl_a5-a(>GBS0aK?-njN{EGX%RqN1>B8yBeMJi9*PMjZWrV>S(RC+Mf zitL@Itq9PYy-Sc-AOcXxLwc8|-THd%ctG0hU6N3nO#(zhay&nGSKUp`;~Axzl<;9z zlI*PQwd4M-xwC>qlS_m`-N?=g4`J(qjq2vkNHTtBq4ie z->td*Hup}DXwwK#$U`YZtn1p9QCQUND=WG~_a=ns$1{9BgxN{+ijGP)l|x_1N|GiF z)mk5SXMU4Tvk51mHmd}Py(Xj2VG&9*vCYwE7Hg8qPqUt+QLB)z*{Fj=n@or2(`8cR2$SlzbaL7j4&G9B` zyxQ$1h_tyxFr*^WeV1;1-n@ham#7J8o*bxTlNfy=t4hXx5Na$C`=QhVuLOxYvpDV6 z&wK^b9FGQ0L28jxghWnqa!@(Z=E|y>35A&8XO~5qFI8>&glnjUCg=@vw zzi!luxqBT*ioNUaU~WV0T>nO!-!S&ABL})`&HDv+mzg7P>=%@2^b0=9ZdB+)?pC+z zL+@2beFPY^j3IEuM|z*SA#h|uO^x8jI1-X75j)h)DpC8>Jw>uR&ApkmH{IyX?49Yz z12z(As#1(wy(|6y6ZfuLlH|sjptOgVzExM>uVgbwky2A)WMxL)Ig&=z)$C?T>|&{_ zS{!M2Cf6gvBQsc$5vjOTb#af*&Yn5@W6%2j*mFuh<_-3_=1KN5zyLP`JUl$yJ(JQQ zSsCtb-v@)iU;qq2({@|5Ce1|T&`Y-(zc}2YH*+!zY{WhCHmgk}S_E!rA_Yspq!9z- zj5Lo0-6K7D(jXS}0*f?Z)|nj%t%hi|wV@gc)>?_0fpH9UODS4sZP-$ZS6K~@V2xE< zs9)}E(L$Zff_ia})>x=n@RUp%Rt?E3U}0d2tA-aqRX5kLYFOkN9&$xhj}^l8)P})& zyqZeZA=grMGl^DG8`ed^I;tTcS5X561TlJ31r!G8a{bgDftn78nOee>MmcU4d`YjW}^K^(Yk3vBQ0JvHEIafOm$Ctb%psDJwMd2r?nCb6vI%i-D+!%mPi{~Yrz63 zDMQ5^+FHZK(T3I}u`n9I2g{;O;iE-S122|DbO##pcv z+Rzva7eWmUy$q_`XVD^P!}eLc1ZtV+1<+6>(eh_wl@u&~G7-7-8Q4d(@Y&Qp3YI+$ z3$^H}J-S+VY|*1jxdo0(KK346hhc76QpFt&hu2PKA){cSGiDPlbGE>yV3Cum%&mWV z-DuYyO_4Qp?If>AC$zW3buPL+7cFfzY|q6Dn?@VKvZi+P;i6_kHyLkilv!z^07Y-pIp zOP7X6uyCn6nu2A^h8<1eqNOFGmMlXa(Sl`T9tF#lmWNub)TZhd72EXaPG*7ka*w9I#COhdd}3ZBPyLVoHO-8i*za=@xSRDw+T!K`mVYsHOII`f@RGVJ@+=tCr1VE zV6PlfWYaVH`7D_S*;oIq9ikCP3F+uvUjPm_g96Z>%H-=#AQZ?gp=n^9;q#7tCtdoDGXt;bB25LCX=%>MYQV8BjHBz%`ip0OGvq51Qrs1ft~>dtqRf9Le_y) zD*_X$T!6Wme7fcWSdeN3U_!0{9DuAwtLdQFXzB(aTBIbWpZM0sy^DRC46s;)i{gTv zqjh_iP-sj?06N{gZWnF&Tixa#)$~(NSOI~2xWfI4eRsABTR`1@MaYZcEsQHVha2{b zc{*GLIZ<`P4Jk0@z(9_KvQ7Ie$c%4hn@;39A^>w#xSw_O7qba2P#@BH0ebzbZa-Tj zxQLblcH}s3>}fh!&gPWKUg-Sm=8eT-C9(La)7dKf{?+qe4wGf_;@@6;n!Rir)BUMF zUim*(Y)9BgPKS3bRaP|#b4uXGil4^Q@lu~n@_9oLE72iwNgmvNpxk<+l8`Vb{}rpL z2lpR*p#c7_Nhypphwv&R{L8Pt{;h(z+X%vla~MubNt;@NFejh2^srSe8EFoIwe+xE zEm?66gRM5{qhZ6(tIDX`#W-QInY!P+`nYb^XX_Z`D5k5d%Wd{oQHo$MH0LUvMKroKMOV)u5^zix1n!aOj zCh;KD!Ehfo=m*DO{X<mH`(y?LS?UtLGfvSjg`c&E%9b)E(zx(28uD?l~k9V&0(9b)&? zYB`=Pb_Q3g@pLq!|5Yx(?iSuc$%;`SwByH-+i?7JJk+6S-G1JR(hQ9781gbW7OMdy zL7m zBS`@qLK2X!Ni-wafw7H@CbMLD7T>8;H@Xt?6tsYG3|PJRB8cqjs@F&g zP(?JylbPnNvjT5ccQR87jL;pBD>NJMC`<#cUB^KJun`=A1q0FgV0sujl4-WSWP!)7 z52pR~NP25$JM+-z)V3Xxq-xKIcA8`lcRtXuNL>#HITDM+IwX!k&gVG(C0O#R8-uVc zg~;L^DrZ~pn`d!PRX5v0Ni1N%P>u)3@E2+Fbi4?|jk+Oj;Bx4VDMTuP_v?>)>ycM zX+4t3xR_U!x_;`pB_@% zh-T*s5Mo_Hx%uPz>AhX$uT5&&* zcd%p>w#vHwyq6ZhGK5pCvsj0%i(A`by|_a3yy!ge0@*Qgvs#yskU@#5B zow`Fm#{lw*7!ZtOkXL~r7mWWJQ~`@C!WSdKKml#7EI0)OD+}UhuK!VY((8EmyBjR(;5U^z(>>}dI*$XC(AoPU+gT!4nlV*4^I}$P6q( z!8ta$52p3fcx|+S5B35h9uCNn5EVgJp~$UXO)3JiB4}}z4Nn#rrLBS;?R6&$oUjO& z09WOz9FO!&NrRduSplvQ z?-ZVwco;Xf1|_!ALSzf!uyZR*FRy~hwgy&agaybJzyasp-u!+x8Mk!&Dhw@`SVX}> z#XLsy*=2t<8U<6=4SK&^V!$JR;9Fhpcj+N*W{9r6Yv6aK%mOYR&S`}c*P+Xc1eY~T z&n}aN?gZ*4u4|D27YXL5LEX&2%x;Ek+Y93qD&v6IbAhz}b3-ERKn-@JgFsVV&!^4uGb9GQs z9`(e>1T~0yq9cNUtB(iDbv~axD;Qce(76{F=-mJATUp+@FJ>cLuhwekE<^@I#1l^? zZ+JyVnlxy51;?47G8~9&0=XT;fp-HtFv7yptIj?5t>O784SZ{Gb_$hOoSPybgELc_ zKI4Zc?HJ@PBf_C=&%VC+yXeu%C#My>Ciyi!Fdh< zm1jBRo#)foni~YGR$8EGhH%Br^-TAt=^VfYdN#rWWDDSc^I@dP1IsD6EuD2;4{yQ2H9^V{)d(4y;ioko@hwc;HruO(le&&PUJwC>ujk)#lf zXou%Yi5;x1mD0*mm@M9*^4ffu!d-W5KFHse>42Q^fS>eyQ{9XQ5~NB-f?cs(GhI!V zvPuudMxn(Hf6{zNR{Nqxhkrh90mura)%OWWY=99cc8|7EetPQ6H zMqKwKuT3E3styQkY=Z9n(3;z8f&!r$b!pRUO~pyoX5F5tc=^>h=f?fhb;j)^M)v)` zw`SiGq8e{y<*}c}8OW=2K2LY>j{*~K!AN3+HN@i=OZ>EaIkfB+{B$6`0%K{@v7eUm zv_ZGvrMYvFO*+_?j{RP5&RCxg464=;0R$I>*&QY3l=Y5hXrf# z6&MqVe?R?`Km8N>Ki91kn6ePuz9~!L6*!lgvXFHxrX0wxKv$V^9CC=jfc{zFk6Q>i z3PILzFMQYAbljT+?}ujHLT?fyRHH84bL{m3soJbt@Oq*AYMgW9jzf+>Vr1Vfgd7DB z)p#o_=eapt13YeRZq5nQbQr*SE}lDzPY9?xRc$0`$Y+>}b9g*=6eLSjJ+dO4z|n~k zB1wX$9C5fz52wJW$$+}^{wzxt&53t~%TdR;)445Fk`&aaXe-3JYgdq?(eiEAY#?}}opZHFP=FPktF^dF1~?yH6|J^1tt>jhK^>nx>gD~5{|?=B(6epLZ#fvP`3(6P=J+NDSPeZe1+4s<73C_dTk+3K?@jH zT#kD1#dM%lTQ}-4k^)qSc6fZ~Jx&s*`#bK==gITmgt`1xYn6puEH5WKw1~tO!+!o4 z2bs4In~Qa@oIA&~9(-=ftJGYz%UWAjC)7cHH0%E!2czRmbd$z>hF&zCkCH(e+>KE+ z8ZuHAJ6?>f+7b{)6C3}CT>?>zA?Y3BSDMNjEDEBT% zb^OX~0x|w}=dsdW-78f>p^{ek%CeCp9%zB)Ei_1$G9<*F6O?B6AzJ z!;R#YP&2UQ%*L0Aj^tZnMsiD-8Q5}WIAl(H?v|L5+!AI6)-fwKwYYJ%WNJom2{+v^ z-?wX^Fg3g1#s()r%S`JVnwA>S(hq&x{82F{zwb*m&{a#^y!0}T{w2>fuUu6abK8vc zybUTh5?sd606WX$jw`I(*vr+8X9^{k(nGi$C3S^TaJAXw>}fJt>A`c|)!_Bw%a{rh zPMvG&I`YeH)pdbmR<@u#Gq3N3g{7^y^pR>ab(gBw2`|&5C$K?_Q6JKl77IENrA5_? ztf}HigKd!`!DZSrz#B9d^>J;HE9m5u=2S1o37Vma*jxT0{k7GWbMa+b%-`~UdyQ+1 zd*!xVV^O!Pw5j{$HR{AmxGe74)R~JfQ)m8`SEt*NkSyopZ+Gr0Z&P>v@sfpUDh%M- z1dj{dyZV&$y5mAGtq3|lEnOG-*KHR1*9FMGUZd^%Z35pf0KUHlSP$PCR`cTm;Kv~_ ztz_>Fcl3m4U0^3n0=wTlFi!-#-)E`b-cxrXSja1aCm3hpJQx&TjK+g8j*`%;w{-_L z1#;Ig^01B>Z`zX*G^hVuGd5Qe*RjbDfc2RP#yE6deM94jQs`lQGha14X~}ePCw8#3 zTzAq^3M?qT1#-2ZORr~58QATmTG3cJ(BD8pZ*`MiYiT|fTONq81g-9XujURXe|BI+R zF7N)=ye*`lEdOWovJ|7NDM#_kz6^i4t_(=Q=2HA>r=S@BcWcFnfyzq~zwZn4^QbUB z5BE1N0lc6r|5x*}tixGTly$F{mBgiC{>J^|no8ot2RQ3WvgUPPl5SKd?NE!@k=aqT$=T{?|eG_#m`lsxmU{ld@@@sk~uFak(h42 zpz=R;b)3Gns5}P$?oJ2)uZSIPOKhi$|91t?zPm%Sd<`WU5w2JG(_boSTbDLJk^N8q zx|yW>4Ddhw+h&sXy}rKl*>CPXQo;_ltpFpzY3uvrT|$Z>jjxj&yJ!vT(eR-#Y0RYNYuNq)_q?AyIeejl8c zzjX~NNlyMNI6z@JK3~mNdJws_R)icU`#W@#sZz++HE1L_c`pygm+5pdp6LqQTFbc@ zC;7Ya;>^}9PcJ6FK7vtnXOq{5l#;;)8YmWH4Dy* z+*-rA7$^DFi`nIja$rJ3`w!c;5h=(?e+hf#FBjuK=m6qmThU&MlY0wCrsAyiBDb-% z&)1?H!gr!s<*nO@k>KRLW@ooMaaXdnzp#?Jx<~n*ouyT+`e<7{vkb@i`_o}eck9^0 z32{~>8BGj=keoYFi3HMHLgJ&cKbMSx;sg*ujEM=>5y~GG;ejr?`o0G z@AOyW$&m8vO=|pR@!5~><`grIu`oC5!QZ zlF9AJmHF|2HkX>cc{dv50{<;HRy`Z0{nhz-IQIQrDS=`7^bY=$PG(mKs+VW6uz*eu zl6~O$_#ZpV*=(|S0a`EP4yN-d$y7#C-pddh{~ZH+G1(hmrI)k$^UhuW6L3B@?y2jC zOej87W~T)e@;{a8K~{v6#U#wASN@)3WUqbZMt!7uPTaD>D1Y?V2!upPh9^vw6q-+tjoj{db?u z6Ma!(c~2x2z6Rb%%(@Pp{#4+Ygc){bODsWj+~o^~(7RT190}r#_T|NFsB7Y3scPma zF0e>3on-4^vExKp&tY`KKXsk-?3S$-_qS;R^yV4rQW;{^0~<{#=xb>MBrNM#sJjpE zcOGFU6~g9W=icn{3eLVi#sK3vS)tVeecz>?uqM9{qJz^(=?fPlgW7sKd%s^Tm6@&)Jt%(kA7oFz|j~I zvOL80y`1edxlFs*FM})Iv}%9Tl%JBEz54}UX3}{8#LhiN1erg}$t==k*EfWP^%#g+E>FLAsn#e6p5n<617k$v%1v5}k*RM9B8TT(L$9BJc5F ziBtY{MOWQb>ZJv(*~HsjAw0Wncs*+LY&O(^}8nQaBoRqjJeV!CS{clw(49KJ5Gi|cR#+!KKPt57N+NT z476c7Sth1BZm|N)+^cRRRdubGmHSJUxQtF3D8l9R=iQ$#ce za6`v{0a?zqGROfO1J`2QkgJK|IvJ|$?nev{@AI&(GoP(s4%UI#5JHUk%mloygK{S# zTdqSZq|jy2*=t|WIzfj9zUaf?H{Rgd^ShXp8p`1#OZ7qm61>m)MfQWo7pZk%SPtP| zI|u=mGptAv9p~CPvQ}iabnPrcQE_6k9}|%Wh&gx_DVZ>>Px%$opg&>dI8o+LjQU)8 zWH7o_NL4hNSacc2PWK6z?Dk#bc5`58%7!MnAS~9*$NkkZ=nuE_HLj$xkM^{3gzOE= zNPvQpYtv4MGf7p8UvKC9oU9^3UVe7lH!xdcWJ<0>z%noDOL5q;L$DG8Lo!0Mcke?s zI$XHi-#*0{)TqTYEN97fDqFYeEiIWvC<0Dw_Weg@MPIpf_W{jzEn!Hi@LN`ZlO-#F zf9rbr*}I=H6ek#%IcdYmwIL^m4i>-xDd`-&*Dx^FE!&V2Swt;_DPi~)wg905yO`0y zNPZqoo|QYnaPsWgZ2n|4nLXp$ibZF~cg>Gx2Icu|HSh4)5%XpkDR+nhRuGfM$(sZ}>1?7_jl7nW{cGaGxs*?#CC|kA64D!G!RHgVka=yW|d)l0jg>>D+h&$HY~qvWDtR+~slny^hc&<#gnd+0op_qUUoSekSKE6+pgZRld@&~KS zhi10!EoSG&nW4p2Hx(g4aT33yg*?htG zPw-;0w>~rf?mSB-PnH*m`Ohy%v2RI7(w(nxxQ(*^3X|pkx*89j;8rqs_*sEOLgx%L zYK#^J=7Z>2y%(NB zZ!LxWYo)NCQ`lci;ow>+9OM)Z)>1gURtkqXg+ron%PqxrhqHlh2b-IoY3|(Cc}3TX z$!<{~N-Mk_BNjmKcp$pGySqTdHPEwE722JX5nxJ*n6Gru^mB)Sz~H+BTFX<~Enk4o z2iE4xJEFK&RQ9UrG&=XXSpOkyeqeszu_sGSko`97^5UHI-~YKZkyG^=%q%@#oI$zOBxdtxp0S)lgb1ZF6yQ@WV?qHozj0l|2?CpE*R{;eI zZ~Bo^hZZ2F!E$wZ*1RF$(gj%YethS|WpCbdzj+7%zi#H)Kc9VzV-B$$Pc@J78aPEcvRMXwv)7}07$PJU@6xMKXkQ@wq z$svw{JU%`-YMbgtJV*6sgV|*t_h({k@0yeuGn#O`I6$tx0;dDyYDn47kWgS5bsQrz zur!R+X!{n1c^vee2PZU_Pj*pT#uv|$#l;;j;|#xWvsPlWH@_S&;k+%BUFU))!N!QG zo&1FERP~j2vxR;{ipt*kYBonU!;~;{1VFxu6^-QV(&Qp3#PZUHU96B|%S%6C5{gos zUSuC}uG1wt$@7#t2k5-xhl@WP;tVvh7Md!;bdcS7O@=bY?7m`EJ_{@Zdu=D>2-(T! zmVq6|ItG;H(MQiuSs+Ztya4W)>OY?+muBeqvQHRORLgrjsxth?r>dpXr{np|q?oY+ zeg0ea^5_2FsId=+DUR(Vb)jFvq8z2^nss-rsqz&|sVS_yI>>c`vv;t9&sZHA_}W1* z*t|1LF)K1zbZ4Wkj~tX9s?LSl2r-Vv9Jd0P?48doI@Qo47q?It`M%I?SLjwT+Z>$< zDQ7~8qvWekL1cSK95M4pt1IJWRy4Nmm>E(bup-a%EOJEAAgRh84gwE>XxiGjd{TR($qTp*?)P zo*PUruK+h&ttz-YodusOl{pbHGxr4M{&|ks@jpXRFF~4dIf_7e7BLYp-*`kTA$#|p z@X|CH?Oo+ZVxiCXq?kIVJXJYBDz6yX`VA!PlR4z;h@trGqtEk)zR%2aWZ!WUsFdWw zqfVnN;d^x1JxI12UNyi)+7s}5L54%WqveUs`lV4-Ut2VVlb+HKAv9xc;Ca5y# zatCF>7?qZA70#<6?f*vIo+;>%XS_a2IR-k>0CYE@xqJ;@scQf zL8nMfll0B>sXn{st8gDk`4m*%g?m9~Mn=e1NY8#~y~O7Zy3_4^1Mo%XOM?ztuV5&1 zhX2RFR9R&Co;Yd>;RpnRx^{q#EXB`f12d{5PkQgpy}$Y^>|wmN+*idbA6^oW_k{TVjJ{_*dvV#HKYlhd)s3mv zG{wBnazSxYp77dPATh?U*d1cHd3Ht#l4mCu7@Zvq_xq#%(Jsb<2Pp;s`^n)+Z+}1O z@AdZfj!*TJSh+rwjTDRP6jOPhF1_h?U9S^i>o*ddy+bJ*{IlvqUdCPSw3$1I z{mWOA@@9;wdRz~8#|vS6FEe}jSN`8?K8|#S-9-So)9EnWe5W_-wQrgp0oq|i?;*c z0F@%j7fZY%kh9F&O$4O>4NHNh4*U=C>G( zpCDegU?{ppM;0A*YYM$QCdv!W-wIqOExT@S<*lJ8S!<%e$MX!N0g zGIAIv_oswo+x9bTi$icfOcYoJPlgYNvuEg_=wktx3(P+Bo($u#VM5bpzq4Oyd|JEF zz0nr<=Hme03d}z7_zc^*Pe>g;El88Ngg4hK&s&f%9|t6?!0h9Qgh}N3>d`+xGV9OQ zzDR3V=Xy!7e9gnuI6gC#fKLN-5|;hQV?X@zzAJW64IZBaDI+Kk#T9k~a1lq`1beKiQv4DQQ4;hpXsTggZm33;tFv!o&iWw^> z6zh<*n*>?lc6Ns5sh&`^d=HD}e@JzzYWV=dcOG}j=RjGotB8+yu2g036=dU-PjgC> zl&LS)3Q8cdk9d*1^O;Q3`PyUyK@UH+-%?A#2EU=1;HSf@U@(|DPtl50#r&7juq;;* zk8-?l$+HYA`}o()!X%>-6BvzS0=_Rnq-kD?)?b#=a-SFy$d9;B>3XJZ!iuPW!cr1e z#gWpfgqG*O$;kpM0#p3?N>U^_dx>s37 znhHgZfc+m;pXGtGY1-;zTORcj4juUQ?3s<*(Y1MZ#%QEcem`y;<&mU>7bR8FvUeHW zyx@{I?L?b{|P-OlGKY5&dWQBQXDNb`-swsvG_Vi@_RDu z7(|=CY0CL-PUZ?Zk(fKDyc<=`<>Q5NE>dRJd6Ya&k?)DLW-JG<%o0%2v9ELtEb99W zCIs(@lVZXXS1KF<5`M3&E|;3^{n{Fy*@em5sTOt#cAlQEpr{E>XGG7ABrKblPpA@`zHf}Aff{tyQF}BKvmzSW^UF@hZC#!Ei24L z?;tU1o+7^$m(K?t;X!Fch#zH}khk1|ZXvV0L?-^9xH&pXt%h>{J z8VD%_AnkXz>ZZ~^o*5tVHoZlGG*T57DBZ{N=$ z(HB}sl-5w8Gi$qMe*pOpO{IbZ;SrMDCt}nPNVOaYt0S<$;ngt)CzK_KU}DQk#usM2 z+TdBWOJS}D`Q9WwPX>CzxV$%vbZjM92$q(8fP=&#w(~Wb5i)PTG+C&|1*25A5fPaE zUDK=QIBigGekpf*Ik+8RVE=teA{af8n;rhf{?bX#vEv1kJk+M>8_aHDGnYLviVgxr zb4Mm97A?#Hrd0cmBU;Al%37kTf%3iB)XZEB;NL~#uOa|fE4MC_b#v-f8-P6^(riF8 zr+1sQORFX=Jp0RhcHMYAqy*6=#MmH3tGM#WO4CF?#_TuQZ_=Hn&$=TF9Vx}uZrM;8 zD&Mt38j_mPi%n%1*~ecQ28i&$pu-G0%z#>rD7#`*K5EEqOMLG%ws?}-T}$vfBe_~zUVxFC&j?doe{PqJFquY+g;en5{E!yO9Sm1l{zXXW^`mG zLnA3niE@OZXMnbmA*LcbU)_EDo4cQxwP;gm_G<6wo1N(_9Ho?>Q&p2&*WzT~ePHmQ zCVSr=W!ae4rS-Ep8u#Bxjrboibo0%2Ha}0Me0V6eTB{@LbEv*pGiHw0tTbCr*xMhD zeFvp&IX5T2K)fas%vS9hz--4bx9~*?VP+jB|Coxv7ii(iOyj$gaQ98Qx#h%V&*%F} zsbIuFIYNdUEDE%NMm#AeU+croH;?{+hz*)uu<;0oSLwT1FQpa{gR+Gtn| zC&+@bw{3MsV?AqLXULGl$+6g9r69{gb&9e4NRhiEi=9i$Zd=^^7ZmkX^Okic3a@;v zIoCh?p|H#>(S-;v8yL!xR3PPr%0WzeWe8!UW$)d4_|2V1_rLnQ^V=&NG{lX@25Ym? z2u5dj|NCQ26@l{E1?l*G%6YNS?5B58ZHNGH6vAiEF?aS`i*4d;bztfnvnyWn#>Dd# zE@n}Lss{Z=BX-IJ@@T|rZ9Wo?qY-G@!<=FPEL8ai^bYlb@VS@17Yes6R1IUxh!lck z?>uB|ktS&B>un-N`GPQh48`Md_*U7tYm^hp&u*KeyAUh=mJy+%_Y9NO6;%(mD)7KV zH^}les=#*Fk%=L)w;s74J73r#mr>5`8D{zDaFcF2pNET<<-;9m#^P{*P+)eO7G(&c z^D7GhP26_#Dt3NOtDwBgv#>npX00<6mfe2H(>9o_gq7No`nP_Mm?6joDv#81t+QKl zq5^mpoPF~5K%hX4I)cx}%P;Nh1!58O5q7EMHs&uOCB+I49XX);fpP_qQw|O)U}0$a zR#^4{O^IO&kRM>A>mC{9uNHJT0xhLb_n|yR`SeNop!+J2n{^)AU*vf>q!V=j&Z{Ey zS5&qgFueWHq)2wcal?n=hy@eubp2_EG7>Gf0b_PTkXf70|F#P!xnOs$qK(;+__)$=m`eD=sdDiOuu{IQvvZG z3gYHM3L2Jl|%%mk0hrhvQmr^>A*SdXvOKa-|Y?4ee6r$JstJ}+^R8Ah&xTD z|GL7M!yir%f(Uf%g4pYw?w=kX9|!2aFKt43sk!S5N!XuvzBcppFo0#c^M~=($o7o$ zU5zUU9i0sN$H#knhv_IFRNkhm67mc*&>99hZ}1u!@`&R0W-m_IubkwAbtH1v)x!MMtvLc!SlTN0h#@9nzQ zq{Rze$Ol>%t>dcl;;fL<{_b8nIvoV%owZ^YU%J864o=>gP08EkmZ8CgHsk}XjT>gQ zR#*Efu)Sec`PIYdmPY&iqhxn)Z*UNH%@-AGFzS}_8@mS=Y5)1+B7M3;{~EbdK|)kf zb))offB)q4AnhFm2GvfZ&JAif#$6B>lax;?0Vf5$hLbj@8|5U8X>Yfep6vAxvGX+v z^fawlZRH_et|u&W;%XF1OJgq-VCRb3+dVxz>Kz{?{oT+T)Jt>DgKiUW?%+Jep(mlR z){xM(b-g5X^$2#ltzRz**|hiePtx>ww|6`ohE2QbQhrg>MoOZq0}UYR;2=F393J$K z501iEw{CZYm2S6mJKxjd1@0lXR-X=baU#@y&??#)_~flZ#VC6kcMTzJj5kL}8Rp^P z(c$so;r?DPw27*#eC2*4^s0LrP^v~S(WGxoiZ7LcKhE>R z?TD@cX=I@s`9Le@CMhW`o$jVM!|tHJI||$MvUM%d>M9bbhG*x=C02LMoX>nuGZ5O6 z545)a7}S*3lB3hZ9>)F2et1}KI~{?Te%aGlLO&w}3!_0Y81=5d>Mn584)zwzu+<6i zm8&|An50+rbLB3I~p9P#m)oi zd1a{wy0Y4al@-xDIKtVEI6(8@G%W3~70(kzxB;TjK!0y{AE%EV_Vz+5SFKQy0S4}_ z#8Euh)a53N&_PM`HMDfa+%zp!aVbs@9UPC2PkZ4YrEVCAlln%yziHmn;)Oco1FeqM zaaDOSfq2}9pFK*$!E4*mo(dy+8doSnKG2G|IYLrH`@8-9-r?!VaC8t_#H#J~vt~v* zppYv|J+&BD4o^<@5BEmlz^-o3gH3=gI@#Y-(q*y516}O4VO42+{lmSZ-r(T$ zBrI*)6Hd4{V}WJGIiEZ}-`CJW6(=W$$w_Z`a@Y$8Nz+zZt{fy`?Rt`q&s{*Wud&yV z()Dw*q*U#l9`9ogGdbMf4cltfZ42c?Y|12Bx=s*_yb?|5Mn2HGxo#S3wV|Wv>!u+i zW~HVBHTizsG!9;fN=c5B!=yLZ#d+m{AFrCL90u-vY*)r4wwuM?*9dE%wLM%1w6X!o zN!!46K&yI}(7N8Q1A1*;>w_q-1Nu;!*`Pl>N=Cim?l9~?(pH>xycoByA%)$^2iop# zgo`pn$weFDjc`$xIo#dd-9H)ZpX`PyLhW?&vO}FDNTVM3PF_Qcx{?ocUEL@rRcDfu zuCp8Ew6^ZFSGiG6%H53ik52bakC11+8+0voS9_BAKuinmYXD(2@`1LRYd}`Efpc_6 zqY=iFyJ4BjcXQ=ARqjIPoh!d;jXR0_vbCLgM$sisUi5?A(Mj4%hFDPv`}6;_ouduL zWmgyD$&AlGm6jxh=a2)lF9jw$q}R@chRJTacW^v7Jq&@LSL`Ip7boPb z)A~&v2b#tje!8;$X#7;g4byaRx}Oe@4nqSk-|)FUy2V_ot2HfLYDJ)Gt+b4)$~qbj z`srZz_+USrp={f~&;d3$+=+25ToH%6NWD2i-+7dT-Dk7Fb}<_GusQ%)gRZOL zn$Tr+93J$NUOL(vrO~=#+tm@QzXr%cA(E0-$W2nxS{fkL5?5;NMHwdjRvaAq9oz!v zGaC;N6rR+Lc%XH2{Y2JkLLOEf>!a6%jMf!4;g^H{47ZKT)E zL)qv6cl7PyxPbkWa7MlASv_HeJWU657S|u#>f51)$m`;04;k*exXyfd6t<75-Ajng zGiNxv%BKm>a4@UVA$c!KK`L-e|7YuaAU(gD(u1{TI8A86ycK}O1|BqMEAH^@kt)1WsRCFoW5hGEcDH%*#W9$c@X zrK_sRVRhBC4XgB@9uH1VlGD*~G!AcPJQa+-k2IbrzkHy}fBi(1Mn=cSI2nc}#SVkP zOxqS21QZ%rs75}}s<}Z%Qb)&ohkLt+dwVA*gK$B(>gt>w+1&|ad>-&kXVHGK05eyQ zdZ5*FGh~!z_V@M=2Ya{*JqZ_0pS2uUte=oZ0+l2oR3#s1RsE6JY2BsCV2I@QlY_9o ztQ!s5q`w|J-{XA+AoOy0I5_Pm=`QwO2W`HcO__cRxLf!}j-5nYLq%87O;AzwadbKy z3{#ABhvEG6v=v*HgN9%x@>pXF{m2JeKQ~Kit)_GobF-vmAai^)z`-T`!5((n21eb^ z5lun$;eG_%o8y|A2AB0GSn2w^VOF{V1uI>FH_U2n4eF824YQKNn&Xq*gQMQTac{I2 z9>8!dtklAI050rGvbq7gTF*+^RgxSHaB%4{&hZJ_VBO8z*hGKz2iMB9c%cpXKx?CQ zTvgt|@$fXkA$t2!&RF}l5uVO-tigpgwrrh+b9r6F{%w zbRA|>k&`qVMfN((rXnY0HnQ$?=yRiWCj%cG*)TjFj829J2caofJzcbX)}wHxAV3wS zB*srjUu@6oP#{t-brP?H4*YS)-%N_cU-A5N9h?+Sa zVfA@;xOaLIM#$~2wnbA5CmMYXEp0G2O-mWhFd1S8L^2%hg?ntqtxPj`4Gogj;KI$s zpJ-U2Ciy_C>Bji1)sJpiH^yiG#lL^=PyX~z=>Kv>o$em*A072~aV%CCzID>&W9xvc4Ef0XpYBWv2p zDbkA(0i4i)i=NIVPhD!$sYVbgIPCX^!xS_8 z`{4>vJBPi7=NO%8K*0p3^B?w3PmhoG!qtYlNmkfslgyvvZm%nseot2b2oQmu3{DP5 z!`+iKYX9vl*#(<^PBq>dBHAXepNKL_$xyrM>nD;&Key*fRXTjWej+kvRz&o+p6e$f zH}jnK4-OBoV43WnhJ8jmOJ8y}eBA{y0SRHjlAX5TKN34>*2!Kk!7>oGL65?|r|k?I zAFIi;k^}r)ZR&wm+szYG8tb878V-|QzZdSTsoOi9&y(R8XQ=Y%Bhd&#C-Q;T$#p=l zEwy%k*8wdZ9yXI;o@a2FCMV(AaXXtgRP&Zs`UJ?bA_OH}5jROmRS=!zhr7#0hX>(| zSUY3%e5OYn<(+6$p`ralOo3x*1jZc1aBb5Omu(~(bqyU|VK+rbSC-I@ZcR5uN42nn z{q*RlH$2|k4JS3K9{wJV_S{hz2{MMiJ;U7C6X)DCmZ&26Kv&WAl28?MaB{SpAXNmZ zDuLOyvqmDapTeO)qOpZ$kXd(fxR(xxr{Q?0oiicTAJN~Elczc$)IE#O{X z5&i|ZYY1s0y*Wa;&7umWhP1o7IYQEn;R>{2dN>@>I4h{Kb|TWk(SLv{DooPR6?Ri} zRCUogB)Gle6sre;cG?LG^TCzZlba3bYiy|_K}zfBW=Sbco$T-8`km8WuNMwOt7hzn zPDvc@h0EJ7$7u8Pzxm-_eT^wJg!A}!_m6fDaKv;_ZSBk)+XvCTv5Ts*)g?!XbW6CVlv$XiMRT%jOINGs^(2(8tS zb^td=NH%_@I^Fnhj*x8lgZ+cu-QjU>w|5YBCM|>_6PyD!9nv|YsW@jez?AlL+{5*n zgQHP&o@V=VM5@W}E8sPZv_;<_BW2QuyCnK4$Jzmw^^8^dKK- zJ+zFf%8Ja3(ZTNC(Qz6knzXZc9_$JjXgpDT`9K%{`iUrw;0EyY^dvbxJPNlYHk?Qk zH*^g&h)~0EI>J5m*cBNaO5DzATXH6OpuyI#(3Nq`EL2S(sUD8==x{HZzS%NkA(&JQ zTPII9ef8Mh?f3iD9WTrq{nv^?ly%GN&hL*$4Tv;B>&IFtJf?UQC!mzR@2n+M=|Ey7hD9gmLo`Z)YC7?;=eRTs&0nlF0=0Bex7 z{agdGv=Bu}TgWvaD;tp7)EUh?t~a$ENd_b8R3opUq&?M5Qj#t##huuvxahfm5S?h<&bF3tlXL(mlp~pF z<=g<1wK~ym{RWswH?NeX-TVzOk#0XdO|e%KSEFF>U(mhRor9rEq0WYrt7PCZKm!nA z8xmdH#x)lWFPT?MdGKf}Z0ApM=xO z?QEJ*ht-WV+8P?#WUrfsvectf8mR5{2D{<3Lb+#IZyA_mN7&{j*+&{cC_p~Y3b+Pj zRp#Tt-qGkZ?H`|n6M5~Ns-SPF9%(qC0r@~{;M#et)rao#uboHU!QY-MMd?x3weyf; zu2F(iu!Dos{(iKdsU2U1vAK2<8ce4s7l2AJeF^2U6Gi8$PIHymOIL3qN`{nCIa zcN92o2GIl^Olyn^H1KF%!&M%oW57BK9y$GaT% z1+v$G>I!ZbG_T8`q`JMg3#uA-I_Mvd_OO{@6mFTUdq^sp(Vn{ibEL%!4a)~w!>!}y zN`A@Ny0Y89sc1*;W40b{HZQW5zIOja6#l+{E1BcohwfmWCd=_mPm@%Q?$*fC1iArG z_WoT$?l|O*lR~5KAGkku^jABBi$u5P%HfW4AAvx-K*kRPj$MP6{rNqkoauRo{!RwC z@3v#4EIOY~k>m2*u=+Xi{&*d4Ome8otepN+hci$pr#a?1lr1Z3RLFS0l9V@C2@peUuk>UA-m zDfoNaYGOPKp=U3$H||fbR?80d7>jkE|=g9;!*Eri@kS;pO z5t3;ryxnaf0JXzQB6h+k_50<-tON)}I2c1@ib)>cg?WE{cUzI6HIg`!Y({kTAm zyZXR2Oo5QS`Vdz@O=p+mWMX*SqHF4gU7WHu!JP?;L3u+hoy*fgvrir^VV()RG~;we zvpN1v6MkeJsEY3`P;Y|^Mc~uY_F+FTYDY~zGM{%ICg-MR-&&-DUz%onh8=j&`%L$% z4@yO^aCX3*L3cbI&35|fb6oS;rRA0ZD;Bc3EA_Io+n>=3o%;riA`O(ukgx#&<|&iz zG<~MZSKj+b5-aj*-Q|jIJWcraSz-|g&wlKC#iRqY&T2Y_^)F!l&MgwJcS$)|zV4dt zy_dNm+ ztE9z1diLpN#wIK<1dRdOGS8-I%&#qldg0lRi|A2f$15E}j1>1?uDHc=jv3Ofee~(? zpZtF~*L8yb%F5@ts_RYxlvKEVZ-vz-8%kQXdG&LHPKS&1Ustq3g194jrbiUzUPW}Q z=0JcuR|vN!lhn88NOtz_BV7OXhygnWkp1PGp2lp1WlwynTuar+hLa~lCR{=FUVm^v4H z{47~qsI_XdtZIAOYLMCc#v`H`cfK4if4%B=92uD5t1JWd`9x{2JV2^W&Ir!l{wjHr zc9s`uXEGbW6%S@t&&irzTU=m#fF&eUsjj_WmntW>BaTbm=z|p_rDpHD@yO9ZN8y3M z`;+9CIi?sKNGMt1i8BlD!gs2%qispQrI7kUr7$z+`1 ziV($POPwsB>16IYY$Y|j^@#pPkZ4hW`_5uA9)OmyV0eNt9c`lE%T1z04Ml>pcOKcF zP1Nr3K;#oMm`NtxWC<4i)iPZePM7KOVivUVs%d^~C4)(_@b|84fI-AYgDMzn&ckqZ zJV5mWH}2wCXtC;Jycz1PJdBlYyeQD(kzIt4{e|I2gT4`FcHnIm9XKY6F=^5TRJzOs zMBgL@qi#(f)1A(iI@Bqz*|@RMpxW70B-o9H2owDpbth+5|H_)m#~0F?FpY)c^lZTWoyGF`1Pl4&!MX&4zbkc(6rR4kgD;1(XA8-rSZ;R5O%a)~>9@Z?G@N$Eh{Z7yLx=S{D+mq}2{eck z=2W|{EK|IIab)11z9=P@Tk#Ou#Y)3uVe>Dno`lTo(|b649AgH=`UVm(%It&F}yyf1>Q%O{1 zRn-ZLak{W25;C*59JWqE`QCE8gklutNolDIn-NRNUi)I4PKKSwRw&B%LpR`CoL$VG zEoX}}>|mKBQ=UbT(ei^*SW>o;&>ha)AlA$7TG1nx@h;!A0RcS~DCDY_Gveg7*Cpn=5}zeCBfi1Y&oUcL~rp>A`LFfl8h z`b?vjPCva!o{ljQ2@bE}avAI|x=1f(v!QBn|FN{R)Z*l)+{C1??61C|Kf4eP*FGC| z;Pa&?$7Bq5yy)eL%k9;bIno^=@)ezArbn>zZf@xw)!IdX35S*LMQmThoZw_qDF*?0blq(SU!^mo^F2-4S?0cEhQT*=H{ zBP`d+5av72F3`a)x=+&qtz!Ja_O=qcLicWEm>F#gS|~Jo>vtE=JL5&iTJ;xLgZz&~ z;Z^auQfj%im{N;RC9^5p@t8etB>J{>2W zcK?v{u92Q~zD$>9s*!*0(9i$lzy5bjk6>zs*IC|iA7d)ujB+9%Ku22T3j-CIU7-(h z!m|%Rj7Ex`=d;zk^YCk4{Y!_|HaM3*nIeG1$--tuNZLlZs!R>Bhrwv3yPR1ud^(Fu z%{`DLBcw2k zy+_<kPjr@bax#Yh^I{o6rDUfL&Pg z!_*(j&+u<=YG##8!EYW^xFSSyn8Htmec;{omGQ1(HCy)1hO_0qVspH)COjMWJ+t`p z$IoWQJeL>q6f;A!&Km=E`Qu6s}vpJv5z((h5pU^%Hk_@=x@%$b>? zN3%yml)d-n@`j%?m!E$|s|yr7=J777xe>fwKYWq>>^{$mb`X~(QyvwO^RQaxr9;5}NWsQ)txD77 zGiDnkvC==Z4DP`KhA9GMu{hwgFvk+UIfX!hZ`OkUj-jy0mjz+fi`Sk=)$bG2g8jk@ zu6#heMnVouqgD*`^}@~@^qHJyQ;5BdmLxxAsBI_ZZkcrw7c?sTas{jJ82o)7Vt&zk z_|I6#GtthK$GEM|qvs2(uNLbX1ZAS6OjCjka z*GmM@+xfe`H&6vUtcc{lW~g@!l>Zee$0lHZmONij z9Pw_dP1Xk4kX311whAgWAF~Z0o|piAA)yl$VR=i(Xx1^D!fT93h)!x33=k^P?WYzG0f4tCXwr zu>viRdcsc`@<$%>;g|Pa5ouSB(DQBf0(7LO@dDE8lrLrlUoz0<+zXK zkEO|{#-V7wtn|7LH_Gid{M0Gb;?DXs=rB3$ufEaTv`r)6SPfFsQU6`1T#t?u%ma*YJ1 z0HE{cRn~mxQv+f0reXz{wuL^ni2|Gqrck_-^P`Bj8PMYlJl$shy0p!%7sB8_c#LTl zTlZdm2QyF0*xH)=D1B^MFLEcti|qT4?8XM_u;0y9fDMUP<2#1G!YUt57JknK ze)+C*xdioI_$mTEZ1YiAoQ-OaHGPP&NOw2AG zn`5Z3%NJrd3u7Wbv1dCQm`dtQ<%@Dh&)y1LUcFK^U;j7jd?{yh0vVZcf(QfAL z?B9uSb#5EFb+lMrVdS5NdZTn)yBW!EFwxdmo;y@U95ec%9Vd6lCTsw5uj}`Zn5G%k zfw2l@6x-E-`JUll{)VdD=|RM_@OcS1#S-LKo^AGM^ju(S7+9sk(TE2>0Du>Cu?ICt@2$WvLbpDNk ztiGy2Z6Jfe?QtQU&yf*jcEDf)>Kn|2E$rk!HEm(@xd_zJaMt zqE#1?A^-l!tUoI@RaLiM9MgHj(h)G=^NaPx$zR+_`q)z)1QQP`2Ja=jSS<7VAmry^ z!Sk;w@x-Ari@@zv-QitA(@JHQ??)^d6eNFMi6jm<(c9sx?yM}KNHUq=yAeSH2zozT zPY>7sJo#NRrz=~O@s;PAR+7iG-n6tN5GaWdCM+F{V>ZFYUd5+s2(wNYlX=~e@ep7l z{Co8AP*3q!_3s6882@F)hu{s+lX_iC1U+%{sty{0H|T#d8DJ)_CH=FoK>rQ`OvE@f zB7d2DtE`~vIJHO+GkAq-fJARX53UWUk3M#7)T2W*(0{bPAtiM3fGT`>(!vHwT>4kJ z^hP)clo|h2pA}x)_@~bUE7gTEulGDJ4GD%NJxg+Rh1V$q3Is7Cmyt}}o+XgU{J3Wc9&V~c zEY<{>;I%8!hzcsvir-*J=E_E;nfe^)_Q#L|{YHBDaY>!qYaSkob+Nz)N~+s(~sBD};y0=SFX?5=2C5)g zktz&86&kJ82oU2Mp&vK;iu16muWy_rDy$JBev?(4V~=x7Rzad-4z_{(d0G2D$3Y}G z?|?QUNq=6xp}Lwt=JS^G8UkvQk(@8E_^t@mw^bu6v{efL8fD{x`T4U8WU(tAwZ{c4 zjET5$frHp&DmbpIrT7HLQ%>zRENnY;Rb#}1Ls@)Cs}D*Qwc|sQ#CmY?p%D%OrM8OC zdYI}AhmQ4aH5VA#YW{>gNy&KDtni%SKse-~$p%z+JS*feCmzp=2URJJpSDYBY;OTW zww<#ZsENuBAZSTU)q(wGj<5c;1t)z<>YXPTE4o7(l|#Rc`{eI8%vz{I76~v zq_z4a1F0d&;4zUb>suG2m|N|>m4z`S*S9(dF!{73Vp(7Z6D9h^e9F%jt16ONy~93J z!)?-%J%~)1S$!>8VWE~70!+#rIL_6=uKlw;9fj0(2wohsaSq)7zR5xHi@kRF^ju^V z@BvIU{p`2PXMYVJz<^Jg!^A92xG%o8!?d!vrkulMfN}%wV{kD+@@Fds?1X6pcE6HB zO1f8^!I8!RNZsz$OJgqFz51VtOi9p)6m(?1#&qh2A3`1z;s{MVAW9_;8E?jC0@rml zPFPS=4q}sXme0nhEaW*Vv#GBfFE3P%e?ZD9@qT@rd`y&r<=eX6FBivz*xTg4Z?qrF z=i7i#Qx!p8v5E+2gZ)g9)qs2{Rb{p9hlK_9;~>DKWT4u|rf+?Eblrifk;EK$plXGK zK*=gnA3ds4L)~>862$Plj$=dvz0A?MHE6isp^N$XsW2 z7O-lYU0fu=fuGIk8JX+oS-`61M@Q4QY76b0aV(9U9t1M8(CHD>23D)Z5Hpx@h+LbM5E!r$ zPl(lDteuo!8p&k*jvOdBP!^Q}tRRk9(*6t&eNT%lc z2=$D(?QK$;X8S{_$e6%Zw4bFZ!tI3)bX%hBWS7!*FOjy( zhPuy}=~#K z()rpqVO+6o)$M$>NG8UeuYN|{O5#ub^3G%B3+u+8p-|?>5pwvH7?x~C2wulMFN))X znwt?~vCNV;BgD_Quwe5j^Q!L6=7o}3s~>ZpOfHt* zGfe@`*5zewM>t5+YLT$d+FDQ8CUG5Zqv7J5uHUs}y7N4di?#jZb=uB}pwaDaQ-ml1 z?CaLplV~RXgLT9WJUDM*C%7pqm@R3`PK@Mo!?xfcjEjRSwnSR2Qm*Z{?P!?fGT9Fc z)oXx3wPcJIH0?fO`^B?F-{o3&u(L)sQ|2++nwQ8Y?^o9FnyBTQcJ!P}XX-yH)OP+F zk*{vgIQS-vXoGCI0#p7fP=|cTXahekmNGi;s$7d zLA81Vq`LO@DtKE)Ka)zc1G?0fTC`T>OO6V&HKtGT54`2m&q3Q8U}bP-Qo~-996BzwxnAtxm33d4#L&D zx#2iDr}Og_<(9fRC!0wZcXRF~aun6)C~)h7V*H?;UISv8Z1LEiV8OGx`;8ANYRUb| z(~FATuZ0HNEgBlUnNn+84GnTxuWK3_0dJ>Re4%5rwiHW(nd}%%p~+6}kV`baJlE^d7WcuT55dRA*x{YJfYQ~?aC)jjZNk_0!&w&W;` zVAgA~qp;B1DHeAFsW#V^Vj;KO1_&5btB1ZQ-4fU2DYh+zzATyv7l*zM9-OPYH5}GF zq6^Ly>6YA@lg+G)-I{x8JI^q_O!Uz~Em;N0Ewu^*yj63H4i<_H;-pYo@ zi)4bat1^d{Y?wut+OUJ)n)B6#9uT$28KO6GCU|hJKGic`(Ct*0!7!txsU9z!c^6Oh z__wz6a`{3IDES`Z5z=Wv~A(H{6X)v3uxQL$M|wrVAp+A4!@WdpcB<63%N zl3Qv61{hSUXRl4uXQbWPd>BMGEoHAs`AoeydriK$-6&}~oBko4>&;6o1rIEmi5JfW zIe4hO`j|9N)RQauEsZ$5aOPb+CiQP^=ij0g=a&2%$t|^Q1H6@gyISfF?m;_U2E;Pa zV*f_4+wolKA%0stS8mpI4Nt&=XZ3h&p5WSX<%U~|aExHqX>mMep~1F#M?6o18K0I6 zmE>cd%eyu+!pLDTm;T((+eDJxd;->3SQ$P4D@#D zwX^opBHB`~kzC&HEI0^nq2B8n5zk3*xq1!sc5I_lRNFEJai;1TV{j*|R$soK=K+y4 zh?bV`bLp(*;^q7NHR_tT=t1JMHQTaedCKM*N8!)g+=lRV%|Fb|%tm?Bvy>aP@)G zB2DIl3)-g=+zZ~)KuOAH^2Gxs`63xf^%+aduwL5&w3E%$i)Sp|OWV_q@+exGXeCA@ zdn0W_U@PwzM;k49KN)Kjdp{p(RF9UUIHRR#SwtDd(Xxv%wxAlGRo)iWe4pAHssy~9 z4MZm%w`Bt)*c$D>f9FsB^iSyjvNgtFIDmHbuF&}N$#@!EI?_^Cm`mqYSKJlmuaVBH zk4+Z;x=PdFq@tGMd=|~Li^nDoemjNJ&F^u}V_ORM(#sX@Un7NApP64Qb;SRmooN<` zWxB=F7X-VVVIbld1}5E>VOY`ShQaXQTs`2AS83XEAQXNv-!*=N-q_L-f^4R?EMetl zz1LU*V4>A50wL^ejjmK`E23c8tlKq#kRz})Z5(K$r(Ig4O|m!AHUvPsdVjr4o@mM~ z_17eq=@$3b26(IH7AK~()ZAoRN^x_mk(9EW#S3FCIW!i{>Mic+96U5!ecZR4A>mt_ zLrViyE14M=4^$a^OTrUeJ*sBCTO&-8HxM@9AY9$KEoane1lN7G ztM_!c5+ImRZma2$U?#k#=^1FSt-gLo7Z@y%gRU*PrS&^6oLLvI-}$#l&s#FT3U}_e z$()35W^O2KWg&3}UP~4t^Y4l+#An}CkBXlL=P*8KCn|yD42RgbEeQ+z*LBXct13e3sEz??RnXDD_> zN>w#F&oGzC%;b57`9o4y$@Kw7wb7z!-RlFqG^WJY2l$_f%%&45&yl|noL`oLO zl;nw&4hpO`b*%hq!OedUnsls6EHjiHt9o9=^5YfdMwTy^k)54#s-&lh-Ia5+= zR)a=fQ4Lz4N|a1$L5q|`GJ`TIpXa%$-Nj03WK>c|(x|+OHW`(9G0wnhWK_A#0;9?w zl2L7>m!}HJT5Lwo%PgYjA6D`0sP;2lg{9n9Bj3&fnV9tL4yuCVvc@R&)y&3((JLD> zjSGA>g*0@+dz4PnD5P-`Sx+*gagV6_HZ{h0EZRs>awIAh<;S6$LacnHRaRc3Fvg2y zRml*`KdYjvc!b&CLo9ZrJqie)RuFOe3em!o(06D&rr^x`>-fD8Oyqvtq z!~ofXz_2&;#rE^Z$}KhNi&-9+F|HVcPM0N&vw|5t?dhx zkJzMVZIZ(li)MX_9Jcr!(rU>y$FzRtKZQx_KjnhKa%Uf~c zs`nS-Z0Jm_8l$^#nslbQNLHZeO!H@?y$y?u{BqIdHxC*tGHS8RQ7kg*=frbE)|~x7 zTr?vaPm`3GP%v{9DKX(2m2I-%dYk4pscyE3Y%;&prjo-P#P`{>z))Ug6EpO;*i>pY z(FHcmTaCE8CTcbA+L}tO#$OmCZLxW)abnlC8uy&+u$m6(rWnbw1sy^p^NV#zaNxEf zACH@rzYsF#A})=I+K9U^rjqsw@++HbPbFDK+RHO7D|IOTY8GjQ4;qJIPAs?O zC=7GYsX12~qK22jG#{eo_rOF$RK5bHk{gU~e`)Rp<;5?N8}xU+RBIh{>x!(~7Fq{H za=pf_gWyo7)l_FLS&`&gP#wu!*MkfVU{%*wkcr&9@v3y>sPX1G$(0&!VPbOg#_Pnc zYrO6`Rdl5>lt|N+wcUISl?!IB(HJU!gVdl|n(3B)Vs%c__$I znPC(PI#7_TXqbE(VblMG%i zH7gV|f zuHJ~^1o<}fDYN7Y^yyROD^_}(qtFIPnW|7g(q}AGBpD|Mv_Vql2o#X?sRET^T60&3 zG|CqGL|n|lPAKjZ@vOT4;cG!8y%rQ`r82`2_q=lO z6K$JlUeRLjL{!mk14X6aC*B#*Jou5@1ES!^?-8g*&t&k+`fY)p*ewv#b6W-~%_SD> z8)!Zqp*9ah(-HX&f=Y9A;oTw4=jiflL!vo4zA>bd_lqtIY2GNrJt0w}a94y>Q(BNc z(t^@_>PW0Kn>SL)-U_Y*X>M=oCXmS9@=HJ}RcmzrNAqeGSARs+>Tdn0ly#%-*^oY^ zdDe{-&HYA{btB)Y+!4DgHYDBV9kIULBkG79C_3UwF?Mk-Q}cn9m&+=RVr>6H<-Rz& z!=t%Ay6dw4?I4U{A=pK&d#wM=dh>XqMzEPGTo=@}JKefkLyk88wa}1B zCf9S^kPRSextapwIpP)+C?|Hcx0C-G|WvJ#iIA zOwZkdQE4$$>?@SsrukxME|?85S`5wKpctl_HQK#&l4%RpXoRkH-4?Ps!)Tjh8w|y^ zueiO~J!W87X)K_wl8~BgJ{FLoS)b8ZK)yruUTLw<-ytFSK4?7O<-{`AXuium-->5+ zYehRe#f24xJl$Otm3(I0b2oQNvfqxJlJB)EMUPRR-8^~}J$4j5y8gNvx9}p07P#ei zP{iE$`iW}Q8r?k6Lbc|XPGoVlx@#sX^)+Ip(%Wno9F6(voKjD)oZbs?@(hDy=k{4lj*pKAO(&i-<yR z-V)J5U0bQFz__j%6xyrSx+w@yIYTY9Zj#9a#u-_E7#usP%U_H z_b$j5@}PO}pznN$J7ot81y<%6ZOw0or?}*ykf*!fp;8YRUG31k2NbtDL_MIp(4kTr ziC5^Gw-LEMAGML~R_ERA3DOdq`x$+2L*!>1DD1G(AgkcEhUP;Ubx}h!gvsw{sK_w7 zo}mqf;%0^dhVD{^N^RL+hahXZd0Td3*<(j-**&KoxmtUPE?{V(y@D-=_87b{e%^f*JPd8Nzzps3P)c2K1# zF}y^fc_5MBpAZESe04&ljxV}3p?SwAE=-6zK6h6_r8=wAC|Dj|^BxRa^G6Jk|%F3s%nayC7q4Wf!v?Q>~zdCbY3OOrn!N@XX1;sy(> z{pgD`YM=bc!kCOZ`O`scQqFXMv+$?kJwNr80Q@efEjWi}k{U$1S$`L1`0};9qP4@RC3Z-8SY3W_wzAJyA^qhEZvJJ;`G@o4>uDYXXWE-*U0^5jRBHDNUf8yS~UAEk) z54QgcAtWRrZwLWwgRu>mW6v?>VlK9^4L0DzZNP*;I(>Sty?1+hckk)Tx%e~i=gaqf ztE4JPRnn5QB&~VpdHi^0FLl*VRi#o%DwQ&EOW03@4L38T*K2-}Fh!Xl^An1xCI~q9 zZrFAH6%;BU?Btm1fHD&&gb1}x)%a&p8_l~ z0_H*{VgX395yJUA!KG1YpY0I>Q6nraLSQBU=9h8}pHajA|x&KoX?w>AbNZB~; z@+h>?9uiz0srN1<0Mfucw}OVmkL!jrSi=pI<`r~Ek?`;eI{bvdvKo0Kq|&aDHw40I zOq6=v_i172*l422x0&*azR>L zIHx&C3(MtjkmicyWC8}LRWn`pPt#_5fdz5oVP7>$B_>M(qJSa(UKmI22k*h41eUR-yXoQOd3z@ywb~NVlD5PQiZIU8B%N#r45SsoFbwi0eK#E@HRH6J zv?WC#$fSupV8~2-cN1({;BJA?N$bSts1XvH_}rh-JaXfU!ED~{uaBF%(@vmz)jGZ+ zvILLESM(imW@bsOwj_|X&XP!ou+S`NNCWrGjvO}GK!)jlr%bqYM=m5tXlO?+{DLyc zq#}e(HyG^;0ks|xMpOwO9T7&K5o9Ld#P(RGLttwSIGGqhqJWeCT7l$r+#ZG@L1Hly z!=hx&_c8!)H|G0$Lg0)UNS8G7u)pqqBHd5BMl3Nc2Vzl@!$sz%w9Db5w%PCYKpMDb zj^Uum^>*DKE-!Xi928c{XJHzx$8ZU{Bpo`2OEf^J-<%H!6Tf)zo$nCn4WSp{x2=vl z7D~*Cy7QYhn5+W_9sG842XB|_=}DXHZk;YNFY4rPRdteognIm5cQ-e?CmFCktlL%O zN8SBkQFjec=<;`)yZr7Qo39*v_v`dHU`HMPYE_4W-=T`X-`ZciMzfjTO}pE5`x+i4 z6l3&@vI)hXT9$gU|q<*un8pw_;zOlweQ zAUy^B^FWn_OsG>|nAca>8hiAI%X&nYayL)Y^-=92{-1$;l5D6~Uz+cgY>)l=lV$z7 z?4O@K>r2|96~nB1Y7q-6aw%xK#r9XiZgHsUuJ7|JUoa9s-8$|4ncAcW`oce%c;jX$p3*eUKC5 zWmPdmyh$8?v_u>c5wwcG>=(;*x?DFqs9Y^qb;p$@;@Ofges7sD{O?D~A-0T9L=J{+ zha4>I5%zF8-fwmrIQ6*S%NL^8l|#t3MGoQb(H?%-J1#9xIN*FsrzS@>4fRb{B4AeXC%$tyaOmM>%{r!YY^`7{>X! zSEqSzR<{k!p5*ear52*;pnU#%gnXX%#|;w~wsKxwHX&=0%O5V4OGpD{@)sjyay*$u zgAm8l>f#`-B#GZ$DhUP+Lg-$m;k0r*>0O0&muZeC31HDO&HWf{U`Vh5g(q-t{{c#C zJxeFL?lKK~B6yQH76%)G2#Te9nP#9pJ;zh*arLorCAK7tMawh+dxUvB-!}Nn@L_-a zFv1FbNe~v=voo5Zb>3lxPU9VN=SLLP2Ufv?cL_-bazvC&OTl< zoY0&}5`VBD+}0#eAb&PSATnop{|N|!lbgS`TmTQ)@gbuC_tC{Hu>L4OmaU_}z=gi| zM%1+K-fSNyb>rf=rsf4(lEIRQTKpbu;O{$)p9z{hf4Ip6S@Rb)C%*k81S0v9WWK#% zV9ay`MD(|#M6^9_wzuo)%_J{gTt5-{c;+OWKW-6@r-H`QdrHDGzk`c9JLyGMJtdKR zNghj1NhARj#orAwlIb0kmfAqF!R{lub#eP7tR&=4V)#@S3nb#hu7wydt1eYEXOhU0rHUqj0vR>S?BRwr z6y1Z`;gh_5@`=ncA$Jl?%PbR;LE(&=W#XN_<0moq8nz^kmXO|Udyb0AAdc7O@rgub zmM=-7B`PD}U=qDYiaZ9RMeeFciXm4L!;-De@aH%#M%e>Y57{es@rl@j<=bHo1RO;1 zqs}NDt{_ZjxX!Si*Wr1Ml$8@uQy4-{GD6A$GZUTD+d$I}a#2zUs6Xa;5Gs znHIyJqY#!|ZZ+aGm$kTn0RBaEe&FTSG&kz>{N>j4&#<#Et0q3IMfbgTP}?@TxZ7Hn z56@eu@PZ&tU7@;sbFC10-Ni9Q94bid;2!tobUW)ZE(0!(WtmaW;)`S1U)39AOy>UO z^ZR612N-0Y+pIz6e}{``!S@@$Dct0OA%uV?u*#3A;r&XKN?fQI^uDpM{Yzb>pXS7|mga*pwTT4w8WFl%* z2#vq)j^Y%4!HW9)<*d>*Jm_Q9!bCDYo!@THcbnJmVHLl*o}jki9jILNwSQq!!;<<|XemouF&!WfuS9IqYQ9q+Ay7Rxl-c{8^5+tq@q?Y2aHpzLS zd;K+$GMuP?QB9=GPq2euuNj_))58mRRupf(zdl{|S6QR{N8MvGqEDUqoF0f#L+rxu z)pX(V{sNkT8hS8uqX9;FQvcN5ixdm$$mexOQf;v>Rm*(+V|b|Jc!%C3s)E~Y($=RT_ z{xHxX?o@vm2^YF=Uylwq51LhANU82y@+Az>>oe^bkd($?$ODE<9p<~}t(n$3%!U#n zpgPQ!H~`3%=0E^1Hk;jHd%0}DZSB#A$(y^)r8&~H2_%>1NH;?J$yF<*Up-6;Yjd^I zfFJ?nYNf%KT2$B3sDR)MDr8kBD~K1QUVCMQ1kqiC}^ zPj|PSmRIXrikc|NjNVezUlHM#Gw}wQBLqt@DZ`PB)ak3%7$YJ}D1V;fis(Dy%sjzn zy9ISa9*$4bQBE{}(FM}cB!u(?n`Q{`K3@_e-iZ=(@Sk=eLvjS_XG5_WHZ|hHwHmw| zqYl>k#N}wF#N|GsHjCoIXM_fd3(2L#W!M0o%u8)n+3+;=P6BFuj4Yr>i0GxZ-~)=N zI3?Zhr^B5*7V2}emLP!=QxdVN5mcN&*e9qkGf)W1G6G0N&j8hpY(++4P<^KEXr@fv zeMCLxwqcE@+h2^EneO04hMUUKZQh1WQ6{Lo4V!9G`{e0prsU~9 zBD^n^JnjAh4+rkm`*eTaqat$F_!YAU`@H^tn zJ!N7%GWZr@SPiqY}y)+G3=tso=a4i+0L4%u6m)=MiI)Td0N~+(kH$>vhNU5=1>)Eg z1oH7s6(?yH2vSl4F~k8t<~1}Z4r4Z^#gJ}&dy9z?40;WX|BAyo^LQLL!{e>(;h=WP zTOW^$s1mmSZucLe&j>Pe2nz+Ig``>!VSx?-p+i_C46HK`4nhm*cw65lLqf!y-e@zV zfqTxmy?ch70?4O+k^xS$bMy2F3(rUX0}3SPOx`^|eIT^aJa&*0!C+@%hy#FJOpdqU z)ox>ROm1lr2#(2#0l>)Fx_3AD;+5LI?SO}$ckOuS!4-L}b z141ebM}}yf!r=f-3de+JnKc?=zC7-g$+WJ9LV_e7TBC(uD&+GB?S;O2B0nI#Q1MN_o+{R3jYZY7J58kptE46V3if@C)QYx z{TOPo{a7ZTufnv2?V?G&XWC+d1Sy!d_)Eoj$EMPVdPT%G6pVMv1VohCQG_h#1FTH8 z57A@V&0aC2NJ3(-7=A)2W%AR^%@Dk3bvkaMqlDJ{G)1nC}@5!%Y(MA zp$sL$LTe~XykOoY0sjdeUQx+P&E_2tROTIgL9t}AN^EB?@Q@ZfiF>6twZv@FnpKjd zOgJg4B-sQ3=e)Y<8|0J7n;6Yr-H{_`?A6`h5l?1Ks^3*=U6TSGLO^R$Bn+%`6UqTn zSFUOgws{^QVg!Qc5oQ5Ma(;<_93?I``=yW~VPd}&enJsta=IYz%ZTX3?gaUZas}U- zgQRE@ILh`^9}!-S+;*pDY0uqqLy9wUGt2;3=D^x@1M+ev`EXe4fwd$_(CENgenX+< z*8ZT=1;b-|uBj%^|Qo?F?++2w~^ucPnjE<4C%J=J`FONDw(L z3O^yRoL@TQFbqWQYTR+$4TJJ#Fp|&u~3az-XStJv{=$leqtYGRdth zpylh^{k;mPn^zW&90B5$h5I|=$%XgOFuK;<9NrT#!ouM_vj8NyNd%kSjyv=fLR-y~ zNI;Mf@gx#_sgTdOGW8RB^O%`u>m}}Z9VABd3sQRd-I+Z zQzJCIXT^W67*>!WyFbcovmW7CaFEYN{xK|3l*)i+S?YfzR4hsQGq?KU11d{}B8Q+`&`mTTAoJ5hv_ans2TZBF~gW z(?5HA-aaebttHXYqzN^ZL`%0p%$b`w{zu7M@2|S8gvkIoCpU(lB9TcA`ku^e|V+No`g-%mR};5#K9nU0@1|go_rK;uDIi0vPP*LQLnXx*3a(ZJo&7;il>lwr>o!yqTQmHoVFt!J{96ycyVSt4JQ z31Gl$P69`VOo&`06J`T=vZD-T0u_D)oc2*h)Ci3mWy}P?WOn!;&f7aY$`V*wclenY zL7^Rf{wtbF=7P@y#1DX30BOBoLbM16UGQNB03)|*urM}LbXl-D00=1(Bn|+=PX+lr zZlB=LScc}U@*!GMKFlDmrpN8^I1YxPrD0eG03$Pq;E|;_`-`qs+d7CGHG)Ee$o&~r zlLG@!TAaYlW&Ga^hN&qq{AUD{nKvJ~-AlQ%-a2mv^av2mo52T!^jq`WQ?BLa_5Qe- z?jBSq_E(L&Qwh2R@qgIOsYHWX>D>*M-W{J$Xz2kXkX~jEeH>R1*pea{(Hu(TOBjX~ z1b&1o(7GV7{Ts?5lQ8i3{#jLJZcP|4lt>DcFkp!TfM1+9wqt$D@j#o5v@E4v zC69609Zssib+gB?vw}CO6mUGIPyy zjV~|9a}AZ1%gr^=4{)8m3zfGDyf^ckL|Qufe}#1hj;hy@_YO>-C6Pm{a6&C{GAMJPA| zvE%_mcA7&B+J&}z38F?w+%(5bN~*cQzPGyU+pZc*Osj@il#xWYvU`vO@3?0*{Z*>Hsjh7z%-8Q&5I02wcFnC`EexEN8Zm+<5W3V8|tcN9p*5};axJOOXD1SBLa z!H_OV10H3I59!*a!Q`|w`0pr<%pMdh;x4c}5QDRIMM<;>39TrZ0l>(lC>-{$Uwj*H z5TG-=s*As^DGHh>0izTJ{S^h3Dfgk9zlhQxTg!bUDHB#I_mOOZfHR5f(Qo41u-3%& zG--lNiRH>**r)TL%T2r$W zO~OZ+W9lQq%Q;(sXYUD%5#8)w9618T&er`M@qBIm>eKOwO)%su~4+gjW zTA1fVo%+p4BlADO4i!e1|B$WgP04`9Q_E^>UZ{9pYSC;(_BQE5C_v-)C2*4qsq=b;0;-oHt~P%H}NDB z>c$r$>rS@r>CsCyXjkbGFj>$egtW}4;_*7ls0`)2QCa5IBlj&_vz!vcV8F-?NE76E ztL)RQkpLm}O~t5bR~tkWq!8mc-)!=d1^p7!tHWcbCa z@0wN5Up?Dp&*g{sXW?#p26&E1Jiv3UQBA*-w>>N&a0fBcdB6MU@?v}0*gwd8w14a{ zyEz8blV9-`H`fw-Q3#pjPcMi49b}De-a;nD>FwstetIjE(-SfkIZ?lYkg50+>|o{= zHU`2s*ow363@ZB_uiL#&zi7RMJx83nLAS8yS|Re^&l^|@IoO%mI}f*e|96LtWq43O ze$AU%rZIM>;H#6r#-|gbTf9APEz57<@oT*u`YW&~R z?Qq?1?$jlf_8nA7lrXv-RQVMVmglA;)aMjqqtnqLJ;EjDCc~%-(z70}osf`T5|UvA zkTSVjWT79+_@^~@%TXgZl)L5rj4CTn1Q&RgR?pv^69JJVSaKp@c7Uzy*)FHU8<~;Q z>DdfH!X-VMWd*3p(az@DIIL^9dTx|zhKP7btzi22bmaQqU=HbD| z^e3o?UApLmO?0)8<|GqKi!gAK2{8a6WK!Vtv)#>ESSJqLDFqG*1M6HCR`f`Ba~2j- zqTX{BmLXmSFenWSxbgj>06^(!T9DC8F^9KX;DdUa){uto=cdTh!}c!9glnE6nHuSV zr%3)Y8bi+Eb2}-JW{2;{5gc~-?(c{v7iFE`_l5%JLs7Astmz z+6xKjr6D1sqSlO*)HYLx)`(oBHD*(%wRZ|ouZVzNT13bQAm!$})5E~|j))N$p6{3i zAjzdQo=zV@CV?>L_8G^}A{=hUu?+G$dfLAD;r8;;hmbrZptR~JpeJ<{d_Wy#3dIC1 zUwkM)wHAsI6bTj;iV>d>SZ0?dY^#eNweHd=ngot^Y1GFh@YEA(L*O0x(Ww+XUwG+fAxtQI2%$c2j~bNtCvm z5)GD!G(HX;B2q&(qk790Of<8u40{&UP;OmUYNCXZ)|L7zN-|TAS~O3c#J1L>P7x-g zRF68b-It!Kt0B$2UZtKr|yyWC;i}Nu;4MBf{GQl*kjYMr*!bk}_eXB+_J)MIu!XN{$h! zds8yunm8w+az5I@4T-aQ3T?!EM081!hsjx@%Z5YwHvC0liq@f znJ!Q|j3eQdhA16~62z3!k>vt0LUVbTK17U2H6upDv|fz(wEA!{BGGv<8kY59jElC9 z5Tl_wFGkCBff)6(3L~r$FDYikh%5nN<-CK$;P6A}dc?d#bO~o--eJZ7wbENch2{JG zbddX*BfKROCa?)_$t@Oy98nRx5vmUg;w2mr7ssoNGx1Rgq4yyOf#|$(8kY6OiOu0o zrT{s@IEn7OaWdn2<21j3=L-bZ5yr`c=Z%wFpmA32#p$i25u05=lQ1SWyO1HktF+9g zNmW!DVVOvD-ZBl#1p-uiTtfutHn>s(w7XlCA^I`SX?`^zRApItjS!d2;T*SF}7Q;RLl`4snV5-xmF8i_T%aJlj$r=Y#>L*fKEF;|AI&_Pu$E%8ORRhE`a zm=GtHmfT_?+UOz45o-;^f`s#E4Qr5XrRm1LV1(%!s`I96nF7el6-VR+MmYb#2P7g8 z_5igAbw#fs2!SXGF@+FWf($F&e(K@95pJL863&F%XT|`va{YU`N(VI}UILl~F%d5z z!v&Hw*Y4#e@eoN`x*16l;{}pbCqY9bdE+gllq7*6z^ira@Otw0oqFSEh^r*RB+Haz zXV!qWa*SWMAIS}*5n~*Q63WCFH!SNdGj&^fgk=)ldCO$R0JSn&zMkMjL5lO$fN0s0 zC7_AWj@T~2d4OlKhDY_+6Ozs0G;9H9(BZd+aCaj5}#4T{(S4JIB9ACX1 zIwI;YR0(GyV75#FWMv)&R`9<-IdN&FBl0L5WdfVXqi{`7s+IHR8&$u1gtrHp1Tx|6 zks-jV^q)~Jml6IGi4wqs|1>PC5KecdERagj?L_E^CK0-?D8o!qJKAmJ=9|s-^<^VV zOShKBN|PqER2nPYW-;cwyVWow=@MqceyN;~>tROHCCr9BU@kB41KYrozDm-a3;c*U z;g$>hs1;gBrXWvjRt7n|nhaMUueuAZ1yYJ!s4rBIr`Q}jl_|(G^ZU2w?X%KJYeAkY z2kHzJ(l9=y6|^>@tQXnOPj#|lC35*2LNDyeF1DLxTXE&k48cF z^a=jwX5jmVOC^t~ifc*U(k@7z04$XJ-84NXpbwM0r(ck~Z-|or?FGhjHy!ZwUJ3sn zM%j)dPaXK|jOn;`h<{0(aJPS>un&t93~9nW7bjTufH_mGIvVEiqovN;t>bJ4D3@#onS;!i#Ep9>0-)qQEN-;43G`gt zNB|bYj@EtyVF!!9dDy)ATO{q+BaVY@XqTjI0f4kKwTq+qb{{y=aR0Kkc5#jYb%1IY z=USqvFL96igL!jFS^KbX(UGSf%(+L`Zt+l!1Fvz$V`!I*#{yV7RH2%hlKDW`NV^Ez z007uaf^&G2S)m>loEy>vdM-G(?3ZFbomaz*q)V6$`=#aqg$otvapqxYm(0Tg0N9J1 z$$4F8!sH43tTW+ui=7EPRJoei4egTHEdUVvk`Qr!J>RBy5*-#Idin%^Zdu_QE|xr0 zjag0dhIUEv763?o$=dm#!}4K~Em9`Pb8BbA8~`tI;0JhLNG>FXIdDUoAkR5)%N{T< z*Kt7anaNw%uz5k z4s#Go&0^+IYKdVSS92Xmx!^hs^M$ShuC1))It=N8>#*z>j=pG888-TY$ZyU+bKtkc zlH<5cExv!PwGc?$rnWywqm@BFM4t{Bn;dTu7Q>;dy4QODE&I135q|5*!h0l=bx>GoUJ z8JJAIG%&f{;wdS$Yc+04BI<;Gc1mIpOKoPwJ*#ugo|SEcGGDT1bzXVT%F`#g&+S?H zhKv3AihEY)nmsGq2w^W7t#Bi6%>!{qzA#!{y9WGEP%K$F_hDfG;Iib)_zA{B%LfLl z9_V}e1=zEzw2vHS>W+ND z)Lpx!b`m?tVKNW>C z##~63kjh)JVFNUS1tL{d&_{{X6+)j8sjY=xza_hk%b^e2Ewq$Ltm)lCVh(~`23XaM z8VJ}`j+zH->qpg39MH+AK>8quK%_~=X@|hF0M zpn7_;;F{|7CgEzEhdT*_OoC}=O@bStNz`v^^RHBqnn8OAo;pEK?;-eR2!4Ti=;H9B z%){4*pD_NY4{82Bt{7q2@}{E!5Y?!1RIsgA0*hIT7Fuv zTrj`h{o*fF)HBF4Sjt(?K+G3ef~iI)tagwk%$K?2+0C+EW(m65|0qlF1^;I(folHO z&uh@TsOX9TO_t0VRO>);pdO@a9mu9Qanv8{ zJZ_)sSD}6pr9S%uiqrx-%0QMYRtYXkR`n7O+sY5Xgo$wFbo=x z!7B{u@yHJ`)St2LFIc`||8P6qq-+P>3kd0xkke@dg%g2x@wHo)&Y)W<^n zUP0E{`1t%P(e#OxPMZPAMfgTxy=nvfPRznf4mUi`&vC-mzWz|ZqK_Yd7_^QH-+)N3=-o3A^}Z{5 z31ZOT3Lb+<4=#ES;`XHlTdMRrL+HE)%?y?@4X*UeK+Ium)%yc}q#;B+$REfDBGUeV z*#qYK=@)*a-}V|NEe4KX&a-<*K_yp=a6BnRq7dUHZH#g5clPW)WMAj=6~Y)D&evHGxw}Pc`gP7Kr+E4-bW|Cu&bVFKXXzp{Vr(8lyz* z-_V#5H9ezIKSlC`7NIK~G)2nCG}2QfvjpR%No!wFc0@G%D?^Ar#}5D z{3nDy%1)R|-cGm`3cP+vdpp8v<~+sW@}MPcNT2Yhm$YF+>_UCip&xsBH726-@4cj> z4tnyXehn49`Z8$x4jz6AWa|N)RVh?kPN*PB+CdOeJ(F0eNXE<9TEas1m$PEbdUkS_(BoJ z_OMrZvfuB+Vh9qT{~`ccR)DHt#_DERj~Tn$V1XIi8(_bhm(26?q@Kb3UWZr=HIm7H z@-neZKp=S+w0(X)yx(jOr{lwB`))5onGP4E=@LNif^>tjSGT`7y_wE{RN2+5E&+lB z99aVDy}D)#A}#0_=Gq6D+0~<8LoL>?Wl{m=K_^^vfkA2sFosDL7?rBf3C3k81eOn% zDs5uI=kvobaW(KyJIu(EBia0{ABe=JLO9WBN0)GdBaTowe6H~;1>wN+SYqw?-5${Z zF%ryw3*fRbC~%LU9K~2r?o)*ZsqM?*z+UoO#eoJrvucTbZ8)&6%>x5wWz&K=ZmXt{ z9@DbqV$&ivfG0nrC9a=#xF&Js)Vn5s%`_k1MpsKa;@jXlsgG~@3Tgf|(cJ+qS(t^f zx{J{9nrKLqwB=tD4L_m@<)4tXt#3z6&sG3Co{*JP38H^OR(?j11sR?|h{p}orrF6H z@*WumG-DYC9}!-D>j`eRKAnzp2jU%DPZ41P>bIVv7Kk?gek|X`-Rw>W8OC?K&MJr! zO8{x4Px`flOHFSdo!UU+}g^5Jxg=tuVF!ON{_el-zj_KZ0 zBy4_G^`B65U&;n-a0Orok4GKheAW6`E&V_8jH^i3Tlz_%RzCCDU9h(x4 zAmQ?x67CD4D$Ho`a-|Se&x{7N2um=dAp?Ms-(G{GjPvd^-3urkds$46;P~w|{(zA3 z%aHh9c*iot5F;>t8Dd!glG0QKH`GT@_plaYnuIHu?t_mgsQkXx?({~etz%ycND&yn zuZ83RLw-TT*Sy0+j*h5R-YoYEYGwm?3Q=o(gS;nd4R4JHQLDQtoR-n}XH1#Y=MOsLCaBH4Q^MQi!lXK!64D}2-YFRd6)^6lL+XNYf1iK>3;;%ceBGU7 z>VL=h0#ecVLh?m>zKi4J4tuuL2#L36Vgg|DgB>3KxxZIi4IP7>$PpYr*qIIB$wezcl#$9 z(RKu80ZD@91GC^;*|zCgeK>V=*tVrch`enRlcJ#R_wP3QBizs4%Z;H9K?NiuK?UDX zQ2En&ymNj$nR>C)9W3=mU$>p3PpJLr{9HrqLOv5r{&Ko|P-i(EnP3Uh1l(tWCE6h7 z{Gh%+pPpXd?(e6wm=ik&wWml3{h;=r5LiAg#kTji+_ZkqA+-f)a{cz}>5;qneV{D_LnF9Y|NAAVbS?~e5s(jqv18E6;) zjQr*{v@!=7-;NG~J2tlkQ3B>Sx5d{A3%|r!l06n~$q}l+!ifz?EWg#cw++?yaK~1s zBS@J1R;T+?Bc*t%>ynZomynWWQ}YbOvBWs4ZK4(GiY12bj1 z@~c8@3afCP8{M%g^b|>8epTo{)i@9a7H>qo>Tw`~EI|w%i1>~;%T|X1jAr#tt7Do; ztK*LdujJose-Pe_4@DT%<=;Z81Tpk);b#PyKUHVDFd(%lcATnfx&+jps_O;_HJ?x+ zf1&f#I}$1)!UWbQR75S73RWeK4->4*BA*kiO)1ZBsmb2OuZnbRsU=90aQ&8Aq7907 zA!d~sJQA}@6V70^Im7ukPIX70w`W*r>#etc?Dw#CFrObB1CqIa<8&ShNIriPQ2#V~ zA*JIcV2U$NLg#>SP@LeTj54G>`n%OZmI^*9ouDi#faF#$}Q?LH9RvldTpSb|Tky zlwpg++Zn_5S-1-fJ4(qNW!OP}?u=n`vhD)g;AFN{Y=epCZG&5(ZRBg$2$SNUsZE`Z zipw+P3B4~9G}8|8FR>H-?8`7a@$bIO*$F-TvcLiQ48Cw%c9a8j)bkF|HCrrdl~XuQ z)GonrR@64zFrN^mEK0xs(vc7qQzjAngs8a5QZF4p0W-`?hi|~ld1?0u%z{Xd6X!x} z9u?`yWWAY4j{$(wSggwpK)7JT$QmqRiFn~Ba-}j%yhu4egV?8j0Pq6wVlvt);zh!F@fy~Ec0uHc zKS{h;GAi=);;eBRx-%E5uYELe#nqv&~?QGo{&C;T&k2e(4wS%^F;us#xbP-Q)XoJy@PM1H@Y z4l=WOAaX;zD02$|WS-A<7N!L?`18BtRjyxY8nb&%$iwz@sn8#PLae@RiRmrIzt}gHtwQF%7zJc+8zsng%%4Z z5&cftFu}U>{W-zf!~F%jj)|wrMlBe{TV*o~M*mpZ0w)~3RyN8Qg6GO+Mj5|XwqW8r zPH$hsDJ|4bR+;#tCccmXnexoU7q&!`Ua*Sfch5qXJZdVD@2<^EB@6&yFF4zBc_kte z9d)+lsFT=d4)>LT_ot|O6%tBIkJ4RUu(I(6@7Qz4k_JV+4KOQ&A zSNqrFW_&e0AGZXmdOvO$RQG_~98~*)+=6ZD_zAgD+tlG3ax0&@ z8yqup3U6*K*rvAi_@iiZ)HbyzPa|$-o7%TS&$b}yNIZi#D(VpL;LSuG{vo^tGax@j zx5f-8pTe8*Zwz3msH0b_#)&$3xN26^{C3q6?_r9!hJqgEJ&-aP^_=%G%t6QtVm$E@ zU5I;Bj2AK>_%ktH*b+zOf-QIT5M9`hQCsek1@&ZR%U!m`zAV_dh99rD{maA&|IEfU zw`xEhorsOv{Xk4eyo}sH0GTfsw((f52IEI26$A2JL_>!_20fIjtL=Ap zntxw$W~D|CEH067;)TUw5*AM^&Pmw6vA9ISDphirgxxEPa}u`CEG`K}QtvDdo6w1P zVM1pJ%bauc)Z!>#5xliH<16^F#RZnk&mFGeE97&FGnUK%K*$T$!ifhLM=j9Ai;FW0 zH2>t{GR*qT#etapql@#H>D9$Wn4@PG$6*fMU7W?t4=*m*zV^=^hDJSV``S?_=P|Q= z?V2rI$hfx;L+qpc9uv>|J#K}_7c6Ar_ZLSkWWom+XBIN<1;!NWEYbqI0`BF(s&W|*uyKD?XS)66GKebKX;dzQnSyav zg+|n#x)zSE{vcn_Ccsf>BpTtE$`?SR{h9so0!8=4;b%tyG(nVr`T}U;DI>jC_%AQSIcR z7I6Y>zms=#32Wr!U4!beb9(*bX(yBZ`p1qXN+6@LLo92@&gpiIhIjwiA*zHi@|?^R zKvuaRsEd75l|1{!Xo=2=kyrx4s`>Hl<8+ojvVVRwGznicKU#(WFaL;u&MWMAM8KyK z`bRn_d$1JGzuQ0Ep60HQbj9=O-Pe)`H&|3SaurEr^EYuRfWI9X%IOA<(&qzDJt&y^md%$46#UY zmIWZmk1y1jm~T497t$geeta1Q03$!^=``MsSXb@QVsPI~PaO<|s^A5AW` zH9yC3s$e*fI?Pq3Cwg;bHlUq+R0$3DKaoq7j;PX7BSY~~B{3kap&z4f|H>3nehlj(et8vz|i3^5Xl zM`BrkOum>cb7Y#udjTDeN; zVGREr@npAdOhflVUMQ&cts6m;kh!fJ@e$!==XBHB?9qkL+UImfk6^hu-F>Ko1e2-U zH|d0g^pcPaBal+r)Ul;J`e`5gMjD17fpTNte?dWIU8QY0JwK^>d+n|=ph&o!s|-FN zu(G(UyAQ3ZQ(T5%Qe2i5pvs0H*Qc8-wb>qiASpuP!Vg2fh~d0{C$} z*|{Dr6uf&OUvq4q>n$VQuNhCk0L-OHBBp)V`e27T$(>fZhe%7jES|@UZ#!u_arVfvK4XPK9djv}1 zv2Q=+=K=#fe)6efF7OmdN`5ZzpHOjiz*Mrr0AMa>AqHks7qa=u#xHDxx0QsMx2LW} zbV+(HbuDUuGR*E?@-Lznn%Z|SLy`p0?Oul8D)k#b!_=$a@bx97U-#%zKC(q4jow=7 z2qT#uiOWZ}`~hW^UkjL)sW*u_)&e0-g67u(;m0~vCLSK@RHb-tNUG95GgMY(^tw=| zDuYLbq$>F>p|UFZAs*p5I#tOuld9y8sLBe7>34Q|CFY;kQ4*t9b+U=0#;f>uY{G>> zd*Y}hN-}f#xAJSP(A0}L-9mE@E4tnPf7feOQ_4v zDM`K{Bc~*0R~2$3-izrKTKG(i5}JD*raUU6M`1b*EO-k>8W=wTQ}$!-*_BX{oqmjI zCjA(H#35M@`}OlKonf|r)kTKc^q5P2X9FkH_zjnioef8j1m!n^+?P7Xg|Cl@iKy4E zfF5B|c7=>UaTS8XH&XpIf-;P%1Z9d22~3@W3ac1N zi?Xch1f?JH=oOTIze8FSU^2%Ieo6tXB;9)8k92*v#SypydfcX)jGw6^pbXE z7**L7wv^jzopxmiCI_HpRVygD&(<#}-fEL}1(?ikTX|B3mU6?b9}@4mMUc$4TNNa^ z^VScEH{T*iX8)}mCxDdVs&Soh0@Ea;l1o?qST_SkFFtfiEO_WaN{rukC@T>QFs7L_F#cE~H@}`=M z1DPFQEAMgndiEi@&OI(ilmsaExZKyei88vB(rJ6a#T03Kd^x4;H}nOSPQT$VsYt&; z7gZ|osABTHcw7y6g~yhTFE6Fz%QKyke0YIIt`OZNnz9p%%EEUVQcw+E8WIg**Q^$bdwWh*Z^I9Iikjj*3mnUoe?$DB#3g!#vkk9Mb*3q zzzd3a$MCpzciH^nYgC=)7ha{3=I5?cmA!5>Ry)0JFjA%0<#Ad8Nnc^=h2*a>DM)mc zsqAn0o>4eHJN>P^(j-GfW(T9P99`%OMV--wzf>fn3%XcTAuBj3y;JvkdSzuvCg-LL zv8$7ny7<&9D|h)x$;w`Us_>|(OHjQoOO`2CE{hq0xXL3jDoWfr5`$XAawKvI;<9yd z;opHHQ5GDQBazvGxXO`FqP%ct>rTSN3C371mBa78GBVevE6bX76a5f@NYOzx|H3p+zclceE`7&{Wo) z+PY~MlMp1(v`^L{Ndo2EY4{DTC~N2MHxR;}r_Iy!bUMEm=-TaE64iDtzaqk4&fJy5 zhib#o_pR2;a=v`rzo*-B^agJ3`bk_kuKDVRAw{y_>nD~xNFa;h>1iu-MA|VRDUHF9 z2MoFECzJW1JlSl%XF`#gU2sfRJ)AIkg;mr$Evq zXuKwsAL~>(@=k%}pS)8LeyUUDxH|>J`>^LpQL3`$P63fPJw3zTy-b^IUS3I>NmbU~ zDPU5^AB!leIV|_|lE#lW1yG5(nA4NEJ?L7h%`vAUO5k{HrM_00*=f|B0%jlGDexaE zhvdLJ1;jgbry%@Bd}YEKyXHh$O=%EeY;D`4n@}K+nFX|lgkbMSm(9I<$+sM zO5}n250#LH<$)9DI1k)^s55&`%no(fY4$`iY4*&n%D`M&b_lN1z?f#z!1yDIt{glJ z%LBJMi}S$U-|MVvTpl+~`4a_jjn;^;!%&-AUuRM2iVs_{! zI-OWL51b@(I%2Ic#8%#yNN)mn?n^kLBtW?@;l9?{-ncw)E1qDLEp4wR51dF`<$|Nr zZ^U`vo=ugje;$cj`h1rkG11DUG zJn-NP+E^|R+%^^I*x?k^IZ=jmlM`jw0HKzbY%VQ3gxMKUGfjdhmu&p89$vIxF#uj7 z51dtZb-Na2^NUAp=Q7+7B)Q4mIm-%kTHc+D#%ky89MU69a{A_RS^;TT9yqBf&I9)! z(6q`SA}3~thTrLL(|O`HEh zRpx;cp;39@jvQf9vMT3+69G=k4h^fbL3W)GYA>`!I5SeFORWX9!zhZM>9HL#jIa3+Jp_xK=or#tPR zQ@shCj41dcDzrRh+vM!f)H)aD?LV1^VX-=4f`i4ho=yh`N;Cy5??^Nw zAz}&%vj8NSWyo=R++0r^81_Oht(&f%9HF7m+W#GOlz9>Y8bU>OeZ1ECB!r_zXy{1@ z_vbn=>L9BVjH_oP!PsN0yrwu+EsPvGG)3ehO);CIrYJ!zgwr7$OD)nAF##}{i!Gp0 zZ8NPGTP!JpL6>WYJYdMoIM_(vFlwD~h?Yh1Z~y$MPk##k`B$2Hm{U#&^Q z5Y8J6AHZeeZGimoZ5vCcHC74ek!&bd2|l1?^5a_Xkad_1kRl-7Y-ne!fI&@IOQ?uWmyLXza;Y*kbJ>P@3!ajR>myNR%&UHHrPsu0l>&b2=r5Vfw0-FF*Sn1 zlQRDqWs+G09jV=BvweNpY=l#3T?8qb1dJ9z>SH~;ySwr5kmf8r!?0R<#}(iq%~^Pc zA;8N#^&ZF?4PVKx^{MxWDnX>D-lNZ`;;+u{1L*c|&)a8(^luwC2GXPn?l0P%f^-|i zoY@NVKYD#S9TeKutuRfLaMD(o{)z~{RwLEjVSBl3ApH~*1Qpc3?-s10PMANVWviMY z_{`a~?}`nBuT6Zx(z#!WR-7EPf7j0-O(kKk#Bbm>cyzda)20t z~EJ;EqB9)U23juQwuJpM|J_udCXE8GnHn{Edl zP$p^qPwm5lCaCnPv9mv19{2a!D*MNdqdPZtT!VW1jOWDx+BZaJ?bEWXwoiBpTe-;* z2$ASKLcq8>8-*yzzz*j0vP*A%MuXQxt;S$Zind-&S=WsbAx)fbGf}9FHA#p zR+yG02(xOzxWArnaJ(@-lJtZLX%tEN7WMLc7Y&{P#%YMo%G0t0c~&iL4&!58BuVI^ zrHx?+*s2`(VLB>f?04XXCZUTQxMc|NsvLMSnt0Xiz?m$8j2t+BMtUcP%MVWkyw=l z9>+TwBsph+hFz^@kJH0&Cu3+5x=3`EVLdz@-Sle~uG>1{CEy`LfLEp2XnO1SEkS4) zO&=T?Rt<{hlipVD7oDLwr&-IeRquGtW zqXky&k-8r*#4XPC#ulD*S87}rBMZ2|LF29SCRdm7Y=KL;Ck0i(W zUH$_~tOk;*dEE`^_RRiB_cI^~Qlrl+dX-kiR0riou(xh25)D zQ4Cw@l-SkjG%APPt5YPH)+ranuF$C~P#wCHUY#=0v`+ae>a=1km|E2#x^B5a@#`76 zQCaMYoDf76*TwG532{^jpUMewpQ}ZuN@Mqn&eg_NZUpn8Y6q#QWi6aY_aHSSNoabI zT6SP;73&DTpA*_!@0>+637wj=m|>-VyFEcg>#?FUBxgit+0~8Hs7!XRu?2Oqm9ZIC zfU3g3xx&?UePwlvg8aT$tfan;nJVzY;~S7G(t;_~&gwYZQKh^t~sLR8mDzOL3gB@s;$ znVOQAA;7C}u#mDCzk%KBV3{ZZR1TKERyvKSVs)=tgOb%st%gW^-gz zXKB&R>0bLsf@w?R64o_>Qk!huf^s`-T2OX-tz!2eQO3G=VIt~StAz=%t5afB$+}mG zNHDELu4P@ZAt`D~hckNbhGa;XP^t~dutlYFOVzXPb#AhtwVFwpA*i@wOCi0r+qnS~(MBR5uam+Sc8WTybj+ z35sX~q>6P)T;95Oof6i!R?9letj@Vb6|Q@Y3JIp2n_&g0Dy9RfI~}^U-s!-SBxGtj zAa;PQVo^XvsfE$^x-wblTDdZ2SSz}yd~Uz!f(p8k=(vb(%_xYfU3ZUypxm_{1%??2 ztzt42b*DqC>zzzP!s*F0Y=O?CV%-O;gz@V>CQ2yPx{tpuKp2(1?p-V(hM?|s0-<3E zGORGgxbk(cDTbx5l_|Q~*A-_j(dg}U$idiEvpkR78dSRebvG(s09&I%R-nWRSDY$= z-Rp{F4Q%C#nIXWdSZC=PKfQ5?FZ8405UTc5BQYp#dk3|HLm$^IF-wyihn5&Itdy8K zVd<8bD@&v$W@{7GINMY?>~2>k>tSnG#w4Y#LT|V>4A0yVufW zRcvKx%n;yJM3{-X*u7zrC7F&eeP!$_Y*A_Ker!l`4jUK8t{4ukSas+@dWQoOO~)Sm zwQ{Ltt5%2bdS`Y+k+7+m-7*7{tJq}l1*=1Fy_*bDyZZ`B5-7I<4Zop?a+L<};4ndAYOXYBND&sU zG-$~KhO9j!h8MfT=^{^2+U?mBBs|WZ{g>jvw@opLDD+G1_Uz~pCTGv?147DPEiob}HDA)vWC@_Vq@%wh&g@#!{vb}OYM*feiiFP1IKd|b_Vrv16VrA& zZePQN6*hO>gzs%v%LspiZr2hMIcjc5Odkd#}e&y@^-F!ygnWN-+z@( z-m(HzFN+QV`?J07Psigl-CefNdts{|_IZPdI7#!Dg)4|!)mbV2ES71fl{%tHD|KHH zVcAn*^CP%gA<|Ay#WV?@^i=$@UV!KA@j*r&0|aP@&I-`7tQKIj`8hyH1I08uIY4n58Lc{Q;y~Obhbwce*9M3dE@a5nE4t!M} zU}x}P2ogjYJXls$sNxf|PE_H6nM750US?$cW_!5FIjs|wA()hvWd*XzJjMjYPawd0 zBN4SefyBfJ4L!!he=XV4bh*N+1cfA>Nwa(cf=WKY7etkN<^Uq3?LA-;VN&xm2TYCd z@G}SeX9SbmH#;4FGM!HXO7p&%rA0t^-;5X(WOBN0CU~OcAb>Q>gsCZ+@Sjm8xs}50 z=`}<$7x7h}hG!bcQr=&x~|zvN`NOlCH4TsvR}LK_lJ$ zxulDmb~&xjN}iCC(uE-o(#XsU&)eNculHB!iCgCdCPpx5Uf{o?C^GLPK5yk_TI)NB zK!^C#JBdg*ZxTM?HFPGeCgG?_lW>1VFd26-^JZ47yYS=)4!H~e_mXh-({6gZS4RWQ z!eMGkIQ(Y>lkr{8hwV-d+}818C=m$qU6wci$oQ`3lX^z7)psEwVo$!ykOuCV(;{s0 zfgC2Sr$v?&A)wPDA`cic+e-99n22Flc~E&JMUzm`dQg2t3&}Y&Bcc~_x4YS)5itV9 z4vkp=lFZ%$;ohAl`3P(4-aRq@sNhI)k`Kgp zqA~=Ns4OdxRe3PVl}zVgJP{f>7*BQbfyYqP60cJ}hG0@YmQ|H})Hl#d~pl#gWv@+r?Xkdm{<6Js&lTK67lP%%xyCg&Rdh(?uJrz0tN&qTm# zU8fT*fAKq&AJB$(28Log9;eRCw9Tuze&IV24xucdwJZ|0|RKqFpxnRhE5Ra zfdRB)7|5Uu12&t7nJCbTVITv5@q6>9;?0Zi@V^Ok|I~Ok zlxIPpKX1=`^KG#&-)`*-?oh>n@ot??F)!-fZ`Jh91B7n=adS7J9Nk{VW&d}bJ{m^U z!QZIrpoIp#`%Yi)HplIgoO7lXyJ)ykKfhAnPYV({`$x^4-EA+@U2fLtCi0;U{(4mh z4KV21x7xdQGOzLo2lINR-dR@E!7tZ!kl^*HPiIK3r9R-ZOnp@U?VIiDyIt?pdS<(l z_6#TL-fz|^&w>NpwRaGDcb=q=S*e4T)1nR%IOt&eGy!3w3JF)5CJZC$Ufncdq4lZn z^aPLS3h%O(`V6OK>a*aWgMZjO0Cgb!f7Tg&KF0o1)zG8x`%l{Ybv`}CYu&q*ddJL2 zeJ|?z$iKpH^n1-c#WdOr#4*t})X?$>cs0XypH zSF3zf@Vmafk;DFYfph>F@UCRE%xjU+@{jtu`Lun8)BY#9J+e|anb)Fj@{fAE`3|18 zQs*hFb<^@%*i8c1<$~fkaU~ZNo|V+OAa{n+z5>0xe|mkA`@<_OVJs(7VBHd%z=8VO zcekLz7x*0;buqZ35G8E6eH?YZqcWH zfxY|PhN%ZOIOOij{~A5Hr3n>Od%s0|b7m;`-qO#IT^Alm>`})7}>q)UVMO7t>et#fJ1P zI~8xBO1hG%(H8Xf@x9sPEL;mIKXA4XdoNBEyDn3{PWu4SDPl_MEG zT_OikMQOS;U>ck=p0&Khb+j<6q0ZT{pswVcvule3zs{&0r}GmO&Ux{D`~RXJ1B^y7O7}Lw^+|+-MnaK0C*UdK90}&iw$p_Km9Xt|`R#WB$2+)F+uxr@j!4 z{bXzGQQc8&^5^lLm;pzz^PH$}@lovjPq2e^p^l~z-Gdo0yfME6|kg11N>@g0`|!CRUODJc%#(#=sv zZJkQoYgwUF;!aDsQ~o|nn@fk4kUD-|!KE7}q^Gh=w~*S^6lchUGL@Px^G4 z$W2^Pry@VGUZ*}sv2B^=u5yH9bcJOa^C6=xFVpx3Xs&H@I-d5+f=MgP>4ph)sywG# zNYJA;Ww|R1D=UlnR4a>rfXZs?n!C2Ja@Uwob=UX@JzY!OrC4EzJ#EE3it-TSAG8m# z`0#UuAr>BgmWP--0Bu{{B<@VC5H^eZ66LVj-<4?F{fJIPS6EgDXQJh0HJ^&M`3iUS zU}ayye5!o~{{RP6oB1VTjup&L#2RJu^D#!ixc_L3enBS0R7=V9SID|h;-+UP8s|6G4%e=1^t=lxBkFE!61jtuu1YtB; zl)mjS8o#^ikhdth=}>oWh-$+lD*XS%f_K2VVa$QF5T6^yP1_Wqx0D7e!ryPmD}rt} zEFaqb5RA4Ed3cFkoC{o>Il^0jj7OdO4F)9}e=? zhdwj(X?)XDs+opu&KA?@!yXKFwm`mW)O+1YSSYQ% zP{GmoUbxt(*b5sPEsyai^*U6>;26(xAZ_GhJOTsiShm}Vv64%;4!bgNw=?8HotfY5 z3>)JZY3+_OuvNO_Y^d8 zC6^mC#g5d~V@D0ZPGIocbiVh1dh8ii)U~)Cd*(OT$3>@3VISkf?{UYt5g+Q^>@jZi z1MFH|+2n+LOxNNJ@Bw9$v&^WIaoObTudt_!5~o91MXBK95~npA>fLPOv~G|6T9m*q z2qbdC$0hJ5I8pCr6ZjK9=~J9e4qr)eK0mxpag-vyC<|1`Ce9KcmjxO#BDKwCfyTc; ztu^;9kuJVY??lFURquS#c=L>4leELd#yT^C;X|6Mnh`9pF2%(O2kkV$eEL3wGYl||j#qX0T<>Rt*lf0;dv)Q@HA7MA^YHKF~f!W;h z0kyRY?5MMGZSBJEu)lx08lL#lv}q)aRFTmk{TFIYi4*w)whR4ie56 zX_<4*yS1E10b5tgA{%UxmVIJa^Rm&Ud53f8I?G08MfO~^Y~V^r4C!wAzIo#H<9FoHQyS7s09xGM+-If0ADmV%7I^$dd-HKSdx!Ry_QT!FSEBQWb0@2Dw!ySpT=*QKN z30Y8AW^2fVZJT{H=CQA<6yQ*+6a>?%6qC*#_GG+LkVUOh44l^3Mkm;hA1OY^zBqwW zntjuXKxf*I?}$&fFLs3T?VF~{c;jdMbQx^={M*ld>eHXXfBv;NZ@QhICI#sv{P7C% zdH6*IQ7V3uPmVTt#t;8sbEoK&d1I$ZDVPr*db06K0S>i38Nsv$nKmgt?8^92V|Y+! zii5=h>gbM&$X4l&3&?7^W8<-=2s4qfKR&_~N&CeJ)939k-RU*kBgxeLp*y{T4Ov}o zr&qMcan#W-WqWJ&%b8zgzd9^1k<35d0!2Q5(E@!+|DqdV9E;1W{&9)%jy~DkY+}4? z*c?bl>HXtp(jddXIFoXc|I)C{<<`rWr-piL&!b`j@{Lh7b$1pH+lSk9K2IVHRI@5nZrtv%{>Q|g;JpYq=cOBD+)BFdx>lrrGwb)(H zw8wtcQ4iz%z}%0pn{~OJF_kF6e?V?$nhSL;&h1P$$4=E9q$Yl! z$nGC-kUGnVx)vX#&iQPyo&cBYz!fgI3mAPd8 zx`lA8GJRw@U>TBRLh6c_A<5P_zUoqg5ifqS3IIDek zn(jqpJfO&So*VTvF0!5f8Fu!2RXP0gbQ1Xj@D|$j`SOjg5S-Kb;VXBi-B&Kx?d!wz zl_C77!yiN${6(Mx^c&^xud3f5eSe95IeWiXzln6WRrM>f-j?XsC%?5W16^u-I9IN+ z3}jAZ#x=`8{t1rR)=0o+$A`UJB@!@fsB1NmfQ1G9YE_&|iVwTCisG2l0>$x9P;spt zbQ$rhcaS+P=pg^3uY-wf{Z%xmlJ#qb9{;3g=*1_ts|>y1(Dq+zhMqgFZCy7d^7K~; z!bO^XO%U$0^jmjbqBGo8mhizbZp{*&PjXv5iA#ZB-IFk<1)hX|f&;D9AQSP*Dh4Uy zlp2Hd@yWu?b_i+X%>0p??aY8QmDz0PmZ+e*`hG4Rhkwxt`2*_vDe}~VxWuArhxiw+ z&4EHX4}av^JY+(B$*j%8)@>TWjQ7wH4AuycuhIy@XtF4sbw3)vOS#Wm)S{a6p(!R7 z&jYe+Vh*H*IOQpB+NKD-VKrD0KEXb(2+FQsKD2!XdpH~h4{gV!YG}LGsFCGUMx0SU zc*+RV>GM;D%cZYNKMQR#kw`yyfQT&m`~dMO^lcqc88a(%#3jp=J7V)>mQUiCsUD7z z!6O~WS4|lR1I9&NR!nG7QMUYmtQbw7dJt#D=!R|17W2|qQ~{8$QUStfQh`ZE4?8ee z1xUY21qMh{;Gt9E2af`u51*g!C>ehFDAt+qgYo+`_&k2ffnPqm#oH-^XSZ-8B|p2l zEtKV2(CO}jwcvBz^ID)p_vOAc+94S{kb}LEyf5Wlk>x7DeDcs04ORh=ukxh`qbba@ zDdb@f1`hVwTpu6(%tDWUzfu&k zLFTlegZz`e4z84i9t}NCDPPnyH@U&*=xg*rpb<;{&=#kn=S?DuA zK$~pcb&1YcM`WQ#ID?bcnq3z@Z*BD?F422+Pr{rQ3^e`;YOU2E6YH0^zU$t3?At~o^+9)#1RIJ zi^|N&KoP5Cp)2~-gG2&}YS^X%O#fa{1wg(^1qh=_1t$4B?7)Z|oYx=wYk2iEouG z^Z-^q3tcsAm^f_e_cT5WouM&<^2EU{u@`k)viOVR>1hvB>tDNn6|QQ)zD<$|^(Nku zO}54!)uj?8f1b`tA5icx&yD&RrxN9VhMld;4NKFBGt>uED9x~(Zq% zMB;4q0qHa)e$?AIou>3d>~h^vW13QwxjrB(W1bUrGftRPpS%|&d^9?vETJq zVa+n5ZoY_0ux5YNtxBEIzMd+9(^6GZW_#U5k{LP0+3f?KGsy9xPR18Waz8>n_H;9m z>AqSwEw6>$^cn9x6N*hQ4;RL(O(=#Hb+UFsvG96T86O|6r%J*`H$A_y5&io|N6qt6W~F5kFw`i*L#pbzf|uA>>#}-GSgPq zyU0>os&}8U*0YRtiR+&%xe!%?zyVhiN ziTv~NR%e;iS{*^^>5)o>S*J%X7p6Fld^&oQuf|mH(D25OBj8Z$s}T&S=J%HF6QVzf zQq%uw=(ZrUpssvAw+qN^o1Ggbhp(#?;83d+1kb7M|=i*u_FiuI#QRHhy#m~m+)WXO^5+`i76grUvXYys&TVk zbVB=hz4)B=qFxY8>!^=*6vmJGU@M{Mig^#AY1CtGdFa5#D+M^zx?%*=I#_IidDxZl zgT?Tu9V`}5M|V^pwn}$g99A6r&>fqTy!ZqJoe2Ee$J?Qj#%`->R-~)!wyOROT42+1 zAd%reK6tiFs9(k4+2{G!m8Mbt-u_&r`VS~gGsA{@6_=)&X^)!f=$9H_YxT&*Ve{M?CC`taTZ8=h;@oQBEOH39>;7&u+ zFo%kca8v9^-DPU@=2i&!+spK^=*NKDmk|T%Mtu7+YKgt5E82FMuA95*etSDyH_vC- zd%IlUA12Y20Y%%=T&O>B(YADR?9}J-yMlW4{GE>NKfg}?8Nbg*E8+qS2;_wXdtd-9 zl2ZT!8Gtl?B`1x`{Gkcp*&a^Eht2lgUTWmeTLmCUk}Q6XWFfvGwwz15U7xm>kAzm5 zU7DpuXxOC@1AvinX&>LVM_4zEacNA9fRIb$zoI~Xab8*HjgZA3H!A47A@2XqDh0^q z6>;7|p)GaixK$BEODcjH6k+VQ%9nP)Kw1$D!vJ7pCYJN|%_Qg9)``VXA_z3GSmFTS zH#25{05))*blq?E$Gb`HEc~$5Dl}CB_TR}!^k=l0%sg|RR4~#y&mbX!Li3Cv4cs&H z3^v*9?>D={=^_Vi>pUYU5+0go#3vL>#+jU_-S&Lmz83?zH9lfu1c#gn{}qvZK4V3M zq%b&KIk0VEDewOUU{T=aS!X<|NVtbIIt2JB-2@)m>m%=aAsE$%+{iu$7RW?Ee ztUy-3UZK0~`2n)3g#!PgSAmu$N$kHVEfT{8@b<^?@b=k56l3zm}v z`8NY(=qMA^{~1ftH9^3?Q3v>PI?G`3F9%>nq6G8*iD4R+wHk+Y{Im49{RU}h&S~5- z1bEr$z11#Zo@;01Wg;BVFtizCbhf$_Th9?>%eZm$5aWRp49j=4%?dL z#@$KAQ{90*5F}_iut!#aDzhEuRwj2*7}dHRCrJ`A+K!XoY8~Aj4A{Z;1{CM)4Vl#n z4cf{{wqIySa!zQ5T_v{r{dABU@7>r8$r)^x9bl`O`tSE@$=&Thkm8I&4YOLI9kvgH z6?%^(=Y(e1)e7yfm5!rdXh3mJXvhqJ)y${R!|QdD3)=4al!y{MJ)bg5Kv**`Ku$$G z9J=QPrb-y~yuhDpz1;q3E7OCz^@|i|^lO+^8s7do$ylTx7*L!8hRiAr4}rlEx|kZe z4UdS<7#_2%G(6LM{}Z{A=r%m2I%9bJ8O2x=kmwD)?tlac5;Prm?ZYJ;&~TyA$U5|`attXVP~&4!K`3f)TvOOr&V*IdM~Qk%!S{a_!06lb() zm;tbwE!pGr7A1E&>wDbYTe2Z#0;;!U!zQ&(?|3>!X|df-kBAaXJ=-!%5NXZ+iQi=o zGxuKg?w>fagi`OHxbL+dCfWq(_Ap41(CKBYVOHs3o>gW@w}%0O1WS7uWL1kwC5`l> za@ivhs$v?6TS&%-x?LO*C4kz+G0SQJUUXD9K!8YdR)B^fz^mEJIiGIF z!E1j*lE6iS!mtBuH52Y-+Maihc*HkJh}{!zNSTo82{&wley?Wn2rG;g7LQDofa=8~ ze_jGI+PmmpXdsGU`yvIBcQ9(qG9K04zS@wSF-yx1v|Qt>qw(DBtAo+3g8?4PRlxN5 zdp|IL_#Od6W+1T|FMav=Hce`2+wG-^C}~uCX=VusYZkVbtMoA45epC`WIAF&R<&}2 zYZP}X8M$9>mgt<^h-IzZ)Y((N+-|&7i{u8Z09BPAhHQoHJ0-Y&7e`b{a*>N;rU0^L zv|hI#$<3bb(TWraoF1))S*6uoPw@spx788R8LMNKfUqVgy`EsFUJ9=}rm{2%pAJfi zVKuzN{v!7p2f#y`v+xWCu7x8@81=4&`;IcKnbh8FWxc^}=L`f1n|98~3Q*Pf zy*K;mt=N3*_IpT?aB071m;tbSvhg0aTy`oKpd;Cs$Ppx;Y|Lx`&u6pAMX<#vB=jfk zrUj%3$A551L`WVmg`kdslDx-|#PE`i^$WoP@ja*ixOA8J+!aG&T zG?S|2kEqHDiRmolUWxe}WF;}mK+bQipe_1D;80{8i#0)%WahV4#MfG(sm$YUp}D+c zEi_;RdMtZ>&ae$d*6I0WO0V?%%nq=X=W%GP(|LQ{MVQR1+=WZ!EgOH7$lIyMAdOe* zk&}4K?!sl$hKlTT7fdthF8CvwS$_S610_zA?O1;~f&|R3zucF)@fan@_UaK5O$n3I zBYdb7l*v^MmDnpNB$yVIVO8brqr}rrK?P~2Qc#?9TDB;2z#^7poq`HaY@|h5R&|2X z$)>%6@~NguP?Ts|_V9o{N;B>B@I;cVN_u!^2jVJwEtl&V8hoeMVw!|b#;g3X&Obz{ zrJdRg5=*5vIjyuj^%$V9c({z)a(TDF-;g zFwLZa@kcbU{5~6!(kY~!J10JYRPLNm`e@m@qU6y|>k3jwrFC)QXoZN>hDoo8+-`{y zk=-gO2c?OG(axY$q>IX+)F+FUbr+?IcIqxj6qUN;G|}HG?vRK)&CtdFRo_lYNS8+8 z{}4MSVFMhAWhchDnjy+gCnl3ahHBd43dWm7zX6=f{w4a()aO;QUx#sky|; z5N78}jcF1@xl-eg_3)xR&H?a(EY27n=Wv$IFV5iXG`}!^Q<|U4-Yk3FXsmX6-C(3j zuWJ}pMHJB~WG^J2v#B6a#%9^ya`I$o_??lV%+{3tmf3;0%F%_+)a;Bde4eI^E+|X0 zLRN_!&0blF3{52~pPyMFE0vwuD=U|qsbpm{Gb=nQr$~l|)$6ikR;F@U%&=-CMj4r% zBQeOwlp~R|G0WD)iIJheI;~4)VoK{`b|9{DxR}Vo?2LRw4yFtjeFkO?uqgks8(5Hi zsey6sW!e5+5@e{(PWxw?$%ukKVnk7%vTYJ%h^=$VHUyIqqh$rC%4gg@?J-2wdB*LC z5;}Rt?Y^Si%5GNYS$4WvpJgfCEah01gPbVCveS0oG~@w8rgHds`uMg#%hcxPO3{`Up`gm) z%%B7#4$#|Sgt57U;llE)MxuzkT_Zs-?le*rhhOlikEp6u`>1jBNHcEKxDV)9aszq) z@Oa%^9{2b18bLE8PftPe9{|$7efm?M{uKU`t)7jq5r?k0xq3DbA~ak*8%cv?a<#ip zsvcA`cOay=BWd8C%Zr94(PIS7dC^3SP;g!}vj8NyO7ExBRhFM>uJn$S2m@DoH^fT- zuD}0PVF&F1fRYA)!~sBVW;wmxT&~-le1xHSW?^asgl881GlI!He{dP|{J}*%e*k2G zZ)P}Lp!B^^LhEoqLezB{jD|FD&&*}mBGCRLZ!TO(CXlweV$s=uP0WG0l0seAfz_o%J}wN5AjJ;FtET<`%Q zWfmP`LpGdGS{EH5K>|hlgy9!Nl?g~L(_z|4i*5}_EGa@l0SS>Wm=ioeX3jrTFEllq zlOn3jNqt2rWj6C+ry6`OULxGw-;TSeNPX*Oeu6IHq{Hq+1B9Acqrop;-|nL*vvrN; z$q_JGqxruhp3Jlb4e$2%_aDd`UaixXqef_G+H!v`TKjc6%cWVnwIeBl;jG<|FDeLr z2-olA(;6KLB65*}m`zbZ(D3wHRvhn8kfjzWh?oGFOuz|>e0Mr4V`&XInHWK#fRq1< zrjnavqdGgylPppq3>0v>rDA4t58A--=jLg8I-SQ9GZz#I5N+;>Pbit(-1-PXBHYBd z-^-$$&2y`#N1%9a^&b#YZf?bv=Nr5Y_9Vl@=D9T>NT7Ib4Za|%T(G)-kaZfHgH<3z zC^%R}(!f0ztU{C5dpWf?2dkDAVc=ku7yyjSgL)U0+}HY`9?&87^q?LRF3JD66Jc_@ z{Es^=e;{4t{y2*JW5oTj#2pVm!zi=4@BVm|ZI8}XbK?=3nDxOyy@=L49s`0T3m%Wb z7nDgZ);-nj~>~BaB5}y4ndBBhxmCxIqu0_#2DlIKS!K0EG0F2!1_IyyTp?P*g zN(6ytH$%KIIzAp{pFoJ%vwb4zf+fH!k7`f4*%AyXWeJvi!4eWhqM9wi(o&W{3<{PI zZ7DTd0#Z_zV2A^N+ytRYQ8iBxt^yTL5Vr7CF50}k#)CQOD4U~AB1RJ6Xp>nKgrG7P znuXv}7FY;2S0N_^&KU@2i)JCn>;x79vj8Dv;-x4bp>@s*5)sHJa0Wu=%o>}_y}#Rf zX02$FX;99F`iL$oGfb|k=69=w03Cus7J`IJdO41XWPp{5WbiM@J+pxT?_yZX<)7IkRAR#a6cKpqCSigu;igT(L<5AH^L1p#+skEwNL|2e_H~jb zL1bSiKO(#j%CX~6h-TQK7_bfc<<8LqQV?28PVPwAydFsn&Gkviz0RPt(;y>uO zM*n^!e56k3Ka)XkKmhpPSqL636>qdz{o_dd#DKc+E151Z6zD}o2tyNMj$ zl|AVu^7p9x4Y~>X5cvZ`O#UQ;`>x%DKz5~0x(V?L6}aZ?ZthylH?Jm(MA0Wb7|6=N zx}v(Xy9=}^XH6!d_+UDh2W7WS{YpVy8C@n}`jj;Juu*fH(`*|OGS;{AE9vepyX#Yc zyAppVYjWZ(DtUuR9vsB8LR%9pt?ML@!*u0LCV7|;#cSXbOy=J}gw62)y{k{i;a#B< zpOC-T&@hm8;yRkaYJ;<(gr2(^MhadwjP$LBhJnwn<|ApzT@AxwmJNdmVHgd@(W?z6 zeK5c+$0=RM(HXicax#w2UL)Q9lkP6E?{)`>x~9{CoNWCc9UVtCjT7g4(uGvNPjWSg zA#(tn=a?>qbd4daNSsVb3|aMdYl#q2VZlkX(#t{}Wn$Up1aSoE_;1EMc} zn`r~!&_>;Q@p2+8xb=GRa^lE&y%@lX9WEy_x4E?)0?3iG9TGIyYjV$!rav8E3+`l; z%;dDqJ&OTdXfm}gmnVF-y^SbCb>(xn5oM35kTrV;@c!L^u27aS zLEF^y0OyM3_6~&Kbwk<+Bko{Go6L|lx*=`)HY5+28IpgZ8RZbl+~su+@cT_%^bH6#X;hQz;8Nz{5oBge*zwcMl9 ztsWV&RFC|O%2wlotO&C#m8h)?itt>ioC}H`P?2f^RQG1GA);-7>d{=FID_M~x zYNDv+_-d03x4J3H0+tlzs8A}^71&pY(lvE+1q|s*CR{o{qe`q3JHfj;M4!gAogXfAR{Hi5_ z#%lJ|Y-W@BEZH;Kb|;0yaz$}_YM21UsM%hGx3J?v#8quKl~^cO2)Dh+!J`ayUVVn` zKd-RuPx{cdBe;!+b7f(#?tdq1soBK3nVBP^X&99xD6~DHP9VBcxlOF%5f!Yqvff}` zrKidwsI;;Se0>>SV<|rASK1nkg_31(@F+vgG*Nn%Tia=(aEP0mCUU2@)l65uPILO( zj_wJ_iSDL}3^W9<3C3RI*o*lxJ<7UmFy_%*Ib1O2enRf=$$tzg{ZTq+Y z=ZfO`xbQnEebbn-2G14f>sI>xoqZ7Q9K?hu+E;=e?uM&Z4YxmJ){lspEo6F;U#trMO zH5(h4U1u*92fF=P4`S_(h6|jhDV^Tky^H5qotQ3Rydb789>k3@H{0uVbbT#XFq>v> zcB6EHy40(ppj0qO`O{u1H6KY&@4rst;kNSyMM?eWyO$cB&XdC{@4rTgQm;`{Fx2Qt zA2n(fIam&5GUMXjYc&u%iT|e3C+&uJ$&!!ykUNiuUfsLMhSN#w61PfrY>Ng#+jcL< zmmmE2#~=P^H}gsN(!IoNPB^~%&h&}9@e5Rc2QBN*5C;9RBDxBr370wk2HTSq<&E<{m`aUZzZf|aeJE=F{)Y?jRw*Tbgk9LPwn7vBY zH||9;LFXz>N+#YQgWPLbXBH@PA*1`Ku)yVHav4Fcw!&i)sI6CYD7o{v7q1wzIiaLi zj9=(3R>5uDqgcXel*9@y<54H`%N@qm{n=maF5Hx(FhK7t+J={=${+vY;<)HA?j^j; zD4i|J0Ymmym!2$uWzOSXdNRr9XI?5rt!^5-~WJ!_KvsJDA)1t;E>LxIKzl9ePL8Hc~#jolNI%i(ck_nxNn- zH$m|V*=OsX!6IeO<$ijGK<30sdWP_vWNIBoI+#2-xt}mHrgL&7VPyP950VvJ$$d&D z{76x<;6z%-lU7B!2f3fXD`ImsmIPkW3shlk>~SkIbX=-x_em{DX}^+<+@1eMH2VCWppL*_}It70`&SmBCQ&7 zC%oHZ>Y}ci_elrO`_RE`FoJWw!a10O)nfQ&mdx+Hy>~t21#r4>2cng9k$*$_Xgl;3 zYF^Cea>w1h41F_7C$k*-W^a*{$9>c~Njb=Fwwd31WqV#H?_Y~`l}uh+LSw$ck z`xdVIUY1pIPA9BfR>@!Mt#*x|gI8ne$nU>)J+EH7{#6pXpW4lmi2fJUE^#)fT~0-c z5_hayOLH>v1f?gP+GL!z^d2%hc6@4wNuP<*jmzb^TbtE7(P)~c8`mN_rG4Xgyj+cE zv+>U5n+cr*z4JY{Z1tbXFjRdlMmHaSBudv!Uk1;W?ftXy@($Zot|;f{2HP;PHETEx z8r=Eb#~(dFPR;js%oLs}aI_hrEWRPQdb^UFmYW_GqF}m$f3#h}cW7?Tls?*1RKaA% zaYElsx60H3x^jQbP7OibxPEB7d_Y-TS3Bn?Pa2uR>Uz|xDHuFgvTvI)#LmSXjvd)K z#FS2&S!=k;W`vwwJaM5Ty!3uPa_!}(6L_s9I* z?&95BVLVND3pD|DrTm;^Ljj{BW;7gZw5FpAUv5kSWmep#N6c(b;|l*xU-&{vAWGgq zLycQq=N-tF4YUa8iuc`M0dd@B&B5@KLF7I##l*R9n+3EhY+*|uScU0|`p2FFC5lq8 z)2e|SFNdNWO|wLcNRItWK~dCHP7DbO@;6!R?!_<#8D#DDaJ%lm0OyMItwND@kOSk} z@iz)(bM0N|=byGMkppq%_!D0avX$rXI^`_|Yj(jnOBw`5od2q0^>kB5h0J#E=7zNDM9uMERGj`t_QK^NEE#!|iNjJ0>TT zOv#Idin5%^#(va7vUfPzP)PL4z9k|CCy88YizG3nfCSMI{Y@?E@f=6NqIC#M>bqrl7NuqQ_ozNv zII9~(dt=$Z_wB4Kg_EPoS-EmRi0C$yrp9`U!$X!q6Y(*!FMDp`lFAA7xA6cYYUJ`| zs-YG!7;SR9!Nij=x4vUACUF8)#bEpziSpy^-SBjX4Sz}3_^&-zkmGQI$RzPKdq zs$@F9!O%PL0DV^plPFcfuThn>2)*$6Y`(-)kua~my_sim!c>J`{=N3n;9|2$5)R*k zG?qn|#+3$j(;{lYL1egeFdu;R9koO}PNJ%)C3=%;C|}*XN$w`h;vR#5Ga@E*q1D~1x6DS_p3TWAGZmijj^W+BbdWO7h1GfI$g@E@3XTT|qsQ2sx6FlYMd)Px$BH_g zmC6Wl|9Sgujj z3P{kRwcGegR7Bsc-Gy+s>$@oq3#sT_Tshjc44k<#9ZzoLrPY163?@-p2EW#_Wvp&D z*VoBe9euY9$DyEm@V@=wxDs9CUe`L_(7Aev^7;&3xP0sKAhd)ly!MzQ{Msw8bzS+ zVoR@&BU+K{B(voD_WF*)iBc60aY;}yEke}S^VwZ?5pLfdF_Sn+szOwLjjE(Y;>DZc zRNmy&cj5&RI1#E6FH9Lw{1y@Rn=$gbrgBoYZ;NsqibZir+Ev4ECkr`4(04Tufl>{o z3@Co%@cP`GwsT?9rLzQ{e!}aN!igZm>-43q+^zVyH22nzyDiZ;VPyYNdT}dvD*&>T zmwp;Y#!+k>*;^z><5`aQ>+)n_KeHS~9w(2Sa@h(aB!=`i6F^24Dn%*M6 zG|s;2d{Ke#q>#Jd#T!)i#=U*~Wj-$J-=W2cF*1J4O9DAsIka*TM*l6w^QbMxzuDRg z+>F@#i%tl*qTM;EqCy5P39`< z@5Q8OP1#UejZ-vY7|vFSd!c@k8VW2BR8F;1T9Xp~=U z?I1$dN?bwxI|$FCItc$}7nur~H1{Ht$fc={Od(UqrfC)W#MvuxP4yr8L`<%(szaaX zU8=48JhcXHN#v*$ra`wnY^)ullT@CB5I6i%DIsy=44N1#&)kS>w4V%`T0SSO%%G|L zf@(KE^`U{Tqb!K>fN{%HA6im6i62zX8bQAEZ`wJ0Iyq*ebA=Xk^x*MI*IF*$>)?jNFe z$=+H8kentFOVxh>DN{D814u3nq-ix+&eJyfA1ud-8`Xp5?Nc{mSF*&^!#$*Kq!iA= zs^^wXIog^QeT;1ZLXQ4T%dt37s!fYa)7G@;`}@diIybXSc1gi-I7zBa%a#OkG)}rr zIp%k`ezCB3q@SeQ8a5}JOuDUkpWIsGb^ij+%A6x1EU=$-|4J?=pPPyMf^5rq?^+T)pWK!{dzoH(rEf608H=W*gx z4~_kstpfzk7K;t7e=jaG*Q&iZmj*S|%KP~Yl|uGf|K2ZQbG23N{gU^o&RPu%JxO<%Zx}Z= z-a!)gkX~6bbnIsbNtwu1pxi-Hew8Y(l~_?OS?o*u7b_5{Vue>ptX2a^&MS*$>c4-G zId0Yc1D6KUw2G^IZdoi&|8W)5xC*L{tN2B#o>p;HmhIMmTovWJRmWAF@z%=5IMXby zl>Ti@X1!J07?-APm1LQ3{Z~np`&L~goc$KvLcTPE(W;b(EaUB@mrZ>H>l(rr#0;|G zgO-2LH0PtZlk~iwLb^mbSJ1D>f^rre3j3gOVY5uN(|$@C9m(`XSxi2N>4TI0egH6Y>?Ziuap#U#0A*pZC&v$+LvMEW81;qNI%@7o@P{ z=LYo?xiGX-u8dsx;Z}_e9~CAb`e|$)yV%(L({0OJ$XM#Fydq0UMlmRF$V_V7-Nt!8 zvHR_(yN%GDj%9ZnJtr+U9FR?lI<0B(o(O*-^lEieyZExx>CyOwu~raV+TrK%;i@4ems)}cBPb_ z$#J5XjSmsBpOh19`Z+`>VQ>YPhX^I_ke6z_bzu%MrI%ah#2ZxhZG3_Z z3r_m-3A~v+^9g45r}0S7XUfEVKtCfrhIT5IBRzh&Rm@T_fqt5t1$G6MP0n#{Q|Vdq zP(PI(B@D?*=Om%V(^DZ0C$9B=MxY+sX;Y3s{nM@D6i%~=OWRM!B@=yQ$HlDMcw3(= zP)O+M$J-_hPRr8UChw508;{WZxA8o8toVLLXeAmaiyWbqUL=7UPa1lFe4@LbNkd8C zgpiYl@)at6`%nG219fMfT;Kn9{i3IsGG6W@mVbVzgi=wDOU@sRGk6!Rr}+m%8hacPd} zE&_{>Yfhio!vI}rzMGY1Hh%M9zI<>sxxOCbvUb@+?Qd6}6w8(9>o0DH>;L$-|8uo- zGJdmzt41GtGAQWlS&=aNi2G2Jt8V_wc12+fSA_4LIZUpk6S_=inP}%*c~QnoIxcXC zGvh@?{qvTk2{5iee|i>vA~V^^s5gt7rLm9)`DMh9wxds=ToJzWj2Y}j!#i(aHTF-s zxtB`y#i&$sTwXd$uIu=yX*t}-j`@$z84Mh;N%CvMB}T^&Mra~*VXDx4W0Ndnxf1-v z9x?1N!_G1)P<%PG1c4n)7B~zuD^%mlp{wy+!MQ!-HWbKHWtdgwz_GbN3T?}lr6 zhWXYSF%Yg~-#-Q%{V*BfBKK=&GArv)hnw}>Jlerz`EX)_f;cE*Qyed4FxEIIiU3@B zzI`~IqcCVlSZSKAcL0rE_ZHFFlp+o|-BJOruVv@IbpZh23h;N2CoA~Y^%(7FgG-*4 zJC~S2UQt)d^@Ep9^?bWvu&lwvc>ZNus|`4=TwmqpjA~je=jdSX?wm$S=6gGyE=0T8 z+I$ItD+M73Y<9I6k0#f+;hi1@TcJw%N%G+S)e=4NIX4E`j> zIQC*Qf{6^LGAwNzdr1ry{3+sw;c^G4naPP}!!>epOwsjQc zKwJslJF}QOCa5$0^LGkud@-NCvvztajm9j;c%$mG*bMYe#hz~6qhqOKIi zxwAi?y&lgdV+;p(_8lvXqznW3FcL!2{PDbG&oe2NUiEtofSk7M#Urwf~6oavmIw}7YSj4Yb=`DR8BC^RXJ zhp>jXHoFmIC2Tz&3OKGrpS=jk;4Xzl>oKlRPNu214vQR!WBt}8F#Ys}iw)f?#wJU{ zk~f(3pT7}xv2~1UF7-T;<&*?dO-F_jSBirr1q$>$0zSDw%Q(`>$jC7S8@pGorf zBFW!O}x z0iv1HL$K{&5@^RX2P#?Q>8xg-0Ab;%ZZhnY{x%pY`PcApoRKhT&Tc4Ky* z7nmPv%pZ1RcApoRKh&5%>c;FoFED>p&-_6*3-h06%y^|wWh_Md0Wcv4@_54oa59NXB3`Ogc?N;d?4oKh&5%?#Aps zFED>x&-}w~t;&C%G2@BG+$l2nAvekbv(l=5*sWFh&kM{-tNLNLR^>l0Fe|OPlX2rrj?q*^B^8&MCVIOz1F#mahS+TH> zyIGk3yuhqlSSP>zai!nJ6V1Xp`R$K)tNb>e)HDC6TdVS)XWGUSjk%NG{t-9I0<+Sp ze$=g1`Ogc?N~`)&w^rppFEA^u>POvLmH)iJthA~hakFUWJ^kkeW~Ehq(#^L0=NU7e z)Z6waY@F?6_MaD+72E!#n{E5g3(Sgbf6~pi{pST{#kN1`X50Sr0<&VUk+$1bH#cUL{jS6F9)<`u2`=Evs%wx zX5xTfF%w5m>f7@NoqQPZD`w*8iN@SzLAQufd< zb+u)#vM>N^GI#2qD_6=Ol44=w0Mwf zIimHeJ*{Z{*C}mrsVJiLO8~8C{nsgNas5EhmV(Wub(^jp_`1b|S|$6*|CZ9qKr^B( z_^U`-KO@|V)_Rf1N71IIkHg z+0RS1q?Ns|S2AD~X-j=?(*~4IX-2g5O7?SPt)%r|r%EnPutiGt6J#xEE0he_S|$70 zv6i$ImJHaO7OA&3>vTQ7Ti~z|xgAPNy_KIj_4;Jhw{Lgf=8S)_!KDW84_~h4)6IH3 zcsahA%x1{c6~flOMF}3%cKFd( zj`fSSqeuGk)$k5S6AiHm3HV=&-+Z~853feUe2+@~*5N7$$NXoHVpwo~G5%mQUrdti zruF+m@{b+Q=l2bi*#z`@GJa!|p2h2>GjQq?21}nizW3y@Hzvh8ew{aFh-z!j#-BU3 zzkGrHGnAe_+N^K}hT951nxiI>6A$yG4DXoU?D7U0K%kfB<*awY0 z1HN>eU%**Go6&l+@ozL!S^KwMHv{RF6;0kjDNBgCV0LoTHHTi{DJ~|vn zdf)n;B-yu)?6dx;9V49ZLWOM|&ApJ=*zs328#|nrCka1iOG*3GQiZjQ za{t~TYus7km>3+f7W7CrBfc3fvTZU=^ca2X*gp3Nzdi7Pps}6Q=)q)mEn8iKPRf4e zpub>G2e4h${)4@OrALY|!dT7)<@h0GnRbAAcp_`k|M+dJ6p&iu`6$Gk@Bw{6tv%>JLy zdxJJAK6Z@XbP9iiE_IBZb=KY-K4`7`abMcO_X3e zu;us$hy5+5bZ8R}e!JRvJ%k;bB7HT6#HP5(^}7czH*)W0{l3LAfGgDBJ~xo01)#2s zTJQ%{@)p}@C$rGte7&#dD_n7bfJazcvwHX6I{MF9>mtou&W*gEHO0;Gzpp!f^N|Do zyagt(og3O5NiF8j95!~RPp6{v_-ega{p9`kXJ+f>e0lT!)qM0mUVJ$nzaM|b_(wB? zLW(m~g#Rbz#XB4ZB*6bs2d8gXCCBk$LInFw18Yk50DD>=(BVeImk;Py+4a}&pRPf1 z)L*qqqkXf-dzVl59_?5Tl)(m7zu8PiuON4FR6&EFDtyTbv|QnLlGF~kuz7pFe7D2{)O>yJk@8n1!kB3(+h z9UJ2w&{=v^q|Y0iH#pjMvNBd6icmkyPd{~(@6kcII}@CfyTMU$v@L$K`9Ba$u%*KI zahQqe^meH+eE9p{{h|Hm?|=I74@Ou2`|rQ^yFVWN}E++58!@awm+}PvA{(7`qK>hXX z|M|>kpq9Tld$+fGHya&~(fMDkc87O^A-XI&*X#fN;vanG*Z&{>^Si@Ji5wvX(DRqS zHhKYH6=ogj46#Yyqz1E&^bKU~o77-3=~r`AtZZl(w0qE5y9Saezj5~N(S}ZkK3kIg zy}Taa0^XPA7a^)YNvX<;vP!LlW$N!_)NXFAK!3co)Cs+W<|2F^MZn;}Oq>j`-Jasu zplW|$ca_X9@vVs|f+;6(O!Q}#XqA)r;c6YpN)k922LJQ3cl+pFkI)cve1GOc6+X4! zA)@F&A;FmCPr-r%_i_dwo>ei>Ieihj2Z@pASK~Iw_$)&9AdLK1DD(Vofmm~Sh{L&7 zyQAyDHO`&JyuyG^JFw?ZhZ;ZE%q;bl4e+@vUn{*!g%URB57eqsW|I;aROWrp@=nKZ za|Qe8rHX9??cvK<$L0qM#T1_-irF;|9~mxh=ybuLQGd)~6~kmUSr0I6NMGNs@1~|h zh|!qj>z)K-?eSpzc03v^aO%c{g5p5MhDNQH6TVYXlfb(1DZVo#%8h^iPn`Ud~suFN6LTI(|TQrQ6Ce^9g z>yOSjcNTv%N{q5XbeGr&Bb@T>}NkVh6Qvd^Z%|hVn)Lddvro=eF z`QFKl&TyB*Jby4;8{=U>rrL?AXi{vj!c`Q*DLNgT;BTjwf}|H+{2r)_1YDFz(R60q z5O-m`mc3m!MMt1a8QlB?`3!WogXmp5xp|MsWT9KPH#!aM5s|AxuhywsFQRiHf@8cx zWzVTg9j>Ks=;Rm$Dw77shyZ3Y9S`i8qyrqxcq_R(ImQw=7a`br;VqO$HnC22UPZt~ z`KE7jbV4Q{{y3P9Uz=;FLTfwe(%K5xT!7%Eu~>C8$OcKBymWwMy3qM!Jq1IhjIUGY zA7L_KuyONnX@ghMvOC$hKxNWk<7Cw%GlJv+LytCI0_P$`iiR)4eF#^REvG{3LLN#l zbC^s>Gd*^wTo?wb6TP)$b|lS2QH|Q0R0cC-Y4up6F)EXWVJF63LkyNmd=ZGWaOh!jyfy=~ZZpKV2U{NMuahW(YAv5_lFiWAbXY16f3RETyHND1w07ofP%qn!hz-qLPPrZVtDV~nwaf5a zj9}UH9-oyT*K{Y#jzO6+xDJ!qHK6rEnt>Hn+{tw$xJ(>|*>6jNb{b}TL?*Mn?iwrd zm-AQSS-#4o_PPk(>GRhZt%x@kc5t+<}XhfC^riN&BOmYd0 zR#)fCdCsA)uHv&;YYf5yzzFG9(M#M_I-vjjYCaneo?Y$>BUDWvncwER)4)^)Wmd@Z zcrq&JOqJ&fpG7Plgpsk7Zf?NLRi!SaU(?N*0Xu?;!EtY7VJ%t*r|%;00K?$$xrfX7 zZ^tuSPLr43=j>LwKEB z02?rH5A0+i<1}?9HA@uI(77O3YRO;4xbh|$bg2PbgAzDcrp8QiPF--Kvlm_1)pDqCK>}VKG}!ymc~8?luIJir>@S~$&!d9 zMPnwasp#1VTUzCury3O1QCT?VLZBCOrADvzXLU>j#ypAku9xE;wP(k*!+U z!|5H4QGdCr7?AlA$ucwVWEaB16Q|36ps`Ge1+J#^WIe5u1zI@f!bm-?FY|Es z4l{3vB;^dMI*h9`#srty5fH`fm^{JQI%(Oe=da`Sh|Cz<=imaG-KC-lSJK`-BS7Yh zCA5#tHXK3NUcwlW8Oaly2GqtA7h9eMVtgz%BEcUi`qoXac4sdKysKV_r5a2YC{*Jz zInr%lVwP7lkP-HA2zFG?+|^^wW&=YVsPb zOVFw_vO29pWnxT^X2fP7D|pobyv}PunHKZ!CE7U_cPFoDb62eF6K&zV5qrSqLX>3Z zeQKeqdyw6NGA(8-GubCItjCV9n4UBzHL*(yWtsNJOf9Z9%tbi!!JSF3nY8!MPZJ zQ&Ws3*4fAd$)cz^QO%1I2)HqyhEV5fC&Np%hi(mSNFudI<3dk||5k)?|j!k7Vs3+H$CM z#D#vP2V#fH#Mr8qxvA8_$Ien+Db>A03eQC;4Pm@rkIT@*5XR%ykednHl~h7b-hPTtEB4190>vUAg#w`X-m;{-Xr!9UCW*jb1IpVLkAVxmzwjT z>pB3l)FqWK$H>EYog}08U|=4X$xD8%(B1anUXpIMB(?AUVx9LOwZ~Cc|4S}8?WCk|yuuvjd#C2-II zJCqa0OTTAx^rcBOsRq|Y#wujy#|-`H%U>gLX?HMxImk|BP^Xu(2AramiIDv)lXE)} z88jxsJhm$X1VV=8C<%1b$>l1M0vuBzA0SZCXTn6()r}e=1I9Gy)XtV;mx5*T`DnYp z;8OifF@Lgz%B1i&;qhob#sP5HPKsQ@;Z%yLP8})KDK-}X!@kM_m~8?=0qR(5yHZ#J zE(#iHTom2{TTq5N`c#XNfO8SBq8p0f_ru11SMBB%Y7bhZ^n0`Vr1YRniQ!w2GTD`N zy((uMs`D|5+%+^@Ec890Skd;GSQl#2f>MkKmT5&3q(s!J)Y`61FvaEq2*+b4!0xFXt0}4mkEHF}hm#^@s&iiU?Q(EHVP$V4lpm)C*|E7HAirTy9XRZh==D^$; ze&1k6vrA7}?XG@fa&G`|CmfjCy=T2e9WoaHCRBJ0S&gHi9EfipHCE#?d0Bc&sl;TN zTr=-QdXLNnz|>Tslsr9M(8BgpQ#yXL!Ys!N9BU&iqSwMWd@c-zF{P5HMya;$CPryY zor%i^Sx5rw#UPU`urhf;^}UcMDo4&`F>O@MxfE%m9)cB$Y}$+I1i{&58h@$@uPgd4 zq@hGG42}Tz0=u0zt6l6}8QiVpK`v?{L9xqA0GSE{5q|P^vd)t1)mfWbE=FWB}bs`ZSZVH88=sllkrq8I_vhf!6{BrRn_1!Jq+WLb^s0b z_ntl#BKo6GtH!P*Vjzo97#n@3`!z@RNBeJuZgChN8A6PI@QeL}vrBU_Vw4=9j;)F! z3<4N4!NQs8`~W90;sC~o#veqyoh%NCIbhnBBhber>KR@oSppQZ`1*c&baEi1XjR_^ zg|U5opPucXK9=aM>f7OD_=P%Xg`d;_>4sWR3n#gjEiZ!M!Xrv1-|J=q*2t~Sw%n=S zE9*x~h)jrS-{kQMF(pp*6t%972Q^LxWm?1x8ExUD$L(W=DpV#$-gx%Poj-j(q>-pY zFkNDXW$Kd5Gm{-Ablro@4wZ=!s$?>++)zSL>s<$Ia~>boT8+!(m~4)Bcb3l}G9fYvrKMhtbML!-CSe(qNhvxJ4*x1ShDJTeLunm^$7GqUni&o{ zfDf$T|u1< zDcU2EMGe;zoLZLpyslA$2W1&Emyqv8>gp2YPNd9yvfUtE%|~nq$vhBR=5W21%QIa) z5M#1Zv$}LI&{ZEH9_m_`9+YV@4=x=a-bkCt_G_?3NT$qclg@Y$Qg*FP16WB%W3OK6 z3?S2GjbpMJ+{iG#YvZtpOqdxCP0nS3Pgle7piG<9BHoZKq-!l2K&C56xy;tKdyvwC zGHvDx>{SmklI`jW7_)}dTE9zSJ?=!QZ`H)_uDWGAk$@|%H?E)llShh_$U|kyN)VjTqe(&2fB{ldrHP+(##dO z7o@p%bp;-jX)`0j?&e;Ni13&!i(rwzWo}kX2GLz3*a()XGxe@ZTO7Np*Ml-`Ch==? z^inps?J98u%hbrbmjO$7XHXb5Y`=d+L+65IZJD-~;_Q#XdMKA^y0+yQm&vnwe={Dw zq9ZPZk$0_k56ZO2LzL>_Hwv2HJ`b@Lnu~x{9eU61OpX6uWJ^hntS?$;sexs7WFnQ> zvt7Q8CImEcgUZ~_@&^|!k;j-)iJ z|MWE<^2RD?l+~cAz$0@RybYvf$l{__Hc&)m?n>>GrN}_H7wubEX2kKQM3VJWGryunq70bMh32~&u#3N0bf8d1wsOxO&0P+vr*Ufab=FjWEiQxz#d<$ zKjZclI&5gyn2}JLT0t~a&2IK7!ZIyFyySVC%#J3!NoEI>JD{7pRxj*@Glw|vMhLs* zf^iPUB4R0V@R+W4$tbp5W{pr78@=k_G18-6&^59o4jE*|qs|DB{(>=9ATlS~)Zkz` zoh()p*?v`VlJt>)!q9&V=)>VOIq$+>v0JsKPP_J_;#&m9MCOJ&TrAUzn(vb6#hy`S zU>Kdu2&bCide_n3bTV9JzChJIIhtD}??h&*V}$6S>NW zG3U|EY`z>Hgo9c;bCwaA6W$fuD9pVa8Pk@_`vQmYk@An<{S6oyhn~(UTTF_@JV;F) z9Jy;RG7|L|sHB<%5Hlda9X!Qmxe@#*Y~s!8@Z!K-hm#SiaeYEqhs*p}ZIb*KbhL3s ztxodRQ3pt7rAB=+zkt)rn6_=y5e%cFF9iBCY!D-c$HilM)xI|osD#ISe`NTQ1Fk>R zHW|-ws%PZ&PVi4Zz()cRBv|7l#OavMRZjM~seK!k|7nMhznw1y$2EP&={m7zR};ClLCvD9(w9MEhDZYVvwkEXAjXeseTnUu^I3B4OY6Gu zXv{=z)``5j9VSCrb+lQfEDOaP)MYRS27yTL5E@fkd?kwmV;(Hdc%IEmI}InPR0ml} z74VpiY+#H7<_6fqv5}2m)f>E5vLQEyiW%s#lb#qNC}yDAUtv^UYL=cYlQY?1v*P*3otLpFjKM;CSz+r{{y`2j})O`zRYh zjTy_GObW>Y8nUDP^V6Qm1f(Q8>0Pp;7&0b1KX`hucX2Rydhq-}Chxaaql9F#FQCr& z$;H9>(Vk>e7mlkcEx}~E?||<4!T#mxIqgaq?43V(c6@Mhc`-OW#7O5-n5jCxq2(SQ zjMU>Y|9ght80X;AgI@?fbrrcvR%h)7kcr?IA3Zx9?4A5_uzz}TdGzGj>9Y$#x3ym^ z;4vG*YIa&V8F&Z;DT^*jD zAMZ(nYo#lP!{`XHNshy3+wQq3mEWK+GWtG7PU~Rn2rdRggI>;D+(lLz|154e)3pgf2@tcOLYJYMs+oSGM}D5mW{bp4KNVnV{}8M zc0Z?;y!GfN!D1F?{})HcXHU1>$y3sg!(nu%ql?S)qsIqQ{jGGwK#cEnaj8Ff5G6{q%fK zA~%?*D|%bU9qf z<)ef~1Y4Bn^wCf6w>(6!MS0HmUfgeah=9w3R$`Yk5&7)Nwyut2kiUeTu^XJP73wAi zV-EC6(a-2Jj%0tKE{-Tf7LnO7YIba}%UmioLaZV4fXwxQUCg$8yVy1u<;?A3@MgC# z4$hDEKixk)KHEE&&ia39mQO2D^Xh$HIvW=hp)4rs}0~g**Z* z&^_#%E&?pjebhHy1X!SZvHvNItVd-=fJ}!3bDtz&>^W~iYLZsTs7s*C`G+vxy+^Xw z{7|#jq~9?B3`n!Sdrx2N{St?iQIznQkA!;k^mPAcMJ6=}NSOo@bI{s88QJmP#m_{8ZLruPI_rSK(D40(#|LMK zRrfBFI8Pl$r4A`h zs*V_l2~3HPx^y!C`!= zbQ)2eJUKf2rD#`MS9*Y9a9Rd>c2ez`)nRzzcTz0oK^7-?j_5dz!O_Lw)1xP!4lbUZ zpPxQ~Llr`)hv;U}RShuHBYQl4i+a2=yE+S7%Pw)59BG0vd6`(X%39)p$)wmb;7Naa zihka|B0G6CEwY+7g=K1L5YJ8!PoOhShx=Rm)fk8gs0({`^6VmM*jsmD4ufH-lgIry zgAtZ6*JELnYO&K>t70I=r}%{M$8X1S)1%ssi|7W1v1tKxjY}?14h|ku+?b3T8$^vF zi86t5ESukbcJvd<`=?7+%^Da~ws(X~w88%EcqESuR)s=#(lU&OV;B|+hO{>`$B4Cn z$0nr+J%(X;q(8>+2XE7>8&v04$zidW2o=A#ycwL~zG!Jys>KeM(OstjgMkrM`yb6w zJ=+;=8QlUg1w5yu*qdGbZ2a!ce0jAJY^npRVT&=D7#2;$&t{9^=v6M98dGL;F%pxI z{etBAFs~bR(2x-@3WHsw=9|?;A-6=`^^z?k)FE>TVEs`Ej%L?#2d6sWSVL;Sm5^FW(HQlV3I z5x$B|LNX`(uH$?%UYE{(SC74|;EUjx3o}BF>u6OWojRRY!6pEij}~lf{hp6;bWh^% z)efbCim{j_)Y=73G$Hdn%<}`=)>;C|oI#V9^PV*+0AoJv3E5jNhnNq$a6=$rmui>u z5&%O22$2BoGf6R-lCl`WW7FCb@1pCpmXRTukXpGX%wrsN0<0ZjH6y`& zqD>0dYB$H`A_%L+tXw{s)y-->Bom5SJs)Q~`?}St17tFCsNRG!o$5VBodFp*CUR|Y zRpD!N*A1pY; zU`&KU4+54mPEYkeCC$XMea@ zZI~kWqiWwhvfsxl%K!^>7@E#=lr`gpuDNjJ&WQEDTq6i{L^ zDZ++`^aKaq3jtLdtfMn%Ocd1}N>Um&cTy$;GMzC;TeH}RIbX_pQ(a%BSPqP7BJ~}u zp5uVdtDe-yXiS9ogzG77!42A$QABR@ar=$x=b~?8j{sSo$k_3;cVm~BOd8b|Ug*)- z8I6ggGTAoc?y0@8gNp%~4xQBgc-m^Va)j?9!w4vhjTCufAMF_$-OC2ery_QAO6zLz$*gpuk2)!JFVgu%Gv0C674VDIW``S2-js}$(E&%n2l zT}UM6ATtk7C=Zwx)?zc)`;RIfMq@6rapKCyXX=bRoy(HQl8w#`Hg(Eq0k5&pC8SVe zqyj^X#WGMFMl#Sd{J-E(N0}8Igv0n4S}^|Ma*VB){m9|5n1}qRlLJ=^(_XgTqz{8Vs(jFM}tRL*<4NOM4a(rio1&rmdkl!acVXU zQIDh&D}lKHt{IJRCKG+WyO${DVjP(UZ%`J>xfwsaaY%w zm_eBsD^^zGpUviPX67lT=7qJZD=bA}CEmY(_cMR+8TuddVlK?`KE*ZKn}uoBg0)en zp0$7&jj5ai8x1HHul6GPpts~ja!jUmvC#-OdEel)z2tE7M%`B?o`+%*Uw!-}S7f{D zlXwNXDrel5F2-Xz-}W&#Hy+-d;|z{OjqTdLfU6)g2kyyM--XPEu%F$&rDk(e_Ih^aYZ;e`|AzSj@exq?d_()O zQ1%OL;lEKS3M5>lzbY5$>>aMLm=y~2thWLQ3NDT@Kv^}^y$PMDDTj@8Vqlrp#6pr5 z^EnvIy%x->Z*IiQ$V_g=bQ!r>`N~T0^Ip`C5(IcI1`g~_t(V`kYk)!(>UQ#`sxSp{ z1Y8s(4i}12D8)%%>PQNJ>(C1YkOwvkbv*B@APEO+#2P5AfnCmDjb~M<461>S>_QsN zPQ^WfSzXJJncVtIBFFqq6}9Rw>!=f4CN^UQQ#N`5Gj~Gg4I&ovZBbYTEK{Y^QJtyc zxhWHOda01Jl*rYfgRPg#LY5^%lkQiE1jtk-A~R*HvXTY^^=jE-P^L6px*7~9YlO3SOcW{c z02jauvAQYIz%dQ2qgwxy&G$B#)~JytZe3=6d^wM8C7vm2Fu@R?>astVP%Mg>x5lH? zQRpjD0E|7a!(d!^yvNvbaXGmwt+uFIqU{=Md>a@NH0FUl%P0BZNp(XSnM{tu23ybg z7#lZfBl+O)^r<`_Lv2Jgq!N`SE%JVP`s`d-c`v*Mm3cAf&*eR)GZQaxDpqnV$f*`S zG!Z)n=Tcziwp5CfXUWc4wfAmT0E1i0T@bz(ZiidTefg`SlS6qXUoYGam$?zE1)U!} zz1%aV{uqaH2$NHXF?A}Ju*{5mhYHM*UC0usgNa5Z5b#_Q?Ab1q#8#3lgc`CoDg+}l ze{A<=q63Z*>9XWkMJ05p{}h+G<621GK@kq;Q#qXNQVSLET$0%L(W@jr&da!42px3s zeG-*<5#jpUCpQn<7mRA`Qd8%Q$6Sax1=lgo5dBoJsZ(SMn?+)UmEs6tM8$ULHH+XZee6A=7klkBQ`}nao_kHt zUDIp&cY5wMQ(TrCIY!j3Y}_uYSzYumHznpO}%%s@UI4+<_q%@fVx z3;x?<=gvX*L0S1Nf%M&8f^0pol>`Qbwd3?poA=f@u2-((w$Oh7Vg?)*WA#r{m+`EZ zdh2IN{RG0uW}vu6w7jKlcUn??AAr5@d1<`wK%lEodC1x}_HSr{jk z#r@usEE0{mury=z=AKg8XrAh%`>b4b86Y!q3nA4>6K>N&EDB?@{o=$K3Ejqi4G1H1 zsgK9Y8#x2erqmXNvDtRbuM|&QjDPb`G`}{sE76z>^UkKeQ}?aTI~Up@VK6Rh{v_RH z*GBUOgpnyupq7mQ;qmx-xS7i3g*JXWf?^hK(|FWNn`Ruw=Q?)3_td5(8gp@7WV>G5 z)P>mdN-;du#j^!PC@rtYC66Gp>2escGQh3HIx}Jb0deyaN{n{nWrt8;jy;%R>@w3W`5V6(aCytA$05Z zED)K^X*zyJu^?_B5u~j(T>@rq^u46%lQ~AxxIsh^s*z8Xay=TeU?$wM;4;%G&POV1 zRb9`i=F4!I*~xc08d27VoL6ZrpGRXB=aJ8F1k{!hQk6&+it(LiF+U#2)bG}wg~6D^ z^_$2)ns1h)@eAx6On1$+?l)6V=5%u5F=onSOw(E}24fDa2axR{T!Yn7gzv5#$B)9= z)wRs3swyHg``=ZwQya%IlVjSTDN6E-woa{762Zcy`hK%g6%N_?ANN(ZQ*)HIKKZ1sBVb*d#9Q(n}<5@kQV2u|*0th&iOFOckz8%~nwq6Tx!rAj!JO zTWKij-h;+v5ENV<7em3Gv!F6I*VZvq37EMtzug?O4+M(df143$|qq7ZZVgKOLN*Tr-)O0vpZ zw{3yQY;J5AKP%|6_1Lh0%gk;rh2AL43bmd~iSU@ojjhavY3wl`PF8eCpYSTJ$5tsQ zb5bq79!>{)qu*>M%Q4!cyr)C87TN?B7L7A3=Al*}@m$_6(>;IcIJ=t3p)nVEGUB5D z&`}FQgQ{PCJzl=Mo!s0eLU}M|q1oz~C23}=$5eO#$4q2_%yhU+$APNeYKSZv^RO)t znR$|kq}sa16v@O~m{NSSnM~K|V!7%)mgDOw?%~30e^OB~B1^^=foHh_)taiKDr=B< za1jn=&j{n|B$Y>GsUjWHGdhr?Up9ltY;5n4?a6fhGF`k-S7++9$bihn77s3p5R!Eg z)eh^Z93C^V4v*l*tQ(P$aU1^^V=)hnJg5zuHD5Yp08={4!|5M9aC%lwfaMF&cBR-Cqn}j|)WVx>KRsil8zU96!07U&A^? zQ*Ol)pqPdIAjTM%OB^XCIMn>4k|Yeo3~cAFEm2dLn8|!OsjlukD{vJcnU!ph*PYDq zf5T03w@SM)MUKggG^P+w3&$6?8&i}}nU$j8__?XXmpCU*RAjp-xQxrpLc=hh{k}Eq zF_}?ln4b2p;Ruykg@*C`UNkIlnHh5lG|z8xvkzr!QFANEUxY9yhGBH9aG9T}M@>&F zRkQmF@QlOws4asJ(M}g*94m4){uJk%3A9-lr-FUHhq=;O!)5-b)6ft8~vo%^HqGS@{GhGG)3WW#Ur zQiKWUrdDFGI1Eo!AK>#mVReL8l)`YxOkqz%)Bc5HlG+hPV3|bptYBpAi4rSA|8G@? z=9?`=she<$dSfJ(g&d8k9XvQ5%2jAJ!l+^(pd!IUo`>9?06($Jt%Kk{DwqC~p5Q<6@ZN&#eVI}{?JS6qSV0MeR8bd-prnLCs;LV_P!w4a&D9ik zO6XQZA4bkR!ikk+envB+gMvjx>k^a*7>Oyc4c1CP4@z@1>de!16%C^?71akzlg-$* zmc}441p-)4@nk%+SGx$Usq;Wp;siJ*qn?B1;kk`?g+q7f6`Er(CZhhFiJlHu>xqy^ z@6Rh}EEJPqUOJEHaJ|w5wtYcuYs3ke4Z+{n10ADk_U5Xy(5i&k$l38mVe^ ztM~?Kbld`oNhmCqkMej$wYxed8L^ml#3eyOpRfki?Nsm(4$DLK=5F{d=uCGA?%T+> zNi^ocG=k@W``Me#=4*5Pft;OFr^~LZ2@_amCS&I^;g$XAe6>lE&eX|^dRB&HMsgN0 zW4dCYx2;+sg%>1yjJVu(4XIRhs-#{#kIC{S8f6z2`@@bJWk_ZuUmr<%Jio%7R-!Ga z6Y=#jIz;B9n3ws|R;RnG>e`E29+s114oYwN`DQrHCjHgPpBl-)CvaK5xHZCC-bZUp zV3|3#9lXL#r!U)yAek|4A$aVqIi~E=LSjtj#A5xEeeCs|(u$U_Q?&=b8Lc)8x_~RV z)CfuvJT5FKwmIZJ~437o|_@kBmSx%0ru~eBMfH4XBwkJnV zFVN4Ff_7C9Ib)q5F$ZEB|Kwnn^(<;_RFF6*X2G??o&|l_NFI94#6L37m8&Yxd@kU#37|@t0*ouEf8@_w-OA?V8F{$8e#r~h5(j%6#n|Dym zfvuc^!%mtM6sgB6b$kMrxpA0dC3nFesYlXHnwB8(N$9>sISSINNmjMo4v^&zt*SJqHFctapca*xarZ$LbD@$?T6+6fY{Q?_F}7qBN^vrO zG))t4)p2|S4KOb2AXpe;>G`k}wzah|0myt<138*q;XZ%i z!m`1gak$iH3*S^@yEp>{{VaB_zW)+y5%fpQBq5oNJnsx=tIkGad;D5KEHxs$GY7ZD zWCcWKr07gC@)VGeQ;p6PQV+_!6rD+4bCUP7ll{x1(-Xn1MrR7Q0A_ybyCr`*P*S54 zg*F~G(fES)_AHiT{MU{Dvr{wFnw6v03PhIB)NI0uqpVN>q1_q_9z7T?Chsex4w6}o z1t+ZN^97}W=W^n@l{oS66{bC*%M_aiQf_gjo=C#9*A`mGh7_~>Yx_}1H=qm z%jB)MKGw1%g2Q2aF98n7#U@B;My+(jK+M3c03p$MDLd;nt-!%BI*uDOb)5QfbrQXx zo7i`=-p?_%TPDf)ZCV%OaJgCU7k$~L2Vw@604sLASPtVbzL$V2Jf5g;V>uwOCddr% z%%*O)KW4B{x#E~XkBpT^(PmYjUqU7jE;DImKD)skwuOvaT`TxB^7;aZ8K^zk2lRiU z^m=xtQA_2#27-JULGDdZbsWKW!W<>;D!FoJg$uw0pf^NiYV41xvbH?0VX2BY4 z=lOhcb+(o(DeY{BkytW{CaI0Li6-;bmPeBwyG=A%K_H_^_EMOHFYTsig_I6)R26*QgMO zv5L~HaR{RHe66LiP|U*pFDdldY%;jw(j*oF&2CSsu@>G&L`)LRTB^HyQf$;;r zt{|30UA3*GVKgR!g(O6UZC>g$s79CU_KHZ|=(kr=iOG_pFJwtS9jn$n%c`NWQjT>i=^?OOb=;qkrs>P!l0Ao%C1OIJ!GXk;-ZA8hMtaRH*0y0 zcKaG~U@S>weQxAisG{~JFEN=kQXlnl!uHy$&p($4&!u=L! zhMZ#=fp+BBevG;y+WIVHQt!KfEvr!7a)dZYK%8y>Kf_w zMaVko6JVyt`KD$1f*Gp^jMqvZ3Xpgl^zv~LE^aYVQq;bhEKtiYaan#0rI_4ojHf8z za-Lb9I@YhGPEnaSk~-RvU!ZO;b&kvA7`_UrZQWeX3ze=O+*dDog3JZLI1h)c59l_E zJ0^65C&GQGvvwtD0%2UtA`|Z6axDFly3$bsHYkjYc$1J3 zZ0wOnhByLT6kU(e3R)3p%;YqG+>_=V4x>BGr_=1MG#}5iQ&a-|oDbg=Oh)hW3d#vk zTz1TuI*zP@)e&{6g25o_ILJ^?ep?w5{ZqGX^@Q#;Yg>BwR#p^arJ5>Gw9}LWVti+# zIK4iNZd!Q+2+8T#o<^L?vYeTg_{WAv%CQcpYptukEaR=XJ2mYg+}^ z0WFq4+PgRqtm=G@Qn4PCIc43N$IlKA56%T^R~<*N%u54{U{h$7biUW*W;5SNH=svZ z^=2iJnVrUoCKI#JcGUU$G`CP7F#}C4Sq7h88BZ5K+?0}SfSjy3C z;7JJ}b_6*f^98wx@8aO;p|F&;a(OW3F+H6rMjA3T=;?~$#8H!pXbk$rczP`)XwXj= z;SCU%o}vwtl#KnugCit@2?{;hFyBTMBC(i->fSt|J$P(pviazBU!;t)tKjPsrt`71 z#13_5$q0}oBY*4p>}a-FefoI5Qo;n4nT6HZck)W?U^Ou$bNcp2hJ5*MAxEVx+n>i` z7V1T;PV-e+y%#C#QLfBltubcE*Jjn&^{$3SuFq18?4-fr>`5lNJ_@Vgu~4kBP%r!D z!NWfM;()Po7TWd-7u*XAV=+sxYYJV#g2a`J#aN#B-PW!XNan=qrmG|Qg4Clvt6r|G z6q8wlWgwbL)!EiE929c|%b*A8j>fhvma&*6^d@*hbD7zup|-tAjK^%j=SEKpy-Hi3 zo1-$b&}Mc05Tuy$8PN&?7dvgr<UCB)c>gb?~0yqWqWJ^P9bl@;LYM;x#;vAWHXsFhHl>{D*nGl~i zrWWx@1&fSN&@(uO$CKB0b6FK?&rm_(pmHh9!Lq`5)hMfi!XhyPdIcv1exEPFKS^$l zQG11I9*@Uti0K^L(d=xBQ}_|03Zc}Pu7WIrtL91!x+_;?*I2ica#bl)olUBjFNS3~ z(GyATr>on^wH%nLJyAWaLu5uQ4@*W|JiVN}J>K9ho5fUSy{L0o^~?z}mjJO~Qi2k< z8Vf4ijLEFQdpUDE-Euvyo)2iuguYA4cQ${M%sH!lS3Q{pWIil-OTP2*9kx?mC7kLE zY&~ZHW!}to&wICBhscbX<>2DRHSPnE?WLpTcuZzRG%WRdx!jBkzE+Kf>lGZKGIQo} ze~~OAcl3e;$6TS$HAf!^$KJNLvPjGj`rM-#_Lj&>Yuo2KDCWTYsH>|iqg0(At*9Q6 zMH*x%IO?`CBpw>$b0btch^1-k`6D>y3S-i= zducmrO!}46i^1MCcJ|{MQn`^zZH%jTQRaex;lg7G6#tH8Q5=gSIxn@}D@hy}Qz5Ps zRAD7?3?0U(c80OmAwvq%;wZBrv05Od%x~F>Fl`;V=PQFeEs< zpkoO|g{V8U)6zQ(2DbHZHQ(Tp*}-}~Smk?i)L3^krx0W%Zs9~}Gf?KV!rYA4*#6i} z7>6N&S3Lkb3QzMAE`7*5K+xcFH#0*qFj$yTbJ6sm>tJL8bh+dksteh*xWJ(NoJteJ#&}FsD z$s*0KRRiQ}araymB(uhXB6;$vZ$TqWro{N#m&zo57dTbpuTyRe%A{nNwn87hTPH`! zwlx`x#0=EDECVI}3Y%2p0bHp&&8)=0FnXvb`k8Y}1dAFvRkCK19z5nzIgX|xE^k2k5y`AFy^6f z)z)CTk4Ozy;rD0{j~p)qEM`FZLSWciCkJY%ET}C6Ynj$iT7$(bp^Ds-i+lv6E*jNy zIYed@a%G1~b&$(oF-ufG6S+8}jz_Dc0S==FAA#}o-Ehn4=L!M`#T+5F>AvCU)S6ei z;mG}rYh_X+R>uv63uPo4i-8&F@Ze~5IGGi$LRTZ2TDlmOX+!L0F3q7UtY3}gWRBX| zE2NCcl))%KnWoHiQ)rSn6BLRE&xg{!)%Czyu^b@FgjwA{R@iaXjV#%E6?``oXtXPQ zx7sDv3TE+Gt`H)D>e(zOQ+-}786z@X)ClO>&B+LvU71T)d%}6yrQ^Pv7_yEt%PH*6 zDGnXZ52dmY)RBDG}v3510E6Q zq%6`9JJgdgYSvm{!4WiBgKo>hSj-Zv!9D5G8YCh!h8PRa<;sG(#9z^d4G`la9n5u~ z^z+G_t{Iw+@37R9#3D@wU!`!q0L$EA_U-6m@MK?frK*Ff?%gaHlLQ538@yDGnsJZ; zV~${a^m7{Ss8NAJLwL*-qJpCpU%nvprcU=&7)1nE;=;1?sx}S{U zs++NxC3ws8@j~|0ZMz!-#Q0%a@q9A6-JjnrkX9hHrFzSX#vbD_TbNdio<5q-09%ch`bplCY6Vnf2xh*gj7BkgJ4}~*X()@?BcW2A-{(N>l zx!H~WHfJ6jVFwuY5ntKILec+Sy@&DlGg z<1i}}?q7Q@oFL+&p;eu4W`n)iyX;6kHDW}{)w|ot&27+348;tHf1;n0dmU9vujPnt z@2jWyb{4=`Us%*2d2mF?n0BflTm0#KE|cX{-&U3> zg=9uVTLs2kMD-ZTMzm6=u2n@vOAixk*{TvmmKD86A}jcEQPrs$Ra6hl%!t5<`2yFO z!hT>wqMuOv{xV^N#yrk%geOU>Yw0%x9&@4hmogo^&2_1!oN1ylD6;RQ>lWNpn&t(CbP3UjFN#=Jt>Cd1s4}61{3i%FZbQ+ts>Kkf=Vm#)G zHHc^Vt$1BD=mD9{wj^sahd3l%*oE4XYQ!>N%!2tIuRnTV4%^GFL{yg|6}o_0%bQ)4 z*bA??H4)L4l$T_^5V}>PElpSp$&$tv$_sscSt#Q%S8Snp)~|(nKxT_AG&7kl7HYtl zCALtvGap0S)KPY^6p32Hi+Nd`A0~{Y2VRHDys_uZcUpJxoN~8y-18Jxce?aE$qG+w zCvSe`;fb&)5jp}0l!jA&min(TSj0|Z1kg_^4VN{*J285F&Nlr#R2EX zA*vJ7S)mQOJP47?PD$26B`wNsFu3gRIi=vF<1DOH_w3{)XBdVz;r@E?c(NJ|m$EX| zdl)iwMqzMQc5_Z|dQtQCW%n=)?~E`VrfhG7@#w^Xo+a}{+k+AUmlTtNWZ7A}|KZl{ zMYMLz_*~#hP+a!|^cTZdw?@p2%;YqFOKKahyiKH5Z#rwrO~6czg^rZ^WNt5K5Y?^Ta@L64Lo>Z= zRk59)%JWUssq#j|0AI{#7}%MB-K%=B#=)R+dSH7K z5K#aAN1yqF&(Qy>_~siaPX|7NVj7ywg1#`+v8lU4XZp}A)mgw{0vZTd0$1m9kg2ZS zt_l<$iAgAC1PQiP((sv^j$~5(ZN`+rF&&L&K?g5^11(+)m8r8K6Lfpgm^p%BbXO$~ zJsDoAjieGk8dwH~UMd|WbvP_SP*8SonLc(+D;)3!g~6RgnS*x<4RL#mijgWv($?3W zByM~dgOqHsx{tBb(_2e!ZBMU4R1bs^Udp>KbF38ps$=Oq4yItaFCyJ?& z6_CxMssn#%zd0Dog#aslh^66ia^HYD^slCJXv~E%an7~BS!PEUs$rx?$)L=Pjyh&O zpaeMDvpt!~gLKrmxtdsDGB4U#%nP?JyqwzkRMQa@vtSZ3Vad{@Rj*ykB$A}jNhEBC zOI%wb1XHJQYUwNt7#$@E(+(IjM)qAtbO$`_+DcVeMW z$HUj-o-I^hGH+s`>FBD1g~lT*M18SlPsVR$Lr}eRwLT3NOM}5w%tL+u>fLOFISFAg zYCK*|7eg{@BHhKCq0Fi6Af3U=co3l-(Xjui%qD5Y6JarrZ*hYW`XKZ_ug3B&hE^>u z2FsbQOvlp`Qv}9L-ZBQ^;o$XfnrvomWf?gnvwB}SxWRH4)L5Ww@%) zV6MP=MDqw%D1=et@5=fiB<8>(OT;nZ3X&_YYJ6Nt6#+7%lnS=llT?Jn928YyT=1*; zY&@V#{Z6m1QzF${6k`4YBr{U{kw3heh=Vn$|uq=plJVHBm>Ntw?fF+N$m z$InMlYK&S(BF9e{nHwgmH~K@Ehw3XTcsv-(L*AX_;Rn#?;XFCErbT0q40Y_`U~D7h zvkLIJ{i$|Q%^|Iiyptg+u0yGgy-4GsSQ_dM|hly>{_km_?3IxZu=fdF5tyXsMJaL3MvD{46#)7 z;KgKpOE=-jRg1P#NkrzPPMD-}CnxS@2fpZCNv=cz#!PG(?qTY_+E_*e#VlM)m=4Q# zAhxL`55x@Q$gIZJg^Vw~Cn>3mk(h(R6~Xc7U3$;98XOfY4zk!HTewO#GgU7F%}#6< zj@f95!^xHn2K3mds6BBDHN{2_|L2?GG~-aGmdc9rSOqyQrrVzMROT=^jL+=_=h_`& z>S~i5U(}|(L{QAaJx+cwUYj0Ao`}aSw*&Yy#A0#(c_hk4%d$T_uQGjOtU=ztpJ^P3|~!Ei)-a zrH@G7>(?@i;H-(VJ-~qb^bv6h95nNn?Ex>{V@(8fE=BMWNm1{wCQu0Jt%D{o%Q{=p zF>f}MDRkgn`mHiLYvQ}U-^$-BG|`I=eODzxld=@dqu;V5Z8doCyx6&sbn)O-_^g#m zJ8>;5?n!#I6Nk>FsI-&NxZ;BJST})y%Tif4c=cZE#^ZBIkUr-k;K2uvetCH?c)WMH zCn8RDg=B-PJu!+2(~t$g0^P&D=_0@a-A8@XMSx6)!8^;ocadvSO+>8JB%?7=RBL$j z?BrVpunrjb z^WhuEe}FR!7UKf_&$UjwhQ0!xi-PH@ApNubi;qMzQs=>Ihz%Ii#4UD3Pxj{vIj_{- z&+Y|4rV}mp+2!E}9~ZRRrNzdWRiqz2?4Q(QGO4V;%fnClt3Lu`npB~m(9+Z7w{mi` zqe498wHQTSQML0YrL(XtUR?@4w&0FVWSfKh(9E zO7+UqKO%LS2l;Y$dv!*DEK?Nim2R47AMG(36NS;jz&)Zh;;J}Iot&-KroAsC1?OT! zp0;qPT>GBVfiVqM^1P|=;YM+ssV+*^$mfn+VyY)1E#SVic(eXJuOt0{3Ub#nH2XG#mnlwsNyHxARR$y4*Zq-ixpTCr(~%ms-0 zNLv6Joe3qk?;|5Xrb9-!Y`b%FU)Nn|cSN#YOXQ7b)23`8a@NlatK`;j<8<^p653yS%X zsN${-%K$Q6*0AVlQQWQ#O8_%{Nm@Db?m^lx`YuU}!Em8+dyqB&v$VN!*@3Jb)QL*& z+?)h57a$5$?bP8ux{kBqjhudHAE+jvOdG`{_Km({k`$GRqhP?kVmmXT>GnOdfMm+Z zV;x>#NP>$u(oNItJywj!gwae3sg;5OxktPGOiRFHvS>7b>s4gW+kP})po$bpx=t4g zKrux$G^B$Wv)PjNLqiY8RMFVRp3fs}ul?A@fiX=;W-uA%)-taO%hu`9TZi^U|7d!h%Xf&@`}_Z0A$EONU@7wj{F_HaxUc|zO?GsTvFAys=% z$Y@Lyg#^((?1HR)NDw13VPqB;i)nJcXnV7;SWFW2$L7IwGE26Ew(pN4K&FeV5Zks^ z>t(tPsJ#^iyaL(fa5B9cu1B|`zS@%oyb>9wDfdO@@t7=x{T`<-W>9_NIpV@HjSL75fNfMm@N^-zcU z8mEP1M$9fq#)A7-XEZd*WZIS*%;SUo^MgZSAFAz@?ZY9lKn8p~O1*tsaErv?h-*ap ziYUK&nuj=FU*g0BVwEm7w=D?-4ik_|#C}mT)l@hhS&eEFmzY2?3)!(bR{MNB+ALR- z*W=9js%@uqsz3?!|7Y%9mm^D#GeOF1cgbd7sBTi!kh+;hl!hyfvW?A_#O3~2L!p3f zkSG*bKvj{H&EzC94}fGP@?_`9tSZQC-k^U{?=Ww(`$+qFTs*=f;+#mFj8l|srn`yE z{62RN4-XHIo8|l_afUBOeU=+#Wt*tqTR;lI$5=C2#E)QQL$HMPP%Jpopz-kx)i=7( z9D6TeBH>Kgh6oq}C`*Iu)5cihn=HZ|`~Q+NOwiB_Vv&_~407;9L-uB{7Hs)IgS(?? zK9T!Uvr(QdU%8zxH{MH-63r@sQX0Mdfk!N+(L)y5M3l6M5;Os4X(()fMvdq6+JR{4 z?64SEO8{90qlg*HWN|nfHev$CvG_&<+Sj|D-`vW4v4;i@$THBt4%Lp{R?~9?`uSU7 zq-^+(b?}fZ2Ocjaj_65_?9(_gx_FSoSpOUc!LRG}oshhT^%=*?P5Bzh9or=vh!T=( z6pKxvT4C2WcnsipyI4f#*{LUZ8CwF*veEG4K8`M{%0|7EI!bVHCzkQ0^ZU(hz5KEc zZjtTbOCFNdgyJ7Gd4WyyVZr91@y~;?=#<5roRvzE43Y(>Zh)(+E`M__%XC@8pgM}j z`fxRuA6PAtMOUIPOC?|@8p(o_)lU$2=kbX4P^)_|7M-G;`*Sd=Jv7P*Aj?403iko6 zTw=!+X80mxWVa8@lOstD}$!d7N zK4pL`HYHhDVO^_vt7yXPf<aaov)yWDmXe`S>5&7A68Fka0@~YSgEtG|)(U&fv zPBcNbW}6I|9+>5z87uuc+8CA9p_M^gjBfFx?597zg0k{cn2co4<|b*`PkwtO23uTW z6D8*lox4~JD=!6L`rF#2(SFS-YZdCt-Z&dTSr&?s^ii3NTq0QxoRuIBoQ_z|CTqI6 zq?+grz~Pd9cH?WTR12!*rdE$Us$Z)MZ=y1hx#b2a`@!ki^Cu#3WT$4)j-m+8st{70 ze<`m++LMalEEU!_Juy(gJ$Z6)D)h>Znq7KXKuaezdwlZ6i5x!m(oDlyDk`VD_BuT| zJ9>n@NWT=iWh?kyx;aQoDYZL&`tnFFyX>W%hO<<%-QbHy&rS}7ZhN(x1+;Y1nCH(< z&Mprgoys}uUdD8gmQot?;{4!H((PqT4VR|6Jh==s+lxxWrKz5upOh-4{#gb%y| zj5=OSwe2IkvZ-G5rG12AnBQrJ@6qPbJ7qyuKcFlTx|QX7u#4WhK-QqAl+QPEX)U`k zuD<$RHRVu}#ItN4x=-Qq!ra-(wR*o3_a@d$&*(;U0<#={EI3{ScW!01$NVHPU5$Glub+YJ@CF z*0i%_E|FI;5G#U-0{?MDi}Vw@hhblQGL)5G#l2XCY?V5#fsb>km)#@Sp_~WIdg7wocJ_qIrTKr<#gFH}l^Mh!U0MQM9^Y<(S2CcN z=0@d(xSuaqcp9_CowK=T)Z!i-x3lRt-bbUm$piQP^d@@f=I5P=61H1T9=Zi(Cngiq zUQAkIW_DbQSPT@m4yri^@B_<`=y&^b;Pi>l@ft$O(7!*02_{Aj<L9M(LW>{&nL=f1@^Z!k^6=L@*F9Nm;KC0_QGAYbD z`xSoal0t{Wu7(9Y^;cTKKdo_;;WW~4=ro@8&tX?kUA>U$zNZdkGzMem{61S_Ppp0$F^d?Xf zK_l19Rewiutmouofi^AnS*zziCFgM~kwrV^y(A6|VYvtwd&OTpehrFKe$sA-EVY`&!lq z&2ff-p(v+wTwkPuj_bqbG;P*$d9A3Xe}xvsD&WC-J;6Eki}A%JHqv}CqLsl3{Y|uM zwvfa>^KzjWofRfeb|0(x0cIo&BDnLOY(-9T8*rvZUBOYSS4>8-{+?a#Vlh*E@&y(O zysW2tG9_Tlo_WnP%9=UqGahZdoK7|)dBxDx}B090X zWpa>CY{A(Gl)bSL^h$CI@qV6X7OCwtj-~=3ZP@Nb2`QstLgi*x_@8ln&ZlnnXQSKA z-QsViqY#))YkF7XjR^^#%BM6S0bK^NGJ%%djgzfTW(y;)7xa@t*l$b=J1 z1c!KBEmYu?1-G5TN!07K^cs{+Xd-n$nbNQzDa}@t>(ltyK1b^3Ck~U9WV^c0UZf^v z*&8a7?(cyzV?x6hqj-^`93giFk|vpO^|z*mW8DOmPO^fsDi2LGv&{ndBZrff~^4XA5WN04}f|N-v1!gx` zkSSc6C$U&1j5&vsRfAp1{x~YPaAi|jyiQFBK3NFKgct}cA&QVxL#p0x&}`}lVodE% z>wuXSWe$(_an-21D(ZETIos7*6$Z1zW^zPnkDTrzNz!JcbQi6-;Y1qQR+r7s%Nf}K zx9DkUqwOtwHEhUgg+C(?R$e-1In~751AG zjmipo(ZGB(imch+OG7qHF>TXP=*Dud>6F5nJH)w`=mSvJOhr>2l!z58eWsb;j;6>!sogZT?!C z-y1x@e^!3*FsQ7s7X&O})Lr@qfsjqQlpQlnL@wu2;jodWO?BA4JUOIARphW*EXGKa zM^pTVP%yj6oPOaYSq6w3j=`~SzYKWgiu<_SLrG3?t(H~&K63l9*~*Q3J<7-pAT|ol z4Jf$@90%5d>z4Y6?xVBlrA&_Q5sMD+LZW-<)C2IgB3)a({_GUf7*zlo*Voq#zU3b* z&5w=1@%&PtvNl+73;3pTHduxR8%RAGydtfRz0pK6rCL6YwW(&1Sv{JFI>jw-pkg^X z8WLkV++>bxdKTL|x#_ALEea(qwDb;(@S1X@SaC~`HXGDNht)Q1WKBGvz7$lbZFS{5 zaG~rD;A!l!vT#mGD#6n%8AAxFh0Q1+$<{CuBpw`h3T!rJDiSN8$u0x5&;W`lJZ+BG zRaHqws-V#s8F_MmR881F_EX!i^-ajuTm{!;h4%sWg6CTY(ZUTC%SQd zgpB>oAKZNcN=m4KiW1n~LK={Hi-KDR*5J!#Q&x7$?IAK_vu@)c60BS#UoSTP*OkNmd?6;+Ik4PVYTx94^9 z6y5y*2N%;rY<6d3+L{42+qHu}IRF=?$4-|v?MV;O;R;jRxgT6DFb*<P};!vQ-Ij>1CV{A^n< zNT(x(`8%Rd6zmIAceq|WP8a63C6a{OrxKmQ?Ehzbqp#|wHP3B)@jr2R3mROox6RFTS>nGm!|5c zl}3zP$ugB{r3_E8Rtk8ymGs|>wvvHl+cDS4&9YusE!{Y~T{hW`eMlxW0d$I6^KftG z9X7X37P{B9=$SpRl;)1mSpqYRr6q`6r#OGg0-Y_rw*+CMr!2q{3}Atf-{eoz@h_M4 zo2B{`;X556vM1z{%`bqt<=NR!>-yDprJOz9rL)tTQWX9?NaiyOS<~?us_WeYWqw0P zYM_j8ncB=!r?|282G2p`*mr}YJk#5;y&zBwE;}tLL@HZoCN;$tN2)DckxL1_evNAR z6e^QqKl~xthBa+z){>m2&PtrC#bnwRHv3X~n5-uI5_WjwO^Ii?h60URrBa`M(b~sl zR&G)M(~)XWS=Ahz6WjKnw(z2YoPl*;uGPJl#jUGx+pKF@;|RQuraN&Kwr;@5aTi{M z8;n&4jpquzm1IaZteGWEaeLr;m-v_8Oq+_n4xEX3Z2$F>)5F`z`dM||9U`(9A0>yk z7IYRv<=*PXUz~M3q?c6b^56QQJMQJB!4zjhOlDMTnEF$_qd;=)u-30-N42F++pb8%3`ON;*zJ^mFsFkIy=L*loy)qFw1UH&j)2=sv*shKCZVopMe|A z?k4iEb@mKrtENP2U~{YpyK)C%SynZaYF$sD-$A3r3Z1pTg?&`k)nmm-x+u@;qcW?? zd+Di7oQTGDYW&Ce5ZAcid`PJWI5lbj&;0*jY26o2@O0KmQ{&a(YG!_%5awmBOC_!` z--U}MQ^h@L8InxD)zvQ7^I~%OOe~ek3ZztMSDcTCn=AX$!%h|=bY@R@3pQ?Ih3~am z;S;G)b{N@--oWoDfeeAeNT8-MvIVRS5{)p73~Ee|WKib~(~a?~B3=nSnS)zo2U%pZ z3@D3QhwHFQqJajK2G@a_IAQ;T9^z9Lq^uL=g@im8MO#Yqa9bs!ZBn8!l5f$O2bBs} zx@7G1PQ_7~dgMgyEp}F_#e&AdRiO#92sxs58cG(m#@A+(uyuwK;_s6Nd5QZ{wNXw{ zRZ4ZK7o{3VQgN?JWD4k2^2_?}U(u(A7HcPSC9Yu^S}wI-ANf*Xt_9liomxwkmDHi^ z%lcKd^iPG${hZkm9YLMWcGHGme-$x_%|4{EfAy6Y6Z0-g>S~u?b>az z%H~un!>k?AMLR!=@~Jum^Wmy6G~kB%j!L zn*x?~lzyWLrG|UAqfh5d+8*?FSnq3ZMGuyBR9lkOPjKtg>V7oc$k$DFsJwO&0+OlJ z7I#gh9keDHBN9JsseSbZJqlR+f~&SS;9qSgiy;Ueqfm7@zq9AofP zzQNC3J4iro2E<$WiAfOTq2z45&GE@%GwQxf`uO1Th)!^ikDs1C9?7gI`y5CIt-xh< zlgwW}eg13+X2NA=>_v!mesXg7?CHhP;nTBF^{2U-V0 zcN2k-yV;WlD8jChyV);)dvbRCbO_xwGP7ec;4FW1dU>GS{_(+YE&}pwjkU}00+_i` zPfKun{t?QMtzhjWgHOP+U}}(%MK@I_Ms{AblNbg&DS=ucLbSvcbrf$$v*4EQef%)M zW_}bt*aE?KMz{4=re#A2;0L2nfV=r}yOE>u5F()B-D-n7Om^ihu0u%BWrPO%W0&%| z)geScRj}0v+jk^GmowgD(N4^QhA;x^>up9rr#!9~v#3+<6P*HoHx%4AQ6SApa}AM% zRsOKzL=j^^aZqNy6ZQjumriFW8=QQR3& z94vkd15p-$BQAHV9&c67+NWInPLm*HgF!Nwts``B8boG8QAV&md3tvF zCHVgRfBVKCeS`kbzo;m?{Ut-Jz?m9#L_z(Vql0kHm90Nz2nmw;{E6P>$&*2*m;$$( zx$qQ|nOmor{0%P!4?Jt1DP{_uE#OZvy)PD?Vg|_F?8T>;%-%7@ly2nwHTIdiPA2fK-f&uZkVkfCz{NmF$p!8`*X5t z*=OhsAeoNZOns&r?czCkqC6SUr_FpsroyIXNu?9Uf!L@3?29on+2BBQ%8t!+Jw9pR zm=n79btNrWGq`-Exs_Cc zGdWfJQskTa;7Q=})T&9z9uN%+;I!6vQ*D~yBFcQa)upn=Wo;?5wAvcVNYTLvpHz2O zI3q;ODjIb^LXDc#&=3~Zu#=D-x2T4M+M=N%EUuv-RDsU;>C5$GwL&9CjQOFd%S{a| z>qyfA>!+6TjiQznop;45Ltj}|GB1t{ov-V+_iCB-4kmu^^#OQ8cQfMCDguzL`jKWb z28>y7JW1QivPd)FF8#Z z$zZXKC_N>AvK&%{5)3o|dkkiGZP?)XL?zgWgO1O{Y3a15K zZs*w_oo3(E(pvWVHBQQ7$Gpf*_b0JkMv>6G`=a{lv%pY&x{SbMgVAh}RbsZJYUN06 zj}ao_3X88k6SgczXdU{D9txA)vX4U(3|r6!ZH*m9n!@n73r(14Z+JVbY3bul<9icO zS)3dU^YO=eFTC9oj|-NBE`1VOhsy0?JE{99%BKo3+2qz^lD<`l$F>o8ilrU~i>+q8 z*m6ik`lKEqL#PFOO*DTA4x8Q>?tyc0!*JMCh(XotzBrxa(p&ws%JN) zL-Yv?;?Yf7v!Sr?d_{%tV0gN&$t<@DSDv8@7pnF$oce?jj7g-KE$d=13%qhy2B zb$n!R^nWthOm9IHUcs2Hqw>YU-U+G{GBd-c>GR_Xgrn7FjSG;ja2=%RtJ%QT#;Q=6 z3iEcKDy$I~VnN{XSkPU92b>DgSi9BhyUB*yNk7FP?3TSKg?|>bmVSAf4Tq6Osie8C z)xQQILN(11y=c)Yy9U&))eBY&%OpNqLa$;}!h)&yu8T2YQc6l;`grtqda}H(+d5Tt z;jYb$4w@}#oY8#((y)7#1Dyz<4S4-Gc_qDbl`6O4MYqe|&o{fyH zwCyt7&`(9597qaddaQb}9Y$A^Movq!HTE_O_^_;aijsz8q3-aM(Fvrol-RLP&Ffo$ zDoT&*X>8x@O~||0*PyeRI|PWVJ%|7(4zyWdRzL76=)wkw+I|oNVDhRAKm+Uo53#r& z26cqDXSayA>K|cq`{s{6W-5pwF`z#l!i9r=DrzYI|Ci1 z4=(BMJyaWbHn`ClN1<^XWm>(&>o|0^Od=1-9^!3l?f^SStpyS0E>3NRu|Tqsy6}Fy zs9smHxr_6g(FFY1+)|CwGmhSEY+%{YW;VcVVOCU($Yhw7C{BlpF`3SSq5E@S^?GZdQA$UQ|do?SCJtX*DS~@J}8jYSb_PV~QCy`MVPH zpC4k)Cf)MmVO!pVH&0BVT=If|_Ejj_s<%lTKoK7eE{` zhZ`(&x$#7EhN(4@Cl2R( z#F!)vi-XGxI>m|HeK=8m+AT^j`kHakKUJ5#2XB{#@*5)Jw{8=MhrtCi^#T*5x@KM3%S|#J zz+rQI_^-k$?hAf5;dT=hgzUZAI}77;v0yk1?lo77U{O{vuu!IyiKhB;vYaid*^yl| zh?Z1)R}vH8Y!s~B8>5`ut?IRYC1Z5g$SeP|?*w(UjEBpt*l3ktjcTXwhITaxPO6lq z#S!~h+l%ehlukjltX-b%5nw%wTNbuFE_&&ZC2aShq%fsDIA%iD_)g0|j2Mw$3?+uC zr;{~s3E_IZU8&mg{ARh8PY>c|S#IJx>4q3ajHELfdn6iU z7$HnRrDaFz2iO;RQ?KQ5x!xPdG$@Af#fDtweBHN{RrnsT7BtSMFR>e+T76M(X$sb15ta z@DL^L&yvTodhhp9&%`=lHZMh0Oclom)33Jkb#-~WrdRhiP&v4OH+zzWp1m9KEe$a! zQ_=*SDCr;coHQmGq9U4|fa9p={q6kbHej=OOhm3Dh;A13)np+L?G2F6F-8?6f#z%cHk!%}_s0DUDf>jygo3;dD_q+qKLw3Nlg}9x_VL zEJ&7UKs=)Jt{V`P@3H|?{jZ=+6E5@W&7dZw`BdOCuigx4RGO7Wgo8C5j*(}@Uc3r=@UIgzx_7VWYbo7o_(L7CDH{aDJtRbDjd zjQuEka5Iq~Iy|Pb0nU9C<-moQYy<$)C7r8{Rmxsfl~zfiu|l--oVq^KgeiRy7V39) z4V_Lm9!_wFCRSNRSMRrI5W%u)G~S9&apM===@HQOE0`yMnV5Q=|GBa_or?~s`^|xq z&`eI58-D|>s!cs5gO{|nMP^>n#P-ur;XRw!!ZK;3tZCx#`L{jWn0PfZGYjW(pN9&U zCl<~H;-Q?&hi0wY$%~va^Zl0fVsd!cF=D&AQu%l`y4qe}SM;2>aO>=K3Tk-ZOu++W z9>jR>&m)@FRoC+J%K|JIw0xFoIjv^{D1%`{(5%;Wa3ZdNF1QfJCn;|%B;Gy&Dw;Bw z70@A|i1s}dpa>jmS-qj4EJSSzZ%`D{dn?_T6Rj3&?vxV%`l@>ys8{&)=_8j$8wY$Y*=~a{nf)+@nBr|WuC)wPp_U4mFxnq4>d9t&a4~-T^!cOHqtWXA zn*JhsZ{CFT6R&qkOm+-%L;X?nxZYBsJ;j!tXea?AHUr6Ixcx|z9o|+*QDsx*J9A1S zg~SBpdP*DhXZ;R=WXTq}lbSfVn2I*28`HfOP1KLd!7&weUZoX%W}R;%LsNgU!2c-X zDzbCTB0d`h3)%e|NkOqX>;;-Zw$A_ra_U!tK-lQ>ayI%rZKKbN^c1poD?uq6IRas$ zpOv%G&(b#fSuq>65|px$BcMc3^|j~ARjRjT9|=kZD+9)M!gXenMfSKdB!MbXr`U(Z zIaQ!a*fGkG1gb>7yAO+N`#_b@f6I~3;(>V#AS}4$W1(7ka4EXOV(+4vhWay7_eWHC zx~Bgn2Ex29DH?;vM3fjY(RRMr(7pXJS$1JW{lrUELQE#~HB+neFAl@w?^!`o=dlzyBI_ zbR>fRRxL5LG#&ea5xv19L|&&BSgezB5%EzfpU(PZ7ngirP7vaHvk^7`t!eL%Xtr$3 zY9Rz5t40wXOL4T4XCtHF$j1=#YtM=TkD0I}$4m%l2g_xR{Y2nxMzw6T?2;U1&_|$Re+S@L&$&=F0C?r z1#3iA=^=!`c^?)6qnRHbCoWWq*t}1iloZ??evp=52|L#Si0d6+Q4cbUywD`eWJDp&JFDk7T)Kf%B5-XwhS_Gn`y{9GXFU@ z`rcGa7djb+RYHK~KPKN@&2Fkl6UfvIB|BoF5g<;aKYy?ae&9#GZlL{8nV`ugWsxFn z;TQ9*6lE0g$}wV*DaDwKv*lQkFX;32QQ^S9g)RE3*Y2m|$_ULUj zrIgq-aBzem8@^kVm8h&OhRQT;r0zQ+rW2`hYkKxz$W9u2TUOC|lRASs(z-Y~QpGlM zx}ais0dU+bDS+wPf$_7K)a+#Zpm*a2v`!I{h8RSWw$^BibAt$h`((Pz@$RhA)-E)V zpBv}I)??W{pXIWJojgQPaC92ASVnw%G)-D)NV#wiT(ZTaTv1;hQlx*}Nu+mfDVIYW zz1?^N`LcS0@w~_|E`Zr}Ff}kugi4wIFFb%v`U}!*>8izhJy51}=@~vPot`ly(_wFf z(NO;@9=x&@_!i|f9uv6{Lw}%))olu9r_`OKJ~j*B0%R;eTcm#4Gc2_+urMxB(_d|~ z!{J^6XjCQ*n?Qd|2YaxCWHE2#UZTFKny-+TFS%q~eqodZG`x-i1Pfnl0d7T zXoQ6Cl@}o0>$CwP4=hjbQk=*GOvp`!p0ff`Pw5y;8F1NWTXPt3Qo(2_X~F?XhhtA} zY>x`xGZ{)2m$bJvRKi_{5(f4EOfyBUJCrEt4t!QWf;nErxl(pDWS)oG9&7`C(Bv&*4Cy)uA8kK<9^C3B+0y!z=L82EHa!dafiloT0N;Y zxAiPZm9354so(lkF(z};NGv(+3d?9NjhQXiWOywuQ`0acslPb793MYFJG?x3dKS`W z%L5sDADcy>nT!-cmF>eSXm%!(;r46zH1^Q_qN{ad(ThvTZHT zlBR)KTV?Qo`Z10mov%Ckew&*;Q!!sz*k)vY$+GVzZR#QKc(mvmiEf<8aN?520b#k1`D*0g0R02k(?fKQAUsIAaFIihFwK_?)V9DBYU zI*C#i9&4Qr9=d)(@qt?E89@a(USv<^(cIeE-@{@X1r*U_yZ{C4 zq?wz`?FuJ)B981HI{HPZh6ZCj&<7Mr>L^dP440Hg;hv zEodY?xjcF@nhTfBra%c63&oZ~;Z1VTkA|hWIQi{S-0Xd|A+%T<3^eE-h`7ifg*JV> zi$)jfY~CJMZ8O6XnXCi}H%zs;z@4l(i;An%getu(X3$udh$d2|2#xJBFs0UJQNJm# zjAcQJS*>Zf4_m)a{L)}-FdHH*M~NuhO%b(70WEBRr0jbUyt$p-^+N&$0oYHtZ7V!O z*MuMW$6nI9QdUff3u(l7Z3u zJx)>jw0w@Fh=uU8$+d#W;NWCO@luHQUgHh4^_nh|qKv+NnRB%hDUq|TfC zkK2f|<;W~CAv3w_u_5`BN%Jc52Rmre*O&C+abV12 z2T1ye6dTD)Qu;&{3&k9Ew6Gr}c(O;C7jeV*aLi@fhdwmHQfk!KZb77^WRmx&+%H?m6a%&z*hc&9&bu%^<)j*|ol0!nsC zcL!dAWp2MC^4KEm+qWZz0}DdslgVm@4wzh7%F^8FAG_g2ps_;e8TJFLl&T``t4hA- zl|6&hN@Wn44B;{)leL#}R5*zfP?>%oYL{Jy&1n~0nS~yaCYG9(ruFnS<@4hD3S4ee zPhatcQ7L@|D$}APS~Gt+X?|JVkHUt{4)U!Hs{xq`73hFUs#c5$AzTu*G+{Pd&S(~R zEQ(@DTB&7WQZKww(7_!I4~wF$Dk?N?I~1<0Zt#(iB|GM~vJe=Pcn)$}EpIlrfinFa zM8h$W*U3?$BTZX8qMIa`A;g(RW5Gvy0NSp3_hs9w^!0X$Xu>>N(Ae$zofD zzS-YtG#nG5ru1a8ZfSJ(-s1p8wA_etOV+oVoLZg>vYe^R$E*7188RV zxvz>19>?}ZNrq$Rqcnj3I$C10vfN}?g5!P7f!TPlZ!WuVn^FKUEd2)>`FLI7 zs&HYO?5@8QG~qBdmTbr}nEoA51E^~-Ra4M^39fwAAkhv!E^|_z8*j>3blKk1^O?wB)r^<+N)dyZRb2>N`MYqN-a(N9HV3ef7KXWHysS zTR}pn8Z$r;h;RNROGp&s>+)V-KjZ|uTM@ECb^g-wqWuYn+( zM4+-Ub+@yh(aiXfdVp+1zZYpxzFwk&dMmHPW^ydG!AX5`{Xa+X<3uIcH8`_VxiiUr z7bM98aK~mhnn$yM0mx&;^<3%UyLMnHv|eYEYv>lE)A^N02Ny@9yU5+LYpWS<3(d^Z z+0@6+kB^U@CAjysxdUf*nsz#8L-ePY7w0$IdfS*M|2Fq4IseN~JG-qfNLUamN3{up z@Fu$aFcMHnrd5LVEI7$Gj0{wRZ$BcQ-MbZ@SN5^k(khs%W9ati_K1EbESxXH2ZzxO zlSO1QTHMnLk@N8(@Q5(GRf2v|&-{@?sokGg*jziz1(IqI8k>q%uhoU^xbk>R_mk3<$HMRO zGberFyIX+~c+5oQW%UVN`)ZvMPow8q{S;tN9x6Vu3<)H$x%7G|bQ#b+(^L{HVKKdTV>lnkYMD&ul9 z(uf$SNwkq+_XrO$sc=~SII+}Ll$Dm4SXI4{(G{2St85C)%K=)z+16qh2n2`>UY?#Z z$`%n5rZ3Mg1_iBtYoyvELVCz-c@aAZGf zNfGv)GQXT8Q=I^&sQcz15jYDVOnla&@g627NG5Y$3xVj9c1`ok73rQUfSK6M zUGTZO{4ZtQd{wQLQ(-b46@+vbQCl3y1V8@W|NF@wedBlkAO7)mz95w5@oP@5-SAgq zMsip|)ORw*kgSo*)UovRxSr~q604rmMjxN^_3JxH@u8X7jWYhnspcz6i?mBW%Q`-| zYU;%niI-e2%sNYW^=JUc3Sy1lel(kn>Ys=f%(_Y&%gkMQ7Z7|lBmu7ME2V*VX`iP7 z5fswEBfywu+n}+h{;Rh#iOF`Rwx+O%+~UYXBR1(=<+v~*GF*B>BzdwEq86Rxgb2lH z!|{0j8Y6V*0@-Y!g+-&W*$2!&{z#nhAZLAUQ~F@?pdAbJ~%;qUbtiq7c`TG{ur zc}9!bJjfiOG+;?W*P~9B=Znd-LQx=8Fgr_bQP3f>erY{uHSg{=^pLqNyXj?{4nU7OzSRD-xt(8cLdCNQYPaGVlyz<;mFkuy z#pFY3`ecG+?(GxYSvy}X?n8~UOX}SkOK{daD}=PbFhXGN7g(aj2HDAU#s&tKweKL7 zdY2|fO;&3BbRD*L-z3BYji+nYGD#-&D@TU8p49BTeuEpQgTXaBS?F#^g~|H0QA!ox z3FS{kc3+edGcjq{XBC}6z|Nb{xYvm}e%vyJnOTEjJ zNBQ!v>!=s+nNb3fbxqSrB@5EIDV%!mrO*^kVX;c6@v-k<(F&bJMBcuW(UT>CF^j8w zsC$GYM|RU!i%*KXgWRk-o#*ydBuH>$8rk}VXs~<3w2DkO!w{BTk!mrWMCE2`rcRkk2&WRI$ z*#f|{rWBj*E)jeoG&7?>nPjflcazPSu2L0=e{p^+y{Gu`xY%?a-M~_uy~XaUXa{F; zX4F7ZdSlD^u=d8=cHq6KHn_tzcx&syPOMSbl{9ptq2-CL2SaO=G_-snY+q;$SujYm zT;bm3&GqP7IlgFv?2y&c=PV{`f$`p_icYl_Bf^j+h&JnC6hhP`9xSU&?^dHmF7Rfz zRkfK-!?D!@5*gY{k)Q-?G{N1!2*5gCj&L>hDllH(NT5Ty!)E>PQg({EMi{@wBO_z% z)TmaQ@G`36VqnoeC5Ak#R-9E2tFR5O?T%fjcZV=|Y~zqdI#Dqi)4^Gr@bao+M3@$# zv0mEH1`dc3X6?Pql`8#U86^@aLX(wTfLsr z&%$m?SWJQXicdj5m|$)%Y*&DWCNG{Quigxy3wEq|B=$aoQBtRD&8XFM7MD%vq8(Y* zew<2m3XACj z^A^SEXsY47*3i{KWGTib-B+`n)v7%s6|)0&Yg_ubY*#mexP~;;p}K{csjL>77=K7> zogFwcS{q#oGbW%e@S6IVMl9F)l=4vDkUxuf~vqh#sZL;JiolHrmxIop$_6*_7qCXG(nw7(wNNX z-rZ6M9lPY_R077=rI$);uBF>_ktY20W&|l*{6=my(h1oaw@fs(sqlDT=W@gWK z>ec;YJluhs0Gf@U%=V2oZ4DxmdER5mnzcMQSB#75+}cy=()e0lCY-HvBjnP3?Q-3Z z;aDN(G9WqF;FZ=1{xOaQs4Smu=%~#MD)YIimgSSKS&GLMC=AbqI=I`SU3O=2w{{wv zb#xtHa!XCia=M8hIFm03?qONNW9>u>DkiB{DIRPmv+h5~W?j*rvkUlb?KO9sbY0Qz zSS|6H3Dr2dQ6f9=w2*07wi{K=b^kMb_?b|u5RVHRC9co6BKwa*I1l*Za13_~V^g+P zelu;hs}iLV zlHoP5%<6hESm`o_Xy3tpwhgXSFpaCZUQE`bXeB3mqNY z`d_^%tY+{AfXfk}rXdadbw4EoKH)UVqr&cy%`rP$Q9*Jex^xTLJzpmIvO`-Zp8;h? zH{trCT2|OvfJ;qOrV=G7*|{u2E=>-@#8Toiv0G-4UkC=H!mO@R<5<;YKve8rsOR0MB;6OGHZKiMc`J1`~ZR5!m+A$4wVpOu<|5Djz5tQw(ZCFUu!;T3@|F9v4&0CxgTk zfz3L)m?Az8GTOc|MPM?gD@fq;@LBfkq28A8MNrJ(MtS=4S-m;ATj34Q3i&ch1)|8Z zOX)i`MTmi!-Svl)i}4qS(Ke*)K;J$aQh-e4w!)~_DuOv>mZqa3On6M==|hiVL^Jea zL@q@leyTqNDrM)b8I}CvgPWCGvZx9$EL~*Bl5}oRJ84eTTN~4AG+oGTOxbNQEq%>F zvX8hp;yxVBK`c63K|)_aoHCp)CJnaV6jRVbvVtxVI%({OSXWx(c=oK2juw_VX$!Kh z5T7)3L@x+kee1&-EWvVGEpIkqK<>+;!I;Gja{7ZWahQf~=$_z8sCe$x*HIic6T5!y zJ`4<5kj*t&nU`cu`v)({I+kQjIGdPsgh{_5>{3--xQ)xfS<7`Z`SCa+i{fKJGPjn5 zJ^0%5bzj{B@yg_WMZIW9r5CT;+HHlN-e)_1GP`r&t|wv6x|WR6gt zl*;BX4%;3C>{+zleKU@87 ziAs#eTrO+j&*FkoIXc%_U!aIruhlsPZ1b0OkZb`<{Vd!h;1F3mw{Yz~OrHrVM(Gj< zkMh+U+6pm{l5WWK7?)&J`B-i-6;oDKYqn8CX1CE~8d5CSx}nYKsc4g1--}Ya^DzPS zt2Z-RQ}(YKdpE?1_8pwqocoGeIlBoW)5;o`JFPoO>x^xvQ~jtgd#b4o`@^?0JxuYG zgEMv1oeS&z`T70%x;m_v*SKcL`)~E|_6eRG!ds6s^D*7^q`oK||G(XCHmm06pMFZO zFpXCCc;I_Es@FH4{`Ax7KjJOLPv=-fzy(!`frIz1r0gD_dBR14o-5W)G5@u&m_8*7 ziA{LVw#)Is@}9067}2c(k@sW^xwuc}{&s$IJ7Qybm`sIgkoV`&wXB~MB0-wqksQ56 zWxsAJtV#KiFFU|=Ds=RgRYH~^*^>4vMu$0IKqqZjj0gj#AUa-5=!|m0l-cP@#*_+~ z?TMN~f;VZ@vcyPDQpBXT@SL)&p|ff;2OXm7mEFXUMz$@< zh_#zoP1#vW(qa9X=-NYQc0QN3CINEiz$JK&MCwuk-UJt=!_A_;ngmOtB{;C^z$(z8 zvH>W}D5KP9HWOS4???U;N?_J&m1r4XvMU?yt?dmi#)nB0@LZ=lX&E9E3Ot2^@Kc6D z+AQT>Wq7=f2%9BbtPG9US3ncHSs4~AW4LzFQ8P6JXID47yiEpbGYo2%GjTfQcLgcU z7$_*Cp`jq3@I<4c45kIi5-phW{ep~UsP)a6=miA{6YUrGhk|^bf*lUpGZQAW$sXYa zVM7-=XE81>sw5q=7?IaznkeOz#n{XglWm&{%f-l|_KKac7#Auq6rWG9Ih0;|!iKKX zx?ZJ6>TD4t9i#(n&IL^`2tE$y)P+g^CaJG+)zmQYi(Ca`C#4kuYmVAe!stebsBaD- zftjQRwl@;Uq2%4r;~JN=)AgJ>dYS>6EpMWR{4{jAvXuWhYHSG9;c(eK*;$9P_^dTf zx&{7bzmnLSH2}XU#Yn3sooxVelfPWdX%{>N@U)+0m)+84cd%@2lfS!9LjNj9WpZ6d z)iRmuStsyuSv^yI@jpvjv?Qq+5+$jOQzhw4hw|8gIy_-gbGd?q36sViQjpIMm7YnP;GKYi zY^a7`R9|7&*;?Ju(^OxHaG6~ZozuLNu7>AjR}YTe1RV^2-d4+LHSV=V3v#Jn3mOlP znGl&AQ@zBUapC6Ytns?I6k;ct-0)nG41VEjw!!P&xR6k^R(4ZMw`vNKl|$E#`QpP) zMLC6^)LWcAkqTxr?@k4Q$J(JFdv$ewxS0Oky zWW*z#q!Dz2fbkbcm*bPmqbI=&ZP|-lGKw)SYuL^#ReeXy7bm|x3LK{hGvTt% z$XBGb$pIHCxA4l26q{_%ed1fl=7$@6Ry@90Og3hkuv~nL z2>tkGKMee3pZI1WSwTPUB*MTxafjgAd8CsR<3UA@d)&$Ld@-5Q*3d-ixld;oz^q~i zwRD*B)L3~6wZ;+83JLd=GB+_~6=2ucthgW9jcE+KY~=FHevW#woK6|Q(ra^D7MdBMgy{Degrt3Bg2u6wolI_IOg%k!dBD& zgFZJrpKQRQe11Gh9F^QBo`~a;e(b;8Vm&f2;y$ro;jxQgqb(Y0d@!3uH|%|$+tJWe z-lf0>B?XM{iBY-;urBY(rM>(k)}h1-g=JP|-{{KW(OYbD2_B-%9wdz{qVN?IlVArb z+3Jv<7fDPFu3Y~0LP`rs%|$~-iH*~_wr&T3>vdoJ6V?SoOJ;T)zdcP$Ma@7 zS;xNlvj_X8L1G;Og3wC)6PTu;8ibmU7ikKM#%h?Rpc{@l3o-jn-R{K;kqyp|MEG7s%<(_`kxY(S!rSxf1KE+U6Pb0 zMM=_1#^ZOw`Ow=Bo866zl~k>#SxdSS&6qu3kz|r14lRBtOQLwu;W7EdBBhkWWOu=; zX2hq&6q*f77ade7Mo0ZVv}UsjoN{2cz#WURaYuKpN~b>J=#roMb^D5UDu?^I;EesH zASL!Rg-uAOPDtcGh^~>d7SuJ-`AOH%Vc!8`;Isu9X`okKk}{NdKSMsvN;#{aqHv7X z1VLvnjvrWRe|#!>@N&m=fBA&O8uH&@4q* zD1qPLf(4o!KdEP1%))UMt7w{RbidQTbE%vJsO;&{6hrH>{j{a-Y-}Ocx+qhKf!0CZBwo3Dfl7yXf~z!UQX7_ zrzR5?Oxf#fQ<^z6R*jPHkm~tzPWkR=tN$%{v#r?8YoM8)mSi;juaj!#C#Q)9G*C=J zbrm8ZKN(f8@o1A!DZh>waS#&2TOAbqwR-8hC_ar;5MRIPeX+q4F>CXZxS)BsultCs zO~_Vn@z_MH)E;a=WHu_bKsVG(pX!Hmqe}+!D+gigFc`C#7D8k?Sl_%J;r>sV(`DCS z=ST;=g)K;IusSH@)`|iY##V+I)z3(eY;S4R!z*N`XrwMhXlT50c7!(D)eHrs)g)K| zEJEgVD(7Zs2MxwPVB!paFp_3_xF<6bQ#emPhoMH1wemIAu(yDNpqPQGYiO63Yb=qs z2b=84$R_0R0Nc1)LQQ`zKhmIaE`NKnysqtGH@QHW9Z$(QH}kv7g#jOqRYJAU|GVB9 zQ%kPwHmhzfxkU#3=<;@5O=eUl!AU-~Rc1rg8aa2&mS1ITh%i}0Bt!m(IDAuWs!@V5 zTNG_))Syg>3zdD!Bf40Jo`s(;Z&JkBjJ}=Nhh}Xjz5Hgt*5i&{N$mg3FR&?-X-(BX_5^9yp5-wDf5;d0h?D(mpiPBl!6i zpo+kpoJ~%lvbj&Y+I~F%nU*Abi>EN-j+>24U2Jb%sug%K;{HK%znr45iVC;Phq6h2 zJEaH9R>d6ASJeB;D0q3PFmYhvi#L;1VG9!^>xn6;)^j{lL2-<|e$h_RUcJ==WHxS3 z@58Y=j1Y15GHV3O%p91;H`tsBC0l5F1w)CM;A{rq6qwA(emfSQCr%~z(^Q}`tMj5w z(~PGW+A+L_yGHwYkppaD(|%i!O#?C;3LB<}kSN#dD%Px5a2;DXWcZLoM3ZZ_#_rE{RnDz$?j71R!B%tP6%N-mXl#1o%(>TgG%iTWC{ z>)+PPYJ9w|@19;?6J4$TCF&g6V3x?9V`Ns5GLHD;gXQduQoN`fkzID(iQT}n5R`ef z3z0CwFk)c4J&BQ?A!XY+t+@tcP04eaA~`$CuDEpZ$hnavBZneZ6o|KL;Y`^$+CpX# zSug4-q?i3*bT?maA36o=P1ewJCUVPmG0kW^5}Kj%JscawQ=bhz<+xs8LpuH;S}r@u z%NWxDa|5;!M=n#EnDV%k#t8>{SJa6HE=`SP@1)i#=PJ!j`75dim3{+zO#l6AG^_7$ z3P`wEHWGzT_eQAfUDSyp%GE=!klLM(CbAJeABS zvR!G0m!J(TTa=SVN!rR|hDli)$QF5n{Q@2mD@DVWBhZ7SWXT5ib{088qMod&S~fLh zv+*R61&cMZpG2$hg@}Yc>L{5sTz?vIp9>X}RSQu8jh6N$OEy(XTP@fQh5f++Nw9OF z3=Pf6tS)Ll@`#@75^sI9H3@g@l%ZiaRtH$6BK_Q0oL?n)?31)})(7@M+TzJOavcsg z1lfqu&2&{z+$jXt6P&v1$EAr4L@tH@A+~ zrj%s`EEChziY)s@wXD|j>A?c`Lyxd|rn-|m*7FH$?881L6VgN{BBaIpsi@{_rk zLg6qv&9=zZPMVADmGT(5bG%P9Vyq4px$~?Hi;dw3h4brqHH!m5pBQe@SQ(mWk;$H6 zbK8B)(Wgxm6chaD{NC(Ge~cB4S*6Zejt}*UJMP7YdP{ly^-1oaVd@^7Rt^>fIe6=r zMpdw|Gms282+%G=;yQ^xgc!BjBQAo>A3_W`NK?yt%s^sbak{-xuvIL0#dsho()|P@ z^O5Nz(FU^Yf!rPYiN}%YEb5!H!8(hE-%*BOH(jY#31mojSbWKBaSu23ofnE-%)r)Y zl?34y9VPOPf|6(kmL%O@ATg55HJ#*_RfVVJOri)_4(#Vh^jnrA?zw|Wk{()6@jF@$ z*IP6^TccZspiN5kmOzHIkK#)M`zSN8HU2i~8~nXdVst6hVVH!4Np~20Z`clF30RJF zhp}HvT!vJt!&nNI#0_?8bTdgIy6zx@T?+?GZ3@3?m*;wM1(dJ^0c|;otTc%5%mi}B;9!8M^sRp!gur#_XZWkBNm#*7#XKxhYp23j2k%stgQaQhRQ8+0b}Gxl@?a_4bn@{}9{uL> zX#Du#@*r5E$!_u8npAK{BD628<7ygNwtH6WsJhcLf-c#R5Y1a6!ACJ~orPBopL^ zx0ChVWM$~_U#oCMDSL#zgI=KTB0x(2@&dSl2NuwoHZG@74N#>P)%KAN>KXVV%6ew9n%JH$xSut?Zt;;ixf@Z$5))%NE-dyl2LLm7Xm2L;i#IVqpj9B z8aIm0$L(q5pBZ3g4x8A1A*pX^auJl_13&9%;eCR#gJ!*Pw$`(F$L*5Ydo;FfN&G=$ z7?@NVTmP=LrL)($=ZV9{7HNsWU7eX7h4Y^U-LH)1X7qc>&7M(HR+k%HF7yT{LBO>A$@xwYC8VEANVMcobBbI`}5} z^1BfQ=NH(U^|SR+qxa8;@Z#xo;`WRS52H^KOFde zUAbYsSqhWlhPJ!#Cg_5cIDzFFaCJ{(9p1>T*3IY|NBo2n^`Cyzl*A#kx^8_De(Zlk zagUp5-)M0OyaGrd!EOC!e1}&|hqZv0a0dJvd3N9(YQCx8h2_1v?qR)MV$Wl+eSD9B zknq^aM1&%u*sV%YMLJmv?u zhs3dl{?T2dGM|?|SiZR4T8z!B1sOJ3*eyon`MMTX8&rzP~xUZt8D zJ+)q8_1BvLrQ`?~v`^M4i3JIpXE0f!3|uY9 zkFM@FRlUaRZXzAscgmx%xjmx%TT>@`Xj$HfDX!Z1>#4Dr*? zhKoQy{fxab6@fsV@PPsy)8kD=An?jIFH4zLy(nQcDb$2v1SrZGrMkq)E;h)d&}U#{N0UPTTdAhrcRu9fvlP*!(EnBt z{s$2tniNU_LRT0>hE#9+S*i&NIHKEUo9b;p3rt>=FxA^Y7@D{!XR5bhXYG(B7&s6! zu%D-T8-FX+)CC-k@mY#gZ{u$TO+SbLsov%Z5W2!3GQ`P--h8Zg#irU~?=jXV;KqoP z4gYIFYYZbooNP!D!uA+k3Vj&s5SKlkPi`utptEYc!heaHOaDzl5$U*1+^v%t};Z&e?x4%135qFC6-xC$~fwruN3d z;|pwhd|j>S5og?>DO$V#jMqbDeZ9%O_c0FBH&|yMkk^~slXFq8j#ce{wuCWRQEzI` zAEwkS$?2_IAI}$y(KY@to?>6AFl_&gV+6_ydOMyJS>giNLQJ?!__-bw#)_$lcBd91 z^3qX7lnOqDs6!d2=*`Unpved4X2!!Xfiu+daLu+@L#IW;*UvOD-O*nHOFe+5ZJ-_im_8;=Xp z1^r7|H1@}Wgem<(zbr`S`(}*`BsTFQBmMWA9xFul7k}*3T-W*w{@$QsY~I|6o+Q#) z(ac_}wM^_y{zdQOh!Fwn>`hCeFQroQA!P7oXR!=nnl^+0UQvhy&~AZucFEsFO3}Yw z;&9pYet2Tm7b)63Qd0-ayh&|e;5qa4jjaEcrS;}sWQ<=TB4el6V{9-^T>{a6?h}Bs z+TIK#_{!)NWD)KBPT8ZXTzPhXlz{C`kO{lie%`G?+1&m(0m=(=--s~teuNs52?PJq zpW4lik&X8YBLbWy@MhQKVd6`{bs0m@`!g}no2f)x^xdyp8(3D_A2dByc{@m1${>K* zL)NjT{R;`yeioNi4SJFNd?Zh^7bf+p7xZEyaz5a&;1S;$5bzl0z>CxF2 zmtPjUXU;(~p*N|bPZKKk&nhh-lX)J5>s?Q)<;~_cS&HgkwP0K(^;;5G8KU5ur0jo! z9h8L1gkFMivP8*i>7vr;wFt!hFChqlncN$0^>*|9XyWD?)7gk!eg^}ky`N}d9L0T@;*TnDio#Zg%tAc zOCkQ>1a98{NVP&^yLs`SK2VN6ijCKQ$YE5b^gNtD474jr=fz!IW~_>F2?hI);}(?l z^FoLHEIFnQMY&QV8U+q@A%I^e>OYJ>s}w9N>HCfT2B8>jfg)XHqhhV(h@BRHu= zpglM(Y|^myL#h#o(V`@w?>tPnnOrU8&bN}3-i+zxvy;oCcxu*v_)vgsO)quRO!54p z6jh{DG(9WD6e;z3ve?SjDn;c*(3k7^MqkWIRRMKlT_K-jWNtRkC;7v~%&EUmGAdJg z*&%<%GF!~Ox6)uP4E#$!>LR}3sGTw z2&p#PRS;7OaUsL@xQ@3=wV^7UOl0T0tv0lXY)81KM|gJd?2C)hl9r3FMUTjK!d6BF z$#l@~Wi@%VuCB*axqtfT7e|MenDa`uY&!ZzV>ma7L75WG$Di`E(II2DC$uwKOeRG4 zvxF!Kp0De-_o^#gO{TAeQM1k1N@{VL6LB=+tgnV*gVT6y&#LRRe%bvrUHSo)wZjxG z;0tss#`KS1!lm68Y9Zrv-fTwUAI1kOny-y8g2)R_|24OTXTF?o#yFXFJ-_iBcPBQs z#P0GfAiQY*cOqY8uILZrlVyWl+KC}>7y&iiLkwsId^Zi;TfTSHz=3=SG~>OPH zOMQnlR%5gfj+Pw?sUx@^5WsOuVT2Dp8eL;N9D?d2qS_q2g;){A=ecg(+&8{53Wk+H zCOv+%oiAoDD6dUz0Q*@EALjM&9T;<Ot(ZREkT+aQ!b2h?ouFCZE{25;3X8+lsDCTH5^xUe5favi-rUQBLq>vzhc*~Q(QMGZO| z7BjgPdJ;keh~nI>s@JQ{{4PA{SDe08^>|}=ac<ca3YyIye+%+Bj;@j zn|&=(+E7QH_HKCNW-iPdMMvMyV)i@X*Oh^S%$>$47_Hj*f%;BAdOW^9zl|p+dn|Q<@IT^rbJn z!eV$#g3T3Y=45Y}cmF(>CCN-xpCHv(OhQ?N|3SQ=sRRoJ8F5rt9a0{zYB_j6kjh6C z3i%(5Hq~1>FD}7?vKADYsV$4Ebwy{8H|R$jnOZ({Vk8k+B^r{BXw&DjYPwxF^VgM{ zhP}D1){-wf4p(od719>mpz3AKF*GyNJW0)xNVlzQtj`|ieFVd}G^sqsX_3Vd-Tyzj ztC}Xftspy1lFseWn1sxBJj4D@G97CEuvo!KbnVe9h&=Ct_# zuj9#WwuG82y7`!_S%OQ>aSL+MP;qirZY0uJtjY%je=)xN&3U-dHaiqy4Bk#RTU=(~ zg#?4e_}}sHsVzn8m!VJ=T9zA3PZSnwKmq#%WvKaNfjQgJTa+W`n`R!&9RDr-fy-H)T)XJ-xvw9iAXInbmFBDXOez``WPg=V#Izcfy*(P1#%bGngAtIzC zw2XOsLzBg^T2(A5)>te#O(o9PmFr(4q+f}Sm0eLxcPs(Tq*R0vpHQd9_@oA2S$xf2 zy|n|cMc<8Iw%;K9I9T4If7Oj5=_C(ku(Q?jdB**Cc{aBTXExt zagwB4XE<@F?_;ukcy<{~i2KDu4aH`sd=2~Q*J{2(S3Y6)i5N_?dlr(@ABK#GPOAx~ z3`L0)Bok3ub%9+GNtNhKg8H-WJ- zIK`%vQ4G=Ht3o7JjYK}(pMk(4H55aXQ5Pb4k8B0w1)cH#$_2)>WBIK>lfsK?gRL$% z>&e|2mejC^C|Fm^Dnaqrn{!A!wiL~(>7)D2ZN2=m2GcG6A^LqbRZK83924QnQzE+9 zOqR3BdUml{R}+1c3oSBMsY_h4mpjD7X?PX__nmeL5x+WFUIg-*gyZ+~8sYTRl+Vvj z4xc_g!ff^6^z8YQ{cns45!sX>+xeFVh1r0}Y}j<>NrFQ0$&-WAkT08*Mki2XOlFk& zJwEy34%f0s|&``_i$^8Jr7 zTl6dKo0m`9ee?2ZY2P%6tQ+mEdU0}rQ9&+FW(V?{X|r9eYHZnbJF65BLsR)160ulGONHMa#8M#%i}ashDZQnNn(Q%7VV!S!TuiPD zYhGJLn9TTzV?=0SnvK@nACTe2Dpg$VAlFj2QUy3tVX&b%5;2p$r#5JLn?S zO43mWzoe6FHj?z};OZ=#XGR~9HTyWElHE8PMRp?j4oJq+@oav5J&G><$mTgyY~o&2 zZ#_*67Ax_`9zJ$G+{&tH0fG-T!Lqs;Ew}P?QFi}JQhXq>^agxYzrlbd&EF3kNGb3# zlKbGMU03URR;pbIi-kAss_;v-t04HUZr882^#-R@U*pJEa4Bs+-yu9!f?^^ZmN}Z> zcDe!-A886aw;eY_KNkWND_~lg(Bnqf8-Dxs|1tf!il+bb_dos`75#&Y!;=#o+r`kG z4MkDO%15%#6=0{_L36*HKB-Wrp2_Sin}d^>7!7SC3ZN_nba=GAzOL5i>v}2~vN}Wz zK9VKCxgyFl57z6683cu)vLg{CnG^c4QzXQ*RHO@~q>1*(&gh7Sb6JUF;js{T$S0ru zood;pNUeQ1D2tD}5C8Gyd~^HD>i!KLxt5KRorQFA30TXE+WevRFwru-mRBv1k3Cu8 zNgJ8j<~ySPk!$lqgJOZP{%HP$oyJ<{AXH^*s?!z@AJEcavVB-B775SFtAgKodN>px z8?W&6!p84BY=>g8QBV9Cxbqga)Mw3JwXrq7WCCAhMy=|KV#Vp)=J z(Fe5u?O`sP+?`>7EHrh88gs;8gLgI>V!sgm2-PGnj#wlMj)-plbXmWuMgzR~E`k@E!;aGU=RIo!(f+4#>o6aTs^VJB=@?fmP{_F(B zKj+r@Zz`S*`xpXvgDSw|puX2@5Ty&PHI&82O}b%qM)-d=0Lj($2+Q)o{pn(dgoU#1 zPe<-uD|;wDcD=mmg^k~N*bc>F!-1YmRx9j2NF|lo=n$oR0hp!1@cg8@JJ1D^di}V* zqn)CDAj&3wchz0J_OiYNo@FDYJhmgbZ#LWHT};5TEa($pxvJJhT-QMfd`k2S;aeyl zU)9z_{OqJIEG<7_7>i9UVE;J2SYSr!w{^Y+bj_b@_W_n=L27Zfr4~r}Zk8nSU5RB$ zkXj^qUN(5A@@|7;k&%q)zZ|S_V*qy!VXEv^tD&z3*$zfRn zgux4xA+UxJzFL_LgSh%;?Lw7@VzDuEyr{m~Vv|&rYVYh|7qxeYW{F@Wj3S9f&klA? z#Rf=XUa=|JaVMRGKjc4iLx&htsyjsXN zk+Ku6ZaxiY36Z8<-eN%zTjs(8klAo0hj1UpN2ii?qRq1%J<#IP!?Ez_6_=>KB+#?H zf}Ga%3J=9%!&&LCagfa(vWTHINQ4}&eD*>n5Q~hs-9G)yhN5WtDX}aG41@Ve!sfj) zO9y4~F~rGBy+qv3I)AcL2Y{A}4qH7xy!eS=$OfaxP8uTs{j31!XWX(z($5Qke$Jq@ z$;5066u8-rpRj=58OqSK5A{mbI|Xvq!}V`m$Fv~UxFoVET?pW;$Wgt6VSMO@77WKS zsmjWXg>HYIJ+>eg7*T4x!5QX?W`#oPY?P7_)EYqKdpNP7tpV^+}ro(wwfo&!D9wbm(7Su)oGiw)ZludtpTPD#g z*L!Mh`Qc7L<4Nrn7#xZP{`S>;Ia%LF$k|R2AbT(t`hyv=o%Kz%iNLejRRAu4Bs{Xa zGVm72!haj2DtQY^)(~Ioo4z(y2_5(7@64mv{5D)bb0c7F7i5vVP5JI` zEwFctW{JLq*N@`P_)yHpm*L=x;)VNv8_?N^7I2QlC z*YhSZyk(&yvp5_Bz5V)I)1T|)?f0|?$gFnb#?rOE^3k6iWS3LoD>Z28+<{qrzKPwz z^}hw{#s8F>d(7|r0~Z#;Vt#8(qc`3)5z~t7s26}*3^vaPtNWkxk$7#Q13Z**dxsop zs&3{Id>xD4i}}?WUFTCqGwbRhoK@(fgNE(|$9CM9reknvrIBck1!?g7YP+e*ut+q^ z^5G*4lt=brHDR$1r)pD0f?1AF#Gk)d*IT)tvtub@CnAk#*}n4#o2Bsr%+1Nu*l<0( zAcS)~YuZ_HK3^pos1Hv7XL;U#q{>LKE*-JA)odP=#s5HUWqUbUFJUv`03BmfD*^3p zvsjkloxOM{7vVPBrgY`F@DWQY>!c#h~KFwRy!?cW_JVvTf=_3!; zoBZ*vN5n`VTDET;Jw1+f>KMb@bYdKf{2g_dC;C-Ni5`9t!dad_K3cw>uj}O<9vF`` z>8Mz?Y7*jEruWigMMt9CO2LDU#r}w~<1wPgxEi2YmhT)R?ZJJX%_b3xdbCLhXL&xR z56LF9x(+pQs&T@UwF~&7Sap9{nYOXxTnI-qMweDWC3JustPZ&%4opqCy2o@M&@q&avz$EXFL zy^q!D(cfc0%k?d6*^eoDj983gkw3;?u4>#M#C8({eGe^SK+E<1X|VkmPOWdT`rWdR4oX-HW;vikgZB&Lj?zm92W9cUZSd(82Va36Ii`nX(Z6*$xr#;a zk&Q8qMgHItU9R3HW^_GzoxrjT?_FZsL@a!doWcQF?2n%>uW0hC9&L#^dgPKZpym3+ z?A6q-!Ng=e`gH;^WK;E+g!%fj`G}V710zYSRSz!^SeD^W%wI3dZ>yIwV{`S0EFO|Y|7J?^9(k*UvA7?+ zoG)kfn?wPuheru4%kc4Ut9AVtmq(;?#~yt@2DDrsjyGxt|EP)z(>ug5`(t$`NB~*< z@6#?AoVKk-2kV<{y2iRg1)Nb76aO!XX*quweeU9`-%~oC;IQ42kl*KyNb5c7KU zNG(Y{!mSANY90G{$DUN?)=2+I|I(Y9C+*ml|NHhkhZAJai$!XJ*l}f5$X(e&vsu<{ zLAUIGW_j0wmQ07ZRDoE9R?x~_ zu@E`qEF8wIwO%tgcs-dfCRbReh$7m*?%&?+L{_HnS(!x6=*OK0 z^!>K}C$KH^hm-AWUe~KcEZ<>BwLjKPERZb0`&YB8(WBYbueQNlpkqUd?auU51?^*4 z;E!nccr%^PM{%R=FskyeHG#yk9N*<{xyT`$bBA%2AtaFpXxaXHS}*ZrA8Hu%(71kO zOAiT0xI%J^I=A57!7~$pN{Yna1EMaOI);g|G6h6drXMB5KUsz`)$cw3J>Q8Fm~Ezt zxvXS=l|T{Q&KK%8MTHVHR-XTwkcajZVqb_!HcZ*>ysl-`y)G(TJExWO?-P=m8>5wydMHj@tK@V&dW;jIb8MQZo~lr*Eg!`JC#_mQTh$9yV?^%A?| z#$sin2+$%^EY1#joPdiBBE*r_p}yZD$rD;)z&#`_Zu>vVS}DP1t@XFSj&-wCOV_{QVE#MC4;H~a10Hf!gxa{W-qbyl~v-wwH=K#ENyu`U0fiC>-7 zA_({++ta;`5rA6>ejp?`M~wh(9QUgyd-Dru%l_?Yy}D0in>%E(>X*jOjA3!#n>Mc# zupNhLZGucc)ToSLLBBWMpwirQlu&lqjA1Y|MGDWdeLzo5gRP3@Pdk+5&2Ke}k7LpQ zYKGUJr;7MkdJ0pccU3@s!1riLz$3% zt@$L3g@2E}5SwrZM-a#w!GeBBpWQ6C3E+#CKdYzM z;Jg_%CDi0}eQ2_XI=u`T~!i0|mJjzVFgF7m5&;=k zL|HIh<=-JU5}*lj+Gwm)A75`U=`rzdyux-B(J6LVp*8@DI|j2npU98a^+vu+v%`v2 zJCQ<5GvRRPLe@L?VbW-pN!kwU@A6pAKDJX}mgf^3Td!A}(HH7pamU#~BZHtCDS>90 z=zu>l=@G|I0e2Yo6C4`HqJJOXSYgm7Mb7bWyQ=2%>=6Aeid7~BX(_*p7b;h`sw#p? zUpIC-UrMsmd^q=k6sP|OiEPRL-2V!ydCMBtdM;-=@(X2mm@@cS5q|`3MfeNfp5MCwyXu0p3T7E^`H7bp#FDR*QdD0Rq*bRRQfOxua9eq|C9dy0Ki$dy(hOFZKa;||TGnrtSP0nE z(_j@~hk1q%6}8FprNp)Zh>&Eyr1nB#&#gUkC;G*{A*qeS3S{~S&PU8ET*5Lsty4P? zb~Xp&coyNmIqVdBGdfh?jMKKAM+fzLv-v_dkNJy_Y`MQXzniFx9#0UTe?FSfAzoqn z9m+%<PLNhmY4n7N?E-kp=0al!Wdat(QS^zeD@+V;BcFrQKwO5-G&<@$i$ox>ZMv1xah zPnq8;7J*~YKU)0T-DGt7+b0M8@afkYUE)~$52<){RliM$zk}o3A1em?KeV8h;D`L@ zx9ZxQ#UX0KiDkYWvNww)*NT+?-0G3`EP4qz?yU!dBHRS4Ree|I&%+1A^pZ5P50)f)y=TJ!%(LR$&`l)r|O zV;lDldz2YQatEN6_0Re1ni4gXYwZ0>`1TGtFk?yT6td<29{)yvD{kx^LIz``cr~Ks z`vHGf^R;B$J9roarAR$k%lxf66>&ey5Bm6>rm(-ah(D;CMr~A{Rj)@+FD?#fpK@%# zT^h~v4Dq!Kfv<*l z{lP~8^bgEGMi(qWc0#+*2?oJh+kUI@8BT?Mx?YhhM_g?r=;m94?&ARc^3we40R<>g`^PbhpsiaB zpM~Rr?c#ELG8;^KPgZn0I&m*e(DE#T;fm3~^!{>crp5>Rhc7lQ1fOjl698v;H(>wQ z_rLf3@2UTTn(O#nsj;Ufv84rb4d6sF7$|73Ai1J#ygmR(#91LG3DYN&g04JESRp0} zzbYn)(YOs^g$Tks5T{H^`w$1~xr(5hy67mF1^_HFZH$~0Kmkm~b9ElSwBaAwetR1M zF>*$LIRdLn#ve%A2?&uP;0COwiaN==fc~yUKN--i;V@FD;M%?Y+$V5Q;P^2T#SH%} z=!WAgoEjkDzhm*$2t)BVSc4Gk9Yft}I=LSpf#JgPZxebW;)`C@|M`_(GKN_IW2guX zL|1&GBNgpADilfQmLsbWLHJ`3#zYd+rHBj?2(E%a-8MO)nBR%L2Ei5wP?-G!$Ry?B znBKCAGuMXFg9N23H+`pu<~uQC({kg8AiM#C#KVSPGbKG@stjXP5MKweJ2^~cRx+N~#pX#-eNFvx zqLY-2YeB98G>~1jWGXJq%YtsF&*Gd3oDRZL3gJL^lkWGdC}{MU{GXJIqWLkVl+0G$ z=eBuOzlX?R|B-nKq~VNBKLH1>#oBE$0R7H#eKfb%u=l7k7WrWP0*5pY%=8|$;Lvc> z`|QAd(agT?bDQVt_YfKEH#~M6^u3)^G~cbA5}tf4HP~Yu1UK8Nn8t`P33s zD1g2|udd9<&H23dO#S!SfO~fenui0>9PT#<2c{dV!9oQu={-1FmJ@okggifA$E7Ej zJOIcN=1{Z5F9xZb)@_L^R1jZ>P_-eeoRON2dB9;AjzB?s8Oa~LrKglqCq9BJ0l;9C z3=njekd(Id$j2ovQNhL@AQ+pE7m?*|H8&;m@j!MTvQ$ldzFsZIqv9dC;8Wz4w4;aM zaupz1PV4X?=6!rA5%O&F3KwupNDdn!sJAe!P5B|mB`p}b0l;W0G!VI_b3hjw$Ad|F z%UCd7O!7sbpmlZmU`3viiD;uutCx=lviG3vaFA#*WvU1r#W9wK@1bXSi&?WNH46_ zTWzXH4qlJvsu0-Tmte-=05qTb&B1}`gY`n^u25?$ax$mAoY@KK*F*rcK{B}C&jml~7;q(3U!HS@_0*1*>3J`SHk@R6XrNt`s zqzBYdk|frD2u2~`aLN!Aw6~D_D>`f#EQY7&_O4^dENHxdV$3OAkUJCWCu~yrZE9i$ z2)Y{(_+&;;zdi6CbYwObEOh|HavGz8*p;olo%mpAU-DzTP0Ka{1+6Pvn_};DpjJG3 z6~dUCmTd|bgu$5BW5`_Cmk%eP3trR1f8o|&q{R=_FzJfspw;HM%lD#MWCR)2b(-Aed}lF1)E;L zV>Zr$L&hb1Mu#JKCyr%YFu(yKV6N~$=BiV062l0aR;LgXq!%F11vX=Jf;A-oSpF(B z5V?xz2dmyA_1}0*7rEyd1eet;Fz9ue z@>E4MZxxj3{JfUgV1iV45zE2b-ob-Ex0+cf442mk5Og0X6WhO1H6x#r@Y}h3c5h^wigO=urLRIZoNmfddVmSi`aTfjR>|oOpboI zm&U;%#k-~R5Kb)U5vwoFz)%kk4L1|XX!5!oobX;la5gIt0A#R#7~HV$4Y5vH_Rr`P zoc6Vt{ROc!A{G1&e~JNWer(?;R4skRW0VOtokL;{29Ede&#EJx(K>VR{-DHbgIXvXbF`ZG^ooKq&g2~~5>8hJ3(;h21x%MZ- z7*q?vL?JX{1~toC9v{=Y@vP`NV6~`Vz3i)UHOU`;1QX%9oH|S}Ui29gmTl0}CJ>Ws z35&L53#|E`uVhuc<)zo4jz)OM*Spn|dc9#7ct|kOi;GM@07!5B894CZk+Vnoz=0m- zq#d0g+?8N?7_w1hBPBWj1?PLgpSe3p11m;&V7kQqQXc)4?h>&ECvZ=#&6|Zx^U--K zMJ4H!&q9I^5BwQJFX?oYXRkr+XBIPvVEaM8KO78Ci%~FLt8vL$6!wAE&+I&0Paho$ zkpFwXulkVyw`LNa#cCAPg{$xX@V92 z*92)!8=`^%HYuhJn9~4wYsD7BLtT=$LR(ae0o2R%w%XvF=IH9b-UTxR6eO;n z7!CzDO(G5t3N-W>ouN^)C-3k6yh2h&VRiyI(79Y?CTmS{~bN(o#RqwXI1bFi^P%AMI0< zJv#9x{~A_X1ZRAB=5HB4Hc7n}oeu*SyzYrb@Xq>YgE4skayMDQw$*0p3L5OxNbED4 zRvqo*uf_%MDFvqno4ElD=8wS4gWcLWtbJvGS^qyayBtDBIEfT-LD~Jf)H)jj{w~BAPy#tW*D#s#fw zt_Ov>V%jq|9C^JJ?DbiaPm4D+GECH)k9NE_c?!Tmeizz|)1|&DXmp=@A?lz1-xHda}0KISXEKg;WbhsNyT{kzWsH9vvsM7o8(9uv*>`a2Qj zkwKe#;xwUcxuR7I-=h~i+USa{y4tbHSe6Ky?$y|fl8*W4^UY37Wq6=ygO$qQ8uHGp zq==yDhJNXkn#SvSIi`U9NAsie8ND}D@DdX&zWLj!NkoudiAX1O+lsYp!89jNsL?=n zDIlZnoHt#;J-i&1#sbmRfQUBE>49I)C0I!0xBv&bFkfoJfSIsGzBCqyt_Arzrde#0 zGl5*j93BY6oSlwWeC%nFGmQnJupZKCrVJi?YEcg@8py(2sTEaM<)yJebUi39^;C-v z*vHreCo8!Es{lcH?daRjdtZL@xpHDRccs*6M0v~@1vIU z$>08zsSr$-9HuS=_gftU^!!Ycx_=rzx$&3HR*Png3K=pl62 z=TrAxMo0gwC|*+yij5>#x;k)?C{6{1@9G9m?k7hS`z3Tg5p3bmB-OmMX*8%;FFi1@ z{1`0LMH%do3$`rN90m#u?+vG;-X8rw{jXlCvffJ&^+$bg@(==n;vy*Ml@ncF!8BKp zlZeEFifHJ@>1?IEMfm)s35^E@nja%KG;v>WPmr2pA#CwR88IjTe;43XA6E1;D-6N* zegqF35L^Pmlpg3w6^3Az7m@f_AbJNx6ais6=gSPiR(Ql=VF2$+VX>YB)u~A-7!-hC zhIV?GGhJl`4Lr&L1B&%Y394JV{lX=LEb+i_yI^Er5rXE0JBI z^`u~VQfmnf2);WJpVA+x|C>oc7xsRma>nP=La|>u>8NGo2Cybl6o&% zrnSvKN6wNzrM<4*kXOhczvUZD>7z|`bq7Am`!m5h%&SC^?L%w`_^B^oR2&cJQIwIk zzWKRNq4rkgg0H^>o3TD@B&LoB!mj%WBlS2ZHHf#gir&6Es9Hcmi3beopZnCyl7<8F zzZtF8bBeBGoGJP?2fTeq))RGQw1EopKHMme%Mx7N_Yor-C1q6$uuo`{^>}r38wmhVK8k6kM<7tUOr-?M3(X- zY!C$ssG-JAF&5sg-jH=nyoI-`KhXwJG`NZydj$meB_>HJ{|Q&3%Xs0W_lXHa%(jN~O z=ky--v{;>%+xuXdj|~mO0sNKW@=fm{Mew2715MH=<7qTw5$upF5JQqg1KBl3R<7yv zJt_erjb16XtB=t1Sd90J`WCbH+?#_Wlxhoib*=4@sCkT zRz4|<29Tg-WvC4rWwL1*R%jr*km>eU{aMxDJ{>+Ywr$&A0uFS@n^_%omA3$`A~Tz+547iR zpC*+cGm`q4<{%a6Tquq=SC0DHyIu99@XLQAuwtvGpt)!=l*+WDy{)jf`3iU2Y z@73WRtHgrWHQcv4pYAt>1pEu`U)2w^705T=1oH$3z)2ijhKcsqSaw=6DYzU{;N97l ziQvF=$z@(=H+HiT%<3FO!hQx2Y}Z{<&8FU&quASYFNGOWu&v;55|kb)crUv2nm2Mu z5zOx#LV}Tbpj>e&y&rg;6!hNi+n7$bB~{IlyQ?m-`{9`OikM9WJ*oRRL#Z)qI8W)t z!LB(qCO8w84clM`mi61=9cL5w!*o1cluJ6_4cu-8mu?(J#=t&wU7my9po=_vJpyl| zy0X!(4n@dkW!tWe`l!h1HD@08L);q)MrQYQ&dS=85UjUda`%JRfB2Us1>3w1B17#V zgFj*IMCIzh+7`8jclE7`iqv%}TU78S`l_fm?x3$?J#y9i>v|XUjm>-i3J>`UxS~F> zB^T=ttC^2!Po2$292|0W!_{o_r%WFxSZg{U-b5l;Fo$^z`o88fA@}iQcAVK7*bn;7jx}E%~xNjIsb7^3aA% zI8A8Y!*ER4wCdHozXw&d6HafOuI45cXQmQ0pPMA1k?U$crjn^JbiMUz$Oe$+a}x#$ z#!KW#pbtjMnTk&r$N3PfR=DqO3J`49*dPD49!wI9f*DB-qX!Ds4@cxsqu#z=D$ij$ z_?}K_L%K&-5p`4o`kC())I9UzkUkrzx1o;BsiphZJU+DCATLe*xWdD7sNPnf`0PWq zXAxXDmvmAV$n=X@R1jYeiHo-bwPVAxF0egtlDrNyORH{ui2k2d5j9lXqd`$hzU|xqmh92H_0QDWwvRJ4j{9X9X29R28}2(ZJ7vL+Satd z%;s}R8$Cn59njXa77~=Mvw$7W=!H&JmQ6bg1_-+QsIjkR6jq#kgS=SX$sVI-%*A~a zK(c02hYv9y;mdU5A>9Z)<~_CGLLD##YAgZd+{33SIZ=Ni@OcK_Mk%aQxnE4F2iJjQ zDKe+>`lbUFy5C=p&ilzj48fH?4ypC*bg=iUJyl`j7*Jq9P-G-Jy{nNs~a($3~E;W{cv4Rwaw`-huqUWyY_6jqhAjnNJ8?aZtk7Cp6YWZi(vBXd zx(>R2(fcH7HvhRxBeGTRgJc=+DM$X<>LGQB<&wOL%b6{4>vPjrJ(v9p>x=$x=fby= z0*n8uE?0*tk{U%aeq=padNg}ynV9S<6G>)h{-RbhIadWm5P5i&JCmIuhw{&a%GJmf zseb((sCL9q+!HFME!0TxU%vyv;Dz2#l6oJK_Y!(y>oLXZ@u+j9DMn~a_j2aB6gBsY z$KCFGxsVOo(j%Ek%_d>~L0b1CS%MG>)3cZTC;N~7R4kTN2Rt48HMlI({p=;jy0z9Z zMH6E+@;lM0S)n!E(&HT32XUF&?pu1E7kbm90A2T_lPhwwRgc0c5ZmnOPUv9D=U?5A z0vpJoJU!+f(8zJY0E}`vvN4-aC$7r8ADvH`qm;K_&t#}CyL~o6S ze@c=-kX`&G(-!mbq&x}ka*DTN0J%w#W06Rj(=Dkf-BM&l*|{Xg0!eqwaEL7J*OZtb zhNuBkar*|VFFyYis0l-bM9_0Lt;dIe7$CN90KsyZfU zv(uG?wo|iJoQfGCuIVCa0TGnhExv>@au!gx%@Zd*;w@~EFwO&Awns?lTCa}(iFHqc z5JRQ`isWc`sJP8Od||88s?c|1miMe!R$_v~_5@c13D%nd z>$3;@j~@0PKYj2APAl*$$kO_l;Jp&?zIyiL-(EdpITg6~W+^Qk*o^JkBrzuaex+uJq?3D#>`9!v7*j}%IWaSD7Hf?Os5!FV-h{MSd1UNAy|6M7w? z#slB=nD5~5<&z+b0{68#MvDl}Ys!OeIGy(%K6?D%)zicNlRrFr{xS%eB&e={(LD=( z2{A!>1qnvuh2o|q2Hj6#b`|6jAdHeDg77BNvOm*ieGqN${4MZH6u8&|C&y?&YiY~bgx9Dp zXf-HkFGHox?P7d#%55v?{DG0msR0CCSbOzfW9zo8y&h^kab(|4h?#-I952QQR+qTXlt%lTblJz|G^;oSZCsj}Kq;51$_Nmdi;$wcjtPYX-@1 z=TX6Yl{!y~?pe~!4BDz!(YaI{5?k#-V)rWptszx1*u0|)QVj~yn{iHG7w2c? zBDi}Z2rpbAWpe9)L4M_=pjYO{^p?PQphEX68wVl!1r3W|x=BNV@mlcbl6tuDEZ`Iv zxt7y`g7sFws*iuvu~3*>ft72S88Fyy1nldX3TYHQAT5|~)N*^UV7_$n?Reh%1O4YQ z_0zqny6MHLvmh|LhR_u%1qP;z{EyMDfMDk#N5pmpE}RaQr>aj<{~O0A6-4xM0ITWb zzWc?YAw!o>r-NbdtNjOiy`xDDYyMknUwHGlVHZ>W7W%0;E<57Cv;xB47MOTttS?L zvykO#uv+s{=~Rfthmd@stQWkdc3LP391`+XG&L9Pw2FcNQtp^)RhF;E#a}5t_MZMp z?@xs{;KVu{m{(2RzXb%)@j!_gL=3G%p;+kBJCh+EmmOA3Ew%ViaVx0bwv6J_Qi0b-097M` zpP^<-1cRpUD%EL;fB?2g_xjdn;gp`gqnj*h#QvO>PM5uYiVNz}t;v2tk^J@J0Zdt! zttsSzD!UMIHP6%^n_5-*-~IL~fN3a)SjB&oKUm&}Nv`?CNt|2ake4j(8ec5Gxz z39WJ)n-8Cr56j?M-L7rSh@tzRwzToHa%L(vs~)rO#Ml)#)c;nX-j0g>!Lpz1!vt>W z0gJS1rA55p>xdR^5Lrd;2AYNTEzGI-)gM_)5|id@$3meWZ*~bIR1W*JPR0k@{S)9@tW9 zzzDHsEU(X{K5L@2C{DweTXq_z;T^F`tGPQ zfC}<{>Ss996GT%p=`PBa4T|m6N?QGVQLajQ#y06WwWC%aal(?H3oN-%Pa2aC0=C)w z0++7;w=`-<3Ar?)(=4XG7qH)|%T%nR5=2n)(WULkr-RI2`aqfbN#`iqbC{(~34 z>AiUQ{P6kS^QZkkJ$iZYBzO%T$ZjH~ z5vA^EQ*>3ebHw*B1g@$;N^mk*P~V|v0_lKR8GCRv?5S;pr?hoKYt(3?;@RdwvjVgH zb=aFFM3c)7C9nzQPb%T$I(kZT8oE6B2CAc3e~ zR-b#K&=J?wZNZAF!p=*}QEe?Ss`ZC_ zAVy5*7PB0Xw8>&7d0%Z}N zbo(ZB!|hy><$$E$Rh>%JPkAP#i-l9&P4t(=fS$B=O_J{e2sZsHqHOOapy$7|K+2X zY`l27jj}*Xj9k&rl!yDOr=!n2Se($6X?pEGzCip(0lkGX}rv*;SNq!0vFu*eXQv%`|YQqcvbz*D*-J5=D1aTj)=3-r_C2|eed zoej*P;ah(2CfUGA86pD>2{&U2$0_#<$(~9*y@LhywFI@Y1FM6N8@7Tf+Z0-WFhQEi zuex_nJCKaGgZu&()QSA6)#6*m+djVr6QtK;BipCM{GCg|m3H8;mR?!ef`axIl2xk_Zezh!9q-sUX646nyMhnsvt@OP%>uLkf8h!i7QR&@8r?894^NCAv{Je zxMTvv8hQo~DT&-i3*q*;*N~uerF?+Fih`kcRmveINL`bv63o%Kc!O@*q>{j(zmM{% zQY{J^r)T|4!xmg_0wgQ)I(&$6qc%-3hs6;E%jka8&Ok$g8^x-0Zg}hV}G2|RFJ8JE2;*T?j5PceG(T)C(87K1a^e`~M)dN&jTG3_`B2CjD~nOe+0 zdETRKFFw)Kmtw>uK1u>T8Uq@kvu^)A(r)dOhzjz1!DON`5yyf4%fxU<=kfNhN4ij0 zL1@=_v5jIZFkR(L$rmyO@oNYLh3;`VG_VEv(yoSl%xau3iv^}2U$f#&brqbealRZH z*xq+m{CY8%&*|7nvGq;4g)g&9MuO0s8CdY&jrh+NV-*$sl%BXd;dcoolieIWM+N)6 z@!a}V_ny3X^BemV35~>4dZU2e0^~DL$rRAxnM&n;&A>y*-Lw!29xzcC2Ur7=>?Ane z8W|28BHmAn7%%(kz4zcQs^D&Z1y`e@LWhj|)px$tC?QqN*ZOpUUyGIOhD!{>86f9_ zyqvO}tC<@s9m%9oDhBwF@?loWbUj&7jJqK2so-)+g;-xk6#>L#+720Uz8Jp=&lkID zJ03iQdST>d#Ahg|NYqy+ldK0ZDh# zl2Wee5|=EA6ktQbO)lYyvH?9KQ}o8%nNqSWuj6OHAP+{JDh*w_rWm2G|KET8x9@%b zd+PuEm0{cAC#Hd(po&xp&&I3M{%N^fO$STf=SxoDWp?2lkQ8()fh4k1q^NDTlA(a0 zk8>49>reMA5|6Ykj8u_8)K9snXQuk}juzyGqlU)h6*|F#WEE^;h|IG^!%PxDOs3^{Q$Sxz+Zm=O1rt~Z$rq5D0s2ZhEFgyuDZx^|9m}NwI$8~Il*iS;%A95vh8dt#D;`m0^uc7)0yNb)OG@q zx+)~j06D>w59+HS-LEfgXL>O@WMt|JX2-sWuIdV~At6&Rd>ZHr z>8fBj1LS17f1P-iXhL0e|BL`)GF_cco31Kdb#(y+1o83cx4YdfOu<74pUJtDyO_zv z;1IzFMVD?ofAbr43vb@-wo4KpQh0w-CEdlwWda>Ccw_bx?q=gM!vHzC0#bJ-y5G2D zVt@}RykGH??qph-CV-esGv3X#(w9;{t@Km6X`kQqx13fc@nMsE)m^I77-@z zjK=^uyzBQ9?`W2rqky1{efS*IFRYg1w9~^GAcyaxy2Rb@qlVBBz~{IwRk+9LTcqV2 zH_HJ@nL%+mEaydk%+CN??kqSh4jdvfBhhmFc2ypeH#^(oZaK59R5*0V$kY$o)-6UQ z)6jCC-D$AU5WuI_E)}M~e!XZpwT`eMfp2R6w%XC`c2k=JgFL7Q6*yD7nnwd)Z;?^g^TMUUr@YR^ofv zzr`AMr+e8oERYpUogiyBd)ZEp2M-}ZXAdDeSph}h8$=|VRof8FRXabX93P2}daf6cBXtuk`d_?~e!1pFJ#8 zsO(27?k)M@PG)?$D!6#2k+i2q4JLT6C)3a)X>5`FaI=%%23Ca#&Ra=N<#rupR&b$m z1FZ!Gb2_)-)06FU>%TXd=A>&V9a~r-x_nN`6MAy_r1zBmS4C1ghXzwA#!HV9xoFdXVZH=VfR2O(20q@krEVt3$@vm7H==nKPy6@G^n3wtv>+A&b z)CCc~FC~b89w9Re3HYG#ml0A*BgGev9)uSJqKvTRD!~Yy7lB1LnN}|;G6g**=XckF z$BTi$M0jwZx;6QBI_N$9X8(ce3(ZXg)ft`^fvdTs0xKv(SOW^?8)@dEJZ5Y&4#-HX*oT znaz_11Is%eOL_EHMk2UomnBhH;P6X`M(a^IoA4M1ZA!=ig6%yoN6XW}oL?IiT<6Q? z$)JJfqR&IGfKfC9X1%R1-6rtB<@XvC1Fk$iruU;bU7KFRg9PIT)A6)eozDw;bB2C8 z)IZ^>W*qxju(?

cOh|HHQx=cT-81blY|OHi|(l*!!)}vN}9)h`3XIR_WFDi8Kgy zWGb+%h6)=Jl11W@(eV9-)xU0vgyTcXdsA{d>goR^E;s+r%^j}()Z{%x0>=j?(&4cR z89;9c>9B`3T&wvDum6HoGXpf_8nuoBYTnly*|fSD(q&b(-g#ku>g*6-yb2t1NVnzd+)9_nn61xPnwOT9%q}DS#bqfp9OQu8YQzK+Z2h zn^aF%^`4HG^sE3i^VHK@f;Dmooh+$3K8XBvh?M$BEhPJc;joym0?*4+LC+^C&dsb4 z{L4`AbTAvxM$A$_#8fa z-N*ts4o122b zD*(#y0~N$KkzPqOhdtzepkEJTO$IIp`n$H&^weQv&97Gb(h+5(nXX>6m&^2KslTwt3w5ERKt;? zA4L~$UB5Uq6uj>g2RZL2BAg3m2oA2+004)IsJ|PYmSfs(>bAcFC|IMmMQhI>wpHu4 zWgx*Ax z47j^NYpVhjtWoWmMQyfq?J`K2GWp$z4UR1G%VGVVtpM18b2?_^deFaZd_7BstnbDB6rsmH!ZaKwCJF% zFZ#Jp)8*jR0Ku`TXT~HP_-#ais>y@}HM+HAe6s+g+1*yQm^+C*~f}m4(K&R(N>(G@#uxQTn zhQQE}DAnW1;DlG*R=tsd17D)895160t5sXEcwkJF=t&TGvQ>#HusW{bfU6yscbb*R z*En$EZN;U)kguz8O{KGAKFbg|lH{wWMgv=-PENb+X$&0r5n?jV1qM5+vB5g5Px>m)>Jr9!8q8C-8ynJiU{to` zDb%e6KKN~C%M=>e?w8BuU_BaB&-tcDKlk-7efo`dHF^oZA%WYB4{29bn>iqeCLlG5 zqaI$euj>JBmcx4edNI*LvvV=bU*(!wE>6Zry%+SB-V6Gf9^j&lB0jwq>^A~N+XBCY zm?(~`QGyXgGv}kMV7Ua8G^c?C}4GMJd$VR=^hP9Z;<#h;j zxikrQLl=xgz)5EmprDP*lTrky$F0lLK!P$Z&qY~srf-r8G z#yPdy3S==sdIJUTDv(JK3>AW-005!3=jTF!(P8{Kw%l4}xh_4XcI&*DvPhbQ@zjrzLRj#rg2b?9E^@rpqt%=HWgK znLTsZ^sxWcgM+VF&i{S0PmTv|a=!%?^nK!ir1a6t-j5CrAMC$i;snn>d$LH|*y?U0lUB7eN1!T~8Wqv-K94&f#>NzgDP&S^7sNZL%5^Psl5NoCsAowmYKDGV9 zxCBe%ESClY&n3o_xJfH%A;vUuu7W$Xml+owJ)D*!K86V<$JuNFFP$@*tE~eYw#k`= z0~ar?Xb#e*wAl26mzEi@S-ohJCkux>U1X)TT+;(rj7qSu$d;8s1JiYz?y-GvFx|W) zv#Piv#+YD5ZFDK3M%Ju0ay+m_d8F_)gXQ^*-f_;2#Tq zm@PP_OoJ0ngk5%oO*p`QcTx2A)l{-q%tm2Igx_tp41KQ0s}KhG7u_G!?SK<{QIF?A za3?CFsF2bu@nfn@Squ_be&q5J8tS(V4CP0Q_@P5y@cGF|}JF75&tm>=z*OcwItFIgf43+kFeS}5#BFbE)gOi2Yi+oA{+oMU=gcinY-dzZ` zk$_@*?Ia{JLygb-JB4H$EEWTPMO`pP10-g2h*`o>@wXt0Z3zt`2ron2OJ!8jqa3$c zgA}YrfsxFh1_a#=Bn92^qWrd)(WQ09DcC>)P?EDk1#wi86MAlt-vMZASc3?{$gmT- z!NxM#*035dPge$`U28f82)f9ePuUL8bn8^UG$8{A8lwXdeqMZJ&nMm21FY)jR(4Sm&HWg z40-Y7#iRb0uO73U{mbS_p8eb~1yJC)ViVCp;=G(pQYVRmMv!0%0Ks?3CM|Mof=!eJ z8-oMaMVs(7bz8GlFN%dE*hEQC`DkFe%$bhkX|1GQm?H9v%W_$~9NTz8GeTB5+OZit zu%X1DrHO}E-i+MCE8wCqFv00wv)W;$8@Noq)=~9n#bw~YY23jR;I3Fx7d(yb$P08hMNDGEOIJo&-yrGE zHHzU)1A_2^PdF-$)_k`>aKG6AL|g_7H1GN}VOT%G>Ni8;NAtVLD3-%8)|FtxAje|B zke3@V(dcjMGW6IL>_*q}0TZ+=f8$xS-`+fb77Rp}{rrt*G!3MfqO1l=I@WXzbZ{VJ zxk_v-G|yGAwSLFX)m)vGto7+~e@M|bcmw;RpmC?O7vm=LnW!zz^J&47L`!=4XUHei z&50}+h*;0DDqjcZxy^eHg9RGaBc7d72tsm#2=dgtNAv(ec-yZi)!+L|3Y);!vXUVv zT~8udkY8csr*+p^SvAiNRhbTOQ-RzV;Y z$*5dce}D5affKWYR9uV4xu)VTWZ=%=#zP zuTXe3KC5hN2aXI0cVauJf9Wra1x0~jjao9o*BQab1^w+DJ>6O0L$GAr*vzhBL4LO) zKhW7FFA&{>_J_*lie+B1YE025fg#}XlI|!LbfMM!&+%Y74#L_>#x3))>0?rOV7tWG zC`jarKi43cp=QYp9JnrWt|r$lEJ7k*?7GD-Ogd9vb;LSr@|Ws7WVy0|^R*KlE7887 zU(va>(4G((8Eo-!PN9ud*iV$Zzz33{)`|;wpet)RirG<~(Pe9jrH%*ZcW1d285I7U z}LL**-A1u6*mKm z4;}aGb@ZcdK@dTdLDp7#lhTkt(fjOkuSTicl4bCAfgrvsgR4~o0x0=l`8Qe`6<<(b zGn%y1t!jEvXFTh#$T@16h}0u^{0V?Y#zu4q`4HdvLYC#kEcD~U&wmp%E=!(O62L>s z-Gr0{bw$Ty5PD~U)mzDwY=aCR8WP@5NLUqbS4j<$4b2T27&b)QONpRIRVHfRg*@~4 z)I<ySut?PxQ@^E)(d(RZ!9hAt-2X1hi@~Xc`Es0D_Z$0P$=a zUJn(-H<8}vmxA#O7h@ebjxkH7qBS}8VL=_5TKVl!^$hNfwlsAG3feHoev9x!O18|g z4-4vRfw3vguv`ZRUy_AqjintXNL>f>NWWNSB=ofdQ50yrX$O;m7D$M^h`W=(9EvY2 zmy@1}*8Am?=e;H;3j|;qRfL3mUg0Ej@|g`+w33tPG!f81_K6}pIC#2OELMLi7USdb zP!C_GENCG+K33P4g7^!P@!jVa5kS%}B$B4|5&(tTX1$Bx3bTTC=HH|W91wN~!swkJ z8rW#fOD|RRRg~VS{z-ARZ>R*S$6|j z^cn-b|J7H=MUfOqUzjmU2%DoPr=Rh3J?$e7@3viWhCYPN(vN35p$}j|e={&X1&i&k z=&ogx=V>xI_aQ-hHK3)yd^88=Q!B}iNQM${p!+bOBcIn*pJsC-iXi`**4gw12T7zWXlhfd1f;jBoNQViToY?7X(Z7YTHS~6I9&fa^ zqi3+756y1p1F^eW3$rs!5QjaRO+>fJ_>eE~5LGpY4f%F-^C3Zd*;X?%`yoI0#UNNb zOU||4=s>-lL|Y}NgQXoL7@ffLHMC>`5u|#e zO!F%w36^6L7n~q(9ui3I2RSoCUw<+_rZXVwq)x}dqDZpqkfBXtLkP+e8lwPW4a$;X zfe0h7|Hp9et-;6}!hue&L{ur7vkO}It9dW0HruX5Vl9kOTHuzP)6LOk;I4~4a~bV4U`c!H!sjYb{mZadUS7K&MLU8qhzlnY$ZuhP~TJ3 zhffdwM6QLZ2ikw|=O_EG_WK8~Uc7kz^6=3^mSxF#p-*26oR#q8*^VScz>uKF7Edg- zgg0NXoNqg}L|{28O8Dm2T~Qe@Q0X4Y6Qcjx=VaUVNC~)ly3bkOTGM^*Ty)d9PfC?G2l}Ji9+3H63K{IT()p*G^FdHv$pTZ9eFF{tyJ>z3BTx1ZTo5IPS|SM!9V)Jy zdsw~0f?f?GR}zX@XntUAOfuism%;7S+x#43g7q@7uIcL1f%%`rBXp9LwfWfAw*(&8 zE^@Z$U`8_PX1Q1Z%@62xU-Iuz@0RxV=)k@h*~ci&qF^}XL$73CwE{F5t$xoCAlDz& zYoU2$_yoOVL$#t8$gvzy^hv#T@muKeSfJ{| zI#r1pB#1KVAx5n&v`|ogHmM0~Pxos4x^urQ!-BS%%~b$OA=rT#h)y2Z1G{ z+9pc>5#U=9qgPG*$|#vpY$Eock>hI-f1=t+whcFN2X*agig(QCu#z>rfR<2ea~oFc zj&keQ<-1;PDJJ8~!&fh!JbV1SH#&P9-F=nJ+w!?ip(FQxZ|tW#Jy?zOWP{D$+V#e1 ze2J1Lvv7{ltrCL|CI0Ly)cic2?zEeIWeA|fAEW%FllcQY!J*z?W~J0_jH+XSDt}b) z)1MujmS{*CUp^4kG|>mPv9vpW2e!Ug$FBsv@{D4mTs6`u?X#ycP}?gT8TKfnhr&0F%l z)qc3j?<0&YAsF%im{t&>Lx?K?2$>Jw_D_oetYVp%F__af@Y~hb^aBNy?j4b5!R!8n zVwCmI=x#UfV+DSO4%Df4x<-A|rw`YO` zlV^vSH&Ms{J@?$VzMkUkoIK^!6As)sl2I82l-J^;L&wjOI*!M0$$yOe2k0cDZ# zf&({)mKRcCLqodG(7DgBI4vhMk7D(=n>yp8L&r~@dfyflOHe7vH7CK9HwT+HN`eHc zK6an`s%VY6RF^1ct5lT{Y`Qztyr`H1nr^$VeNC!)(;H^2v;>Ew4lAz&$l$-}zVZ3# zx=rAOE17a{?q3WpxUa8HX#`T2A?UX9Vlmc3QWObBvf^<#Cgbkc02aizV&Yl2eJzu*_5v61w)JA#2o-3l|=*5kCBdYwc-z) z3cOD7aY#Z)AowZL&=p6DfLe@HkJvk~zo=fZcf24UdDcXRg4vC=9)o2%*k2NaQ26m? zg>Q}qd~843tw7CJ>7(tU;)sGh^$zjVqqoCCUnA-D$+2I>Pv|oPN(Osi8J`oiCnX?( zs82SfH_oqtEXl0Z=`e-qeog1y(LmV88-&eND8N8g=hgxVME!b$D0(w!z96R;x|XJW zh68<)+UD#eFgDFTRaa+i995P9?hZ^6V>sXTGfTa7iR#GdH8Q;{F zEM~W`k!66Kd$n@H7aIf@k1D*))k(oaNWERk%yOK>RRX`#w6$Rwn@$F(QLPqNA84BNkk*x0Pl*H%| zaU&rjQ7n=Lt3ZH72Dxd#)_hjuvF%~|sRvr5J#DT;avTtJJ7JBg;C!zj!5O!Y71dL# zqymS8RDmSA_>KxB=-O}knjfo~vU+DG9`OV|Q9e?fdk&4fU-v&U^oguX7F@M;QIiKb z|H!94m<{I3({k0*|EMOzwC^_^^Da|5kIU7?ED5Y}D=&%n4w40-mQ9m;YXuuF}g zbOr8KP{jd3taCq9{ZVTE*S2$Kz@WaW)!0%sDWbX|*_y8FL_Jv0vi{TjT?zH1TR>$B)ujjSds zmNcV<1m}mA^N@;U^l(f!^7?%fkB3gkDF{=z(I{Co#u=_duT!D|$|`T*-6#psq2y-5 zCZ>DiThy|~9TtUe3!sAe!!`LP(C+Sv+;EnwJ&NMnJEm~@>qX)Ad{`eZn3g$2T^-zS zd3M`G8^&Q1OqCs2Mura!1vlJBPAz#fsOb+gf}q23KpA$xg891pz%eI$ z!3E{-a5BUe6}*WYFN$I0deuRW0So4vPN~ZAQ$3cMM{W7CP;ln#km5XZTyTHlzVNsy zit0-Jx?ikL%hB@HlG+g~cEMcUl+Q>8xt^?gN9*I`;JmqA zz2&&I+;mNt-ehAX(h0Z41vjr3Rv&riQS{$p^w^9UTt&Nb$T2|AZC9sMJ+-OT*mX>2 z|I8YKO-6?m*Uu1nBR`Fu+zy@bYh>{AzQU@c?Y{M7bg(Mt%mVHDiWnOjZaKSoWw3lb zCSP72bwIElc2LtOogh*u>7D%cpwf=rzl^l7@ zs8@G_g|}cMl4mbbZ~=Us2o(`Du05TJsNf;u1Fl|6b*bVSBiMT6fH`vn9FSA>cU8gY zq;W0TW|^kJYNhb{Q7sv`jG)WkX3W_rfv{nP_qh%CRrQ?eDZ38W%KQCorXaN<7z3oF z3PhnKgmhLQ9zJBGEMh`6^xq67!E5lHS%fh_N;N6b*4$Txqe2|^3z{Df`Ls;nIKqoM zS4VvU2)VUhOenajSy1-AIy`(~F3(1xegr4r49bY80f&OS?6XQi>h`FlcKDQaB7hGa zcQQH>@n9ugsZ>S~BK9^@@#^JMQyd8qg8e>*726_2hb2C+-`Pi_^m}CX1+pG_rH5B@ zB-0XO4FLL5@NeoFqksf@ei`Udb!4wBUylnL;)tGg8S3Bvy1grHfSr<7&j*!gNyyMk z^SoF5cDuax04gPl!9&CQL2i)fcug|``Wsv92#$XOxH=t<0$OtRP+?@5j&ALt;h_O- z8is^D%qYcFNP5}LwKyPvj*kOFB3Zc@pU`_*Bu~Fx!30U>)p9{06O`p@%(9r!I8<`a z^lod6qkxuNjiF6{?!w<~jnVMXa6eO0>zNKxJ{}xRxE6uic>r10iWm(v-3tJy-&S$D z$fJ@psW85*-biNGo9j)?0X0>PSAmp@^}<1v=C(B^Ljf%xI?Kcf zF~0k5e3C_Boo(_gP*jbbaoQ!htE~CFyY1MSC4nByt`_uodRSUyJXUigQ{L^YqZpv% z;+pQ!_YMZf#j96O9`=^>17jBiX4eR&`NUY@xx#tY6fC1W<4r^mCpbq1IIvv~*`j<2 z?o;K-G#a?x)#!7W^RQcg<|2U=rxz(*_OE6%5cXRNBYOepIFYrI~&}fyJ{B z1$Siy-7pUd2IyWMOk`s|>uZ;L=S_rIt9@9$U7DDDQG?2(`J zY%n2DzaIVf4R0g@KMuj(4$WTO3| zxtoRH-Y;+%YXl0~ch8EWBYNzV-7gzBAnNCW4^opF!3@+P3w418(thRu@_9+jZUoaU z2P{-(S!BXgH<^5Yu2W%*1;XkJ)2_zM+a|1%cUqX72GZ&)f4QWXFmJ|-?N=4@qVzZ* z>X+{8R1L!;Fy--z{O)+S@V_??h7NmUB@2mU@|>G*;@(K7@$x1Jtf&5{pMmVF zI8qcoiq*J(@6vuT)fN(`5|kI%-=pb* zVBH0Pm`$UB=n~RtA#|BObnFsD=Kw@ZW${3E5h*oUd@d!J1py)EGH{@}jD&miU@h(H z$6M6`Cu(3YG6o2`dr11Q9Ig$Y{o&E1P`|UvA~cl~VFGmg7g|#ssF+sV6oOMPK;~rx_z-ggUotUKV-h&j0w^zmHLANv z&xuQQr7L{FR^XKcv>J8?jl8F8!hC%+84sUuzpPGbfo9DlJ`W$ zuR__E<+4@#^e{o{rn0&uJDke;cp$rt62~9kjLY>hRbvHi&%lan59NXZgPs{!J?N1d zW7-(l#{}tz&}m&$sBJ!(nK$m#d#j_tYQPFuaFh*1mh&2TNcjjKrqfbv_LE?uDe!>+ zra+7(fE>46J5+J`B11G?u2pCt()lh{i=yb+DafJsvmNtUAq+Nefv9{N%)%^IG`_RK zMmmW5paM#Xqxlz8_8&V`rnn$WSKE9hR&-s2>FV!P7m-PYg^{gxDol|<*iX_0NjH+0 zMaG3v5NfXi6;`v55AuFiA^G*pOFl1`wBil6d5?Ect|?B))Xib8Y({4=Dunr}_elLW zV?lw>VWScCwS0zJIi@I5cktMapr<>KZ@5QID8ii^EtK=MJ^J2 zV|E9kG{-igC_Xda(%FG1%>hxpy5ggN2!)CYlG#`joHdF|F+l~1zp9g{LdlHDS1c=1 zFohJ0Op-yS+D2N;hrQustWICPB$uMadAu?bToB_xnEGU}L9e#Iy(EtZ>Vp2U`ft>s z3g#CaEFmGphm806mtHb@fj->Y67=jGu3m^`fD|?F@+?B@=2bZ?C%T_iH>4u>W`Q3G zhfK&xvp|wsnAJ%N<1Y&wiaDZ05sSjiKj-SOg=L2_~s8ChR+f#lBa3WfNsS05ke0AH9!gd$F9nV$F zR|=)II*onq1iLZ-&`R)2g$AN)_|rGzIYq-Q=&pc1bY|NMg55a4FuD*Eq*ss{2}Z@y zn(wd(_K^XSq%?>iypFUWOvcj{Y|sNI$>~5rdkM*jR=)zc_i~RJR^Xukh>+3Yfy^&S z{l|_=l3{}M4&)(+L`oaKbk#nZDhkeO0hY`wN8T)86&_7=CO{+S1<<9?Rna$xx~#NY z3t-3)a2Hl{MPQPpE+Gj{?17dp0}c%dH}DZ8&^B_>SFZuH{0k1=0F-2}P(d73KUxYD z3v$=cGhIgB*7zJ50{os#HxNp;;7189dNL0Ygzv*bFtsKeu9E(=f+;HCk_Hd4AtEYo z)$_$IzHNC|s37+Hacvye<@!^b7X3H}1#O()$>5}aG+yypLhJlGR1in?+sv{0iM__Q z^_wGS1;Aga`v%65As{Mo8eEFSn_zL>w!|GMXs@DOpqaf8UikTtAbuUqzH~? z7SSt89=h^>ZJvm02$Sgq7?|Dte%1mj@1O`;Ca>%7z%F13e<*9KRSYy zRBn~iWS-Zv3KYy&zAb0PSiQ*p4gH|IJPKUPMoUTE28iLsZw%5huK)fI^Yh=^+x`Fd z|9$fJt17I7i_ogBD)-gGEz%#&zKllcrP@_n2C{cOBC?K{_f#w}=I_1pnA z6x?76{;(+5^B(QYh3#8V-)iX@Fu1QLxR>)uaAQpndQm`aaKU^l#k@W`QQ2o^7xXF; zazKOsa^GAHQ2y@}#cilVBr{^cIt&=Pwx{sGb_pppoBB^MSP5Lk0TGc|IB@ZtE$DEX z+Er&c10L9J4~~Yt2Vd^(7pno?KBOmjbyT%eit!ReRugnt3QK3N78KN%{ZxzMgxrRL zGeg11kfd~Apn8XbHP0w}1LblT_>2y^)e2a-OWPcBKoI><6Agxw zGAOf}-JMM=77Y|XFckExI6sW2G1f)~4F&?62Wk)H8LM|~@?g+F@y=j;Oo8O_AI9?g z&C>z>p{Zzq&|uDEgyZw+MsxgQhySjVPA3XsQ47KYq%vTDV4*7&1G$c=xs&pJWrh;; zIVm0=F3%S2w6tSm+bdUD-t=P`3));@nG^Khnaovq$lV3THytea8zF*=>lrEy1(wSZ z3pv`bJk_)xn(Hm-MC!8|B83JnZo%1*?pDu=AiivK3s!jG<9Rdhn{<^opn>ZWvm<#U z45pl_rlZ?nMhgZeZpGzbI*(s;Z*Ij34}6{#Y0qt>D=N=g!y4kDf$P1>ii_fG9E=r$ zupgO7&4)^%_1L*u2uBKUb~X-z92TS_}_-Uavua@2b}T6j*q!s+QMH zt|~n6d3BJapzZl=4eOwX1}?89(_g!5$rTuwyxOk*Sn^iYu(n$yaPX3xiq+*F%)bQgS`KxiLXQKQ ze&xOnY)HG1baJP|%v0Ek86BgQanSJp?8<&wHt4*Q(@B0eK^RKG?u`ShHJO2ig4^z+ zz*14PCBYGh!>Sjc;y8i-zWXNNKQ0&3!K!~+O!zLA;JS{3td-#tKuxxvvWeHxTT`9& zQ;Y$6veu!cV}Dd=zctovc4i%)0BSyTh7HO}H}SX~2^{DgVr@}*_|WpH`!cCTA9qd1 zZ@-9vYEuEK|wY-^nBv~lOqS!?tOpeEZ_(QFxg1F!g<^;L`kdM*wY zi@`aasOtYx#HC=RE7>g2-`Z*&fr03nPh{QN)p;B12qp8^G@FkI%FB#Wg&{o~@L@?Z zLC^334rCX6viS85K{!$a5ZRHx)WOP&HsiZ1FAIkJT=DaByeOw}99PL|Ep5FD4|J@o z)Ss0X3#%K=%gVuJ$)cBn+L38EkgEJGAE+%`n4*|Pp`Ri+wk^Zu{GL%!}% z{F$B#KJlk9-F2o{Lg;*yoFIn%H|lrR5el3@6qp%EYEeOcB_xkYB~>LyYS2J-f1n`iH*$Q6Jv*&rXXOy}Lf+4MH*>1EkILW&)`BSyD|oQBO+r$K?MsrF%WG|B>J_ zsRPbyO42}C(oUoCayVFw`ewSrCyJfeDI|cJk6d=VQlpm?X5<=HEXYWM@C6RZyme!- zMGVmMVM>o${$|ujRu~)A1o+T$J*8#7UY>5>Y;DEORvC>7-j8#wWdIL3>`3OP+Sllf%dR$Ov$~31g zcHofghHPs)?%iQ(eohfR9zca1IuHu3vu|y!iV3#*b!|zSxnNDTI}z;CY-_qCX;$x} zH*~@GDOI%>rdq2$&oq-W({NZb=}7NpQs|A^bm~)@Rnsn0)LuGj(;FDYN@vAc|GQNh zFhXfmXTuz-{`EVr12HM|Zma|9)9==@0V9;s#M+DpU(%{?tOlJUy34>?&=Yx!S6FOvij^SvtwKxwn znRQNBhE%u6y&x${5Ua@z|S6ynNm{k)JKn1Jc zRU$Pe>wAc_LJfA%JE=!mCg@`Ih^Iy-S0Y|TXo{u^Ev(tw%uxl!=CMFe z#ztzS_%3Y3c%bR0&PHo`yqTikxIWXKpRDKVLNRxY@5@IhWGv`1H;_TyPqOOh${W2r zIxJ{T&$UTTh3h-0P#dFyvZ{{?ldGm^Y{x2m`#!3M2&!(tUVG(iqyr=-FY-uyP^^vO zVK;^byV>=ie!EJNxY#4{KM{}zcYG4ubXRVC%rES9#BGt0@7uA}O^QCbc(F<#2mxua zKCLsnhYk&ilE=j)|IELmk_R-{uf`UL=6ZrVbCSHX+1|}GZ=alSnBAYrJFGgpD{hUA zeE%H$4=FVA3HjB#-c#LARsWFgq>kiz(jBOP4;oz$AAO@e$kGB^_wbv@pzi(9g4LKF zuZ#rop-_eD%@&eCjhit*ew9#N=vr~#gw`{LEDQ8pf_3!zo93ED@J77k3SqW0^+Cbt z)@Zurimldc3>BOgcrHUi!7Xc)dfa#op@Ib4Ma~xWQ-Ux~o9I{{bq#!v$>(=b z(4EQgjJgs2808iNgYn9s*(;w?h3LqxtI{@s+T>OTYVKJ~)=^3i18D7XY_d}wOwhoe z<$xNu{b5rM2Xq&dkCB3F-LQX+1PcsaH$7mylVI++#W1mvT496THDk*j9cXT`*~&c1w|$ zbXUJxS<@O*UAOOiKR(L>J#M1NQ<_7ml%&>sxOGHOXV4&a)!Y8n)j>bg+iVV{*Cru4=sm0JeCzGL#hb7z-ePT7pLq`- z65I;aYFw%kP@C+8#5eJ`n7G!f;1pRQ^aS9Fc0XftbSH#SK!`ikuols$4%*FtpLA~F zXHahsp8z79w*$R0Q4FSPgiy{(w0jW58r@>)N-nnq#XJ2JJTz3b)7L;4+zwl88*Egd z!NKq5D@>$HQoJR1(g|PJY_Y@>$p8n`xFuesMg>4%1Jf2YLnK8LK!;oQMmpB?3_ah= zm3sWsrjkgAVSp0nPhpgNtzxcF-#wUVC!r#$s#~1b@G`Ukorin(Qlq1j<-TOv89tE@n z?Z?)Ur5*}aLBzRE+E2s)B|-mY)A^%;KMU!ke@k#cO}g!zsYcB@w=Qe0L5G5L$>=mu zU(#jCR18p(uCF?s>Wld;uP*DWM*%ILVQcY#VgN15Aq8!9JAm`?oDLFeoNG_oZZ=9u zq4v{FYDeUlk=~;%cBPe5LaDiDNQb7WEE+pgk4d$k&vpj8P|4|_@PpWv)vitK_qs(t zPW4DXP8Q4sT?Gqipr{&K5=m9xKOb{zwcfF*3a8QpBB*k=5AunrnXKS4%zCrq?us)M z$T*?Zc`W6$E(-Eepj)niH+pN2B>^8aR^w8llwXg7-Tf_Qb@FPbS)j*xP^I#q{DSCF zmlJwUhZSsV52{UMQ0IJPQy<`tB_Bdt`^eT)L76*tJ)}+MwBO4!dG*iuy>M($yP;hF zx!&hxi`|Wt$_U%E%-}%@*!s8BXR`!|j{)rD$*83KzNLjY$nb!*ap>5x4Ln%H-6+ z=2@el>D{nuSg>*%D^avO8uA$9?QLA)g4b<;>zZVOb;ZnEY=CFX>?4EQO|~?5(wWF# zjcqaM&xlA;Kn?G=623a^`>mXhj?TYw;@Lq>bFj!KZ&maNQS6V{zJ5Dcu)3{0l~?l& z&5*Vg)oXzC4{RE-#rA5toMU*XsCsOAg0Nh#dh{g6m~H?u{&qcf01Rfg)IYQds4h?h zhS53*@U_M4Ad&eP8~m5CumQgcGsCjI#nE1#S)+op>RU+H!g_;6yjv7^W=~&biNQmF zJ81b@ZK+g?h1ku0i@lBXj5^5x9qxQPNR{8WZGFC7%LH9+6&Ivd!^D{~nZ4CT@rI}2 zn})4daY9aL{Us{!rtcz$l5HX$Bp2x-M(E7hRQ1E(wM}!J(3)!>S|{rqx^5qa0Xp33 zH?Xv^S9tu^di9%SfgU$8Nu`W;BU|qR!Q9hew1T2sfTSM2Boms=8gWip$+8RT;@ko!JvgXp>b%H^I*zE;Ye|4*- zWKnD}jMNo{&SK02S-d!O;t9>{c2XQ3I_TZfsj|wlEcxVSiv#nGhS1<3cU=W1x9{{V z2giIHYKs^EA{{;tBsm{0BPlwG-C}-QtAQQDx+#t!HRmG~fl9r@Ns-K#>a|1OMz+|I ztCf+Vf;HT>7!#&?Pue-3^U~SkvZX{)MFKIrAGN1Qc3Kdr>8Kw~us}{=8?zp(&bC;W z)|G7{5{Pk|x~8B^I(3eu?-bLP^PK#!c@^3s_FHXv<+vctE#7=-=6)8l(H2f90zHMC!Z4C45Bt=5{O;%I%sO0A>ux&jBebD+|e zQGbu;HU6gK7N@CoR!I{kXtf}j#LJA1s~UwMBmcUOf^pi zalF4(dl+^{gAIlq^|wAe1i0%Ure9G4?DCu`*utHsw$AwYkP!4QDhUN4e8c!Vnht3T zXmF6bD>+sE)!%8 z$}tKDvzv0%G|*#)92KO1-iVsx5gmQX#cH~=#VMr9DrsDBn~^3+b40HZGG?h8S1q$f z1+N+D1K#*9jMQncme|08*-ZaJW^>@jGA%vQtmn4CU^k1~klk#$t0`J=o+%yT>oqX= zS|z80*=SOj?ftFr2sI3eR8T`r7Gup}M zWb|ZP7)f3=31em639m*)ev|fA)nPaGcF5qrdNexfeM$d+L`6aSX0vnh{9f?&fZ%~? zg`y`&892~gM+JG1-=q1_`D{Hs3eFpw=hp)Sg(Cog!j&7v|C&;;DSi2_PvMpW$B!oE zmVgAU>z-P?oR9^Eo*QM?FWAT!nZb{4uHo zUAzlc?*G)FIv5my|ImR4@iKqg1lo&^>E;{ce4t$4Sx?twz5yI4f5%fkT)k!ZziTF5 z!2sUZU%Uz8MKsi}aX{cIt2$KgrlnU%Ah`@9sXx&HEIkpq<}=y<)xcB?3{-B!QGcCL z00>qhO-39Cl%)9EI(VP7DTM|Ch3gs>d18!i(lvTepkc5w0^WeYDD6YkP|np&>8Gws>;fx$v7XtfzIWL-fmsQ zv+E{#s*ph9@}&P%O@aOKw@ID?IMDGtMPp*)Jh7RyTLWnki5A*q4di1XH)fnyTLAj{ zM(=2DCZ()KY(35=@IYuv%TJ&~PcXi%ODl#0U6{X7q1+Gmc`wl-e-00XVg9IzMLRkz z@&`E3ne|pDmS!^ zxjY-MPFaQowLO<1hX*dNM$o=Kop{mqC0}K=s1Y6__};1Vb{w9p3cAExzBCp%E_fW| zymeaeS+}6^W@#)On0{O_g)D*@SdK+Ofx)ZUWUe45Eo!y_1B+)d>g^`9LC7jx3yT3R z!!$n~bjhUP(oD0r{7x@Tsg<5S)YLdhH4@!8WINAN1SlU9nYw zV7pr7&D^w_FN)(aANmBZh~=`!FteOXdQiS=PKyanZ>(Ar^GSz26X3w))%`^@S!q%C z4H#Iwx=;5&!y&#!-M47q@pIEi+LEBO}lNe>ZxzV(*#Nig)bv7SLo z@^sllElht09okW4E-y#%9H~W)_zcM#ANAO%q6~F4VpV{NJjJuI7J1@x zG0$?}(&-*Q;c3BQz>pW+50PVjdRL`UKg7_$^CLCN(_iA<6v4h_JhnR|;Q!F#N4qG3 zV~Zp_+d;AF6T2r3)dxE#dfvV4xm^x_+-WrL_OM_fThiX%hR@Qlq&+n7{J@k%H1QA| z>ZJ;T?U3kwi)Bw;ZR=#;qJo0@e=zDpbis*dO1!@#VrytTRccs6`A&$n47M%&qHVOJ zv+My1mhl+E-H#Rw{?13m5bb(2XJ9)Xjv?OdXw1NOIvhj1%h8yDuQ?q#C9-jOOAIh8n$G{RGk%d%H(D)>E7qgjg&hFn;d^g^v6O9ciNJx^Zt*bai9oksKI058dv*o|n# z73@UV)`x8aKT8c;AE1yMTZiM_hlX{S?>yK#oY-|}Sciih2dIyB8=9(TI}LUo=Isgi z1<-IF=AoesV5N9D-qcEbE$;B6g=%Abwo0|75X)~^3S7M{1^tilE<(dn@X$~S;HlR7 z9h5eCOkytrJg`<&7)`Ck%EGQs-0I%XL&Non!wPZ`&p8_AfX_JWh*2%(|Le~8zW+V- ze|}yX4jmP0kePUT(=ao9a$^fS-WF(x&bI_^9)0_H@5^sK-=mOO_+qCzz7Xs9%}#av#_720ij&o& zGinl}K~OoKZFci=Xf>6?VWUhwa$h+ORV%^Ym^}o6rSP5Uj@)l`44d^(O#;%6^!N7Z2fSM0s zfU2aB7=K}=5riDTce#R!@S)`c_vKfI`%m{U1{p_RU4NJqL7)r=$QySS9!jddKao`F zXF{6y{W)~#sQQ^q%K6}gpIkNXXX+TBrz)XCx>B;k63W6uNmW9Lq#c$}4jnq~xGKg{ z&dsceRTIHuE)I;>*CaF)+;$%Y$s#KV0wOr9S^*jv{5OUtskX~au{KO z=8{iCmW-Zq6l^wRh=7)(ie5ZxMWxX|bv0})T@#16Aij(oBSEnYvMcBg z`3Z3n5q$q({yJUoXtrA)Lsu|Bes?$>_4erh>3>yhPF7}u(=qkA>G1*_5L|EsZ(=0ifZ#poSAU3VuVBwC%7Fs{g)Fz_{v0!BFaD`6ImP(+*234dQa4)HF_mx{HE9|XUmed7%4Qi{wG%Gk{P7JGcA4- zGBn)IX_$xmxq`Ss8mpFHqk{W`9QR^yM&s3d&1aO7Is8TgRM1dyKdV9onK&YE^WYMP zWY=@E4i7x5L{|-}l~fygD(C~DvMSL^NeUcFeiGUwNW3i9i{QGBWJe%tl{7rm{Gv|H z^0Yjoc*Co~+c+|!;JrHyovgCHrjP{6ezr*&9XAb&qrs4$7zlz|%XL*0P!+W+KPz#p z!dC4nhK7nuDhtD9Z%_SCPaW0-wO4Q%%0jsE3E|RQG+phI%ff+6_u3@n$!tjOCgdbL zn5gq3dR{4&$!CIHaAhES)!Ak^j|~+c=2OyAlcxHCSG8oHOr*o1L&^JjC2^P@VO`s7 z4j#Lw#v0Uz@6Z|!9o9(Hjz_vWF34qAS&DVwt!qbs4HXG{Af+omf1A5??TFB!BvCt% zb_cbCLqkK2HC*}a#2OAAO0L_sauGg1v@2zD|8me?-*lDuhBd`MH0r1WlPXZ;oAZ86 zQCrn4E(%=MhL?fX^2Vcn2fPLpymy(Mtu&n^E@rGulRGq9!@GZoz(WSrb1$7b6+<3JciE^; z3O7R5z@ftmMM&^o3F-{UlSXV0s3pOHLjtupo$~uu=#nNO=+?I-tz@!VpR=Uu!6gmh z<3mWaIA~H*b=Z0AsbvcX4ha;4LR;)w>asE`WL3uwC}{${JBx1s)dGy7~#p<&rRZN|Hn?q}sSGvk3DA2P5)iUWd}WBQ5LE!~sU@cU3o z9W#axA3Kslt1Tdz!7TXV$?aGH-A}d^1AauKD6%#%@X^? zK^x1jKEmnu!7Jrg(#O&b#$2w-`=N%(vr^U!- z!>d=F+HHZ6=NrCnnyN*?mbE@v)7l3smO=$7YjhoHP|&4~E=LA=#MtIg6w7oSV_RTQ zNAkU)7Xdfo%7Qxi1~SNF`KEr3=xS8Tw*dw;~51J!*j)2hRMOia!OM-T6y7)<~vtfL{N;2@eG^-DV%DGmstF4$_i z-_VAJ-ROM3+tYA-^tpZdoDM?r$nd{&W&{E_YoXxZ84dKj*QW<>8?*BIkJE^9Tu??% zoz4P{GnV2SoPRr!F2e*>v=S7k`a+lEXfm6PXSB$zZx9YvT$-x#l9bR%buguq9*dba zeE9V*rx0g(popqszoLbB^zGkICrVL47fqd{bg9y0zMt_Ras(|^A#EXQ7O3g5QvA;7 zlUS*vg03Eaq7b%U@CN22{$zQeh}IZW4UT;nwX`xg{RG0 z&CxMslT#?;bkG-z_SOs42a%Gj8|_0bDEoE4<*cE{?Pk1cck}ZX6l8-awmy|1lk8AW zyA@XF^9#BafJPOx-mL!e(ELTU3R^QX%St`3ZSO!4M7n=T(m<7JK@-XCdYxD5kpW~?WKb51iPXkq|-~o7B|W!Cx5DuLW@QiZX`renN~`4Od@`YOl(r1eqI$kbFVgE>rVg-j z%j=VOum?TKCxWsM4=Rg=>%7^7W2J!!+Irf3o0JF2%I&`6fS#Tnn%Y?6Pn1>ep(%K% z=xN8yh7Vsy<#x;vKneGqZzs?0YcD_0wJ-ObJ|<}6wO@WAi>ti$#~7gHD%G(aZ91XB z51sR(O&?_FYdue?H$m+R+Z@(Ih;Wnb&dx4*>>$ zkK;qh&(cct&9yZ3PV&Y!6{|httf4Ao9FP?w%h0G!LO>!t3K`5;R@E3IgGSoJo+?rA zvxbV9*)Xs5$h4s(f;JTq0ns@c9h463m9>Y)fypwBfI|aqV{xB($rkO9buEX~BS0gA zUA0l61&q(xpIEWvMH(QcRd5EVp=Iod8e05R&kr*lSv#8@R$2$Jp@0?{-B(>{DF0#f zSqps*sE1wwgPYbE^(V{8ijLZ=U~85bvNxbQ4%k6?zyEp#9K@97RU z>1&nf0S$VDQ$P1A4Xp$SXU}ilG*+sbb>NT?D*%;B3aDrSf3We&wB59OdW*Rkg}uj~ zerwNGZH|Y0{;(t3${k-l2hlQkG#qHW{Om3_?K4(^%JO6IKy+uieL7OxS^e$sm-;{n zVB>bxj}}4*CGmNQFg*7_j69S z^>Z6cuwLh^^VN7J#v(c1on*9lV0(?Wk8Nq!7`zj+aQDcb|l|t?QYld!p-R>_}NTl+(P%UU(RQ6ho^Tm$zpt66sDY_*s*FqrQ|@*LZ-nG?TrvJGtTzZv1Dj^kLpPru&rJ0Npr z8FMuF_|Oq6dvzPcNlHKigZXB}0z0vJJ!cG@lXHa&-dM@UtX`|+ferpxqbI&n10eWBxt+D@xGZbpiptI6f$fU0W6NKV&bf~? zZAJnEkBB4FONuirQ$=yaz@@lo8zVPh8JC6wm+*UisI%oaOcnV(0Ktczhz+3A#b(!1 z2c4NR<4#Rm>V88Y5&IaMmaj0CGb%(dqMrvv7}TGMfr1xU=+2m zS%nkWMYRxs;1k|L7etB$=%NT?;J_vFM#~}NXTmp&@&-WgiPEE=&zg%DyjdtJJ%m zp+&3q+R37RuRZh?k-1V|Avokra9svhf)#NYxCGaHHWj^=A}#}$wFA3-;Pz}+O>OnW`K{%^XEt- zBNKs(oMLv)jut2t{V7I1Y<4aR3vSUCQPWQIl=WJ7iw8F0u`~{S+SH6~00f_iZNXwk zQEX!?93tK5TugW;u&7M}Ao#@iSsfEz zHng*cIcCxLxq}2JRtju&SrHxW*P$hTK3kl#(w-c(`=HSw*1 zqn>R$NN|cMLwE5@XDu4NTRgCdx=1(mZ6?oZw!{t*jKZeocbUZ^f9)W_Df}kpt3`DZ zfZ!8lNEJiA@KRKU7B9iJoo?vfAm*Y)Y!(k}!eh*@qG2kE-VPCr!eeMYo|0@De(tcy zV>(E1%3RV5PPFHNxAtYZ1Y#ef4CCdD3K5LLOX+T*s{I*@mu8cdzRXMaX9^E&vixZN zm)5cQENGcEfe1!vP5NEbin9C}ydE|&WnRoicwiIpGuFc>ik|=kpQ!P=e;>?`6xH|+ z5}d+gbOPz2MIPf2!H6Ag#6rF~qFbZYAWCxP?Al9qqC8BnioWpEz^+AoVFL%Q*VL86 zs&Gf@4|HtDylN}9_-5<`bvSyY=>8^A!Fxldpux8w&F~%v5+yZ|V7%rMYfW?``I7Gy z%cvg?BEn|?!S;qrs@c>{-1BXVXG~espRrrVfkk*FG!)!*ANdMQ@iP95eJTzr&2NFh ze%pQG*lFQ>z7n@}=X?ZblkmNS&L zI3Et38rxWf1WNHE@XhSBz=;Bp>> zkc^hVp+wByyiL-iCA?JVvGxu$6oUq?f=Gz`9Sb3z<36#IE%$7x}4ilWbKAGRe ztLJ6)$w7kgZC3}}A7od^k02Sh!Z@5nrIPSa@|OG1{lO-Uw7?m=q8&=V4$oe1PT(2k@$|zo1fhZ@g1;WzT>K@`-AJl`P3QftPUVi=^buA zH{CfYhP8FL4KBDNElj{$p@q?y;EdEN^?MjuD%7eD_yBv@8?VG}fWgj3SxVhV{me-6wwl=8XeaA%r_lNy% zs+#c58~w~@oa}QziI@`LLrcU4lvalE3jStM!5b-gNR1#?&CIuaztro+ozqJp>UFW3~}m~?o5 zfkA@tiYpoY^Gu9WGG^Bu054hx2d2)S^-t+h!Ek?$0E4}Y-Z~NW)gpb+;n7=wf>o3! zx=gB7#qpWf#2sOcs`9 z2MX4EPNB*rZIhzwLi9tH>LT%WHRJb%WW1E^@WLF&(4m9-l$tgg$y!_HQw|c0T^v?9 z*FUS;OD1B?!0EU!Ljz zQGW>!f#o!{^q~nBaX8T32&2+w;EZohbpVK9QeE)Jz=fi>+caI{1 z@OnrnE?dco&i#DeEi2a~-QZvSB@5b-Qks;u1 zeB*rGPc~jo`0n7G!9$K2%9eHdWqUd8dMp=(8WRVxlK9xlkku&NTNy2dhI99A7Fh{JkL7p3l+ zF|6Ycn~Li>hlYe72j$Mvjn&A8;=FvPE#oCJ0LSZmk_EzU;(OHp+5D-z7%*qh-sg%I z5|nr1lwXLOOl;0C#-Unk|{ip z1+k0{k#>C=zfzUPG6oF#Ae>OD^ZANyq-QxU4JREch=U+XNoX=8q%IAjJ}$@u52i#b z@!n*q2U|!`#tglp2k$C(hZU{zJ2ASq-jG!Wt8#S7rMnj%nshclEV91P7{M4q(w< zeEf5kyV5xTg9yT)7fnB(F}~7Xv<3uS5DMv6HBKJOTSiMmp^pplpj(GT^A(*h=I6Fc zyLAE@5`wM_(zX2Rywa|W2Mg+?>7NVkTBcXHAP+hX%pby&KprA|JUJVGkp#HAuP#14@ zO6#vd1YuBrzu!+*J6Wuy_1A%dHpu5@GMn?(rZk@h5rl#NZki>%O)BpbF7@9I6~sY@ z#wDRCI&l+dX@^EYLqagT+|X>X7*UrFFD)b}gIc?#U7Ta>27CTAM`^8Pz@QIuyj6z~ zc%Qj6#}*Qlfk$sI=jXh?TI$gT5rjcx+I}zk$EA@;1A;CH6g2RoHI{N@Q@+E zdBA7Zij&!Q`|VE5p$zqa02H+M(BpO~)XW?e0CfU3lii%pE99JQia9|N95TY(Z^z*g zgyP%-6tu40g24D>?9g^ALMvEYAt1f%wNiKa|G_k_DQYV|BP&?DBge73y#Y4Emt|MOCTV zDw>z)_$nF_R9Z#z;E+EzUUt7#TSeoDAavtp?`J+EFm$}k06`aoLM->xT1E3%-Rd03 zgMKu~E3TqRehUo=LF)?%VkN7z_4Qyuoiu%|RWzCP=qef#)mlaK@sQIXNMOaw4^O3m z5ttwidW>q-%O@PVPUvzNTSfDJ48}mkITWjCf$!=Sk$S63$cqOH;|4tnohDdxDD6>n zs2~n1jZRW=b%|x#;(|QPwOa@B9jiFk4i&^fBhMCreD2alo&keC80or&5}&$sQptgW zHfVe6t-hd?`RYs19*LC-KewgxIszJb4n_wR7eQR6&AJLG1LtCE6@H#eor?j3KFD#! zMG)jTwFu&VueJ!n5s}BBQ&(*f#PO+B70?BfgM7`vFVdl_5#Z&>5D-LZZ@qxE!9(`| zc=TB1aJdg=COz_sOCb>n79CdT74mel*z?`OrBkGSHVrz2{NJt<`uymmOi{u6^uQ=hD0|8f|#f&uamG_pFKK*vn^=Aewzvk~DA3Jm|3W}x@u znDoCGBwe8Z*VvnOgD<)4VfHpSz&7>{EHcdA8V1P58f$TGbC@+03UL32wle*T$_TS` z#;Mv!F#-wruV{R_|7X^mPiR{gqsTas9HH>Q!1AY>WxrPUQ!s|V8ssh(h@dP~HaRm%HUc(b9#p>Xd@G!9Ay| z9AgbpL3}45UQV7gG_NeKXUZAS_cC{|puQWY-c8N~cTTH!nA_lj{3jrP)O^3E*KeB# z6M7_-3Y%usXX8b?x}b~jXhjEhn;)iC1Uy?da1NJGv2TM)y+9Ic-K0ufDg@ zR{+7_)b@D4=p(&q+go!snLc5*&Y6UavI$HOUtz@RVkSnH(Z!2rP9uTjXOw2Q-^~}> z(NuL_s4?G+?%&6sCbJoJE~bn9j1E@M`99=-PuDmH`q5-Pr{~|CiI1Ry!XG=Zq(bU| zZRn+KW}cqb*8v`>4m41fVLSWD%dnkKb(F%@lW}|YT_ZMfo}hH;EhR?_rt9h0JH#Wx9^-+w195NGP;i_^57dv#32k_zFig9{ z`O~OwVy>g&DHB}zy_V~Id6%!aLXs_$&Noa|F~{_unf@i!2vz=l6yE) z+%sq6;Et#aOGg4#2O^v)LDvW1lLwU}T)+j5G~Lw~h1YcB`lg*W;;eJe9byje2-A5i z(DfG%C+cC5AyTY0yR7SVJ*?1uAjYT(wJr$qBCi}{Bo!1M@JjWWH|N47R`$w(3mR!< zq0cMTccy^U% zJjw~pzdE4VbRR^xWu2W_WyNtu=%tmW-kP+YJmW)@N0sGi0;oCApWf4j2#J}6%Kd4< z1bqkk({$AdH&*5Tw8n=Pf2MCaqZ_}MOWM1ymVGA+x*)?gcf2-~%=GnfK$G8F@Y1Ud z0Q0n}lHNi;3v|)01n1@67gUp3)$7?C-~dwH76A)pug88qSxsMzX-%32X`?UHUw&); ze9^2LT4Zd-m(7CT(^=4C&t&_r2Y>X(f295of`939I_iPgS@#;#BckF0nCb8UkxvM< z-V|xy$7FF<&;?VZhiIV83l%$hF+q3ZM~~@GU(kd_E%nJ@O@Nr#>uY>p-31dt<(g{P(!MR5sIVX?&E zA*J6k+x;|{wyA0v5J1kyy#=+W^IU6Mn4`JX=J~WaYT@DdQj4-d=FF8b^xEYR2SmNDF6LX1Jydktjqcn3j>paSVvlo% zWjK~@0r)=&_=6&7)qTv&QCEb9hln>)Qp0Cjdpfr$6b{yF3WE%B_DJzLAm;=AHRPxcLYJJj7Bf*jvlmC(CuD-O57W|YotheNX4-nDod;Qvp~|1GbGVG^GfuzdM3fkgjp`g`=yoF(rt6A9Zmkw zb{5(lY5w}a{#9*}R333jb3?Rwl9g@)Ri^3|VKlg|WA?-@JU z*~50Dcbad1YbF!vuk_5Mm`dqc{o;|S!}QG5{iE8_9uPs+j}FM9mj!neuvpE=ZeuzP zIl@2%X@@NKY$IRtIg!N-5oEn3E!J0t+5MLTrji^GW4lw`*Ih!G(|7gkR=5LR6qc3&mgibgHegBNn8AI}H62*ow68u58zal^D^WSBvUH-!! zf5w>_2GwH#-rbK{V6vt;Z2rnXH49km-V%s(Ppk1;Z1CF{X1rw6T+qVS=Edlf*=$3b zaL5(IqUc#f;!$5<21Sx&>(}<_WZPIzId2!dlUZ@?b`z~0oXmdMZ^`edv!oPtgIul!uB8jpMGia zT5Gp_OD|99Z=BZSajWD2EClIwO$Tb{+~-izGzpWFcJ zi}gt%*pAl$m$a;UYA_i6_MAf~H?3oY)LbV}FR;mR`bnJtgb@1EOeY9bW>0mYxH6gz zR9Z84kt@;Oml#fXoJ1mHgTzB2+?}-c*BVX|CmmC+wEb%ST-}Mp8oiT9b4-xd*RP}Z zH)vfgHnghVuj5n@*H@(Ug?S@cZhx$9H^u~MeVubPv%s6<>YZ~#0Wp06gi>z2V&uB2 z*Uo?q68i?p`XlP2@3^??gJh2fvg}GA;v;L$f{Sr`4wMgTzSy0)eTAqm2u;nyR4>GU z4c6)_ME%in{#?u`R4+u22eSIYgiaot>Zl$j7!#!ROK9pVWj+5oFL7DKQPFc5<=L^eT zKsioWM|MybjrOTiB$w4sq^l!?F1y_yUeMVqTrbR?HagB$e9bUfeiSuco}D_fgLVp6 z3r}PxzG5f_KPWe~*i+J(Ii~15E?7xSxI0x??D4B!cDr(vCNM!!B6@a9J-(!qM9+>2 zn(SdCS?A0^pLIgByY5HXNKYuZwTXmLidIQS8TFJ_+XWs+meqe!45 z5gjQ>uw-+RS`Q-VNwm8vS#+Fml6IG|L0KYhtF*Bh{*$zCJ{ffNSj?@Z_zr$Di#awZ z6XR0P$1$*qS}uFJ;YgnkNTKs*$-3x1@mDE)V`gu)8>-bOhF-CkCT3T+PT`Bq-gr4w ztYd}J3=hCMg)j8v9spA46!QQviw5f=+3QS0t*IF^6ei~aPNtACLSauFa%&ZSA)hP` zIW{OuwErrYhLaR0=^=Gg(3I%ix`cd|I(w?_SYOlm?;if>Y2((D7mIencfp^mjRP61 z)#F=kp5>+ZmSa1hj4kJ!Tp447GJE7@X=hUq)6@`?J6HBLrDL4S&_Ihl{35jkiyzs0 zaE_6}7C^+TC9EQ*uKf}_%iaBOj3&VcJ0<*F%_qLR-Y;W=vP5K1XX3sEc{^`q?Nr{F;44*dqBgCWZ}u)Rah?@flqYEZ(BauPFxb zfDBMTjoq{+tzp(4#^((^Osg7j5lymNrNg#~FhQH0S4n8ww)+ij`3S{jk8QKXF)FC* zx7>EuZerrKHap*KGpM&>Jv8nSxOw&!WJzlU@K9k#Aqf@mM898=-EL-!0Sh$Q zEhiC85l8f;W%mxVq(#V}kbAvvT>H^-@|0v__Fw4EZmkR3af%vrjSY7cAnB8YQ z#(<0s8V{DSUuArWCn;l}3<}W-n>zW>{3pB-D8Cg>#eN12_SYJk!d{H5oo$jJFl0Q? z%y7bn$43UY9Vdp|sHlE>h042N~wpz_~W@=DPx1F;3Ro)IqDWJxV@VQ+g zQNlM*_K4?@c_KW}#bY?KV6Od(2cq&Ao??L}yZtR{D;5xZV`Z=FW*UnTL0MlZ`f-%gIg<{oPO^hX$^@K9_n^V@&IB)5T;fZ{GOrP)Z33=Bqw4&ACcr{_Rjg ziv=E5X5oIR!DYsGM7`zZ#$HR-jOqUA-B?e?@C$VRVPMvxz{uw{Pr-7&-O_<|&icOw zvN|v@-E>Tk>DV0AgvdogpAI79c;LGe@Wn5O$#{-lBk}47&JGj2HzaRZ<3B0Mrhx<7 zZOKOKjkGCCR*TO|7(2*5*2qrBQdSEI*1&`4cbU;553+dR3raHFUs_a>d>3ipubbv+ zLz59R5ygxA)x$(CO{Du`F}a{RNq6%Ky5l1qg93{wJNuKj2ior)9A9=J9{66>^}_z% zN-z2AqpO3D1P*4o=K;xJ%NZ!JyyoSE8vkZP55eokignpP8<-=G2+kX7$HjEHruPFk z>OaIsZ&(~l2oN1P@fVH=!gr!S)6>*+*PNQ*moH~z%;W$u&CcN=<$Zj}l&ZNm^>SEL zO~zpgfcB`73=nkloVID~MzklF&c-)%v-X&t=$iBA>@$MGb~jTiZd=ojOkjfZ2j+Km zy7;nr&I&%mtz%Sx0>hse28sTchy6H)u3&)tszIhL6xLo$enuxaM&O}==kEDtq90D* zj=r#eQoWjHF0V(-m|f_gjDz$bgZ}mI8;_py9t5I{sg({Z%@62)0d$RJ(1uhJ0B8t! zw^Qvb&|6D#>Z!AQ$`AnqT1F2 zLdLRB2i7aXU_-)t-B(V+V!otd;;dP0yE32V~(tG%H%xAJGvLmbK&KC4&OPD;-0ajf_E> z2x^Xl-`Dj+kELDn>y&zIg>&pl5`~4FT<QQZBKRmyqinig$NM!EE5DgA zV}N~_7QkS?;ae@%;p6JBA5P3O2B<|2vG} z_wF+qfmBXo&`{uc(|k*N>%VI$HOq5>H+hKQyXxh5OS4{7^rzEM6H$f^0zawqb`Ai?RE&bnItR7ha(OXvIjyq4uO6gd1C zK!Ye6e6i{|JO)@W@c1=!L#=#dQ{nI$>H&i9y5|w<=kU$FjQ(H39XdR)`M$6bZZ|x_ zDI_rX?ar1Su940?yxjpBm~MNPQ@h`1&Ds89K}#HbUL<3|IAJ~k3f^micRkrYWxkj( z0_$PaaNzQ5)>b}~J3J<7C~){5ueLu_^>_~ue7?u4pKE%2hX=NsUTLKQZpN4=QD8nI z82uXXw4GP10YC$j=ZWLTUq2d6_PfhEp4h>G%gdGiaXOtcs=@Wzp@GTsNB!G+)6xMl zMm9JC`+&WCe5_i5uN$#m?VgJpo2?mqe?(8f>Shq>MRD~g77e-V@=F918GNPtEgWz3 z_>TjW!byT3mJ##SYBB&08E?Rnf#CV-oG-d(tm^`-zgRRf1f+|D9yZ&_S2wEJ z0pO6~Vn<*H7iRoAJ2ZBr(IMm=*f31$D!8vCV`~Ty`%9$@l8}cg`dGlg3 zSzoHj&&Mt8;ijn~+D!R~raWa!L3>Dq28W9G zdQ?y`(@v?0coimN6M(}!B&B1>(L;Mk)P@nU=uuNo#{fO=xV(g=Nqthlq_52e4Z%-gSR*Xdt@AewxiM8ZkSXF-7Gd0xF9K zvYRfY(m~s>B77M$qz)zE>mWhN^A}lSD$1W&WV#Mz+snz5hW0}S*31}f0zBIDBsUS?8<-p6b+0RPj`VTw&FIU=559hwy6YmNVfC?0G4+8X zn|J-sJPE<|78(5uAF59QyVv4F|0_>`YI7-&Z|FwYi?JH%vk`s9(KjErPfbV!+q~gJ zaB1}17Sof_2lT-X=uzkp@xK3^C&C` zAnF}IQ=z5Q_C98&j9nN$VuqPCMXsD?%9lh=AV*O^&U=1dLhI1HAXPMGpNuYc79U&uS z_iq{Pxz{{oX!4mL?nfEoq*rBJTIi$ZDpNF&m1a7cL9&x2QN`_+?G z`)sB5iu2l^aha75*=H8U0YT)_yEW~Mo>N?=uEyhs_s#Yrnlq<=l~-$JxpaqT)pY+5 zC4dx))9I9vO;K5au|qs4#!^5IHL%^sLO9hdbCCdV?X%jl4)l;Bj|HNrW_8~SQPg1} zXIs-E6CcxO)vONnkSd=BvZxX10EDbHt#gKNRb@3I9p)iX9SJ1$6(6PEG~e&#z_@bp zc`Ojs=i)I%m0cVZkn>hgu>~uF8B;?(+@TU<3xw2~b!9F5M{Mly2X$GkSqFSr65E#o zEA@Gj61UsahD{!|D|?d10#QNHeQT@!NF6m?@s)}iMJMqgBxpcfLJAa9IyQ5BpXfk| z1q6^1)Gj||BnH)}T@eb%p|-xuiE`>NEpI-u+WHPM>dr9^2uk}571e&jUAU^xSbPYf z0d$uQW|?4-Eo%VXf%V&jEwrUYs6_+jwN*uEbXel;q$N}`I?BQ;a>inT57=)F#{e-u zG2gcBlX>&qWJ4E5sy~gW@Ww0ZRqW_?06M>!6yQI!z zySe!2mmlF|m_YV~Ww9MlNYkA!QDKw~3T-%)xuTUB+5|M;h`V94YrMnjv7E;NHHi{c z?a9k4(I{KL!oMf)Q`;e?I^VJ9!D{+koDB-!6uxU}h59Buh?!kKGs?4LfRa(alJVB; zF|$_VZOg1;9d*hAMkuApTNRUCE<2migsnPa9o6_Bl{HE(sIwiqh&ufmuaV8omo=}< zvYf7{%6yCnx@?CbqDxgFBa5|5*&{m#*{{l@fhOBCcK}^Uc8SOH^Kr{pO~;jsG9ZJ# zew&#K?oMtqO9M@R7WMvz=K8olW6Z}YmmcL$VVzdFWQKA(>~!%)ZGGxm z_TX8t?8#aO7z+;(66lewI8Ul?t>f$bb$UKg8ffab(RL#C@twj(nk1%YJNk68wIw$C zZaZ%GJDP1~^*DQSOP85Fm*Q2$1O?R4TAJ(bvZR6YWKW*t2+`=!;E&9hhKM<`r?YZY zSbXTPs~`4DuVl2FH!1V>XI0K+9{)e{ITOS7yc*e}*H&p39|12DcwsT#EUYrf!?f(`NP$4ZnD) zye8Z1aSEuh^PtvyZPIv5$=F+;XO0dYD(Vnm zL@}5oxdKMcc@(obrvx+8hi3xHqgaR!9nlhqY;mks0%Fsn>9^`CK(BmJ^JW$X^fK+2 zH1)hNhZ{CD$weCggK&{M!DR`$qB)8Y#`>i$=l)OC1!LpgeA&e0o-2TiIrAgs2AmLV z<_`M>(|!Xx)yhYQlhbJR=^*px8FoEi?6;Rup}FI%BaO-lA=S)`^;^_zlVnvmcg^}p zjg|@GewATIyN8q3CFr`L@y9>^In$Xt4jiOYErx&;lK(tkG953X$*FJyNA5JnFwH(I zME}nW(R4m*9MnsH4EUV_sUHiXybx~YDEqxv0W_OU%UAnyr*@Ataz_SG}Bl81+MnwL`pn&#`nk)_t+pZr^xkZk=-08vZYT4nK`YL z{*F2;;eNamwNjiAQgfmz`*Pf_7JU41qNo~Sh3K5Fpn4pEHmSz?RwwET3Py-!{eb(w z{VLLJowehKzkBqUMX1t#KtB`2{nT%t9?h5QMXXy*`hNR4mzTR1o2v7NxFC?VLwz58 z`S~ZGF$0#iLkGzq@jBh!t#6wA>cJ-ue>Iw{*Ayn1l>3JpaA4?h2mZnUL3c;|sO;<+=wPQ;;wj1#JWiPVP{ANn@2gU3$T4{AWe}0z?psdZ(WvW^`p$!Qg>RI1KIXlf_qNObZCQyWE)S*A*=T z>RXvu9{;|`q#PIIHv{tT_r%S3KQHAqkf0Rdn{?^lH*L%363fCjg9Wt+a*Me*_+J*} zG#sde$I`e++*VuWu?7!huk%vWKaQvL48wRi`*T*7856X?iUb}340=&vC>6~eGupBW zV*x=YOOY;_XJmz?sNg^)s>kxhW=_*SeDbfXdN@c>iuOZY4ZB@WraZcqwI3ZONQFsP zt+?I3%%mDFLDf=Uv0~|II8cdZ%Dx}P*vgtIAc9bo9bNVK{6%n!Wm(yEm>?Bpr#7v# zES8m>h69zT4(c~`-6^9hs}2qllp?llnyEY=Ulv;|V3IDlnz@ut1A;CvXk<2|)Swm; zl)|7}dhutpqpfgvk*6KRE0^*cc) zx{2!7Q*;wKF35$SQli@3LQqZrK>UCP$9dbUWgm!~5&2$_v8AX3jA)ACL(2Qzmk}vZ6J?x;>_898aU78J zUiY<-q_&pEyeDJ(U5DAP$ftmyd)>!I&`P;b%9S&A;B|OWF#$Y;e9(QUgnYHysx2DU zbsBQTvUac$J!uxm5(UOTplL8V7bor*C@ruA1qA)5%TQ=1C1~63H)28~V{>?i zdeBTBNtP%&l|oZ2PbOjxyRImY1fqI9%C8H4JgVzaJ_}@t=*^4U6yA8(hJIBVy?cou z?w!sLly}+cXV!dT6)@vQrVcUUSy2Lr5wXdpO~r!J*c5^97qUo1>`Fp>_KVNk#TIM!;N@L4-JHg@EH3-H7u-KSQ?3v zBoH;~auu=Gd__kn=6Z|XbV7^Nd>ogt&!9s;Y_pIIB7fY$D3Pi-Kc_e1Uif9Ie6rzA zmT~c62OQDY$8(IdNXPpm(ku_8iAE-xo50~p8<{iTxd}gyz|Et@_?!NB2bb^w=QtXR&rV$e`<*`o_#StkZ!fyJ~4J zNc^}%k-oB^WBHzUx^9y%^Q=lw!pKbVL29)7oBVVej+g6ne-AMpFE>%|Pbk-8gxqK+ zIGWc~{jbvrK1lgrfAvRy{735lpxg@vbU0HN`&KXFV_NE4+IB)S=+kyZqdPI`T^-}V z9A4Bq{$q+8qP;GB?}t=U_?`7hzJEEoeR@duJO$FC_EtNaY|a-# z<|lHL2rZ=kv}+K1rJhs2jn&AED<4wOy^%y{)x5`vrHxe5urEcd<%QTkOJ(2B;dkwP z6;!w+Z_A@RC*Og!!L#?**ciQhm`l{X8+mf({{g_eX_aOtCu6G9aygyFX)*xeZMg`T+R}J1vRxN zivfaeLlC{iO8Yw1epA}-v5-gCayHe*M1-gyz6s(-^NSVjGT$_#Guq|BnvbyA8CDsuMGw{}B&3J;7oLq^r8F>lK`4w2;3Xkfb)XZx7ZHv)^Q9BM@5@@|@y=QJm9AEfPa8?o-Q&0JhRQe<5NhkW|J z^R1aUSvL(|5EK3Wf(_AP&ov4~Bhfz7w2Ril3A*Z za6Npre8ut^IPhIpbwZ6QzWSXyA#XkZh03S#u&JOy#uQxQbb!7MD2sy5AI30?cRHZ6dH&0cpr z|GZH*nyT4MTJt`iU(f_2^N5^_9=aZZA&g;y`QCg@PrK4w{&w`$!>7Oc#Qu3aK5sY6 z$xd`UbB@qCJku?4e@(zc$opK#H_h%@yLqDComJxKiu&ndFOC-HYtzR!D zYi^6*Wi&83ws7DO@m5>}U93T6GH%aVjmdcNs)OsXLx&C-Z*<@JwlE2~DZZ&>3SdJ* zqBypDiXmhRW{6tF;lLr{?UWsi2w5OG3spI80UZh-Qg}G~^=ZRd3?4#wIQuo~$qB<* zk^_=>ICIH^NaJ_i3d32N1fqC2bLp#xGl2|xUVmI77jb-B6xN>*93pr)bLqN(Su@WM9I1AEM4rft(NV%dWp6TAE4Q&fke-z!Z zjQMV{8W_OEm{v6QsmNsE!1RX7$gXV{+tKur9^W46bv>O?d5?HbtLeZ@)9wBm!-j-g z-)-B~=?wil_YmggS)eA1J$++N5!)V?VAQuy%Q^SXV|>Lt_Shppql5p3$FCiAzL1`g5o-X#JcBarA%d{Wa9`!fsP=JA z2?|j1+tEHOdq!i!5V zo0(d{oGoM5V?V7!1+lBuAP!^N&|1wAL3jrO-On^PzN6EY!lg6b?Eq5L!sdnu4GZe) z_yE*F^vvkF03%Au0_II51>JcVF*Eih0VPUkA(6wNG{e>N($eG$>0usqL}5-_oJRwR zJO-4Px*e-ZX(2&*7iEBwG{1iyyxE!Ywho}8#p&aMJcvgdy4aZZE3yn{EFSa{0~4e! z^drZcW=T^gk&rYr^hbe{^mH88H9{=orSuFK^g+u*slINWHhe+1wB>Q2pmj$7y1n?8 z29TSX+Q9XI7D?olqC;~X1qQv#HKn4>&}xAuQr<&z9e{$?HGN$Q>l>_~hcA zg4Q*A)&`M=c4)K55kV+@R$U`~pEi7mL204SdZ-|lK1=c8{^fkZ_ZAfTtiuH9y@j2w zu*RSSpVQ9y>2ChC3BzK>WIFIz8<+%#3|Y#iv1E0pu#_z#2whjzO1qqFZDite=0m%x z5m-=PgNbaK`RbhSvdlP{0En2CH6F-Z_XcF!&-KfXGiq{~d53myVz?l`3Yj(${grWM z%!C6WmQe)g&UnEOmIMp>j(Jhg3)&ITxEa`eiym@6gIm1cF5SU z0IQm><#cTXKhQwi5u3>pB@$SnSVIIK8eHJvX~J27jO*?D4G|-Nins77PeirW`~#~T z8T%3d7cY_&3Do>F_*|X-`&K`dyShLzZPefS7<+nnr%wRQnk1*UhY%`%9Y7^Nq8aHi z^?1W)a8{=m%($WbN1=9o2#F#v%p25#|EQ-m$^~t1#j7g}nLex?8CTN>Sx%IEoDAxI z7QnbQJXmgf+3pv!FM<UR$zR35fp@aW{}?8hFYbn9QPhJ5+>@xx@PX57OWxJtZk1T?VKj{^Wd>2k9E z8uMkWC7D$7ws#Ko9$b%mksRJsfkbbWZhUeq;sJlW7Z z11r$~Jdw>hHt74wA$^G;oN@DFfE=$3yi{WmIJDt6k3WA(m$!V~x@I=?yLvWEvB8F6 zOB;R>v=Q}M+5{QY{W2(r@B=l^r3`wXdV&}7Ql2N(oH2tKsy{kH^<%n|gjJu5m!Mda z9;wzYaD4UI%T(KuLhU<&ZU1rK?A>0Uz*RFI-3bumbv@*Prm&a5)2_Z(5}DoV^%9~~ znab95e-E9cc^S$;1!dvrLuce`+RWF`dlIxsGBjGf(MOyM+QRzF(>JC-$J8O)(J5=b z6jiVO9w3FkidVQ`K6Lh^B zL?fBHU9+;xxW+z!>kx9W}F(tOYuMiTyw znxlF+pFR=y8P|&>NxEYc8W2`9 z_^-~tX_{HX_vvNa_a89Cz4$OMG`m?YAiHhV>L7A>yryS2-(~x3*LLH#-E!fAcMmv( zyuSFuax(h*UmkpNpKe`IH^Io6E_3an?Q`eL6XN zu~6IC^%ezIt{LV9il)O~1SBY53xB5@%$o&wri{JEz)6r=P|#jQawBUY&oO;+IDi5n zLa5Tu)pT~kT%8ISYZI`t%($H%Xd!V34GC}IBPKz4 zQ>17!?i2uAT7!oT5%=&_AmZtKJC`>b^aRYs{A@GXy!Z%s{VD(s8E@k=Cd2IJjFd>m z<~jhTbue@Yi5ChjqMoc!JZy-F7m7*7o_K;4&`0#P^cRfPuzEb)uQgx6{dncio0Ybq@|yevZOENI{Nx@8cRWP7e^8CQ>1DQZbLmhkiCxB_JDr$tJnEr!cQ_~oZA8xkCQQA(7%CC ze0tsT5>Zs~z1fxE14?!9EZJ2K`;Q?E{x8KB~$%w+Sd- z10uLRv`azfngr|M{?1 z4j1HIlVa7;D4GSg!A**X2ePhZwm(kkCK&$w~|NJ(p3SWpLEtRf)qW0ZQaK?Gso zSgM5yNlP88Lj`f*SSrbr<^|7esbe`%&<16zQs}pCIB{v&da$5&D@SmvAh$zTju>E) zE*O)Q(rG}@1#ReB>|`!&Llqv#f)<8;B#ZMANoflMOptan`!?X4fd~tPgJTbTno_UaS8H)JrGW%xH?L@n(L1v{cwRAqeMp3= z1ZwL7Ge9K~4jUre77o>iBul{(x+Vtmn?tv7B*7sgRUk@6aP3}2Td*tmx)r3*7W7&W zS%($L;1#4KI;`=|l9H&6d%|uA26E;*h`ho34Q{D*cp;>ZvX&A%2< zYjG>!SHPfmb=ptm2SUGxIke$PVM9c;5W4u|OQ=x@9Wn$&3qdD4MIks~&|g{Vi<+L! zn`bl-Z@w36O&R3%gbg_L%ufe8Iwj>4s-PdION2vualh zer_;h)+uR34-$+YF6oHfj;;jSjvmmT)IB}h(Z!yYHO6#rIX%Kmm!oXyHb*`copHHa zhim$Gxik>=ZU-QRIZ><_9%me=a3T(9>KGvB&9oe4J*Fh5x0kC#gG0n?F%im37=6x+ z$68j*eg@8f+%975_j`aV8o6i3#!y(n@CgTDK3_t7`)V2Stpno%rK;r=4%Rx9%I4}o% ze(*|{gXLsKr!aVB`I}*x02K1!*-1S}Q^QUgCxRbTxPj%sYS^{TO4{F5i^ejM(G$=R z!kaoUO+0OsKS^j!hvC|#aHwq&t^FZoG9ZZg-DS)0dWH8fgii%zoWYOdz!moadMa+hnQf6AAdHV z(8Ug;v-yrZfiVvAV~z(lSIUNs?)#WNq4`P1H?WiiA{dE}HR672#T(>LPj^@mc_X&{LP;tkq_=27&-fxHvqv@LkD-DYw*OXDo=#(pq$c^SoQp=gY4y$-QgnZ8cqcXPV^ST9^#0K;^Bra z0^5k&0f+S#4-i1lPizJ3PaamWobhEC&2m_v?CrF&hs|ayS6*@^+Oq@!96EYRjEeWP zCFT=A560c9OCK3c4I2-8VBooC?XQ3O{CP9oiy57awXR5XXK>(RdHSNE3;bBUFUXSt z0}py-S_IX%`|V=CT&ZCi;~Um1i-3X`{Z5^PCVJ-Qd~sx0ztcwp(>u%kVmG%hN>bn% z{e3&v54Gxx+(+Nh-&j_2R__F&X{*IQMra`EgMLZ7$@a;Z);9Tc;eTYzUkM2rx;ie1 zdtHkAnl{jmCe!ctbMZ7qP8iNn#0dIjV4>SzIIk)L1d#EDv<8JY^)zYZ8l{{G&m41b z1_-&A5;9k7(e$P?bK;EmASGVZS)j#{Ku+K#NEy_pTE)W%4$62k7t{H*WoQD(xGRkb zv70>)E;$#O9pfVkA0m>j8or%T+f@w%guI=y2A$knQtTD2W=_ZH7@Kq~5cHuGWJ3RR zLU&y)#>!*IyGy;`=*N|DrGT3xgS^0d>=(hja4qlg@ehb-mTS@Zt}DXeL&TkUL7mgv z%q+a+?4QnY8Dj_y4+*#95-!A9@tnQn`3e*|1O$QJh@>RrRr_o*=ks&50)0RNIYDJM zDN~iER%H%ZASh8l>peG2-2zhR5RfP!N^<%F@<<>j5k0;SHWk#ZxCS30g0|;d)~WNu zYOS`1GaL|tZr$mGfB`~+dh=+$TrV2q*Wq@kTJ^`QAr1h zKko5X_e~h=|Fgb_3N{D~Lj7{Gn$Sw$mL96uHV@2S)b=pdNU;!AE7bQALgq)(j?u5w zKx#`@2#JNt^Gen{#0jxK%Mxo24hX5UQ%ZG=#|hnD?ss(5fzNiGRH$Qw&>(h3iz1v1 zt5wr`=pZrZ*s*VD((w5UI!{NNY2}@fwK{fvd=S}hM~I~3EaKGPN$kk!AaT@NdF(e+ zI-*6Vw=P@04YxT(?FlI%wLf;+?tzIcZI!H`=y8q3mlg(x>8no)Ygcu=Y24jQHxjajLN?WMt<+(=Rf<@+xr`9ECUb$)}2n&{AbZ#Chr=vr8;-ZgQOE8iHV&Ycn#Ed7Z z9QGv!)-rj>0ztuM;UHbn~`bF6BK-9<5ulNiTo4le`3wc)R z>G59138HNuPZHBGNWQv$fuHhy`SOhh$Pd;BBRRLTTaiuF`WE&<|mTnAs$J(Kel zpB;E|Ppu2*kn(nL>V~fAbu&9L(xingw zXeReb7ZGVR5WU87G;7RlDe_{EoN`NM%m)SS?G!EdmyBb<016H2@owFY&DW7$mmrN= zr<3*MjP7dL&Beut8TX(8E992I$oDOL0{Umof=*=fsgaC>vVe&)0~4fIk=l?37YXD9 zf@JBMdkH|rE6An1aj(d4HCl>j!S6;WBqB5rapTP|C*pWbk?{;1sJQVK@`}@M%9Ps9PcBI6l2P~BuszG|Ln$K>JU^OE@7L4uMuKJ+{NKTcTG_y7=e z+&xwUuIGS>!lwAiq1m$UQV#oM_#O1>_L;O0V*slfeUh8+qR3Up~}F4>ITG_e9~xmw_9-E&$wa;Adwsb z5ro|NY4}~S1T|Wm==tTWqVsDs5b@G_9#pfU*l6HDb$hj6o~b>0_v!MNMe|(k&--qF zA$yfMy)6r5N-T*A;vcqW-_brm+Q>9HlMfE}3nlEY;HBUI|?!>Uvk5LBK+ z(4OEin=~&gDGdi2&v>e36GUakvw#sQwS-ZX$^wGw73UIXv=SnidTx+A>=70ZM4kEc zeer^+$b0|_sK5U-CAVE z4ia=-vqHZ$yGCTJs9AA{AY*xp_+@F{EF|c>5}V70rL4p>9B4cf&Yx0$p{fai2(m6Z zqRsYKHHxAm073NwSHpsbReHuOhwGL`14$Qxo3Nu%6oM@th&scaFWO1frV@Zrs#bbl zQ5g}H1_V_X1@$kp`BUM2MN!bh1Yzgw<^o+oR}?QCBFH)qypVyZ$OAPRNV+INjity= zQIs%npy^^C{d?`W-a&%ymaDw>w>e!MD~;GQ4{*2|3*7(u<3IZ2KT`h(1uVn0gFTUp zV1L8UFwI^~HWzZx*HiOo6=y@&LVvWLPoFFrG2SDx4iMSvdRpGk&2!;EJ=HIlQe%R( ztMA0BrVeD0_IT_eLcoE`t9`Owl+`|k29hrRUrx4{!g@vV-{OTtbM;6bAN>^(S-cog zFw86@V&lx~&g17^p!T~1Ju7F2>$eYzymfVYzSv&Q&!t}!b>KS42p!$kPP-{Yv6ay| zNYHh@I1jsVWhH0uVnjiv3W+oxh`LUX-Wwsz*Aovj+(T{nAV5%g##;q55oLKYcp&Nm z?_B*rPnVhzDX-B*LtF_A>aMFm$Ml6UdjfBcG5wg>^|9tFTK|wtMSU!X7|B!6RV~XC z>!^C}v2LFU+m*S8!9#w$5Vffvq8udXynK--R?U~eix7p=q-6#)cp&P!81vm`-&7t_ zc$gscO!z!-!LpngJP>sqnuY8(6?JGd8c4brLHErFe<-R?1`aegUE@#xezCh8Uxp#6 z=d$&~A&J9+whK+s_P;1JIYf|owGcn&lLG0@6L3-xZJd3nnt37wQ}rL79b{@xbPlR(Kgp57FWF-CphjqORAsq3uGOZ6kfKXC^C$%wdAiv*RgdFE$=1 zC_RsKeGR{@FY`zT8KH9>fqHZf5_F!cgq5w#Rd{pn69o-#ArWhNyU@D{+L59NZ{T3K zZjyvHCkG+1Xp#hgpz=&tc@(_i&57sgZpd2C_Z%ehm>}%jo_?&o z$kstd>1r==5uI4#V&=qZjbE#KimtckK~#W4);tdhwxIOT9PSF3``RKj!R%QXjfMkF z=NDb2^9@(j@^_G+>sl20Z8a56U(})i5L8_`g%P93fIMK_YuCH=gt~>J->ud4&kxm~ zH~QsF`bD1D%DD61;pxr1?r$k{WcQ9%@tlSG5An_IPF-vUl)3 zveIN$<^IF}Gjc#IM~!~)>440PGt&;eM`n@>woH^MEi8`-|3qc#p+m=yTyB`Hx|HMa z`PqyMB^+vxjRFp6ddqzsXxeY-%30=D84uh!xC3GgI8?mtJ_}T+@sup0jMqpU-~kH&*eZ@nEj)X05$Kpj4<0!H-kCLWkGUIcN7J*Hv!(2}UhDsAX5m1=Sa4i#70 z?dY@l=5v}Ge=(Y`=uioZAb)lEY#;%ctOr2gxXL)TW?A~puqYo!ThnyN(93`fa7spKlu8KvcJtV}Yo*{agi3PV0L- zyl31l<^vu!lV->h6TJ3VU5sXcnEq(AX{hJITE6Ph$WTB|e>5U7RQZ{n>e0w@K+sS8 zf(|@~64N9IO=GHA2Bs_HVox9WunTc2$m=gYn)ndc3RW*ZLjgJc^(?rUvbt+)28ijm z&9eHeOi}f~=vW{su+eh%$xqZnig7^DJwI}&n8XrO=Y=^@&cOaqe=Q(@ln)L`p*Lfu+YP^u zHsh*AA2u2rr6TY^*oQtsU?UPmmrjJvlyOhAk9$~|PXuZG#Yb`ew8f_gAf>T63m$^Kg!z$7X;o=qjj27&_nnU-6zs6=r|oKxt>LC zOhy1iI}-k)hVdOD2(PlAr}ZNh9#2@EvX7!94y z-HLHt&(@K{S+aN_yCulhG!?R^6)R@Lp4I0ZLWc>`D~$AF(Vj87jM*IkgqGB3AmYvu zu8tHr2ftJAHAs4>+>~BOnyFd1@s2-I*>lkBuqAy^4QeIM6WJ-+&qSsme=G(Cz z+uI%yE54o+MThe!fkA&)($oAA`eTf}=csNLyN?TUUL#4OoG~t{kroeR*JV!6=jYss zde+6WvZw)j=)^pAIUNClj<*k#^<{9Kb5Z-?5J7lTnsZB2Qlc->v#TM?pcWF8Jf@N& zOrra}g`$}1VS-e+4fO=1la`gE1q2R!A@TDSrkz^NKo>qseTWZ_==*YLj)nO-gL_!&E>IXwy1hrJdp9~P5bQ^@_DqP z>J7jY9Su>$ZNY_f1`u?-I&6a8Zc%kGa0#kq)o8NOaG>HIxh40|i_(4zSLBfn5rjN^ z1u?lOe6jUs9#d@7E&K6BF~!3~?zofe+WqvBRktE1F>s*bRXg$~LQ&PWcp&4WB0bF- ziO@x(A|DjAybMi>AVwFJp@#|5+ped%-!u>PWW{z&D_nE_+(*X!tpMVq+W-~BU2eT3 z`^}tr(BRw(OptctK_s9~X>`74@OUr=4EncVqlaFqjk*YM{Ic3eq zhKQ&Q)WRJ-R?jDgYS_R5gFbXP^=y>N2`l+xhjXYP?s`BlJ{__W5o>S{h(m%hG__wK zezQ|-Y9AQ%ci9S5nX|>N&mLKaxbQJJ-Ru|AR@QgiQ>T?OMabg4wJrrMq zK;wYm3UZ*<2zDFUU(VRU804Wt0?93V(D$Lf>+Mr2bvntgnLJ~;$*JewU2!Q$aNdn3 zpc_{wTRs5EarZ;K78cys824s0+b{WhB{{vY6sLs)*Xx2y9mSxDe!3H4Jm*bE&V*)~ zl;eW^Ex~S1RBy)Wdi%{>?74lAQQOi20%&MJN&nNzh}n$J>F%wuzN3nH*szk0!h-vT z&3~7Ot~%vr&lv-TxfX!nyBF|z8;15WWEN?+a>eG=Iw3@6Rv6EMEXZotw@y^0FgIo$Z%I(kswh&euD1d?;ie= zJiq0U{ckg3ocZ3kqQpX$7>jzejQK?Yi^htwsLR7^v1lx?-1IF*yJzrVncvyYnd3>= z%|iquvtIC!dV%%WGwFSI8*o#Sw zWkYXPvdk2)Xsl>n=%R*dbyQ=;S*Y7vEiVcSEO-3!SAFZm6H_^(^MoS^R4}u$3MNVm z%8E^s3Kp^Zu!x1Qke63{EAE6tWE`Nfp9eu(L4kwiWIvzr(ON-HG*+BN?yxCgQCM-7 z-T7bC^6kCC0?XaCK3q9^NVRwO;-NZIN+UyaD?KC3>AD*zQ$jtk;C?I0J>RM&EOoS< z@#hR(4)J@?&~PuQVY;VboLEiD>CWef05(*-9#yf96hqDs@{j`Hf<5j7MiMK78a`lQ z!TtJr)2ihrazOLnDV09m@U8+BKW>mSFJ&=|2lfGj{+6V-7ag!{=ghbFF#{8%cLGwH zorvT($K1WV9W1DCN@{as0?TgBG*BO{g#_hYNvYj4lHDBF?&I}wL4Hk=%lXHgQF0%t z!UI|0OzI*OIVV}_Ouz(bP@*cqj;~XdmZ*gU<*RF5J4cUH9aZj^_V7ywnQ6t{VJ~}-3S?90^ zsm0N+TGRv!>enK<)`FSIbC#ErCXWROZftuGW#g zhnXOyYm3)v3oLJH%Sby+kY4$I-|U;wKkEObDa#$7&&%jB8vxy|hghI_)&J>yFBXF` zh8PJJ4F!@{d=jd}%sn#}YZ4p^2^2R4#dy`Khbb9T#_V0134kDEhEq$#jB2>yG!#gf z;nsVeo#BR4NT6VbqaTn@f0}E!;XFVPGROWtxcy!pZkd#i=IZU@e@s-`jOoIFFhm5U&7q$_)~z8qlz52O?ti#n<=RTdu7-d?VF3A+4*9t{a>e5DUmjlI2*C{u@PFv=!-G_RF#w*QpSsG? zXY=XN!9K`hMh6Ig<0*|WCP6Ku7!u@H-)#nfk zOs{%OAxp+)qDXcO4j8U@4BKY15gY9?u0)GaSRiotx!BS=Dfg~nxiC0jP~HnG((Tc# zY8>aiJ_^uPz4rc{*SzEEHG=^@mBD&LJNQQ5(tk(lFDwHYn+pJ7TL_5;BC3Ysr;iy^ z#)>!);!GdA_TtUWVya&YSCjYm-JkGpj5gzbNFU8m_roK{H@DNvW=5B=(f{rjB!zBc zn>KtACZqptP&9D@5QI16@8RGwqbt?JXYkT=YPEz}w~$Wbf$p^+cj{-_n9Ue7CinU> z2uP4#lcY5H$M`ZTNDrSv1J(5{?RS{&MsyX+x?L2C?8&7E3f`+Wd6V$boca)E(?i3DrX)d z7+*JO+s$_LDV>dYq+5$Nc8PJuierc6wc-hA2zaymhzU@WmrokrXUVuOyhH1g0Pq|U z%L(5i?aUI9T9mODr~~UWglNIu>b_zUqK=>O>PQFIC&Hm0vV?(Sfw`I` zEH)&(-AQMb@T!m>ZZdAv?*RL3;o(Edz3$7;%xL8iYH6hD$QWXGctS}69zwjT`nif< zeKJaFNfaC+JQw{3-8bk{QR1R;bjY~6y=>^dhtVVY&v|6@nA6S~1XBhf8knvyrr?s- zoL*&$h~4M<+V*nMJRh0=rSn_#1Rx!klY0?zx_KJMW-9@S%-!%wRaD-!PsEKfIqhql zvBLx1O`nc7^^Ujgelz8pJ#)HxaXt?agtr*setQ{X%xTdRj2>;R*L zYX59iLJu%XXiD(1ZJ)4qVR#NbKoI_5yHJlT(78hT51#?+sprYJ**F?V?roR5^=$O$ z!Q+RI)XD$Ni1vLE9o=n4|0CZ(%IS@1JW~%3K|{n9B|=S5D;cB7UfcoDlUtli2Y}<{ zXdt?dbef3n8eP$B+|eay#fDq}1l?6eH*2TM<7XU_WCjjY+=R{Lg5SDVWI~MwqIX%I z)K9c`Y)rAf9na6lE4rIp+#ZqBNl9ihfe$e^m>Bhv6y0UTCvS7YT$0`)f{>e8<(hd< zk(o6bh`8%4+6%EoDQ6-gnJohcDxRm{6jo85*g34*thBbY{2vW68Hb7h6jnioiX3t` zQAw7QIiD&naubIL!n+Wt=n9|Y(r941 z#+imqJtnCP9Jp=>u7T}fn#}@&@3kl&#cF2Dj6Jv($5aJFZ~w_Qy$Tbo!c%7SR9%p+#f0Hv{O4?I_fk)&jG8Qk&mBj*OqfC9O-`4m8b6udZx@802ee$-se2)K+zrf51dTlFZ_P?Iy1+ z%gK{L7h77CNR)MmU=-~my^Qgcc}z~{F_}A!2Bup)Z|XPo!ZPoF=gbrJ(iuo_3VSNf zb6R*}In3!w^-^j?Fy0MwseTW0nz3^^U5v;G&#mYcs6@*xkFz=R8@-uTfXM5eFt7A; znAM!|z#&qeQ{lC$`_9U=$ZItk@+fSoev^Asi);!&@ClDqKdTm<<*vwM9U>SbIjrh6 ziqQ8OQA6y{ zx{D?ly_ADI*}CWv zVbaGea}r&a2fE&8Ia4dZ!d~P-VqBT=_$vd=GMAx&sy7*cS(nx;1(C65&SbA{t8H1u z<=B-7F%}KI$)!_XM3)?E-#S65#d%<#cT@IJgW8y=jHitmWUrBY5-56)eeRW*@wc&F zXJvNEc$AW1_DW(b(3C7an>uEwI(5#Lp5V#Vg^2C90;kXg9_adj+1o2atk1;^mhsdf zgY7LwNd#qKl(H7yss+R`UE$NvoGo*&I#DW0164_TX;qu?WJ;H-(>*&(S5McK70M`ZBuJ}55_44zHpzI#2GG0yGqQB$E zhK%Qr8D4J{bPUjvjG|_hB--3mjaGsOx~^`&r*n7BFGru!dx(*ZNjcqEi(m{A!hz}v zqf#3+Se4EhyC<16TAXOxG<>f|5s^lV6YUytilvB1qk)K*l70n**{-OR3>>I#qm=HO zwV-*s8l6q1Pek`MXKp7}S|KWk@5YG9DTBL*bCzBYQ3Ds`uSLkiV45>xKETY^^J2!P zlaNbs61IY|Eh_T+ZY;l4iRe1J$;Acju$2vN&iLR^)+K(1m?`ZWrN>oTKG>}%ro)Gr zchZ(QSJ#zEEjb%#^97v%t!4RpK?ZIlC|-pAMC1O1HBSY4VK_(;x( z^njZxNrC}_Vy;TbPZF#gF37JtYv=|(GVsh&smS_v9`kmX*Yl~(sY8L z`!RR`CqY3Q&8xidutr`LCP-!ZQthG#823AMsUx3eD=c3Q+(S=0zbrqiQswj>Fz8=} zdwtvf|HQrddmG7>E$IH9r)`&OQI)omYO~90ySq^?mDir`ehq@4h%OMI0Z>wT=1mR= zf)p$eps`3|%{Tvnf1Lh*=SD=H$hZ-aiO9&L`hDMPmx#=B&b@Kt#*(qTYS5NnZgI$R zOTI1cGWSTqw}o<}~iqPRP!5KM$YRx$hxL zrpt3yU?Hm@3dkfLEc;9l4u@T8@5CjzjmcD=8cZJMK0 zv+4PGJ14(8PVWZvw~7>SWQh30E8=-_HC~M`x%We6Ckh22L-hq2h@lpbiX%CnsDPTs1OGpWQee< zpm=mrZxu8lLHi5G?P8;kssd?QUC~9!+yf!AnYks9gAYM=eGsCjle6auUF%|97*nA> zSg0WXk;fa0+&~EFEEKqb14Dvr^^C^i)oOf|oX+^-`4` z3EDfUtA}bmtqOHU7}7Da+{?j0^}wQ{BOJw`+Me+YS*)7FXCQ(UZcQbfE#(-VmdU-~ zlfDsd^+AFbxh#D~w)Ql6u$ay%h-iDawVNd(mlYsGgynD&A$FgL7L^rnyu(dIkly8` zEUx6Vtqu9S=`UfRflT(bsaB=VsNC1Kpg@E6Ii*qOnoQ4l>%@E-(LNW0L&{IMd$klZ zi!mi32iN$W?Z<`?bQB<4tYf9?kUdRhL`T673Ti87Z5JZ3F{9&iRtg5HUvYP*P4Q$t z6E|O9E!UfzbaGO@lbYIGNC8<^C8KwoG#X#YfCe%-(#&c`^^vBH1)>MyY8cutHJhv( zz2)k1Jm05(H6~|#tQpeYXFzHko&DPa2KVQFZn+g_JrvOBR)usX9(2x@mS2qb&U}c9 zNCgAr9}17p*5mnN%Xj7m+%4fc9Y7BH)$=h+ZPDlg$VOjJX0uw*B@ocxQJy)QPG;15 zV)!AS9h@XHTLTIVsqfEb7c-t|BE6%4fPPEqpPf;1o1M?BJQ>oZ^_XCwfhV_ieha9iOOdg6l0)|JQO|lL}V001_cJ0(^m97_$6JH zL#K1_BaotU8bkB&theVi@}y|sky(K*?U~n-6#xWu8K*0!I~5hD3I@nBPFHS+Bq~l* z9AGQe_0-#ygaNYbsjaf8GFJda_0$Y3a4642-J|7pr&jzPtrWYS?66W<2D+u!UD;8w z!c|MJ%RkL$3u~w!<#huK>J^7LSVl7+Ll)sG#B}a+CpwgT>MB_-Xwq?$(15_2 zmkIf9R;Yp@L&1GVK{|XklW)ie!y@Vw5}Y*4XL%?cQoBY6&3{WUzv~$=_#Zm_;+v&Q z9`doj$m|TYnEB;+zU7s(4rYZ4=6jCK)XrMjEac;8k-Z8Lj2}9TFFm0ZvaGC#6PRG7 znQR#jBf9BNl> z(nqF^y~C-ZF&Xy`X90Rh4ML#=J}42kngh!0r?~c z6ucjBUWYJf%p;Y12qhYrM5Z>xh~M1PjT z6n<Sb}^&%lDy>z`6iVquob!3P;l2#@WSqyg_O%KY6+UpDQ?JN9q>9h zB`7#uPm6QwlJ)FjVNEjE;b{{a3LZM1rd)P8Ti7KX(jVOA?hG01ZaKdi&-e^o9X^+! z;Jm%wF2>tN^Mnrg7@v8zIfW!q36aLLiw3F(oQgUJRFSTn6Np3F<~%|ZvzS(VrDf4v z1FggaErpWl3Q~4XE4=B-VJm3_m8d}S_?Ll#n4-ucz8tT3OB~X06u4O8f$l>uUCd5` z9gG4Jq^@%pw1q${d*q$Wiq6eILF`()kj2VrLwW)Q)&dfw_Z=5gZ{OZ65Hf%$;7k!g z={i^})p#{Kvp%0!bZ`a=V#~oIDb?&?0}`ZnxPw9oGD zHnJ2BWFK(LoD+aTzTxHB#SQ?OnPpk@LJhK|VVp%X`$7OC6 zvT#BFaD9C#?-yyb=HvBRPEcJ=>GX#)o`FNSfu#Cn_?L?d?vFJ0L3&J+q(5Ixtq(sT z^RA%dK(o6?Yw$6?6Vj{q44I&^%fbqudBPnUBUi_TaqB+2>tZB+1PacDi^ zuKtOSLoYNGe7c5W-(%eWA@dAC<5kg*4GmdcNS~uwY8t*QX~nX2$6VbRCuA`dXwKVQRV*+aDcZ!UNCsIqe`_xhKGGy@k+>b`W^ugciaK8oyyU%*vHZb}+tk00a?<9XJAAPGZ zA8=Pr{u~+#er#2|kyzC#+rG*3+5Bu}U7;1S-KMAldf=hNj)d${>sw{jNMOKV|7ort z^1j!GY(xulg~hlDfKlj&Eac%Mq)>H-$U)UW+RdkeJXvLo0YF6zq+St(G z_XcU8%Zupn&Tp-5TRnM;!9$5ZZ_Vkxdg}o0dh%8Z4EEc!_E22j(in|b2jYLnXT04A z__P5C*;T|pOgxa?_xvcxSxXr(>jjuRLWv2|yLcLk+*7^-ruqTmrQ}C^J66(JSSz~I zqE;(`2`e8$AgoLuuutI&=m7)CYpMYY>W}b(MeUSqz$6f$inv+nKEN9wr%!m7)5}w9 z^GHC)7eHR>3>8*84%d(HCZ(#w4Omcr2&sn6vS-X9EMSZUoIH~iC}@2a6T)n9&U+Iz zSPWQD-+|Imnx({Ts?6Ge!$X1LwN?V=(k&?LYo(KbxpdA22vx0W_ zZuwaa6|ykH1gV)M^aE*$Fwa&<5)LlN%_cxTG+Up}`4{{OO@M(|Ksb5MPam#MC=d$> z&!+r--|B<{v50V1w}oef2*P`)zLWw|kDt%1%oFhG3Mh6GFd+*mt=>u|ktNa@6bsnzKW=>=&TKWmDbPb+$7*7QORv?(fRKXR<4Zc?(AN8zzh z3Yd1wp!^ma$e@3ay)#lJEN@4!`}iSE*$#JWTu|R}sO>A9Lo(71R`U|)k6l7>xiNiN zv&{{dx5%*kzP>b|Ve#GUrIB*B(>)65tn4tE^^n~16>FU6)HuFgw}$f7xUklZZ28D^ zd|{1fYKUwD8T1bwXUm7?<8S$`E&+298Ir%OGhmQ^lD(3aw0vfLnw*U{{78?0X`u|P zfFIb9kYoRPdC4a!>at$~gFL6~>1d!C54^g{ULk}2N14Y=_tOr(>%@(}fElq2ub>1B zcnJ9{d(jc%L}I{{Z3eeXheXepAx^zLo1Shj=5%c;FOnK$Sm==P>r8&?4e_9urlixI z7t@R7W+u;>_TMNn-o2?K!}q&q7afGU{T{h!h_%Nx^m`O2NGWLPq`@`qwxutw;@5ozp2cjlJ~WA~0LD>%KuNyuXChSg*YDywKl_ z(cfF&Zj8~7hsKSvAS%>#YZHW{_9_`U7IR``G3kV3@-jntWc zy%7fu(`fwl<|+M$sFO6H!4MrpuOi>8?(VPb#0i~9!76yjgiIK@gofpJGXd?F z)B@4;=5)-NLndVMm`zMj8Z}(~Oe-nuyb?0BDCSH-L3-P^(`F2rHZEoqh@iV;(>cKu zGP76A#{$W4YL{kCy~(SJQyD0%G=fL|PK#AvSZi&n1doXcO50Au-PU&1?y8V?#IW;$iE^;9~G@6!IX$mrWAcNj$3P!U2 ziS@5NS_I9qah0aPf(7w|EM=rm%+~v3Iw}_gW=b1Iuu7x_q1+|ev zQgzOOu2oWqi3v(0H>W?_GfP!+vjGW0qkEVBN==2QXhY_qcNA>~401P~>6x2|XTXBk z$kec!zSr|nOO;H`Kz*b$I!}TwD_Bgd+1*N{CTK=Vf1Pa_Bl#oUm%XHOaxZwo2nQ3h;aPa#|bQ#e1DdW&V>DqJZX zxPG#EA-{h%p3crF(Kj|P8WS3AZ|I2N`P6sOc))fmKq^B6@C(G8(HQ6^#klwo^COrc z4s;TO;_-ZW(b!l2vwpth`;h~_;iU-7E4kQE@d;F%EzTPIi?hS=;%x4(*CAhR(!vm6 zOotzRmk2r_dA5GeLbFB@DLO>x^02hhhoeiHDzLfS$3M?Y>-Y zX`fX>pCK1Kr~a?qg%~c-r7ELQT|@UqG%_k^{B^M(MVS;hGT=14a7TK$N~vV_nf2rb zR5C88+)-o5K3WiT^EJlefx2H7m$dlKqTXb6`AMBs#o&Odf84D~`Pxpz-_$KEqk%Tv zGKk1bcAux)fVMkajYNl% z9WhNqryGxHg9EB|#I$%L3pO)R)f&^B2HJc%s=FMY8F5YJeKW0kK2MQ4v7X>fsLSVp zx({{SFKI&mK>QzC-nq3-2@RP(OM8gt0)lnR9lqKv9(pxiE$lU2_0}ho1!{Ev zdQC_6=pOdInh85yp7Bf{*}u-khKiq|WW7&rH=E^xk|1kn115od9ok|7==lZoY-X<; z^#5CGhDH2mLgx;g&NlSzP;B}$dyWB9E+#CC++92n_L+%b33K`)C8l!)|1LqSPx8|u zA+mE~H`PzWQ*n?QO# z^fcY;YJJ}+k(oohq&Xm{sNmA=1N07aQq2Wtus~E%3XrS%)H}RGSaS+sJP@W^)D3;l zp~Q5$6#c`=c11^6aVLeWXiGcC0*lvwA2=lF0SS{}mr=+k-ynJcTue>lY!)81Q43%% zH7)F>e)*CXBU#7LRHbIXpw4Ot6^njix)5iWC3I#B?MWRUBRcZ@te;f(j10_NVr z?APcJ@z8uv>vV4*Eiq6nb^*U8-5&unT0d{Cg{Un8Qf%1o7oaBgSPaxAAjO6NmI-wM zY{sXIy|$bnfI;n#etLp8Nwr14L3G#xJL_PoM!$;=5v(QTk4^ba z(N$YQ2RuN+@+Kt^I3(ORbHMOwCPqqPT_20U5>s^E1YqJ865B0tUBqTX%xe8`b4`cA zsaZ>V$WgV{+t{#N51NIq)I+qCMQn0P)B+pk`+$+ES%gkE%u4_%*?`cI;-0isWWKAMb)&-fQzW3jz|nJ-#Q}kuK9`* zN7EE67DE2FXQ-2v1&6 zA}D)pXl{?U%=P32ivUtQIZ{1Imo2l1s3%8e*bus&Q&h<5lgRaAc4( z>-8g(<$Qa|SDaV1-o`E#pcW+7>V7RC#oi@gGoJ88eYJVuY$~yf1x#Pld5F9k)FvRs zh5$A;(r!9mPPUxC>e$GF20d#J^)u8j^Pgf|wLSDRKn&|C>qnofowqC=tM-%~a7bVY zT0f;nwB|&5)dcOLLqs+kOWhmiFCJ_|(c z@Dm-AXMg#v-%lwCB>C$T;wM=x`I_z8>Jwvt7=Lc5f8Hf4sm0m!wI1^Mo3|U7cQN?o zoDS^wH|})(H$NY-w#Ho|7n5HutsPypkxS%aa_89H+Q`}YyZ&;g+cxZ(|JvHr6ua2^ ztCe+vYi-s`WRUw?5V4`f>D1KLf@pMzU?WRiJ=WH>K~+bV3>egGq-8uYr_(d-bX;|$ z<$;F`z4BBH_}u5j_i@%*l~_(85S{6d916(sx1V}#CvDnrGDB_cr^5nKyL@ENlHGuh z%n7qyKH4lV=%hGSYB%7clm$M@t4a0F(HPN_eaZ9pCCFnp+&5uIFhN6`~z=2z`$*w_%j+>eJA^mS>&^Hf#$ThO3q$tiutC9m4dGhk4EEbd^L z(#j6{s81_#2GjL+zF9Z6S9G>4w>{*b28pHG)FN1r|HMx&kFunuR7zpxACi)GY2fIP za$89m$+vyf0hb~x2*Z4i2CDZMm30*7zXq&Zvn@<%2niG)SQL{DU(OhC9lJtsjS+VW zXJbR|w(a7aer6?B!EGrTZ2D9xIvvxIJVWY&zZh<5AL{D5kzT#SSVQu(@S;S^Y|ICT zh);4v&{`2X*pz7q$yGrbQfx^0$3h8-yj?q4E9WplA?FH~5M(hy-jDL+(QPV;b3aYU z$RSLVhKCT9Tx5}s0MULunaUG_8=e9SnZyB5I&jec%x8d{N10!89~LK1D18at7R{IS zOac>wFQkJBA=Zd7-@C%sT54@Ewwnp^KHn5MULLu@RE2!|(uh_%@TgJ*5c8Q7b4jP* zFDH%RVthpl-|6tT<)xU-NH%;=M#wjDp(KUNv=rb&$OEsCv+X7SC>t_e5+p$)gIpDf zt&)}~iw)3H81G4kbm@asa06|*5jLwI z71R%NsO@E0Ax_@OEI>j0aSpMVKB71%_5a@8kdE<`HC;(2smFvqn8k< zxuEfpM##owZ><@SAyr?r>0%LlDL-Ko_+95A56tue#AC>WsU$NF8fTD0bL zu)VKZ1dK#9AQzJh4<#S#7x|-Z-3;iDXsjX;3K{%A)9;x4qIGKjmCiDlZLSaOVS7OL zOoQeNaVVhZC;H_~k-Yq&Ilo-4H&PaBssnoP8Zu9hLjX0O>sKu`ttDLrQ~_wNPK23Vt}59+6?RI4sRs``aT+|&>@7oo4a(s zE0BAwxpVVGXWbDW3+Q}Qmb7Zi69zu~@TpdBm%+M6!z-pEU?x(d6_(V^$~ z_^!74si2`CH(Scb97oiaEi-s1@wM?Xv36;z5-W{5+V~6^{JEYG{BDA%%@Y~?ZY4DP zag$0kJe1^@$_pS$DQj{Vx_B0lVKdYGGZqIG`yvZ}gU3 z+bgx@jT9Ria{WSCBd-Hkn_nyrX!?=%s#R9>yc@Iu-yt<#VJT^J=*Z2f^rY3i)|OKh zG!*zo3o_q`$NUXl9is&g1r!yP&0u;#OI1s*=MF9#g$^CLb!RZ1t*z?>YpXjcHZ9T4|ok6;oR#(df{T z+xm@G<*(iht1%K8{JFj5(Uy*Way?O7Z`r_ymfSdfO2=UF?pbYds-U4D*BkONx4P8k z4FexqJP|q(GaYF8xI=1)PzxP8?(3)mb3+PvS9q_$c z1LedVV8QIMdgJ@HScBCX7u=qCY&_!zU=8!w92_cm9S~=O)AciS)$~LxK4v9ftq$18 z;OFz`=~J|x0g)i?^5QLBwR!YB2I%>P4k4i+eR@uA5&v8t&?>v5<=NKSDig5vRl~ZG zSwI3+d_?7YLHLOkSG5sUE(H|v`J%kXdC66qFUseDrhm{*&MP}a74uZUdH)(Xtn@Su zl<``o`m^HPz_xP+a^syKT*yo|4+!(Qd!Jg-Vp{Mby%LBmPtzj~;zmn9aL19C~FSYA< zDV)&OXBD5rt*a(rf1<`MDiW6ky7&x5T8Q*baV1+P79Z7SC>&@g;IjhuV*_iSO0`)5 zA3Ah=s6Aywd75W41V56(;ia%w)?B~(LCT# z!RI5=2VafXX{|Wl@^fFS%}03Qp@iql;g(i^Hj;$??>gmSXFY_=CG9noYip0hf6>BGI%zl=FRqjEtMQDt2>};O>h?(D@zp@)uqmIgE3=w9Tv|#5VcA;mLSeM8%~~W?W;uFUb&3rVvt{$UB_^+C8-8-#w8T>C zD4mKDVnhAu=)6&XN;XK$hQNM*(%}iJqVPtm%-Z>2M;cs^_bXoCoO--iQeE~`m*gf2 z+9ZR(Y)aPh-)c$|xO5fqhV z*<6Y^yySVJ@!G!T_dr5U2+sc>$FD$`3ZmSYe=NH$W-gy;j5 zTrFiLSqrsT9FXJ7O#(-p(Uz=fa*d_R+Hw=8fS7DPE%S}h(g#;!+1`57Xr8XcsR5h4@p?9CZa2>l$BVN$jfX|=ERpv)CS&?D9TW6d ztJPZvbl{XkkeRaaw~_*2$G_*;u|K;Yv&tE=snw8B1+e62mL*gYQxt-z(Vl}qLq?jr zJ)c7aT|X+&HJLB1jbR~4ubd>s0X4rUP?N6uN|skszA-9fvY?zOMg?vET%gUUM(Mk( z;s=~IV}bkXkXe!*Lg*~=;db$2LA$Ttgbx`NwEfC5vqdM`PY*`Ns0lPuI~voCoeOIj zX?W&D!tpt~d;fM-tN8-5rA-fgppvpIZ9%$D1*{M~BRf-J%WY?CzH4 z=YguvEmcO5o>K$kRN0We?ru#!7AX3)t%&v$UY`uQLJGBeSF{}DYLn1~8Y@b@>-8%> z$#-5$TXC?H6Kd^JJ($gP>mV*Bbv;;5srq@K>XGHc!_nxts0Z>8Ky8K@OQm-CdD{iwh~C)vi@J zFRsOLldjl$YSnH|sI_aAcoVr&HlR*ks;5@@d7$baJ>`8YQqXdBc66~4i;GlBqJOjM zG_EZ+bLpV*%N-ie>2zZwdD==ZZbYev6ng(qtoJE>emGvumMbx0$anDKCS(_IL%lu9 z5%FUb5l8TN!5n_qGs-Ee0G9k~nR1xX2MsC@`gk~-h+~&nu&-{uEF6AV@gHTZP-puV zSn~4bE%9oAHNLt$n9_HM>14yQp_&Hx%4)>xtIIn`qxC*wf%As+KGJ(GO8fV#{|>!h z#q0h3e}~@R$LsyWe}~>bXuZBZs2%#NwEl_tHZeiR6xY`W-ARi&_j6Ci8=A>s?T$bK z4nVe0ePeRb()gI5%pQ;T<@jx1W-sa)i_X$>HJ8bJSkHL8fDHP6V%ccDB6BKJ7V=4D zcaPmm15Ng5+E`*8cjD{UlalPxBffp#xPJ^1 z=*f#Ar9~{awodY`r!_zfF&b#HXF>3=x?IcWrg~;U{5())e|N&uVy)JdIPRHMwR*lg zxg1dQiIp|8iDIX*3|WJ)J7Zb|&|!ZibfUg%p~uR;J(;s3^?XMvVuQl052hwUMNf6MIA2nriKPJ(I!T=sW7R%b zJ_{6OW$1m@Zr!SuVJ->ue5UK1`>5~~b5F?nmZDmhLjf&V)3I8fE;n*v$Eq<9|1Ca{ z9E*h>D_Ur>NY1I`_(J9qbJ_+r8wnYI&*y|v-JdFYYc+l~Pv}zdG0&nUzQ-8o!CDPg zsMT}b2A*x>va+vhD>42w;KOwq zw9u>DI0MkuD|$1f)Of1GUuB5y|nS_im!LQ+02=7Lg~Gi)5Xh1d+~B_ zJDZEMGA8oWX;xqMc8@qEiu6_v9{7Ih|6O0oN%z+*`9h|EUBJ88Ep%x4+}1K(tm)JM zu^WND0xYQq$IB*Qzj(e94>ojsX6vAP&o^QLr#d!=iwM|{mM_8vhJuH-f-5>9KcT3$ z?)5mR5(x$-ct5szC1rATO@n401pzxS^UY?c;QqwV?elr3irI=BuwZxU!S?E6MH5lf zL7|DrGdfk$j=oCuz>5wocV3NOP8(0@|Ip0)_^jcsaQu(m4v-i!19;KE_0alN_WCcc z7WQ#30g;x=XkzZ*6_@O=Tvr3H#02k0uD$a1M5iqcI1Q}G;0zSZ_grSW%aU*R3drn5 zq!JH&5Bz-770+J*C#~(G6p&!`_;)d(Zy$@PwUMNve=|@pd+c4vQmEBlK!Wu{*UQx5 z99t7;0q5rxIXOiHr^m2*x|orE;5j*#W* zoxnu6s35-Y5T8xyT6R9y9FkuOX;Vy)-gQW?rc>T+4(VPMQc6S+K72JjJzXtd$?0@D z`gygaP4=sX^NlUwNH7B_b#X2-*grMip-s0Yd$O4FY8MpqnsJ8$i4GN?7pq7%<5QLZ zf&#vb63GBHx2eCknqD-HuMfX&f756=JN`mCE($_9!2<`bJDh9Z4e*dbS}s|N2e$j1 zElK1dMb_CHAx&p4VFn4#dk*L8*~X#_sZm9g3K5Jyd9}WvIlS{mx(IIFFn0+i=kx8F z=a7Ky*&1?lIS;}Q6eC+B7TfiTQTPz^584d1Jdk@vEQgw0%#xS%ZI4L`_ztUqclw91 zgb7oNuxWeY)t0XctyLIffv{g_!+ahStAWj*f!Fnm zQXCNVb8S+tr#AGpp9NOH7i^6h<|s)4Nx#xB`y|bm7s>SXWa^$wAFu#PBkz>OX&~)K z8o(#bJ_9e{I3$g?Q;-0MjGyV(d@|NF6)kpJvN8*4dy#*4YS9c3R9s|gGMzqI%~sY2 zf?A7=(?Hti+E;Q_=DKm1{%_7Q(tu+tH6n9VK0Ks+reCz470H4=9kBun_->`)igW-Q zB7TFn*0W2xZi&7Zt>}>b#?#^BPP(WJOOM2xzCsH)0stJUBbCNgDMHBo3Q$3BuiXS1 zu(AOZ<<+Kq5c>s?c8XPf99G}~$KL_IoY0gDB7X@KSL9H|f()4}e)f348YNNFeLO*JmqnM9%Se@`9>~aLwuV{M=f59x$9uainu{F>_e2h&&muR@Ne@ zN~{KE5$oyo#`>UMomF9i^#S*W)OEJpo>~o9z|>W~i%rlX-gC#v|Mfq<^LO77|Lu_A9~z6U6tsxfA{s4@E2oJJt7#`sXd{IPAPV5aYkGiSY3z}$L~y$l!Z zcWrjJOk2CZI~LLMQgy5qZShT5%Wz?>!@iZl+`kLYHVt1S0df0gr{E1!CsYXvT z9I%qDsKhxitk2_jo8!OL!*8|3d1ddm#`Sogx5%I7cpvSj`JFQ0b3%aofeioWD)2NM zH7T%KkB@SE;Iz^KtNH>Qz*_3O=<~GJ^+cc5V(0ODoL>*W<@;a0zMNAFdfC|TA9ci> zz$JZOkV|^gb;bM3$yWT0HRk~XLg1<~Pbdk3@}KbfE?FacIbgs(GGLdICW#>Lr+{$f z(Qe9v>6p$;jEiav54!AiBXhkvry-Pw{)iLIYnj`=k67u3Aea`M0b(^BAHt0mRX8Gzjd_0{YcfuHRsuiLTBeMDWvRC|@gDM$^}up1s2{ zU~U$0Md6~cA>wCvON*e6dFssd-t}mF;oPtpFs~0#zZ5S61pNZ<77DV0DBzP7V8bOD z75ihnoq9%0%K6h=NOPGsOH7Fu7(UT?#rKruir7k>0}TnfQhT4Xqcyft=Ym6qPWE|E zTHc6F_66{eqFZC*+4MhiDo$)`Tu1;pKlg;FBggViz*kkE<^`*d0+O6sL!F45sWl83 z^iHiYpRznrwboeBkf2jMiclRJ;der8iqFG_h##X2a~`x@5wLg*fZm|6OeAy&`3c_3 z6Jn>4fE6x)43Z-7A;t+#nxgTSOVyOlfI;sBr}>msB2|Oaf`$YqrL*VkvZ$KU9dO8S zQo8-5<&CN--2)FP4-ieF&vPdFU`OMthB$YI^$tU3U43o5iwfcoH8F8E=!+w*r)WK= zjkb(8WCGpGYlDLJ9;2o0e2b~m@eKJ!kxQCEg7P7wG}9(uNft8cl1s~BbE&0=g~9bw z8?d0x0!tJH?XIQE8~3K?OKZ3u9as)3i0?CZ&(=cTZU$Ukbi)XD?02io!M>E z&iT!7Lpvug8+4;REgTdsVu2EHq?8TJe6yPk0`Fp-#sU(B29Th=5>m-qztO%O0gupji zQ-wfQQ+E_CZ6oF*(wi(=Ne0i!UR-_(xg5Wkrj0hMu;(|}>YJR9xg({hks4EYlPM*o zgSZ`On5LhYvYSl9f(x>Kl{GY;zMSmWiG#dW%O%%$adTzMNg=d2y~uaoWO~U6A+WfT z=;!Ue$_-W$#tE4L1up#PWWt*+a7_xK0sf@^gcF!I?N4w*W0B`d_o?LY5rXB0?#JW6rdINdKLkW>NU0d^ws~L;Lo9NnFbPyMia_B(X z74JaabjneTkeJg5ng+=i>|(x&M$k(Np*fZ1*-`g6Ju%-&-ZxQMY(B`#iNoyi^Qm>{ z{7uB6MF(*?`A|GfUmtS)cN6*0#|fD^35UPp`0*wZj)xK=zwnO>`5WT!%Y^PJS#0>k z#QX-5V?Hw^H-u!_Ut6u^hoz19i~2)@*6@g}7W>o5JUvx_Wy}AyTk+Mk_*k`R=uZ+Q zs37szMG{-j=_J+(O$r&;!ZVQp^F6^Ly=0Invt^!n>C$qa7XuE_2p6b&fS?JIwm&@| zZ|AsxmHDntX%-En6&5akr!7BwGJ$m#u9pll3#&;w2lOVYiH8aj9~D)THm!jY{q7+h zvQGyrB0$VRVL+P`9EUk{kox5gskB^Obinf*8t~nqj8YF9g#Pmmp=ojW+!=5wX&I3g z69j&>L!ekDx29dzxxNhO2bGcO<%8HA-rUSK*Lg)=uQzQb2>e~4H|b0Biq7I}(=Fkf z>tormY*Axw?ad14a)diHpAwRP6E1l$J@*A_!008d`Ay=7IgGoi_Yh?KSc*zOISt}L@&74Yuu^F>?0fInQLZ$lwSA-gb*3~xA%03Tusdo%Pfg~0eSYc=fia_a2O z_}L(|u&tncvfAwGBi7kgWm3MhKR(X?Y3$WIa8gZ3?rC z#r|lYCHa6Ob%VXiSs<)%cH-IPJkNb~P61dnkS1H__4svT*nHN;(Xe7yu>J@0RY2=3 z!dw9AS*K!j2$4GseUBc|4)^f|Z1E%B;Qhp!!~3Gbbyhh27xk?3Ix(;Day<4i6a5?3o!~!I!N5*LwYC8#w@aK$cF|S1j>;| zu@6&$)`q=+CN0v586QN-CaqZHF&+3mdrceruIye-;P(L&J|rH=mz)z~p(X zy35s=PNjVMoYqjtDG^ro0oSU=IMzoC$+A0EAek90{#`S|V40$W4$r<3nT!xJ zccreic*~bvZzy#!K8TbvjYUOnh_o_nKz}i+%sC^3?yOAWHJXE(!F0Wxi{spB z>zMct^;f2|u9Q?r2$^ziy;<1p)oQsyam%Yan7Dw!LQpw-XduanKlbc7ed3zSzc5{O z#a|v5#L0yox&C@JUM=iyQsCA@6VuyGV#+`SS#nLD3DKRtp3!AuC`h`q(K%8r;M;ys zQRYxVnp2$C^VHvK?Kelw8!65_E{Kz}wFQ17aa7%zw1DqaF>XtlAj}!xSeD2((e+zh z43|7UQW-kfGd$e$_P_L(53TQo-XGM&wwvvge50w%E)3zc<%I;yk+rCcuNt%Te=tG z^Hy&tB22h<@A^;Tf0(`!t$V23T*4AMrNX`IH>cAigig8iPo&{|f6CYRgjk7eQqGkr z7u3m>LB;B1c=(FDM5nWyM#c!Gy4A@1*jY?y$K9093(jBZ8Sp7NtSaY`L7%6b-B+9? zp0$;84j0q~dCxst;s(9P&zI2SaFm*6FzN&mmUBwX%N7TrT*ly~ zgAe7J23}XJm-GrtkI)iRilv0woKWj6apuwXVzQ*$_4xfKHI}%aEL`6)UBfe*bfV6n z5XDr=jhZZ6-|%`(=fS-peVPpVcGMV}QGAm%hSNdgjv7NR+0koG58X(O@o+-zjv7O6 zzPTD>l7;KjL2SD5Mrt(a(`4cLbP&G@eVVL5UpmDv+LzXHzP()ZwwI@Ir)liYIC*5y zr-z+c8)&@JozanuuDTL49mV<3PX%qB(Teec4h6GZYa847h{AN~5V&bwnh3f)qbSB)KQwQNF|X{;@$8Y$ zrkOLGOl58T*L*r?^voQwmweZT)HZYEWr8wK=3~#(QqC(nIOm#quC~nQr-C-Uz9-Ad z*$eWc3{w?&-sSGr!X|;9!WtoZH)6&28_O&%A#@gI7JBW?Wfo2beY^Z5A!g08}h zN4nlr#xtp)O&n*tx|%d5^BEdQCwVzv;0nZ%&PtaP+iiMCT1cvREH0+WNBM_@o<~c^adJ{(ZM8KdXH;9&G z=GANJ8_+qBD_YT&oTW?R<$g$3!(Y~5PmBhbBennO^3L%!H>&V8@i2i2-kvk?$KVT-^G7EcR7g&sx>;bQD(Ko-33L`v8?U<16I zUKSp5$w1cr7RYpCB5aHrt&<0W*uG#u4QJvaUsfb;qh}7N19sqY29HyNND%-f1nZ{m zO$yee5Nu`bB4hJfG*f>aSvy7p%=tH7oJCN+w#+nTRYUSC%MUYde>=N6r!DV| zoj*lAO5TOp+bs?dGNkbj6VFdJTPJ5TzBi>3S&9d;J4^}vD9mIHf2)dV0L-DIez|R2 zHM$fKba$C`e_76Gb-lG@a=(gs8WDu=GeVloUNB$&M-?)O2BQ0nNPO{2PHEu`kII88 zbOt6!@42MTp(E|eob25E2b%Kw&$BCWC`3b^iF?Jr5d>Vf1t4Dk98}nSltOE`SW_i`(0H7NrS>p-MCS7cPJ4x&R5Gz zw+9y6xVfkx)(trx@$@od8*&R0lt1})c16R*fP->8(Sjo^KiQ* zLW2j05T~UwSJWv&fgk%+xhI2&MCU23yjz625l#n|G^?9WNJmAs37s< zf$syG&lXMGwOfF6Dcq--H}Xm23O`o%chVC4sMf;2Cj!T zmspqLDY1~gXD*|G3EsOluj|idX@43@9O$rWE1!Q{(ryx z+xOe^`Rr;v<1=V~+->w^DZkEd)+#Az7?}9K9gOGJ#L@3cqbdwQzID_d9VV@Ab2wxn z@-O+glYbsx&Ay-!&33ZcQvOq74IE&Wa#yqgU8%G|9cdE3Iz1Om*{;ayr4V_{NC3YTqz!onxjsO0mms$fuLBG z=#%EaaY$T=0txuv?NQBRvVWWJXiCK^T4nf!Rcj;!0NKZDvG4Q>F@4oc+H%{fnweJ~U8$Z2g$DpS6{r0dm=p0kTGRo)_@4|xomQhg#?dJYBjBsbKDz6<=P#`fYh5W_#WpsO~ z(R@_H_McALy%x`C(Nr1@RA%cqIyvsP{b3p1I$D^ZHLJbIE`HYNYR@4-`jHVPC%sOq zzn{Zf@V%ipp*pCb{_beCt=dJD5CHr^lAKLXw--smV*L;K4Q)=x6DR<_m294iuWt?7 zF!aJXFDhWl2Jg#JsEq}d+jwf!IcoP$M#)k088akciUANNkqHN`_r|N$__`r#xtOu$ zIZpy=oNWv*zs-Q-GoQj;W`1DYO6DYIo` zy**8jgKq4%pY%?wnT3FFi7C=Q8%UXx{0vZW-=pHVV+|(*=GaR}knrGt;Nc&R_9?Hh zdJynIri6l&02Zry_I}T03iynp5qJ@0c;L#scQ(FG#;2$Jb9{U>XgEKU^Fg&5lY|4)ZEgJ}og(nu zwJKl%lZN09GywD19LuV*G26a3xs;2vS?>GI?uJOcri@7uV89R5Z}gppffh{r>Ufq& z2B^RQ>{}Z4FAVqh5n>7VFB&-2yBPD;$1!>ZhNYMOR9&wG0r2;gBdlBQLuQd}_Ywp^ zQzvZ3TjtytCkPC{z9l-*lXYXSf5dQuh92@w6%82*kl)FWlRZA*E%*+gBTWHX-~z~p z->nOufPjC?(0?*I`0{tmKLJCh^nKd|g$0(|HjC}6kTmJ{l_WAf=5kqntICz{y{{hC z=RLy8@!nUDYW1Fi%jc@od&FgU?>!zBe_+llm;u{Sdnh9QpndmK`ml69yHMArHE6_6 zGybFY;JDwFGyXK;cRV^|!~yGk7-kyz0W9$G4<^g2>(%Vy`Gye}d2?O{$48C`A)E-z11wz8uO9C)Zy*Js?^)u^6vqhi9_pJ3LAyKSeSN^h~z;Vmu z==NJ*vmy`aDCCexEH4W!2H`hgRA7-C@ip;e(TaYllFiwGKu#a(7t3T+q`8WBH zVVu7XX*e&}pk6M(fy-=ry7lE#2?Y)_7J7A-Q3?j0cZ@PR?y!UqGWp>z9RdQrS$mGV z)PFnSOQ`?^h14iQ@W)iI&cGEcSoU2B1Ftfv$b7~a-pvEShz8bjvxeI+4qfSyJ0 zVSmv1bH6vT#>TM`Y`}pl^Hrz!q{D+Z)>jG%47zubbjS{CW;C(~11NB0k=tz_@TiK7 zTnPmHti0)q2&>?+5jm zXkbFFPk$R8cC7prm+KiExbCH`milo)Ta-JkuiLz#4>-9gMKM1j*@$5L#A2kHL_4Uw z!~q-F3y3XX@Y@z258A_Ftri0jjQ1^z2kmZ~_OEg$7i=BT3jo|s0-UTN!D)M$dZJ>l zjIVgBdD#L6KU!beN8(+GxYjoX0zPV^{4@1go7OkUxY}rj)7H?<9ak17Ff7FPY*jI9(YykQD|U7d!sab(-wQ9Suw@6Hw+G3Z>2HO z9`Fx3AI zIu0IYWFrXI7ztfIXKKl_@3o|URU>qiYp}pR$+~dY! z8VVd{?TjvCKX z6<8#epQT^Rs93tJE3m+VHbnkH`yXlC$^tm94KdNcWY&{b|CsM4i?1gV3LGrXsK#3j zVud(UVBlf4*kM+|76Angv(E4H<2d58Jpp;~d3~&a-_`i0kM{ddc^5L?M-mD)m~BYg znk0;GLj;nS!Kxb-7zharX3nDSueFRNKAR{kurN>cd2v^;gOL0Tyk}j7A^S3DMid=o z#%FQjBT7QS3bWQ7{F_r{XWFbvtuxc0Iivk*$m@OUNs8+CrkicNJ zM@RjW+WMUe3oNYM`%k#LDwMl`@^SR+@5b>Q5(*rqw|d8RxyQHO3JWZzxBAD{bX>e8 z5(*q<4EK-4d3U@GkB?!XfywmQag9DxSYW}Nl^BcAeEX9Q#WJguadTD-4qVKl0c{~< zMDbB@EV001Mgh$!^7BgLqd-D|!<+*ev=7JVj&$i4`+Ugwk!}hG9$rH9DSE(TyNcfw8kj7L zXhR&UM3pQOVBlfp))Z<54gm!Yv;2pisk`{{ z2O5~nd_5FLaoJN*@%dWAfy;~m`q7$1s3i*cRH$y@A!O_*()4clST2pLV*NZ zI0GNdRAI#=bTPoDdwlUwrV%V7usSv}t z^C80nmc`=7e*^?iF)N%2kqTC@84;3Qi-FL+QGwrDm z5NycC0%Fj1$2Ju@PJr_kkvqDnP(=B|o1wd2w+avIrn8V64C@6ss#zMjw4^)T* zHXvY;FgzL3OcDRUP$3ck2a8xYs=iO4G$zbGfikbrYGgj+QNe2x3zo2My2oi1y6Gtz zm`tBJ=EQdknKfo|JK>*Z;*%Qz!G<5C%d`4?sy^g=Lw9u+fdCh!kR&gstMzQTu#N$b zD+Ln`Oo*!SdNP~Qp*Y--@TJV^eRDx`hUn+ov(~*-=MsqELUbt=dwjApW=SCT`Wfwa%)#RRS@Oi?8OZgDYFsXWR8v&84+( zEcCLuep5TwZ}NOtd)?YM>Xv1fb?9LY<;BiDG%I48?-Z;a@dW6P!glXZHJ6q^%;Dtk`l%j;1PH4vrn=j$ zgRI@+Ox8_;)omg`zfIO|!|F@~=x6HIT}}iDCY}R()^h6V(I*hW#Y?Kk=bNkhj{w1B zS#`pxYOsnB!NskzcAr$YiU9pgLw@*DbtVGLVd6uy8kn*hHF-%5`}|XJ^^y{ZIacv; zR1H>T<0;FkQQbLxNQkh?;yS6jt)lxc^SHjLdyFt7M8943WJLAIFy|zA9k!N~RF4b- zgjJmB3GXmfXCgo_JxIs&YUoGDS8rC!xwwE~%{qhuw^cJBcWBI@!H(^=3-vO_|BO1k z3{6rS5sdhRlFl?RrnpZiKmx;UaR>EeK3LJyPS$s)4#Dd!350K==Wh8NAvJ>dUf)oXc^DxWn*zh|0nf7 zE3Sa4Gx4f2#RdY!eYz@Qb~&Cm!tG6E2ExA3SqOTTTewhfrK$NP**gL!G_!xSIkRiTk!E={LL)>!LpqiFyJn)hKe zF(mB~MJ5Z0kjmr>i3|-yAAo4kr%B`F*T1!9hy%V40D+Z{0SBtPcu@V;YImH2+yat1 zKs;F%kdc;J0a`6&fCxgJtdtupuGs3W!9a88Y({qrU2o)FoegoT30*PI zYIq10VW?Q~fr08iqdK3h)|+HLTTB^SNOXGH3_K9t7K9zT9b~ngZ0M^^W4yXxWC364 z1cWxt#sZPF%=&RPy;?D{vX=SqKzPq%*~{^q@rC4+0^}{F*mZRe?6SOCu4kfl z@bOegGRupe3=uYdWRtEbayDzX`iG?LJX#YI#2*UcV^~P}ZJv07Ct$$JV%7@?%8xlE zT~eCl&_3RM?_LhA1qy1*TJe-fu!|*&-FRyaKv2r|BlCxcu5A0^fPv~Q;fx7oo#hp? zC*a;b=Ef8PuqA{gN>6cAuQCr5w4Z=>pQdDzW~)V){)q$QdS5%oO?UIH*3))AZa*>veCiW0 z8l1F~gZ?1l=lujs!UBz1Zz?dLA>kHYqO-j^$HNYvA_{3=d}eDf(7X?tgJ!3j95jb~ zRy$;-!^e}Mf#@?3bsp21w(X?-Oq42ZYNab3N5swYS1+e42?M4qeW z9;_8`!XmI(sd|Aye;=>VD&9UFu-bd(x!C073U-C`-kNdHv*o4iX$uFn78qgEkAS-YY{R44*(4;`?lNiOCwV`vxlbWrwt<1T_Gwr@ zs~i<Rvuaqd-eEG&rsw1BoDUZcLxUVbXkNWkiN z4}pdP$!&wA*B>>X*j<5u9*Cbuqk-xzP4$E&u7Dw_kKu_PhkXFxgI<4lax9v5Mi9_h z^AH$dus|30pgU^ZYfbZRj^0|V6?srn3(_fE z!3Wj_UyAShr#ZtbcHG zkAVdm?VjGKhRzioQI~bDw0n9_tSgw}+#_M2`v-6j-x(0_VaMZ^Y%>5-S%;2X>hWbs zQK>A&fokoN;eLm^JI*B%#s%*+d8kK%3m6-``{=NaRHk46jzL@ZQIFQ&^L}{LpbbDE zfZw}c)uUd*xZpHj%X)=Te(!!IU;vJQ>~{8OUW1`W1!Rijfu~VdE${*d@Va0-d*X{D z!;dT26bJ-{d+bHQvF;H#9{6FahIByQ7dU{|VcDx?tkRV*07qu0Riu1kIjZ54D1e6U zql1pMWjQM16^sM!Tr3+0E@1$UfTVc}=WxrYfCLZ-&~-YZ9$)9s@_ba+Nh5&*T_;M< z?NOgDm9@sXQC%k!3`D40J$F7cs&b_`fJa&M+HNN^sw@Bm0+a>)-5q~Mm4!wE1$t@p zgRd7G)k`z5K!Xa`tEa*#7ze!H?D5`IRE6tF7=Y^->hGPL@R|1gHlNFn)GlCLaJsOANsj~gah_Xrd~;~P-_nChNbRlsUk)Hk3E z3M2?nI)HaTn;iKSvQYu5kw5_#9k=V4MV2Ul#&GV~SSn$5lcR=nCK!mc4V`12=%R}G zSfBtJ@h{t7R>V>9uV4UvH=XL0fAz0T3D}_LPWxJTphL*YpGV(VzKROj3<@N0*q;tg ztn06$9HwAw@IkX@T^JPwu3!L;R6S@PwGMe#E-F>0I39RvBv>fL!V4V0BUKP9{n<)) zQK>>Bfdc88rW~AWO`_5@fIxtHJm^~k>Zp1wQ2-713=dD-IhiQ;Xe3aeHjDOiRAX(n z@IZ%(HkA3w%&Sp#LBRkVB{3XWUoWFdLZSd#>mD4{F@7IP7zcdRwEDbpPLVJGNBj>* z1IOo4@ed#n!0V%qb(c?+*Ch&|5&zj*NH6NLkKR4-cnWSy56RRa_Z zz%j0T+CS;;?{)1FN7T5|zyb~G!83dMFsdF%6hOm0&+6%(C>VgJm5e%M%ayY`Kc>Z||KvPFnr0xU48Oo zfd>v4-pv?B%@NO_0paiBOBA5r)95F?ymAOw(eJQuG_bu*&(YTB`RRD_f`?VWY8Hbd z!vOMI^y|fVbxPZwShxo4Q#Npc0Mw6ZtNe3S87`Kq+2;A>IvKyDjaK8+Ip+!3eh4fX zu=vM#?g0kX`gFEHpof@nNNQyOAhwPSz5es1h+29(!+6BpzU z@CL|-&92Aw0lTgMWQ1TWq=&h2cBU)~xfIZI|W^+0JiT;O$3DOVQ181`fI>W$a z4cO_YaU50?6to|U+R&g4vvjr)9WyGrXjjYGV)Mv3nc`2o_cd}XRnLmxA>u>+qEvHD zyC8W38E|R=$MFa-ph14yed)KXVF?K^W~GN${OPxPV#;#5aP=eYdB$Cb(=B+|eNU8U zV=|wSPvnN=Vd8894A?+xqNIjd_nAkc3FcQo{@N26{?qXHCJLhPXk->}B#=lej=!PN)zLAnT`axg zl~WivAdqE11P6oupRIE(%a%cgVuKI+Cj;xE@d)q~1>hf%ZOhe0bnGc`m)q5ZlK(M{ zN$kxHN2)a+8jI8U7$fLCQ zBFD^tK^(wrGd;)<@IKxl0X-VIS*ajkbPoWVG(`iES&qH-Q<@EIcKLio1;=K9K00yj z>JbeGd6ug{mjQzA19*YlNJox02iBol0jFOA!S*BIKy?ofDk>WBJnavxGsgqYOaY3A zPD5stOPY<7+wQ1UJve9&+yQP#q%6~h)sF_YcVA4eUoBT>jTf)xbYvS#Fae*P@wPM! z|45-g@d5t6UY>6}Gy%m01V&@Pf$Dp7s?C(TRLqQkR?3=%1qxu_mnZy98)C#yb1ofg z?k`{>HU*IST`=&xm;Tf`Yz`88Ye_(9cvv(PINk+EpSJ5-Yc2!k!F?1d5*V})@}NBapKg=OK#`3Oj0cq`RFjSzEBK&*Py z3lt#V%8(P+I{}}8{P-yrSUzAZu9pH5R4$J~1Cwcw%M))8XL%=8(`_a8mxF-M#~xEs zAXtG6LVp%>`%P<=Nn8doz`%pLCw_`qM&!3dL4gBhPaNsp^t@{kSN0~FkEu^9yPMYV zES?EyU^2?5M;B)gI()5lbol@bJjg6$ty}|OP9Vl*79fEEk=*OIpB?ku8yCqb5b#kS z2hIJ?Gts)R{1sOpGc2&cPou*=edgv1IOF^TBru=_adS#s3&QgW;z|BBX&xQ(z0q;; zWPrg6_~{#J%kAQh^AnK3@ZRNkwSG<){oqoxko^7Sc=No$yKRql zkF(`lDX@GWc;A=5%ogV?I0L>wT8ILHV=l&vikJccnBS9pS2G6rRcXTs0Eo)+&3MZo z%UdoGfO+qduEyG2U&(p-%S*b>T>gVG1bh(4P*jomK|y*ydwjZ}N$J_*VoirKzaz* z+w=3;YsZ^a2n|RO-phU%_Bv%Op zMdV_E=iQ8lX0-V1SU}Su-?lg;4)AYf`1}3+lcUm&pN}C$@^a9*+WF#19;9~X+j;zz5 zqV17LUJj?liRO?<;CMfa0I{WqzEZM43z$&zl|P`sVt9+T-q@%0MOu;~`8a4R%oCmi zVmTBNIE)CR^U+S|0D+EG@{ti{pn>aNRx-o>!6@k;9MHCWZdJf0F<UBeSRwk=%WBZUfPnuV@TY&>(ztla7(zh58>~pcEeZt%j$0ssI!RdE7EBJ& zO=8oP2=p(+oh+BM*mSPO{eD!C-qJs>=S#YdlJgaenRfF5Fr!*GTHSs6T0}jV-iej8 z0&>bS-BCpU%W=T)PWp=&m|O4xdvPrI6vW1+lZov`F6FUP5F7hz>XcO0oq_=S-P9+; zQUBO>O2DUC%PByy(MN-34d_5I(c1?UFT$^!La%@ptN?xtj|EGPvOy z1_S(CDgLm1)I2_nm{+q1G8`~S3!WvdW^dG@qo4UGs-y)b4DjC;7SIoUI_QocQ4p}B z%2cm0fGlb%A&Ya|+5`T*tz2y~K!E*2h281f$N_s7xo8Ce+|(O1E~m4$Sz0dbjT8gO zsW*CkI#}A;EM3|g00FjEEe}gE2UZcPB?gd1W+C^}fiwsGlOA6jSF&~*C_vY`#h&1* z-j*0Z{=U-P=QG3s-{yF5(EC74Bd$+Mxzy4Tryziv`k+5_j;kzPb}0ss)3TEXs?h2U z=HJp~r%^0)G2(wpqmydr8pT2vhiHjQ{i>mB6rjJaqJ#Fii_52+xygXB2@ew!2pnm= z&?L1rm0LPq6a;X8K-35Ba3SF9tD!js0Ot23rd3(K-2FY5AsTf>X&li~VODTuHA(NU}tvi{R#NW0SM;!;+W0i!y@>n;|UgdO77>b*Y`#YPuX_M`3|v!I-p1UgWFE=n1H zPrm%!V~$_0lsQfg!%0}EIw{PxR7UvrAcQcys79F`gJ9C@Dl z-ES;2B0VK>U>*^)~kfUA6aP}#Q%0jNrCZ@=Ab za@Uqsn?e9rl^I>h;4E=3TV}uja;muBvQIoNtyn<-SIjBVmdySE?ai=`@+~)~WPku$ z{7fURobadX6P;wxJV zB>*s0lz0YoWuwGezmnq83PdXvmBv*N(5rkf*ni6B!^-+V0svEGj6vm$p%8#7dR=`Q z$9fmml7a71NFjiGk0SZFKkPh94#Y}#u^QT0nH8|YjZoxL zgd8-m-Q~ac=(`+!9bj$>Sa0Mf0~ol(T$y1R{cNw@qq8}D3{MN3?Pd(TK#pc|4x0d_XsNRQGk%fC;-(P5mA<8M zh`{ByqLhpZjlq${6(jawuPib!fGk>jT66ih!#`@5Ywc42V2ZEK^d}3lY$S;Hfhbye ziFm+emTTpK090kW69r{$mjJ*NebvE;mVWKG+s8DM#r2l!t8yGLh~A(4<#D&aXRVGe z*ZVV3fG%QK{=M7$Gw)fJi?j>_$YLC-{wmHhVp+M|IMe_Ew)T3DPBZDYt<~ERUe`Ea z&|dG+?Wxwa#}QsnQGhNooivM*2lGt1jHDreD}Da-z&D3n(&rfnuw|sspWQjbl98e@ zY~;fZwKB{d<&hNzkl_zc?l12TEBnhbBwL)ZUdb{91T>3P34^54ss#Bu@I)jJTZira zWY4)LpT|yFrEkS^td8I$1SvVGTF`b`t?3Eu!%@af9Hmji$o0p-1jx^P|Q5+TgR-Fn+sLw8VDRxd%OL0 z(mJW69S{y~wQp%dfh!;!T>CVxlD-zW0s^?Q9vvh{l{3{a1F^7acPDkM`FudhdUQZN zRRscUS&zh@_dCO{J3IlDtVae4&_zFx402LzxqcuJfGT*ce$~=iv=bTnNR&28_GqG0Rn7MzE3^d4$74;5Ev@0L#Dg! zSY9uQnj%=J&hVi$DjPqD{Pz@F56o$wa`{96e_pOnm0z~NifhT4_o;63KK_b7a^ZZn9286)?U(|N>!=QcKC3moxC|4Ib4j4o`seTc6TR2BS zmTM<1AaDq;Kda_-`8x2#Sa>|&tf%~lo^oU16abjQ({wiH`FgWT#PRW^k1wb9G0)9$ zz#vplwyU$*iWOox)hPflMGm4{1Fq;yD+XGwUIT%nzFchQ^Gc`+!9<-dUd~p_(&t(k zz6AnMMGi{;cFM$-%Rw3fxT3UZ`)IWoO96l>N^3q_Ol{C|r3D0_irVE|T~Tf&xO^RW z!t$$e#W+m?fcd$^+&pirw^!m6_I0vd%*6cgE z8%mfcK>vuLFX!{+t7LtBNtwX9Q7zzHHJ<~|ElBW+Msa<;&Z#Qpx*r?|4EL{QlNa-; zK89THSu$fVz^W8R#$g_$&3V{)d?+q8tC7=z1m|tKUU4lipP*Bo6VJlafN0bZ%1RF) z*ly`Z1>3VDK7$=Fd86NVsRSB$-nm+?XRp!zvZ@>q9O`Aoz;FQn-M?-tUvnuTG~kL( zR%bFPb8W8H|MJBbXUhrY?CZ_*<)X1%U3~G?7f5gPj?^gM1=9D$zlN<2pYjd(Y-FOz z_f153H73(n4pF@i#2*mXexEKc=EWb-;WR|10Koh%{lsl9=fO@EI|AvkSenslT3_-5 zhUSJs1H@FxjV`A$i*VsXS|VoOBVEpiDS)YtAJSV+-I4a;+obO3glt)! zFrZP`O^Z~!O+E`z&h8Wdm?C!gkx1q29%{SaA|(30yk{=~3Ft^0Rs+G*_l(uPa{8WW zeebNMS1WOf&Uiro!5{;=ICweDIwlgNet;{C8iOv~fij}odl*Z=IvklVFB?0R^tOH$e8(ruxPYcoL-^?kFxNV9_5q`-Y@I{|-(4*&weG;V zQ#7Evqd~m(DM&Eh*AJ(RU(=e}lQs{SfJ2ovjF%IjxvWR+BWJB`WmbTK^+PQ(we@KD zSX#?UwBWd&tkF;FgV$J%3SOs<^k{;faaN8Zi3q-Xww;t}?bWIQ*L7+Xuazk#IGxDt zQOB7tWUU;z3KER2SC6gxaH@M%AcD`a&~<8M3l$_7om@8<@_Jc0*9kzdIZ-nhiKTHY zPAf-Eidn$v?A57(Q)1?F4)>fSTbVP(1m{Ctm(t8L>^v5GA?;oG0T)JVByX)WaKY`w zt$Q?J<+xRlV03Ec@M)8;Ev;NLC1Nh$6UzK7ZY%RiMDX#Nl62^xrCw*m*O*m{pbQh7 zhEL`3A;})C%c#pn0}*^iTd96+9d^3=18Wg-g|^Z{1+Qc0u-!eV*G`EDKBFv^qR}B8 z%Ei|@Rwzq`3C{cL*~NlxGHHzl-DHpGXd%WEIw6>u8Bixv7?}w2Ai;Ute4ypw3plYi zj}LI*`XGIf^Rau^5*_(nOj4!b<(M0-ghfx)nV4&P)xinc%i0pGNMc7QR0 zcnbs)7z_&zj`^S|+5!RO!9P6Vos?*N0p!7_b3&PeqVWZg58o<)cznbEMhS~EN|^!C zB`lF(fx&Rxv5GjFK_Yn=hV92s>ajs0f#Ft`DTbr354yZ21gux{CyNvdEQY7(*65nD zszmZIoD2tF*5fIOB9OpeVSr9CMh{3M_Utch0bgn5 z+nEs=jtAdyQY5~_0shUEU85 zXjAO)}@3Si(dqIR&)XN;qx zN&o@hh^mubhkq1}E)R(W1|zDT4ExqaCecx)pumCB*xPUJ?+={wkm5?i00YnMw9wL@ zfn?h)pofSSI-zOE7Mu->Y1LVC@Pbc6iIVQDLq~D4hVoGENqEI67!t?2L7|_ zbIp9Dxi=!7c;iOI3tqecr_L#-2q1pXjeWntPaj2(m1-jg-35wcPGfpK8IuB81_^a&QPQ}@@TyYV+|M>aO{^n==e~`s+(!`y5dJ(yL!%2_I zYdn_;xQqs&pn30)>jA{UUVP(J1^H>)3svRL)9C!mMp~Mv9CgONML>EB^@Ct)}u3!isKI1N+gL; z^o@fVB^;cMI->s6Y#d4$bWlrAo0FnDdb^6H1doEo>c@TRP ziPw%|B2CG%?RV}E^bbN67A-2RXgis$tF@OR{Dgx=gbj9v`eQ%nE}Yx7abhe3arH)wO4 zmQc27`b`hI?Z{<~ou#db;4tMDo3hSHL!()FJV9}>lLPw{C@Fy7^Y9&$0p+e7 ziz%*uPu zE)2Ng4Tw@race9|wQXV~;QeiRNw5x>833C~$Whzh-+C)oI~J{kB_#|0Qlx%e_?M~W z2V47Z<#CHTa7%&ZcaV|h<3i#!yQ6W*0jEMhrhI*Y@F<6?!B$zOetm&5{U2}=u|H%g zIR#ZWTKbVKg{I36lPP8)sh(tn_>i}}UZLr>=crjABtOYXZXdpU7Wo9!jP~Ynn7V@7tc{>v-4!1X6?{2Kqqvpj%bh=uz;2MeN zp^$#$q_^qaDT*ukeN3u}X2un1Ml^_hREkl)ZhW(Iuu0GNM72^gc}?Xc4}zwZqyj+p zq}|7&ZA{3i5Lm7eD+S6%>~5K42b;;^1GkA2!mwx?AV7$TX_>=sXj5u4-uGR!WzO-c1#Pb{qPCQv<3Uj7Roc+i&MVp0 znaUeR{O#|f!TF+C&KE75H{-Q%+YF z9m`iBA#0XxlHY7?tjYU)i!R&bi4Zll(Ea53#)~!bU?Xb$qO~wWLFRMrXxw+N|M1WM znNAPv(O8qyHcnN=Emwy5sY^8#;-*s#f3|j$XLjhg+veWB zR9z;nk_z!pC)4J%!44=2_JzCo?2z`O*7oQ=apXK&Q)?Jy(|HaQ%3tJ^F@=eI2WzH` zbHxKL^gqezKi~L1_Wq$cVK`UYF`@f;R+pA`*AI50NA@%`)%nsMJ6D~i=zBlxQjrr? zd1>_$3-xT8e@m0~=;r#;Y3`WN{kvS6^QOT!d*m8`&Lk#>Cw3Kk5_6M2p~IGJ8f4zF zTRIIK6T1JHOM~s516nqqgxEfy^{M9@ucI=cIU6}Q8FB)!=vR4*3fjdwd}dC-it_k! z*(~8jgc1!avMu1wix-JswxwG@K%x9uF8)*!)2CxK?f%?s@Kk7L)1Dlan}Zj-bm&=j zJWHp&M8k?-e>gOto}vbWG@Gdx7$i)Npxa z>2|opLOomN;p8CHUb@T!3T2z)e4f&kwS%>9%(GFi>EzAk_IIMjFP`Ibz;i8lxkGOj z6lu9%+JX=a3vB8~rs6^0CM5IJHmDz9p>f^FaWg{t?wc_GQh>O?Q-(K6Lho@zu zTT8=}pmEEl7x|e?oOfw%s77f8OhR8@4c%fuzX9863@vh5vyq=z&X9y0zerh&%#eh< zxh?k(YmpfO@=c`1OL~1!B!^}@I!O*g0o#|7m#fJ~i%IBdMXFT>Ee3R-E{UhOTIpga zVEYny7~LAGm75F!*;!4me37H?WpmR}V)iBt=%t&-8Yxm(O2U5eY)f|6wb+J|ve&=e zTRKfPUoa(Q$JgrW+07KNUF|70Up(K54!6}P-@t&5lCqgRby&}GelRg*Z$*QzdTgeE zU8V{><0p%Fy;Lz6(92ZW+mM(4>siheuuIGNI)o^Q^(;3S&`Zl-eJhitp5;tQ*gWGC zhSy>nO3IF3Bd^D1O3IEsC)Q&#C1sPdn-!!9Q&RS;*DEN6drZl(rX+U1T1nk8l$5=ay7MZm zJH91+MJuIp&{?Y`w3yWLmDJ2v*_!!!B`IzwiQTVPlH!JvvR9HOufsI4^Z&yY&Hqad zY`<@2DD-)--x4lpXwGfOd5UB~$HybHcd+<625Ch51$K>rJ}(yr!e}hM#vo8hEa(;6 z!^kN@tynk?_;z)Hr2V=>7>UJK7eW#=d`|4_u93HX(Yw})gX4hzkREmH4o(`)Nvqo} zdY$Q%u0#nH&8Y>;a9fiZ9@HL7wc)$YxYe9=gq~(Uy;9E;^NRGQ+lm!SA{41bH!0BW zo^&IpT$+PPymC@KTKvv zqw%oSnM@jM&vwZ3gx!p!GdY_(X3KSbYb|;%;k9CWucX?#T>d>zC1=&M4L%}t(N@h< zfmMGOq?LV%*m@mbd$slhc|6*AS^V41GtmNlzf?+9Ys|689rdx7_vr2NX#H^|7G*SG z(dTIzZEw8doojL=AUhq+Wx}%9#Kp)ZP6&q$zs}o0r_9#r%zg3A-cID9_;3~3#Fj`2 z*z;+|o}Gd`p+4V{E;KZIx96vbN9XjPZyc=Aski4aRTS6d^b<7n?+5XxmHq9*$kmIc zpRSHJh*0|?P~(>(=e1;-vm@2YIeN~DO}gQ7aaQE$u;Q0NTAbg4YVI0Wr$(L+OYQ`g zB<`s-NA#+Ng^%jL4RmNpj9%>{PiAxavV*0new6}Z{fodFa;LU;@Pg0$)Ar%3Ozl@Z z#~k3|_ArY-$Bu*NeEEDU@}aRZJ4!t4xEDlV|KRz~pKt1`l&VFdM9RVndeYbUy&yQOJ36bWI;FoA~eRVMIB&$Yec_tK}8 zY80n1qonIidHR(o8Y?!1=z3GWlnu&?O(8l=p)uAu86@kAYNDslpFes-epPJ-^S;#?<>I7S&6hd?1(}bm45eFV+-yy| zZ#$VdX%?%cR?36mZ7VpLwmai-luw$yIjQ3@z~A!t?jWLTwnG!Tp#WamKAcS>dM(>6 z2KdL;_Ss`r*yHj@>L7v%&8xraus)1S1)-O;o&NL_wuR#rud#V|(q!uq?f(>=_nlTT8h4Jn?*)F*Y)xR0GRb4U&8RGzJRt`HPdIswX5HSD>S2G_ zp7lD#pxN)pY}WKAVRB`GkTga0=xo{9%N5Ehz%t8jjA!-ILSlQt*-@;O$=T zv^i);dp?U=UQz%z{X}~>m=^EGv4WqB?WMkOtg~=CzrqZ%l~u#Z+`Zd|Cj#fuZt#AfC1hN&ARALB?dV{Vw+K zyl5tu6u?a;n~&c%do$S(Et<&z2KXCXfBVh%lkQKFt??`v_BLPuZ0x2FXM=9ifG%ox zfC1j5dA~Dl7Nh3$ROITSX@?_fZ(U~b1xl#V2ZFq!&-6nnQG+UI5Mbp)%LkkdeL zsj}k`z&@tg%%C|KoHdT=c>$g*7sEkMx~EsT1@IKJDC+-`OlaQq-&16c$XS<&km4Yq z4=>d~gAT=Q%oa3o=<3DJ-pgnoM&Ygs6epHNLXx6pzsCluh?-(Lgz!Sl!yt1XKl^6; zu*k$pvFrze5DIXK)b85rRZ0aoNIis2(9ZieAQ0oKlttz0ZW+w`+7T_4&>^ zyZ74uW?!f(Jg!uz##Cs3F0}271@tB%A0>)UtSCHwREQ^7s6Q0yTWfpYY(&1rRJls2 zo2D~p(E3?nOJJt7cL$d!4L^mnZEw*xtwzS^i8l(|5U`8o|r0j&x#38c?&rp zP?;OQMb@;u`TX`cs8RbA)brhM zI^@iCwo0_3B`M+{45UYAbw(eov_LR?>0GNCJTaQ`Ja z(Ttmj`Z?%vP?M=^9-Uip>Plu__kd!Ue`>dW>PqGu-EVj35NYg-U`buioTqzmuv;AN z$%iqQ)ddr}vNbkovVXYC7x|b+7yzO8w<1l4lj5|~quXkY7xZY&&i2~= z`lft0MsY5tq7}}wVaG2j?AWK#-1GHU(&>T1f7iK2crYxGWxKSNi{lIF^0$83POwn_ zhl==H^?Y6^&fuS$3^5<}{L_4U4#}$|9hgo0bSZAfXiW+w)K-~^H*W}QMGe_2D z#cAD&w3s6Ri)4#RdrI$%2{m!@QOWu(Y5;_yoReXRCQSGGb28AN^~f$>@>Oa#nBftgwYUUA+VtHFwmi==IH&6?dT+^rljPeRMMdJB&Sux z?{X_{S!848^$Zc3p9h+_?MTlibH){s-!)Bn$wf4Sh58+-F5TxVmcX+SCA}AZE*X|c z-0l(urEZDzFvR6{5SN2BIU-Z6wP&Nk9PmF2`BdK5p7Zz#VsguT-)^4u zk~4CO?cxaTF_O-|N=#pz?lGX>F!Ix%c-uwP6vZxjWVwTYd~f>3oT+YXyk6fhFSiQ5 zrXh6z+iE8?2;GGc*OFwUsj2Zf9S=)n*tOEiWIPNqKG}}x=wjp9&XydSX%=%`bPPbG zU5SL+1Eih#isH2u^>>fjzz&(UeQ6JcwfYk96hYbxua%0Hb07%3B4QB z;hWB&vG#H|dSg=4(wLw&(*g?6cLOxNQye{otZA6De2anz?BD-kTi$}HWxt^Sebw22 zAaY!B_P~Y<)1`F9cni=pMKnEek|GEBcuNZ_;GaESSZ~6!ReGN)NqT7d=;5C%G&IXe1Y-(@4}xt`Y?iZ~x1eYoe6a zv!5wIyMjtS+g`>m#?>jP-~fNqX7uw7dgVoyRLwXc&R>TC{F;OBNV4Ksj13r6-RHyr z_8zc&Lw28h70GwRHS@Z}aC6(%vLN#~kx9#sX31fWmTWX!QMK1|`6z)XN_C2AfI_TX z%`U%5BUPtn$2`d0wu!j0wY9mszbPl+n%P^NcpelBxQqWH$!ZAz1c5s)2HVeHuI+sn z_0F2z%p?k)1PNEiH~y67MV&eh4)CsZO5t@{r)-hk*xRGcqn+=fm!j$v*#HImUGjWG zqw9kx{p%zTIKbbx8SFkzQ%N%!i1S#$AmrLwe#&VDZLPyZ@U3TiYtfV5bsBPq0o>Jr zt&JB4``>Q9kj;6WI#7}z@zCai|02x?&BQ*=hX@C;>ky0F+-c^osRTg)_6fDWpGKfw zLV*Mc*iH{IiN>y$?F@;*`+t%i?P`G;0pP>7tY)2M+1yqh#_%Yy`UCQXC@)MX?sajzyLJqQA> z`p|1n^c>s%#`5hYSq$KA*0M)CY?;A9ogrX=f{2^7l;5QJP-oT>^C0I+ z(%vfiSObZ{tLS6*!amknyua~MZY$L(`vwAwUEi8cv+MM&a)Rwjj`=Xn&pIV1K*4_3 z`t0w#I4Hi`_~F&go?IKR)A|S)gpdRAyuDTqFa%)N`tX84no4zApOOR#*ZSDA_M&U4 z)A~3J;I0H6Y;HxTXX=z7O99$t?!gaqRu?N<;Sr5GnJZura!XF;yUlNCuRxC2>MS{h zEXcSr^!>9HjO`5sU{{9tv(=QLk^~7i_Mw@T@m(THQJt}m2SMP;ly29P%ks(Dp!H2> zK#rWI!|_3U<6g7ZWjJzw5UJAo(PK8dPkJ1ADoF(LbrkbT*qmDU*!~KZ6z*WaD}z874e% zCJe`P54Ah!BoWnYFeeceG)UdIQX9QqcQolv5+zO36e|fBgzi|O7h~FtPgFGBL#$Gg zAmQRtS^De5MZh5B@~66X*U2AAgVZNB*}mya_dC-$1yQrJ9H(Fw3gNp}c&phzYB!S% z(~Npzxc~(b7rU38{!wSV;@D-Oi7>ZVD;Lf{A?%VhXxPGmK%Ha_P!Ms=vi;`OxXCZV zBw1LeSx$+Nbj|WMoj^*I>NLw91OeBrZV#uM@b%M4`Pi-Y|NjRsRXb!5y z^&wA%G#3;;B)c{k49Tler!7V*nvt9hkB&#OpmN=-$UEtpF>j84=BER zhw_9l65@gf?*Gpd2(bc0^!J`rl?y>84Y9(H%79iFD2KS(@9H13EVVY{eG&qZ>zjUH2Zx0VF6qlnPWBD1=BW z&Du&D52xdJP(x~Mcjy?rP^p(%mIFFU@Ah!7Go6j)9j|&N%cG!yl11&?UgyVIcO11L z^-5MqgA!u1V?2sRnO`q99t92L{%(^-ko%)fYi%6)7p<53k_WZNuB`cQzayt1k)Eyt zjZ1Y*gd)-~n^pDF(4(Mn!^LX9(>oSLTC;qTRvd!?8~J0`CBEHQ|BkMZ3z2&HBY99m z?L3%~-#?*JuXb7v=;(V7sLNjKb(<5RP_OSTSvi$&X3g;`dU#f`ET|x*4hQj*aP?Bk zazIBfe>k9r;H1~WdcC{@f&YlEJh5NCc5~Wn%v$Z@%i?MA&mub%L$45G#zWx;B^9Ed zimwM<7SH+|R$NaFQK@vqh5?^YD0-xl+!M4r$IV%9dO-i)8a87Wxc_#(2Q*KDcoi4g z_k4){u=S>~w*7-hZN&$V%bzrVjr$8U<~+j8$$(XttW z)k;}aIy=$*t7UYURizU6e~-W31?tXdT4$|R{%Hm=q7sc z;_%=wTEkb2+9Ii#2Ca{z*2~THy&c{%5|vMJaz zeibeqDar)^La?Mk=steuzmnr0#Q`@E@=6n*Rgdt)z0PrG+!?ge#UsTi8xWx;iHO@1 z^3ON!oHV|rJ=Vg!AG@(%?9u&Rk$H+v&T*_{6%(qT2-U;AJvzU_50Adslp|zKp|M)2 zuB1X)#@GFZj)&~6EWRNVst?2XKL26cxW^HSin%~l3VR;ZJ`UCB!uHx0T}xm8Ha@PV zSRt>Hlu+n?7V6STALCGOo4eJu19`ndF@mX*PPkCN7pilP%C=O|BUMRS7<3-FpK*mD zcTUCHIzLq_GE>nD1dH9_W)U*j{Juy|@9L_Eb5sD~3!T0-z&-fIE z5Up2!GEnG#9>jEmPUvmy(Yf)$Ny`*gj0P)GI0J_M{ZRk)#`@ubJT0K4o zS>?o_!<3sZWXjens{sr;VcGf9;l|z%#rJDlhcZ_6%T7py;+-H3`BtqcF^cg_MXnhX zG|-xIgz2zpCQkKQQ^|u`n1-)*UVZ&l@#RzcrHEMlGz^K=ieG=VYDG(g;@u$E_>!_L zA&OZ;MYdTMR8Z>oHohsIZEmma$waJI>H`>b5F7sLd2(>9UTjJhR6cca_TNyPz9A1g z&o`qh#|q~fndHl2q5Vaoy|sC8Ku=d^_bDAB6BJIrD(c4^0oZdZuqSF1 z6l>rWxBQ+YC+4cd*D&kFLsMt%}$v2t@?j)`@1N6W$NF;9gqxA@{0 zMz`N}qtiLkAsFi1;tF+sA6>M#x>3j+Swn|8+>v>z>$@vr zNGxdZNZ>os_xm*k#uu3g)d9tjU@O~m|-0mT{$`@(5TrIFX#O(8TlM_1J zaom`i6K1dWzu8Bp zHQK{|W8>xS0WC3LgG)#&iZ3uG?)W2SCZeyuJ$SjbV$qnHioV?1Ca1|Ojp^%%3DHML z3i?5Xq@phdL?o^xLhu*(?P%8PalX23@ZxB8oV)<|{rQ{VF;19Jr6G(NHOG_Ac+%*+ zr+3>LWHlY*p%0R6AH|7)(V2yKBj&MT#DC%_$RE;!-9xg7Q_wi0DAt~lbBoB^?GNWC z&N=o}%D}Y$U1QqI-L1_Ro9kxmNW=4&n+L@+TI5=nE^&GnU~RQBBJev+1bEy*%MAyc z2XYnX|GEH^LoFEj-!w)Z&?7X@Xc?E5C}@VTO&cNBVw#*uhor*`uzIdIqM=FaXY3F3 zTY8}=w)z6nT4=$@uM}x*7xb#qx3&88O$A}@y29M`HQsTg3C}kh#S8LJL#GOg9p0;= ztHb=(i|8rGtGE7KeMIJKMP!~IQfoqO$wsk;LMQC+tls{dBuxIJ!emzu$&EcdbVLU` zHn)piIU+n+z0rA5nEhWgW=HJ^&zNZuP!^ZJT!7_Ox{DZ(a_*Lf_6zPRpC8CYgbOgf zQWwVmFN&0ZvAMmu|83Np|9SN(?R8+>KP!yeB0AWOgd|^ zen8DMy@?Q)+xErS8Y#lyFI5K9e&r^u(CmFf+rg3Zt)q)DH`0T#xlMV8rBgVBEhbDh!Q6 z4r!uAZ^c&3$d6ZFbF!K+TGMsX-lsi=?w1+q$v@c-T|n1ap$fw_6GV^Lr6q*T*W7`M zVtWA-#GE8d)=UsH;iJnL7cfE0i^6P8E4!cVN-v<5Ernp-Zxz+fg^Fh>|9$n9El`4i z|D-YShwX#t39Z)`V4PKfVVWlYV2#esY|@jf2hkes1vL3W3r1>6-vO<2(vhfjS-UTw z^p!#|PctY!+AisQ zX`;87v2-Sr3N2YnlhEim?}Zo}=`CjLciTI!w)1OJ7h-Ir2V*sZYO`b-H?S8lsP;NA z?u*LKldpqML~&GH)75QqS~N`fRiz32&ScU&iLBUNRln`&Fyu2fWYT=!IHf13d-Pl~ zxx6WkJ56#N64{_Q=NPm6Hgu%`%rIFJ|7tWIl5?qPH!|e#{KQZj5=g+5zl#IA)SxFq z$@>hsw<+S>Q49)VW;SKALVB~vGo&cG7iJa#R3_aWQOcvIde7ltY~*yJ@VVbMis6R6V*VmU#?2Exq>j$wCi~@ zhy7we-HWhIF&|sdHmJa$q@?+1^g8e97+)`&W~(Y`m0~dO*KzcG2>PP11yrP%Vtf!I zvvnY+1EcQ!)Eymnd!5E^b9&mCOgnvHg5vHX07e>rlr#uEkYCM?sht#3&(3cpfyhW% z9>gBum(~vRWz;AuPTB!dB^PuJJ{kYKxm!G=|B?O@>Lz1JL(Cq+DE^A37F#q-mpk!_ z^S5A#hzTI%?&7EX?be^8=kETGnpx&ykhveq(D`LL+9Aq@;ygGANt_%GQXl`+>mD`! zytVnP*gK?iX!NS}_jKtyzKfwa?`}X=t`Z5=d!=elO>ti;rv?;M?(pls-NEs&aq#Ee zwF7x5P?K2*ZexYN9L%ZA{(5b6_OJb6dqy6^{>T6P&0nt<#qo^C&_y9KO;HfbkoJ9d zOZ{#6u^)R~EsB1#JBTC{aYDFAz`>AmSBj~5*j_|Hkt;5kggX@2mzqZ{!BxE9LO}$R z5#W8$>>f*?;>`gLBZ&+F@+vvyGpAyOor=^&IEe-f_z#=oaq~>D6&_?vpa{$uP%kwn z@=&}cUC9@iDcr84F#^1+O?EYZ+LTaDBDio7*};InV({IeNCrg_bHP$Lp}@AL565!E zr8S+xrF4b?f0>-AzVFI(`7h_U{Wg?DTM)oknzMFyI2xkR1r%OGoV^K~<4YMsd9p-2o0BB6wUxgXM(Q&Ecl{6XEI`%s_w$YDi($)U2hHhBWk8-aaxoj z#c;X|8A*5`MDDl9vH5IFuHvQ*J9w9|Q7nL`gh(_IfcQ-cdfc@G&asH2!Z%bHHWnDN=$@|WdMW-6?XH}w{(|HsHh6N51NxPNa#?@GLoZcRm(Cui^v24 z@(Lr#k)JSIF(`Gx5-_8{{;)MZ8_98prn%-ol4~%aUTRI=3TrjZ_2jK25(2!-Epy#h zAT>>(y(BEg1Qt|+XLPku76=X4gp%f35WqL7;u5%#ju|!8CkUGnanM+5)QtV=>ZMHB zoRoz^>b8p&SFTZ0_Q;yrT9s@K03mdP-B8mq`XtUAMQsg&iWmi-`+{|qKI}}peK{6T zbQ1^{D_9t!ajAVImueODfPzRUA;7!JU$$p`*-rlJ`NQK3)N(++!oN5f%tRGav;;XY zW56{Q59n6{T+?F10r?7zwz~br-(PUSWEwkE$?hH>$K8>l#ckVQlI>7nUut({d!s26 z-ATkOhlkgQH>H=;dXlPGjr9Rzw!^{V$K?;3XenMKZRwmb zwP!3~ffaxmzx0U641Q07&e+Iu{c5#|QFsxU^J$eiP_AAk3gg69w-6%JRH3PJ*= z{HofN(+)q8BkRPR<2xR-P?{7_fkB^pPLeiplX!Y1QQ?k|h_S z!JPfLIcS~H8S&{bTIgMV;w;dR4&uvOvT5mAKE5RvqCq9$FMDwjTE3EaEF^=udT%J3 zfaT}vOoUL7m;K4xd|S7CUJ5j%gNBaI&cBo6&*d9B%Y;}^aA@N$Gvr*p;FR2qC@(@6 zoXw&=SYEW`LNw^8>0!I~`7B+&qn2!l2Q6)~jJJGCYmkr%R+;Ew;iTbPew7JS2wrIq zTl|)!$U)7*tqs-?OOp--_J`HRB2x(uC>^C(Sr>mE7b$&s^(jlObx??{*=?v&u@aa&l=gn!NrJ4_(iJkw>r>Bdaov77| zo(-E(b5KOjl^*-4oqdeuUiX|eOBqMWsFe01Fu|p;d3T)>SWbV{DeQx1g#C9ugiMRv-@cW(>fAB-CI)y=mUP&fOJMRFN>O&S6TZbk;mYxV4x6^*p;e9b zHkhP46xi2}$IZ+MOO5piDEau*=ji3*DZPInPlPCrFxgO&Z9%2!vq5V*94>ya;1~fV z9-n&Ce|{pb$b4D7VvI)SL|%{~0L;CdS>aHmgAFANbs&JR(BC6Ei6pv7Me%UKVzfbp zY@Qz0U~{mTZBSr;aMByfVxegMIEwHcM^K4@gR|J-NDZC0f{zTum0=P%KX z8O1bRhR&#YFd}v{2qN2B#ULmQTP0Q=nWOBdxY3g)w0tCTN1KK=Xe#88h|-lVd9aCF zOU2no4kqB>l;D0d>GTz?5S^FgV3O@nU|;U`Pfpu1T@?MO4Hc0M2;fWIXn?3_-6=?f zESutM^yP4z+!{~}t$e_k?QpR8R{6vD+KQs2l!3X)__e#tT7DW{S9wr=ObzX6m)4Ku zTv<`&N=3t= zZkM*0_4Ck#IlC;W3Hh8iOr-l2I%qPA@0x1b4jW9y%b~#jc~{Pj6$ARNoEQ@Tuxnkq zV$i0%k-dSYej}hX7M}(RbU35d42Ks9O+cxDPrbqif0+#BrkP>@z+nW}Kzy>8uUTAl zUH{wpB{j=!7!u%D-gM614af5IrJ``SV8UvkJe!K^)9LU_VYZ?-D=VgWgYlxdyAKV;n}}83N=L-sw9U zO5aC{Y;nN^7%0JRHRZHG$);cln^6IKJULzbPE4ORA1PSGwkWVaNbYqjk~z87EpByR z<4unAW}l+s`he18k1LI)(XFVq8lx$U_$}Yb;ltRA3Gjfei@YJN;R2+9hWUG?<&j?V4hHE($KCA~ZBV zi33ryL=AZ26mZTFP&7a>DI8A4-vuhLEJbB#lzT&Q9M?ebB&>n1%?mx&tr9J*v6f9(eLz!(VVJ#{*Y-dY+mVXNLg6- zSss|V-u&mqjhk0ctT|2x)_geVOviF0*Sa=45*g|i(hc0Ad*N3@U9F7=?;gY z!*szU*P%)_U8apsp=j7Pm}EN?*jL$EaB>Pnu~?39f{qV;vJjrOCFszQ=pIyf8!o~- z7_9&KP_`P1soYTJApropLSNBa!VB-PxnR;#hXVV?ko;4#Td8(O`W#R!(F8#wjS>l+ zD;$BiH&zrC7fkSh0{hZvac@-=L^1js*S`ZAqVSkd&nH7m01kFfT zBy>KcV*$}}kfLQWfg*P38~V!V%}KJpqRB!VOp+Z67GE9pn$zRqSROb~R7Zr9bie{U z9chk>p9*ioMR*4T{_<#;tS2i5gf^5!TM)n>j)s%ShpZ+eIZ%XU45*h!qcORp7A>E~ zToX!iEePN%&X1TNYf4DQ{TNVSUmnpVwyA7Y6{|Km&t{GU@}<#KjxrT1>l8#L1R+Y^ zJGla+;k}dIwnl^i@A~Mha98L>!YYn1l_90IB@iN)M`x|xk(`lf%7h6O!3_xD4@YOT z`YR0A6k!e&VHxA8Kh8Qc*>@|bCXk?745*iXoDHc&3u6_DU_(V*1M=W8xd<4_#!UgX zp#<200RDM&RZKC?h&*8i7sIZO=~5&w>WKtUw2}xXEd>m=UZLY^X)GOpEbKHqqWJPwmV3O=mU|*he*tMR>OhtXMp(3&Y0esE=BtH7ASTpkh zGkC^9;qv6P(|aqckj8WqO0q2o;1B8KOh>M%YI2bSMOemwO6DeGI+eK`D&mTbvdeS^ zmR?s`I15cE3AP|u{K15_j|5h+D9K?WC_#YyaMGWS7Ox;2NJ0$;)GJJ_(cZaW37Jt~ zU!DxwHI5nBP?BsxC3x6+6WyfIlm`<^f-MN(n-lYQ=Gcg0;WrGM5s40td@$kRQ@9JP zDIpX_qQf!RmC27iDnefhs;05C!6ewBkTRDh6Io3Z<3$Q0nS=oE10E;~Lp9N-Fp|g+ zAg?o$COzH7Ptlhl6TAaLHn%|T=Yh*qDO%E5z%?!l=x(t~SFu>6I zS&c4hI;K!DoIwCzpUjTjmVn4qjrBgH6!0H=kq;-cL33gEbtX`RW(-WfIyvi4n@7=7 zief;CaFPue@Rwo-wVH}^CYRY50p7LperwoxXa)zka2pwnYq(IjObWD3EAmlO#7(G} z%^-lUQZf&kgMpmLDpDHZ1RNiF{FP~Q%=ZC=;fm(Z1&iPo1=FuhJ3U$gk2^|5s{4SF z?{QGLN>Bcn7l4HMn#6J8BEEwGe}yIm{cg12t4SOiEP`7U*dHX@Pmv6|0T?7c3ndyyXVVVfZX$0uJzCQjl8R#u+1Nlbfy0DPgbDV5Sk3^& zuIhXPBpULMh5T@mlUAI}o-bWuAuD5TeeC3jd|Wt zq=lySx4|UZp}>CV*mP8k-0`VQU zXn=+24cOd{9IGmp+k&83K}JI7K7Pz&n@rRcGt)Uy3!o6Z=>^HVgUCpQR2ViJwPS`t z%E!&!kdM#fDUQ-Wuq0$<%dfq-FSyiC@GBYZ)a ziS7&TG}^UWpx{!_Y%Cd>>P+PmG>hm=c?I|Il^Wk*(rXx>aE7lxMAQ=aP0rjf+ zLH8#)ozV18jG=HTn_<9TnGXBCcsikJk!`RDZc$)=IHeoJ(r!(Ha3IMw7*MYn>Jhmy z7Hxv2M`aENOz8#(g&RhJ{JqnmYN4SiFsxyNrYa5zolDcj_fjc{7v6I@c!BLsJT?;06YP57U#mnv!xxCoZJj{E08ymx)T_Ct1nP)Gp7)NkgN^4I4`GEePP7?kC1`l8A+3oDhc1h*+5}dC*7-wcAKciRS9D}Z-ba|>(a@d=lmm9f zuq!2Gl>-5Y|9mEwa22NkW-|#d7jHk9&AJQkqHvf9ND$cf!Q0M2o-$O->o|-+8VHbA zF$os6MA4ogoIvBl(&Bf`XfIb`F^7q;1cAj@-gTO9#+_qfuwr=Pf=RGLfqng5=jdoW zd>2m>6?+9`$VkBhA##~q29swoVZWl)v!Nv1f&jisKcRyc(VS0{mo8ikw=m$Zyqlcx z3o62JO~Tt?67Eo7-*xPUzh4#ZASf=O`tZSJXa5-;9_sNiYpC7v-(`f+JSXOm z(0YU)+X+vR*}zq_-GGFL?D3fdL-!WGPRCK2(p;Tq4GV zFCTB4y)M6gB?{q^<-;=(r_1l#$w4bc4Yi>}Id>p{FTIaEmne4JD2PM`eoLy8J~b11s+F*Jijko-{h|>4?6tKrxmaota=soFx=` zPZGVHH}dWCBd(GK8|ojW>U1};Bad+?%9u{vqM>c-%%mw#f+_0^1xwPGQDB=oV}4}2 z9Fd2L_;9iW!E;*ZA-(2Z1fqc4X38Vpicvbko4{E~PewdVX=OtxEFWHtR@D{72BJ1} zR<&e9_7;CMYUTV7DQ2f4aI6?$W3^0=tyi;wb7~F?waet^t2vTePKrLqh7x=S0{9C3 zUFYn93l^gd3hZn2BfEhsO1fg<%?FJ64hMw~eu`Hj6%z;!Be@I#^6F2+0l9QMUU=aO z;UpR`hoAlR#^~%{jSoV8Y2knT&)@v@dQsR|6@^G9#d;PvZcWQ$5SK@V-Artll}Q>G z6|_Jp*KHJ|JwQx%l?6iYCVtv^A8iIITxlR|C}TLF-@`A+d129Q$3DgsGZ_Fvi4q1K zpKAQofKKMoo08F7y=JOOAoL!?EVI)&o{gpj`DKv%0&^a1pu%f*)IkX&7ZIU&AHSvJ zgRM8@PdC~u_;2TT>>z|{0S!t|@H_f$OsUy<=ROccT`@ujC(@HlsD8vgj+#ewypa5x znwNUXmBZ;!uD2*AAl_9{6%T^~9V1X&>ugVd8y z%A7K7W#Xl%2U$4*gyaMMDOVBWE~iL0$Nua2#ZsunEC_wVznYDBqFA7m*vQGzkz%ed z^eT{$y+m4~*nf3?e4-Yf3BX-zc8^;PDg&~mP|O)kKvR)Q1gIZ2=^(aTRQ-B!GYtdC zOY!S?HR9bX4`6>tPl-oPX=_+$7^Q{L(astc5&^gm(}&e-SU72QyB>M3NhbqaL%MOu zewz~aA&RS-46u2gkYM*!{tbEUki$&HGPhtG0FWQ^SI6D=MZar&u6XlhO;B`iLL*Ov zs7WlY{OlOd98MS2ZqdY&B#1m_gZL|ZnT=NNPIzK3loTUf5v>dkau4~3^qAb(EFTnn zk8rT?5LJjJFeyc?KtawP>Al$j&AnxIX?htl*B3W#4g?HRcTBAK+v9Gh*On@ZF{6x7 zz=6PB{srGH88>@HhnDh0{wQWpLP3BaagBdsx8lN8X+;wv*m5)P27gD_3=FG4mTLze2ji!GkGOqCU9PtS|6ghTv^7oYJa5nb`grT3gyJTX}~Pd>)O0BTxo z?5R&T@s?FqGh(uU-*R@Lg@}<*qejntH8FSe`G&9@#4DcuKvXk=Ar+cmK$DtU9w3(Y zgNn}kjy&F@@Y)6S5+fsBp#p1uQEd(1gq6*iVj+5QbF2*P@pawVom4u-QZ#HxGbDsU z(U*bNY&@n0CarBtl>tG8<|CxKea)pfp3!+Gx#+Lhl|wvjXqoL24Bgw%Jt22K(I{Lq zU9GHIjt3nYmDzg50}k8CzvD+nBFP1su~F~}QZ*d9<5j0JA4Co>U&*`99^4*QSO%NK^+e|w@~mVy-sxReSzYgmNJWj ziXZ#f)$`0&vpFzS{>CTdok zZSc$t13)OC^P{L}>Z(3SYj=jmZ`J?ub@y01;xLY3uorym}=ARL!0a zmqZTiR>It01_gyXG|8mh(gvpUA^|lTHn>%YP|&#NG|E}MP|+;sr78goIya23QyPcU z+ZaMYvy{hfQvDF#{lOf-@0IXTtN)Z%K!t>+Oy?y)gV0?s)N8&=bTo;T)d37LWn#UR zr+sTD7I6T-<>T=7Bsw;tS^myOz>pwt69Pxwrd$KkEUM=C1_Zp%19opPdAImwYnW&2 zh12se$oOQUi_5T1d@cA(vPI4pMi7RMg^YwoWT`h?N!T zN5|xr5n&cYd`+jB@ubQ3OIK3UOIjjCjmgtyn;L?Z2$eJl`QmK8qLx7D)NN8c3^Kk5 z@Hh1TLZxo*fCUi|m)R=gVqlQ*&0}23>NbyI3G?-yK3q}rXi2dCHYy{XVU8o9>C|&| z(V-wwCeTbS1J_O<;sEaLCnxcpmb_I|*M5hBgfFaPnykjI;_DVxupr_SY225+RNX{k z4&XkK=t}f(Aa`TyCXz!z!dJHGkoS5zQlxIf;bDmkSHYy^s4L@PUgoGd>3scFqxr`_ zw2jlEMH?s=-gN2-E2Cmwj+ecMqGaV&94l5i`u*1{i%ZGMsH`k5q*4`^FQ2Y1E}oUd z<;$n5i;HJL<$=q+qc5MHcHU>AqZo2!3V^`nwK9=fMyo21zWyo`sd}aQ$g>cmyGXsS zzsf|Xwn|l8R@e?4c~%maKmK8Laq%pu+;SknkZ)Px})l|%TD@7~~ zN{C4&vFgPn%5}uVe!QxfgfztDV;5su-W;@><91ON^zev|Vt*@>bQ$P8-ArmOuN$T8 z6K5vfZRbsois&j5E2ixXup@|s zgs9!(-*k?T`K7k#hWa1R-$W7uB}Kq_8zc30vnafz0DkExn)WHqp+$#`nE>1a`oo-N zZ8V=A6}EVY=0~v}?-4f9GeD@_^*?1b>b`}PrlkWsm0}un?g*V9<-r5RXx9f%WeAp6 ziJV6)r$R8OlsR$L4(eHpJuZGz6-l<#a^x_ z$VyuBpmpo0ORr{38}>gUdo<%78`z12An++J!N*0fbG-0woFk+nmIfti3qqxF_vBPc zY33tU@hL10T1Yi^4ib4fu9s>K1U^#De!Qww3u#b7s=4o0m1+V9t?Ng0jOWd0NEh=K zEogBsU4j6=dGym$x+Kyk&-u}2hT>K%hqdJ^gaCb;zvh`q2ClfMD&PSI_^bSbtH}DUU;EI}na5h=|U-*abfgj-$y67^VOy6}nZ`w`SFe-NTJ;Y>! z|4Sedw>$ppE*%(Id~?hPms$=6l`;icgQ6r?Q0u3l$3f|~H;C3zqn9`pJ){pUqhndn zcFQ*kt=P$FjaQ_-@Z zao3wO8r$>@du2uc@59UJfCil>{&zIR5p^KcQ=I(v9H|#mpQHB`sFVGLhUL=zL&g5qUar>p3P$bzScVF*1KWF0d2;6 z0-$$2l%_F>j}pZYCS?Nzi3g>GeOjBYz%N`YlNb~wOA7I;qeYv1u<|0(4EgdKU}(A{z4QU z#Tc~=`RnqZF_=!O$y!ziY#>OGORZCRu5s}-H6{Reqsk+NqWZ*5Wv@AzL{1{ExB7H@ zsL^aiZ{}!{!GyFWqlA=p`_JTK>55fLYg0r%^+^JoC(+_%Et?q<+f1LWz-B`M8aC4& z!@}h_NoR%te8XiReYOId4F%|H79AH2#iimT1DOG=OA7i(8eAv)3}1Y8N}QhAjAR_oM6OG(i5 z-kC7G9-1jYyUdJVIH{AF;p1#BG3cY;|MSuoTM8_8=+P-1TUi=yDKUE3Ys$W*PCC=& zL!tofY9o&Wh0%3tqk#bIGLYNXaMV{P1DOG=v)44PA-9gb1`>mRjE3E{zzhM{B}Clv z*GY)5;dcpI4AM(Hbc?Our?H*LL(QC%8MX({(U3N`jFxdcM#r6n zh-NG;MLY)d`%G_58XI)4f}T@&5x<(Kj0X{XOd=YTzHmzX(8q*^S@ew7s7FtA6z0_c zxfG^waN%g7Y84q4n3N>z+<}m=YG`^9n^2*k1I7HzrhPqryi@PuOy{nxvTW!yt0`$5 z0vO_Puhg*?tVjni=zLb{c;7kAUM^~iTX~uCKvBzZ=c~iUuyCwG9bBm2E#pr64zWj9 z&GJGvD;+DN@@{N=h=uX0t>RcvF|8rhD|+~x?q=ocvu1H2jgRC(4W*N#lc~w|YC!Db&8ZEt-Y2ZIh;CA!4+W+sQ_^;!)F0{?+4Y4&5AJ0d2UeTOu21P)psJ1ss%G^cr2 zoY%@!=L{6OH{8#Y9WP}M8FgP`-|LQJ*S$}eiHS$S{zs8UCYLlT%V{n_$pKTn$}YIB zo&Z7*Ed)D{Ytd!;@pwq@LxgQny%s|9poSJAxKJ5N)vLJy3_8DXxkjF@Tc=HOrgJ=} z%qv_|WJ*dU8a6!UKy=HKHl- zjZjZ7P8cg(W9dDAbI1oHz8l9#rWh%lps}s1%h7^$pJHJlea5YD}kvRMT*rZ ziYtm+0IXJ<$ook3Qxa+ftW-Pe{F)&r5Pgk370T60eT&)xFQLHz_i_W(0`bbcn zHkFxn|9risZ789l*{Lllu7YK$h|EVB)x?p#s$zSYDp}#wKBr6XamaJA~&6YGBFR2b6m3*TMZwODVKBDNDQJ{qum9NN4Dgd z%T%KhA3oN#JSfphi~nUVc~!l%CnQ=f!=OeZasONQ&s@SPyzT{{MAT{k3~g$^y!L=z z7IJ?s-hO#XEF4my`bnTVrsuJFrL~yQO37H3CDqzerE*L@Pd#?GvpRJqLp`j!li4Ue zuee;@^+@PFacTXQ-04ymMP9UXd8{v7h7)FT3WoGGmNS~7JSn`in}ALP2vBJfP9L?& z^%Va@kX2Ji3S5#s26W1v(HTv}$m{`4S!RjX3ROE}5nd+dLF_ifM%~t%$kT)35;Z~# z9fyL%9XMG%rIX67$f4AnxU|W?u6g$8cSo~sZ_0nVWTSN}b`1+2gl@FPXCv~{&i^Yi zMKQ>-L2Wbw3eY$0_x(4MW>2y;8E$|9+hG8I*qXeh!>i;l&AbId-o^Wo{}9b2lo(bb z2ZPidmZFtTI;ceFbE6Fc&E{*U5^^ALj|F;^RZx&q6U7+|2Kb0b5=5@^Z!!y^nra== zqxDad4}J|KmqLr?Ljpq#9&-%JMFJ$2D7BiEwlFps9OO)bW!7{TO|WPw_ioEPH`!Q! zak#yH@WbwguwS!aY{T2^j#)7Nu~T{8>#a8jhlAd*+1?&XA1<2VP^uLZq4=a!{H8Nq z=TkmAM}LW{i{`j;Rx@Hk^}bVmF&xtogbiNx66vYgTub#r8k8P5B{F1-+|{R2nxdCV z2^_R;JFVTF&FzDYJrN^KYmmx-1ciH0_#s;iHFY*4Qo^8v{CTyxofWE=KOqfDcU+8K zbq8tQXnN%|J{|=P)LruN#`jf*@+3>Wx?8dml^$)+BoB1dRPijR+;r)6M8hT-4^5Yr zCYI%Ze#6mQR8>Ur)pY$S++e`|6l^!7G0&wGM>D$nEGxfeNh70`!$SKrsZG8>d0jUr zuG!M86py%2NBKKpce&&7K)TkcS29W#R35oF@;B6syUhfVi<czl;z(>jA z+xe?1StSc9C|Uf?N=sG*gdS3j(=2MN>!q3lf$vkzHbLYzH(b%IS08!9jlAj;3n~~{ z@w|?vJcBk(cFg;ULapA&DrG|TBUfk2U-Tz$ThXyJ&7wzIdlDoxF)DdiCPJ8?^+qKD z3_5pdReI9l#b|o4j9wa*`KB2chvDr=Jp6=-(7G?R%oAy0q%`>!vNLM(*)^fpnvUhI zI!%tvmorGj?x9fY(oBCalQ+;b+bHt|L9N!LbE={)tVWZmm6}ODu0&JhWSq7~z2-o^ zQnd*pX0h)$dr8ybV z+1{1M(^9K6Y3JhtN|2>O^HJ0uyicpAW@dL@i{P+OmF1QbKI%D_FSiZ~#XByZN91^y z9nFfY)T~(87={A^kAlVxXv9x`Xy)M=K4ZZC$gx{ZdS-^MOrG#LeLDUl;-MdJgz-p_ z(7XjrlU+{d1vr$Bd6UOtPb`P;J-;SEm2^7tE zHxr{01|5_%mZMi+WkXf3qys7!es%FXbc;YG@<)Tl3ssDyLba zNK-EYLJzG&yVGl)6|^xtiuU9*tG_w500%APR(oh)=N5@rFSk4j8fX_fty8&(RIgny z7_d=C$(7B!=-ySmI_f~+WA;W59eN z3$1$5aUk$-x<=rbRz&20P_q!5M#XYKM`1ed&FDR-fjs?QuP}KOG*CIrQsSg#>WE0E zdX+=qpoQr)e>tVM<>S>b&4xmnW+4qqNICkhKb%FkDeI-2M?nK+i@ungNe6iK%9aCV z_^YXk#AgursEVh}-f^1k^{QgYf(p7xy3=Y$7;=BSUN;%Qpz|wN6ZtFqs&l7p1?frM z(J1yAr+7^aKyw({6}xIU>_DktJG%1u-g>3NfwFwLJhTKqc!>egCi~xXV3{WEYvbxP7(caW65djQ3DBtF*WPDbye3vY!+;-{3-%MJvi>a4hAVJ|V6zE)k zXWTFB>c6~Ct6%mE2e#da2t~A>eK zk2LDV!lPo1-f(b|M5CUDM?nL_y<{<_-f%Cw{9-yubNl&ijuwA}1+8Du=vxlxXy54_-ceIl!g}qm17-ND>Gg>p_WIXc37lb~R$u9CUh(qv4d^L@LZ5B8xOP6m1Q$ps=IOprMZ5-Ts7M_fDlX$5G}>m)yMW zbU3;Y-I5F4Pef|lMG`A5CkES!D@F6;EZNXU9j7%QIiIdq#|;K-jA?Q;yxy1wBq&^W zsTbF7&4KT<`3~zg${~#|X?C7p1gtm8jERT~mZ0tT6$^p&mY@?PG?7E*2h&x|Za{(p z+AaE=mN(3ZT{I*0+O3cVCCsDjcRV!^LiOfR0Sr1wvq|%9XS$L!0|^S~SGeSLR<{Nv zaL_{j@RzGwg9>R-!f1uQTh02A1A&hb1${glCD~tZG+nZw;?v7K&YtcO)ho~TA$UuJ z65_*AX-=n+2ZVa@DOpg#IF-Ly(TvTbpz*}D(tNp-CJA(NqecF)PNLgJ`olxvP$FeQ z)u&&V7W!x*S-$dIGyOaZDn9-AoA|s?y>b2&sH_GZCll@35*mzx21d%1K~ck5Z=`HF zp!>Wy8+DrO?^#5lW?py}RM5g?HoWW2hoVhx#9~I6gUNY{OMQ=H>tyk|;CR8zhp>2+Wc0il6o?BLx zvic(sVRMs#Lf7XT>5_MDk)$>A&5>e-cXZq;KDts*0VF8gZ#SoOo1gAGnG>aLa=#%2hE8=Lhgb5F7*tfC>tRnqi2~Ad=&oL|64>+af-|bq(n+2{g=LJz2`ro z-!?*9}~R9x-$0dr|8z>xkV4AO7D zq1ukZE5sEG6+U22JVHZWlwIe^N$4(HcEN<;t@csB(WaH3^rarfbe99$q9Z7P-{kL4 z2D6l{SP2zu4*}ZPJ>cIY{?-&VgtN+%;J5n`0#?8b(! z%98(odE!vf5OH9a6CnlgEBrnEzbHpf&tLo(SPl;$l^z4+F@66iT60m%?PIX#K;W7a zXvw5dWN3^gLJXbCF1QAi2!P&ZLB4cI&t!EXpNWd?4qUR8uF$g$uoKX}klmYfVvH6cczM#BG~^LCTbLa&(R8+Jwr34*z{H+fk0EdNgF81RNJAp~l ze-*J0*{~rP?;JM=t+RqgcGP(`!aqc5T%u18nNk4O1U-WIF>gB1L6GQ~$R&D&3Oelg z+-E5b{^S@6^;_+^8nEe~ayFT@9%Ei{YLX{881cg@%*xBa zvS1uj#v}+rK5s=;USb?m$%idLyHfRAIjCBqU8xp;HI;eB(>hZE`F}1h&r%s!R+(p` zv+3z@K$C2F18QY?7Vx#U(8TIu%8#>!`LN~ha1i9Y@c(?*%Ri8J3j`73+-Tx=(Ib$ z{*rl2e2Fn)h7A2U<*65V+Zj_qh@Ws+Hsu8v>W_W8*_7|R?~p%gIX0fNZRWjM>T!OLk6V9y`jk(VHb*kv%jUNvLqCrFWYnWujz7+Z(~hk0 z%f?=Sp&rajO_`+i(&_MMIF!q5OUz3nDs+Qci2cRvh+I#ymwM5<%<=r9Dr%Dw3+2o0 z?ptzJA!HOg`0?(jg#h}nJ#0;BMZ58Q*m^-->;5c$R#~%Y=oohIBL~dM9gyrw~dNN<1T`+JdcD$ zW1!g^$`xr3gUp>!CT?;xyV6xE%!0`MP-HTkjUy*vn)3ryIt~Y^k2?J(`6T6=(Uimu za%EjKd)=nYv^kw5%8kUBtdk#=WJrIU{=k_bvTn}2d?9hLA)kpkZ}-VoYE?0}WJrH* zV{YF#rN?3HKZ<`Dj{kTRc`=+brIfMvupsUIXORHx_$+V75jo}g`YVwMbEa&Io8kDd z;*-1;gW*svWzShETigaihXobsK;t!X8F+E&;P|k@r32p+=#1U_+lBp0*r2WujuaG# zEF1byY(BW(n9bshy1GVGs)uA~ySVcU!%aHuGilJHRQv?cEIRiyXCFb9fszzNzx*)3 z!-T)J(Jy~B_3Q@t{~usOSedR>_AQuF%Tg(Yi*>4(vP& z3>n(42NBxI$U`yavPpT4v;jleb)7=ljyy#XRSY;)+71nMS5tV7$7i{Ez2=CnY|u>j z>C-QNPxHOrOb)&dwMEhrgY2Ix0drhp*xynI&PUWJF`JRw4|T&;VTB|^+%;T6+@(al zteCG3bXMN=^7u{Yl0jV(D&!+H zXF*Ao&LtJ1B6rQOp+7n4%4MEqb2q?3R>Zach9g=`e-fFyY+OrfR@C$bNkLv#w4_#x zCdGIqqM{W4DlAIICjOe=q2~W4#cIx;h^koS6_5g=N(Dca*}ZI)5@1N*3)8`@4T~Z+ z=d6+{-j)cl2cg((kjl;308q(+3Bkvv%b>NeNu%2yG#dxQwf*(Y%|)YVCeH5Ycm)xP zPm=Es?b}X5QxVU(nqWfpqezuEVEMeH5LH}1oFnRy(0tGtOlW2_>W;`!(Qrz`v!>M3 zlpT+-<1PPZNrc?JQjT`5CUo#xL{8xwt^`D4;6dtchnxvCPI^N+6-@hc(L*GPg=rJs zi9{r5+%UhP_n%^CQi>ge2=5>u-!@;9!>b`;(4fYoQG#LU(B^Yr>*{|(du=Y#c_}T#IB%&KO-*U_&EBBnH)xEzBK)yFK$typ0X~W5DiMFNnTOQmMNW<2AM}? z+`5zF?szig0xHB5lj{-^MJ;4P@?QDt?qo7;M{m(6n<-o75;@C*R8TrI^=_Hc>2MGV z>fC^CgK!K*8ZJ}kJP=}+2_Fy171N+-V&Ncw-aZ}}9}|49B!(+)dn2^X5Q&1s9sJ1s zSEP{Qm<@tU4Xfolj|cdb`!79FF0(>YzMTCzA;UwA?m>)ZOM?kdlti2~)iftn(jau% z?v)67jVw2tIXG+s z2vgzOEikoY#N_k{`Ql`Gc>IC0*+wN}x?-FWnJ!R>!EL8AJo*b2Ia#U|Q~5{&6wvQF zI{8iMj5~vfubBTv{F0MZ7}MsAs5Lbe3+R7vVZYBwhWMwI@42{oShD%t8k0k zUUHythtiK$@5pHpooW6lnuaNMOoHSW81QddKCgejiRg+Em!ty%Hm5s3m&MDda^AXF zx|fWQ%*W}Mt+gcsWX@6kw9JXHwOuSnB?k&ONMSa}w2+F;jUc@}0^E`dbwj!dK`AD{$-x3b42619pL6|05a&g^MW{*mkD^1pYnn2Q%kw zL1-uz-f|ix3_5q{XCv~x#u4HF3KhjX5Wx`@!ODq{r)zn7YzYy=g2-bsg}pyC=#*@m z|Ir@O%?r7cu9#tff(Yf1ki3f@x7|NP>gn>x@P(L%L59nM`B{6A(@_i#0gyVL2BG`- zU3)OfDJd3dK!}t)4pL>D{8wR9Ry$6f2BDj}741|3 ztVD#p>BZjM>WY8`k-LbAFBV~j)Gf>&1{t66`65;~<4YQZe0+S7SVeq13^KmXa5iR| zoVs-;z(MK(atLcuH4X{^A?jzygV+r|Bh<)T=++FpIH*+!ARu2eWd0vf9W?_C$u$U2 zuN!JN!DXEaYr?O@% zdME@pS%^Qtst{RttO{;Mq^y_^@GIUoB5&0vblX{!bj6+p5JD*AAx1awOY&+cL=;mw z1QjC80o=!Abo8cu{IodjH|2S?x-kiP5W5X?=qmf!NT!%#DG8xPWE=_-x9Gy-=*I^C zZ+!4jlUz11?=nkH20w}}#@59%2l(5i>Sz{KK1BoMLQC@v2m<${KpY26CCnueYlQI# zWaxl&j}9h^f?HPxEX3x9jSU?JJ&^*6t~W_5O99&D#GuzCc2v3RWYVR#Y*c zFbLZqWMELbVSbirrxhcTNWnoszG}XXTV_SNMA)!RzQOUSIjS~6ZF&R{SbNKSJtGhC zi3=vh_$gw04Co*8o(mn#>e3>6!(6s;7w2UsthfRif?Q;($PoW|bR$i%SrZk_U6qVES}zSCn~0M}^SFbo}8^u=kVT^Uj!-#`)US)ASWG#V#U9v0RLW^nC=_ z<(u9w67MjI*(eA?GQdIVWBl-duJ1jiB=9zgG*z4n2S_NUR0!Yb_D@dRV|q)eDVtVB zId?&wQi%ckZkG;iHd{Z=$Q6H)oS0Sg4jkUmBM>AW@lVXD411|R<9#Ue>|BTA9vqJhff#H z4FQ4#6((!{G%>)P%*Et6C4dsAnj}+r1k*^K`tf{@W%G&B%>$H|o zNNEszNWUW|U))<2h5dI?h}bALG)e~Ar4$K4j-C6~RCZ3iXuC#n0=0xhiXjt{AC6PRVM<=BT-3(?5Bb3fUb3Q%@t{rnF|kTN>nVJkRkueG7ODvPwANN_^d&*g?vk= zaLQBiA{#33FobKO%kfNQQ4JRmJ`#>9PLSZVz-L^pO&U!;I}r6s-=BZHC$t%;L>*s1 z12O(A7uvis7oQ(_wPH)W2uz_N6cVpY6HX9W1P@khhgEdA;KFDOF(1lbkV$n`4DnyBw#o5*Y!QkS#Iv zAV>TEj|>WRU{E%L%nvU-gGv<`6EyAY|K*&a{xVH_1s;Y34W0R=^RHyvMNw)M&Wp;@ z5|xn*8U_SK)%?nI|9l2Wh^uD7XeM*wB^JVQ7TCED9XlG+U^5xfES&`@9)<)p#iRg! z$qrf$35V`d`CD@V=2fG(n>4@TA%jhPVj2}?i7 zN3(9i3LxYjBVqYldjFjKwo)Wzq0uZdyM?6kR_TkMnNJh zlhj45x=e;hNQU{9S>aeBzZ?xhVSd@Kk_LN;{0fK=3=`9S&HgTAja#CEhe$~J3eJAs z*!g92S-5Tm4{$lD$=RSqt(@o~mXHDtQoeT}Gu(HWNeRiiW0wpT(teCazj@c}P7~K{ zb;oES4`RM5bSK7FRdffcZdE905b~pz?!=6QMJm=EwSWZ?-(1lbpsh>L~4`QF9sb(YG06JR?HOpbSE+)r?_>)qc_B&}M)IK~llsEDe{*%BF{Y`fg zK_MFylyse-enGJ;hy;yRHa+XNBpwH;puqT1*@_BG$%9x>VEmWfqVP&n{Q{G6As)1u zG}xm>&Wa*azs*dr8EHF4Te)rVO|dSO?dAgQ~C=3$Tt64%OHKn&UX01Iiq zo(7|GUQX&RZN*H8hRK=^sh3DrIie2wKi9sBx>>*f0}b&BngJdo84tZes(!yw@*w78 zHR+xVn#sFObz@c1Aao0DJI!7rkD-dQ>j*4521`l=Oe95u)fKQL2>2nxY{11@DAXM? zI20tVbcYSzn-}cgD>na!?sTXN4&F`2BS$RJ7)P-mKw)iiTc~A#e3!oEU2yBvF!rFN zIRaYJB?k(hbw}=MHtfHS_j@DPF`9kk zszgt~Iq|PAN<0Qb{CamnZTghG(TftTIDL&#s=ERmfC4zZwU%ct-@DKR;K4G)s z>~Cx{BLIBJK2;&VSF@H;rQ~oB3JUzF z*&V+lcV?n|EK}e;5Mn_~Lr!P=v)qA-Wm*~mg=mm#s@TVPF6g4Y_Ri&O;kO*21 za=k%E5oshD-O^sB zNC@65&7tW!{~?l3(JYpLD0<*Q>OuL-Uh}83G-`^XP$D9+k_fpQ<`_$-L65h~_iz-q zF654$u^fe;Fl@g2r9< zqc-hU8|Qx_(GrZGA2~J3{dUK^F=jsy`J-t{Q^5oY&HJS$ z-a{2~ieAnU!uXM#r$Gs&o4(6Lt6u3YSy1`3j1SF;$$K}wJm5_UOQ2$BF(0uM3+>yb zc5**Vu>+BpGbAXW?%JQyz0bEIv+C8|00te@UGr7kLe#6f9t91Qyg`rNBOIJ0heqp_ zypRSZl)M2yjl%xKMWWR!c_j-fh!0&=%9ikY@d;^A`u}Kq({9Id<6Kj2$&#vap0j2R zwyfK>X{$8YxBF974yC-#$(dOydAQBXL-L$MC8y$$L#@^SKp)$`tNSN)1b`PC5y0k& z4Klr!Re4D6=M4ma05(RXr>s+#o`waL_kFqOQP30qG8_UCo=hVGQ$R*Nq0e~sMbPW& z2}lKnH^(b^qGYv#BS8T*k*jCnbk@3>n82X(L+4BRVq-XgO83_NN_s%4Sv#Q$chaLN zrHA8JFOf+kZa zC=~7?V348CuK!tn|AQ%}6*T1CE!64<0b2g4F99|+D(8ESi0fbyE>*=@aM}y^3m-P-+O%(DX81mGy_Fmy% zEl!@%k;kjieOkf2Sjm@R!*W5OGIh;`c+68Texl}IYxA_BLFgt-i(lR0&3z)0nclz( zB}gG5c^;Bk57_hyTM%*};Aw!z|AhW4l3`e)gGWU^F$eG%_h&SM{}8z+WGur~!9pP; zi4csXkov1p?~tXi#D#b)9R5dC3J+H}6cUoLX<46csh{~;wyCvEON2otM*i2nwH6M#EU%fZ&CgK0jeW++2=HW-|MfWLsB@RXf& zh@tm`hckXN#TM<)X4z`(7jtdV{(QQv)_ytZ_8t|XQ#vViA)R9=^6tUl86e>H_ajvv zOk$YOEMQM#X$jWSN;Xl2Dy(IMvX(yD+gir}H&{z+?)J5o5ugU&(np^QY=v(fBj@hz z1>)*F8y>CXa*ghJ<`A&f`*t{<$l{r68-Q$;Mfa|S2rj5=5+ud4+0QI6PceE&<-n;cx;D$FkRcad!_}&}G(}fzF z>Fy2B05^Dp&JEbt8;k%oSi2(63v7k8jsb44mR9czY(?HN0#tA9$$+*T2yAz2Jp)`{ z*G`7gwcYC)6TtMgp1xf!WB}`Kt7m}gV=nC_rbCS6JY4sf3kul2U7M`wO@tQv2^V*7 z*CGaV?-AZ?Afs=0k9daW&Q-UphRY1i{Z@5!YPie**O#{GP*#oZrHu(-df(FJy?fVV z&j9zFi+9t!${D86RHzIPkb@W0m|BGwlF_u_g~iFQ{!tX(?m0$dbi{zI4R_xt$z0tY z(`Wm(#|{B&ee9(uFRNMi*y|9W`gU_pv$ca`TFWc^+r8avIN*D$d7ZdGcemOhK=q|; zxsaE*buVR105e!hE7te5lo6o%xV{>UCWE=`@N|#spn&c3ZZ)Rypt-&_pnKjm9PquD z`3*cBGwkkVCV=U^>|Vc9X!r8q5Q?fpdIdF)==@Hfn%X`6Opunk7w;6>-BR)H?jzY| zwVlhCmF^MJGhnSR0b6zTS$7XG0Zba0-1p`)CIEMJM%N+n=3~0uVC1(Ui|jHCJU0YC zOqK&7_G$CelPz7F+UF}ID0YtLYrc9`2pbkPG&Ch#gu{prn#cU_q5(qRFyGjKiuw%~ z($||Oyfiyrs2U~#8%9ypAt89N`7w81g_L2Ir+HdQIT%C|hq~kC`6;)bU1sP$4%J*p ze}C3Jx~eryOaSg9YTN17DV}l|uXJ@dEn)QkYy^z!&9M#1r?;| z2_1lOmyVI5b~bU0@7DOSR9hLyC19EvDt zAT9g_t%Mw_E41s%p-cAYH~}h0U-i zv5+~Em#DoOt~TyMyT$tWlnzi=+oervjuGlmfd{qovo*dQ%5Z4uE&FGc3UNTckkV!S zv`jI!;G12P3IDY+znae=*nhFHpFWleu*_i=6W~Z%f$!VZ?OvS%NKilyzdSlsorSs_ z_8idRAzFI;Qm-wmvmYcV+z5HV>k|6q3SsHb=2@YD(1X9|LIYK#>ip$7prgdnr-v!A z0R%qsgVqR9zvmDo79_2(r5(%KLv=Y05)>$=yO`uY*IqKUgIVy4sQ>!kzV{d3#c=3e>{*mxe5&W+Z_hc5Z&wXiX6rF$m`>-jt*~H zrUxVcZikVh@sx72&C227t;_{sW>(S?xAU>fB5My-(zFJQ`5^Pza!W_^@xeUlNSonu zAq^_l^bzE~5WZr+ahsJjI1!4*6<`Fe>djy&61}~!i~i=s-~9{7 zeo!4pgU*#CrF=7_N|2#yMSyl(z(MI+{9&Ja)D$F?mSLDQA~G!ip>`ww)TwP~y^Ssu zhI#J@Dd+(S#q06MeF|1nTDCb;2{hEm$k2if5qg*6Z~Oi6w@S(|ffXOuQVs@{)Q@f% z^l0)*Y3<|31PR47T_6RFZAf3H+A3@T}Dp76A%3{U&i z=71|JWdUkGB@v<0oSGB^$3FF{AtGfrW5wwACrSBCUy%%lu0)EiUMUlrB8}7a>Eu`! zk-gFwiA6o?Sx`S!6_vg8A`yC`T++mk65Fe^cwAX2OV)l$4hN;HF^8#~(BhppDp7`M z@JPtYNZ>&$?cGe~Isos}yYV#Wq-`{PLr3|mMD5c?MVezcEew8)=$i&_7g~A`odx<3-+x>=Q3U z8?yc7pM_G^i0q{#+K@Dt=7%hK4p#Epe0-vU#6GF|z!6y><7orWc zAXUEg8kS_mhgAX?1%;;m3^tn;z2WPQPjUw3yu0H z8emXqdU5oH8!{6*^}V==gHjU#+zOH>a?fRbO#v;}31f01LG?PILFZg7l;dxOgkkA$ zd{mZa0)gJ-3x+s^Mt#0S9F&@LsLKfJ(?KB6n_LfLZXy}=xd9q(66$NaL&5%3VSYFTLP4R)i7=)nl2M-%ph2e@cZnluLaBb-rQty zB;R=??qF?+Qz063nqCnNj)|1i_llSVe$&SL!8ajM-^K?RRFYJvqjvU41(Co{O07OW zV2@Ip9wdse5>eNZ=>=z3$J|c{h9Hw}(L`$q#xt60X`K zKNtmtrmxK}jtA{)CqSq*eIX1(iZs>tg(410iRb9`OQ`JOIYvRD>8Ge&dG-Ai0)gJV z{qkaax`pzX=0h~O4P@)v?r19RYzhEe$tOAwvF* z*oL#RQg%WC{Swn3+`seW@rwtKzrJ@@;0>oBruY;C{&~-5Wd-l(mk0L)17zoy2lt;p z`0DW&4;8zkUlI!F7rfoiUp#sGRKX2r0ZOj`0`@s(^M_=+@V8-IcuEFBa9`Ye_GnKo z5a9lpL}^ov+P7#}aGn_JpHGQ{Bf1SiB)=QcKM&%2q%|1w{%wIYEGkco3;-~%Gn3Z$ zjcCR0XtJW+x%%!JOR#I|cFuwldw6(C8p8N){_xL(_`V|^PY3EIGeeY195Ouh1W>)5 zx+~h%&a?ySiTa|Fu0(zwHgZYeEg$N|yjw{K05F}E*$K2At#r?W$nnLUX}hAkEamR^ zZt*37fbH_0E>`0^6w|rqj(Hylpk8H*X?stf?{n+tW?P!&rY>j_RJgrpwh*V*cWW;i z2FT7UG@Uq82LyHWN+5vBUKx#FO@`xs@!HsKUeP3|{E$_)@-)_eJbS+kJ>>^r{nMcR z$kRR-h2vLUamk73#G_jw=bPisJ*vb)5MU+uOu}b$_dN#+95r|^svM#37B&3yAaZPTpGaf7#kK&*n6h|PFq^Y1xvn`Gb)ZPMx&{I) zg+JvWes_O1L-+9Kt9|`R09YBB`}*@$?$1|y`;!T&rN?=bu8bSx~4uL!1b2udetpXAG>-9 zqAOW6KExXuWkz)@S&;#@a=(Qp)A~m^#4hc`cI&qY4EWq{;V-y# z>}N%+TfaqepzuLZ@W)QlzMIoA^^daiG%QQ;nxe;21t2uJAI(2$6YJKG)+DI#8$EyL zI`Q+tw7;fv0Ynw;_C}wxpu`b?z8$`n{nl;~AOOJRsO>+J^TFMsHVBG3KH2NNh^USL zYDoWBt+?o%eg=RU(oY}lnSMvmRDE!4XRnT#0BT6Tc53JJGXTsGSx#1qEgegsZVKxh zSsD!Z9AzmV-50V!=oV!g2FN_xL7(!~je}Qmrmov)M*;zxTQT?Xi8?a8TPqe3;D*w+ z)LGcMTsT5TUCGyj3Mvsm4W(_Vs&MDh#sDypehuwzX-ef$dvf)1HKF^+RPVFfsC`O- z&7lO-;1r!;BI0`I5*!$sJYMVa(4FiVIax=b8gd~9t@kYz41l$vq-j$-m$cN*P=nv_ z3Vo4joold1z*dere7<%epmmEn2?T8R!(>es%NM9_eh2_C`7Q6|L~TUq_Lk=!2aj#! z50*0GcC#@6z~sD|Vp<^W*>=mThya&ur4RQTHwXa5+;7}~nCZ9y=h1XBm#+)m^2j|7 z8#&5yTdwDRxAFGT9Q#pwV5)1~|6TaWccj zY_^#5KSgF*)?k-}5*(y>pe2=B(cMe(b~D@PkzyaeY52hl5ls-t@{g*w7_n zqSVzE?+7c&&_Vi#lku>U%sfX(e{K8%3+dpFw#%EAhjKgah z*q4i9Yr~``Asw+};XWR%=%y4=q-$II1P7_cWtJ13k{0gP0_dG1-VUQ(%BFC+| z4TA)LU~cIi>b;mAAei}z(T;Y?rJ_7|v2-6vL%R*yfdET6-eg(SE#8P6;+V@HWZmFy zF*hP$CzmDuP^P_GS@O?=c+C+{=slfo1fxUHv&D0^jytOGiqx69iCsf!CVuvK{qlK!C1o z@^kV1*`Q{K4t1mjc$TJm6}9!=cWEZqzVpjMG;457*T3r}2e!ALOfIsJx+|#?-BqQo z)V94~XEGiHjT@#B95SCk}N$J=os0Ev#>Xkj+sp--l?h#Nr^qQ$|J%Rv0`gt6aKjLMOvQN-$!9c?R zIrw1DC4a=tmi)QT_FD1>0&I1){vZqKn2hCkp!-_C;eM|SC|zrPK!6+aZnf_+IKL^m z17sfi$tEnijs1uz3YS-fy<#0pfZ8hN@`^(FYNb|ab<8Uuka}nB+gUbH)zR8O0M+?a z?`!MmQ+^ygZ{<3h!su$HCxGhe|63Zak}KdlmQxP^lgsI5NTUVI6V;39R!$p+By%5R zUosdV^JomO&yan@Zlf{&c@Vj@#vO!d!0J|7BLZA52ekM#8#wD$4nP2v)4!b!*89xm z_~!*Nv$C5TeS?HhF#NX^m{7sCcT#i^ny{&XBM*#pU zIluX%{Wd^>04k45@Mqk(ZrAu}4rWuG2g9todyYUtB&?sQ7Xv;q=x*V7*_mejw{ z2PJ%Uc05ZNnP7xM^4jv{$#yfD(!o*Ga~tJHTUgu~5MHgo%fx6-aMb5KRpGi;EagG$ zGE&B~t$gN?DC35CAUrRU6=9IMj-T;2li8A^xSSp|w0U4;QV|HbtN1C)6+CEIQV2pO z7I2Wdi62r2VHJ}mE1RVPluCy}LNYqjeNWp`X|7cY);d!FGdUW2UQAz&``KGot(*Wt z?gkvnC)ZF-8@?QzsN@;$7yv|MpCmSd)4_%o;mmr2)$o*DFx+fcvd3%5KtQ}A{t`$i zenv|(yyEd{Oq(IsFE@*2pRSmsh09~TaQulOm;ooXTi~$bO0?ongI9w-UG^;MzNL}2ULnUC|!!c^;uBg)x!}`~)v&6iSt}Q~h6k;ijn>=E>0;hLqQQ}&+$wRu zx?(K_6PhQmuRc`EqhL#4vApz(cu$Dm;n<(Q8DoIa#Q9z}|}qe7KRT_$@AJ;WG*nKc;h4 z@-wIn6KwpPHyi*U&+%70kD`xkG5A_g!2tL@{x;uKXNWNZD>u}gU%no>qYG(-L#|k} zR2h2KJ0XR@-Udy>KBClBp&62+^_svcbh<9^D%}MVUR&s55cg6fY`2UcH3aXS=5G*@ zkSoi#!|BnA_5uw?emG8uSwg%A1R)KB&h<=(CTN9}rBAX;ig{4G@a=X%v4*Y?$!35J z!7@DTQY1m(UlSkGg)o!3JPgn<0@bP#aL__p3dgC}r9~a8jsN-_bFHdS#)(YXy-20{^1m%if%!Bhf0*^hn_=I%H^Z zIA5hSq~%($=43FN6|==qnhOaMIB1=ZT3dCen4!TgiZBOs_>AUG__s&29z?{Ly7HCM zpmYi8poQWzbR@?y41I%AQhZvGJx@!t2x|4{Dc#UHqS;w;MGpV|a@!q^n^;1yO;&(Y^G#r~nca5ZAmpqHx#6 zwEzM?^%H%i?og}ulV?E%si4DQ^cY}WDgp@nb3RqHCS)w%O=F>`% zL)H9oBu5jWh`9WEJUQA*RGKN>r1R4NfvZcIKL%+&(vlIkS&jl(^@r#IOSb3b-%2g&952Wlv8kIfc#_nHm4dEw&nIWzASV3MW8)i=; zMJh`sG_S>9^NOe=-a0D>4lJ>@?BWCnwI+r9C6AU&X~%;MJM}4)OlW>0QW!P+qw#by zlP@ra8PW)o&K1%?!-A$A3JTS${JCq3S2U?l zy@-LlL&h?i0D^RJ!-G~6Fa3F4(Z5->t&f)_GW44kgQn{Ew5@gn>RXH=8WuEBi+4;6 zwzT0Y#28Vo>!VhNg>utE^G{-HDP-$gXvu_T<8Sdjn$fhgTkr288W#LrEZxb^xP=Zy zolY5}mzeRof4W%6ovHs>UBfL(u&-%L_$f3u2W?9V;IcX$R!L_CEw^Ncc1C?m#_9?T zby*i^P-sO<+j8yw>Vm*Rx$(N&q!<03h57n)7r;>eLAFl7@ItO;^Bn>}s@lsHuOwQH z!@><(R<4#J7*tPL*X^2Y!)01PwZk z|ERtflPZ`v`Sbg#rfPzoa9)RR7X2prxsf0pw-cAi8|Zi)?5cD{tBn zIc=Hma?g9`YZOE-HX_-n{g&ETl5n6XupZNOSetdPFe_|G1Dc*iju3#!X#R|rYpGQp27hE^ zPf_T6#-s)<=S|MjgfH*gp(NVKV2;4Ad4v@-J=4|7_g(|^x@~C zXjfY9IG|sGU+B~9Ey>acD7XeFXk1kqi=#h@bXXddb{VEYDNPOa%VZR*PmM#BG%(+9Q!=a#YCFBYXn7r)gZ!4DWOP(nS3_2eM9iC`#Tc~Nf81HS7RZ!^O3_qXn z;BHy-)tQEDvuuig&MuCGCwK^_LW_MuJMOcRc`_sT~ zuHWFp17a~1NivLI7n0OQh6SH!3q&3Z0}LZqy9|(E=wE>TEQ>al{!?CLRvrZYjld7; zAqz{(*3CshH>)UMo2VlK=0x8=|nAT zsp~y>PD7{IFqrlRv|dh5&symISs%?)4(ONH{!@zav?+C_WooxnlsdPp6;AogEVYf954 z$8tj4GRBjqP4b|IdPUzJtX?%NsK9@eG&|BKCg5x|0 z{3{Kgmzn9^O_siLQ3EjOBtGMSH{t^~MQW;j*5IIZu}M=VV;K)CCdiSXa8)Wy=En<> z7|VNKtBRvRDVFFBZI;gBUR?~QonL_k71UBXu5p3@EBn`VwN&z;c4jK(8BK#0<&f9n%jS>t!C0p9rgb6-8q^9l8m(zE zwGt&QL4@XePIER;_lp@Oe%*sj{x}4v=hpMl>1fq^eX7P6EN?shQBO`VU|&qwq#8O`h|CRDFWRjQB`=b^MK1|HNd zgkK)77BkhUu|%=lg#iTq<%GXJr71>H5G=93Ea6#Dxf)a`zEMb~{mm6^S+0}PpoB6( z-;Kt{gY9&~ZTDg;I|7!zd{Iv^p?a}N-|@F2xgo$36^dGp1O=2jO4lhJ+kEtv{V4Lv z(s~wk5?-rXcGBgZYK{lBTaEX;E&Q$C&~KUM-jO^Yp_!CO*38mpX}eqHMCuYH{`_!d zKhlt<8;u|7sFBU$D8H=2GEP)XRtkh(QYJZS738W*Ny2MYXfaPW3w7m|Wu&7Zgf0JWc zFgc=i@QbWk)s;U5L~5>uJfg3CT_8=7JC^so++_j>tt4%%wOP0n3bpFAr9kMRU8ao; zH1R{86jF8Va>FXB%r^^p==B~dj@70j&$8N2r8&|{cx-tSJkP0o_Qm77eR@F^GKR>)&&HHR2+$WJI$y+Vsr(t- zV}QRA@yqpiJ6aT$3R_+ZGZjID*rh1O5oRl^ouwy{$pj7rTxs(qjmAGX?`g5`Vy+tf zuBELAgye^urZ8?6+GQS-%QnPX-sIEdwICtu@@+id&Rk`h98ZQ6vZX`2=37pK*ac3b z|C*Lui}Gz*Wtk?cp#c6d!)btrHUhelE509Ma{Sg^vLm%DaWU0ug+kip9skM?Kc=n} ziR_wpEl9{-F`%1W_t|T%A?8frvPwq&!)LHH@pf{F(^Ly!*I?I^?wzr(um1nE5yIUSH zpgYSaLmJCEUC5rAA?oUPKq~hU1%aDfl_qQYg0{#l=nxjVkU~$+S(Ys~lo%xoRH)t% zs_yuhl9=)p);am6-8LIbli6-IUuysLPg7_NUMKBn|_yS zXlTDerNGcmgGBhr>EuKnBDY_VNU2awgGBgVZ*<)+NF-2bijt#u*X&tx7zdr}Y007a z?@88pSVl&76rRY0Vp>+0YZ{Z4_e1YjRs#@PY3i0S5O*E-ZBJdpEGd4w9n5JToO-?7 z&z}twifMC_yK}$h#PgtZEh#HSXIkF(+MOAZ(4#uQhuin)oY2>cl^TpNbUVW1p&uYo z(4dIIU(o3)%ie^}oO2_cgI|g8X^JS3lE`J$ovKIgM3tyey;Vx<@K;jSGM3r6tTnNW zh3-c!y8Yp=J{OL*?8~reJ2doL(k-_kk>c)M^bjb z=p?X6ZHul9PY2U&;uH6xwsaN?P2Uc)4cWF{6hDrZUZ9Y+t3iXN!&iO3IZ~8Z%an?@ zGL=bbP@=JOmm1zeAtX#=T<+0S!ePLso^)i>nzW7FL1UR#&(q-cq&pT=Xq?We6x?K4 zqn%3x5ctRo>`|qq;KEULd6Ckfbcv2PrGqnZ^&0Co!tqNbNh2fUkdX{RyLic*2OVeQmQOo;dyJ*9N;)ha^-|@C| z3SX93%WnLgx`GV#i-|fN!PdE?wkt9XD&JpkWhF3N3ZVzBi2&UDYq~&qn;#`)nZI*S zh5{HN0AE?Zow@d?hkpo%Sn3o2UIKqb9F%U*ZOgsBKlPpuTBj;SN4N?#OQ0Y~5Gv6i zcFT)}qt(Z6hU2BX^;O7OMk=IS&V%4JA$Yu^HMnw0+!D--Vu1xA@5a&iXiHn9r_;rd z3%Qi)?8b}+v7fnA`Q=j6@yTHLmTp8IEncsWY0)EHHmJACT3+u&B6p)<#sy~v1rp~A zk%yL9ETI@FfL~@fEe0BF>AsXxeT1&1flT=V1c~>Y1oMUMhLFGy#^UZQj3MDFe|JRN zz+NtCv3G8{rK6S76$-XH_i*dy7UAg(@9G`_g2W|GNjTX#%K*#rhcp=}2Lk6=fPw&Z zv5sXI%Mw3RdV~OdF`y~FWTsm>hzbr2@UG;?@Fhx5*OK2*0ROSKU6o41l{oxdES2Lo z1OW0Te??WSKUlw=4^QYoOZJKkPo_2{5h&mw_cxHE`CIBh@U04q6`x4p3hPTMt+ZB& zaz;4rnPKWJO(5%^#fL#3!XT=VbV&IdTA;h)Ls9kdp_XxLZ9@SGS-9Ob2(-LxbVLoq z{%+T}Om03}Ehe-smZltDjl1{8RSM}qSAo-VVcA)+<*6uC8V5NSSSiy-Q@#@Vcse+d z<+p2KRVc`O5{e2he4u~2W!!v!?|8LZtfZo4NJ9Ctg$nTx%Hle_TXxg$7G@$uU92Q; zgnPzCrR*9j6AbXKXGEWe3o8`Vf9@5#-vSIJqW~CemxX4dm z@Bqrd?jBREvG@Gg(@I`r8h9buIbJgI?-wJovwnG?b(7ZNDy%i z1nuQHWV>9zLC&?y{QX(&<}d&B|6cuz@BQijqyPDH*LK;$he57g<_8LmXlg^(cDV%! zS=W@%Zw}RzC=_H|V5RR45m*xp@UE88=LZa|IZcbHV3KB1*D6h7iUu(kn&|8OLsNtR z?XrG5=L5lbhM&8^BKCFdMJNwx}pamEE}dG z53S&CJPi4)F@){#5A{#oRam@%SS0?bsS6&2l^ta|%(z`NgBE%SeakRvn;#N=#zL5T zRKZ~R3)z*kEI*8(_LP%yvv2leDUID3z5s}H+s0?w{jShRyUKe$;+6ZK?AvCSa`IZOyyeqed3wsLOQ8h{=P@=guWcc*{5nLEQI-` zZn~i5e|#Jm{X>*9TZ7Gy!^Hvx4eqP)7d*D0C2W0tEdde~_=SRhLtPU3Pj-%~WqZB{ zr0Gat(BU^!r{n%3d}SLJ)(P>vSpP24ywrR!pTDJR9cT(x2pDEl;?ph}@h{Ip8g9kU z!?ZH(M5SwZWI#29w}_Eq3JTS0bZH(pkiF4hGvHQIZ|^qDOaT!Da~{M##xMEu_qQ}K zx}~wEQAyPhN5B%QMKI*A;t{It;h!QW4Fh)|2+;%wsq^?D*9akED35qnh&T}NF(vfV zlKW~?lHefq5sd~eT?u(iUFXpY`fITotlr+ILL(Ap$ugjP%J5eK4E38)yTKqNjp84PUOjJYXEh3~~0)*Q2_|xXgBjH#>Cn_@9&F{3FcwP^te zISPT0<0GZqe7vYVmR>}QE%t0L0`kbv!e#5n)tBiGieX)&KgeW1)Ii329xPl9cOE5%}KssNDhVt zzmyiNPH2LFR%o(Q#w!Zn^uPUllJmvcZ`Ex+*`WZNJ`pw@O-}fdQNxUf z1Lb9oMI#cbA1l@6h6*_iM$@j#l^laLOlr3ZODeRf*PP@l?cs~sszo*RdRiPUpipj4 zHLXe!G5j#8W-7G*Mx~l2bZJ36<{jvm;;{BnnDM;2deiAeZ33`Jl{~l9xz8)e`oe}i zN?wYD>VK1da6h5NV7!LqH3d6bCP^_eKjGo)dQa?9T9FR@4 zNFr?!_sE@g0a)~D!B3Ofa!M=+Po*^~@O_i!>Q6*oQwG!h1ASVq)t^n) z?kpUWMwizgjt4V2o>^b3b1w9ye@})q z0X*evv_*RB{hI)x_@VGGy`a%C)U;LmXsa$RHjS$koh+Hqm34}Lm)#<5iDl1j$^H*Y)+dh=vtCk?ZoO;V)`l z*Qb3tRb;EG+rL*g^=IqAKKZs)e6C$sj@57Nph-R%4*zf)R-z`mb}D8E>vZ64BbX|x%W zj*OF2=#Q(TdzlS8WQ>r%eUl9|*T;ww88*mhnf#L8I4DjGU&}yMA1#Y$SRrd|@>73z z8%Xt~ z+V}JoV~;qiu~3)2)yBs4%gK@kHfggI^}Y)6tiD&cTLX5r)#lW$JiZ;GHs=bksjW8i z3}4pEyU*kpk&st2=x!LXn$);m+T+48qT#QFpcE86M|6AyBc0S*xZV+Mkdw`MeV?L4h7B_9 z)Pz$FJEi5YE49|FKJAhT-JgrRr9C)wFy+o6C&Pkhhs;M6Ti~!nd%*8}bZ=dv2eXd{ zQYLieNa||*?RG+)ej!;uk{WSPlOw74y8qzby?gzC`t5IoZ2d@T&V|05DTu#2`c9q~ zRzFi9kWiI1EdFG~=Zo+`qte~=HLOI24S%gly3c1?tuP)Rtw+U`_l6Bkt!2Fh4{LO3 z4?jQoZX!pc_9^Wt6S}&-hu=^$vVBwZ!9Ml92!|yt9+-YNllL$lzypp6UD=|?5;GeN zi|Ma#(TiwU(GmxW!wmuO_R-d^T2RQ=A;g(lbS2xm=McbK~WNRt5Q7 z7bUNLMP@r6_Q>{C{@#tmEMLmiIQ8vo3mlg0@{F^@KmSfVlk#DYT&q+tp1MAL?Vb9y zN;?E#ksJ$Zd7$8>`mvzh8nEjhcGO0Wxgn6zc=(3UN{`_-6cL}u#fv-%cZAfYOIkn|IE z3Pn1QTHk}rxzPV7SxR~Ql3lc$xiD#uzQAq~ zi)FkpjJmJeH7&Z%oOLM6G7(s&N}NbeI*RS`vdw>clsLN}ES9rTvP{saFfTb8vC6RuuAq4vq#*py8l%6GwOSZ zyER~!Y(cVTXh#CQ^Og*&kJD#}z%to?%^qq#;N!aW^1J%}Yr_pCuK55$uu#V3=6BhH z)csKl@#^F9nKH2M4FA0zOk&2;;w;t6JfQz_Ay_DTyzY0QvnOh1eUDclq53<~f`pmD zIMMI7WYEGcjCB_04v(rkoOV6f`zwRJVQ)%ln)81i*icKUB}GGDC5$YdFN|9CLhX%%=)j-R{H$mLsqWWI1x{rI_LLYMZyzuE95 z?7h)=q(|ROCkBMa!z+t~LFGbJpYXLCChK?c>%2 z3Bju(o%yk=mi6L0lIVdDyU~cv=unl?n~5d(x9O!!NG1-Yj_IKtnjj&VIF!CUtV1IZ zVrl9&wCAFq9bvFfaiRAiAR&037TJ$`gEhrdb%Lzn40QLbk1Qz#>?`hjI_i%^sif)^ zMV3~9v5kO0LFKAc$?|WiJERx~wKP>+O6W1s;MArHEa;@E z3f~Yq7B%F8% z$QK>iEl$YbhU*U8(@j-rIN*EB>5MI1l)76UARv3oXN&n_L$e!lhhulk8xHtBj>OM( z`RpD?1WKyVUfW~etyH__yQ>HkRIa;xO25*{vGmAgQPnhPdB250iGG&v6)Ex;LwXcc zLW+{F4v->6gVu-Md%oAfZOU-Dbv0h~<1C#H<-;Nqx;}2Lr{l4FvFRSSJOkVdE8OvzYDjP7w1|&7>o48kBG)ZL@KN9euJ`$+LY7>y!gRD7T?u!>45% zcpr22Hg8zBf3^vc3=4j?+k%?gKkQaGIxPA5*_Oy*Xv6-2Zl*NvNG)Xp-jjA5q-->3 z_~R#Kf2;?u#)EZMIv$_>l5n;&5;m;(tFx@gN{C_By^AHHjKn~3yqIr#$Aj5qI#Iic zEaRmiP&kOJuL27nT#Y{9uh}4304#mN-IAUOy<3^yX2G_KfN0r|dA4W(Lpe4JYdV`I zjf!+quxdjM`lW0xgP|Ymo&FiOgeU5~sj}X+pj5$6Y;4e+hb?Kg5H-S>Re4<`gQ=xkyrk5KGk#km$ z=81GDC|rpO_=ixj3`D|t(v=YhC0`cV99nA~o)KD>35Bv&0)*Q6&0;pC{a3y0yd_I- zJv7brz>v8e2YbXPrYS|azzI_qkX~d6ZGAk_y@Dx$H)6oU_bToTW*~f*@azHQ4acyP_=aBbXo| z_+gX6=3Bb$THkX#;lQ@Ufd{GEPRg$#3oWSoM7Gt|cpErP#4Uj#{gYIhXaDFd ze?H7PCSJ5OmW^DT=r$9I0x-pg{_rUOGTPA3w^SM46UFV?3 z-mERqE{8a^NQV(WD;nWBB}*)8;m^vNL=qA($G1))8FWGp|5TsOV;SDqWkP~2%Fy*4O=zT8cDkz}MPJwdJ}eLhN$l_TGB4kdtlJAlj})KuGxpG5mBx z*Xj1x^TCqVG|KTC!_Yx$b5^+|8R8c{UkzT1h-I0| zQe;K|dx@_4*wBTFbdSvXbg-1uiI%ro|F}0?p`dXtXz-hlu-!6Une!b6Y}n5q(kg4Y z?yt`Nh=Rry*grm@#c(wGE2o4kla+;3G_bPHa-ps`*hj~~pmP!FImsuSEbq&O!~_x) z&PRo1#ln#ipE;nv2f8dxmIW^bbaPb1`{2Hn)xc7D3t*za;tPR1oUG_oU(^B107woG zAn@UDH;y3imifv8o(DOi^;cm%e@grO$7=A)GHltR5okyUYMM(2H6rSE!nzuez@Q^j z#5%Gkx=)Hc4N6VUEao!fYjcJ<8J#DR50USV1Nvp;JAX>2t4sSWOBD;b9$8R9G#ZUh zsAS1}sEbA*K>>L%8czpuX1Oj8JO^~NKy;G{-IO$xPO58xA_^L4K}Wg})wQ4w12&@G zNcEBGq8?K~ZmfPSN6TxiCJfl{I-L=cx5#x~kEoJH)*9Dqh_)D!h&MYf=ELbkb&={K zQA$H<&}yo4nCn_if`E%C!TqAVKT#JY8WvO#CHNctT2>b&K*|&rtE?kgsSrp|K$+z? z?gN#lh=RuT5VQFU*P+jZEaN(P+?G73A@Av1IxYXzKt}Jnyl+@gLGOva(erL~y{7;I zKS@QQcT=4T)wfAi_)Y6TzH*t|%v2>Rz9fiVL3LUJ3m!vcKcS`JLZB|PI}F&U>8Jis z2Z67vhaf=#z06bEoK|pBT`x0%K?hzsT~sX7&8wipfQ@K=DhD>|qB%jpMO~Y$M+?*{RK?RdL3XfDI4v+?IL~s`F3)fsdS>O3UkV zmLTAw_2J!j(}fy@tLx1~6g1%X>}8?O?+ybt?59n$llfBJ4qIn`L_q_wr_>Xxi#;Gg z0i|a#r~B&Vafx-MCxF1myUt?%a(sw)9nS$Bk<)!jS75JYBUTqV6Bu-^gD zhqZjKvaE#3BdEYZ3lV8CFA3E}q=p3*^vf1=-z~^{`gQ#>$%9%`j(J_X92uxB$DRZQ zM5(15ajlC|1OXRsqq?J4_cqEDkP$!Vv-~xsE`CH5G~jpoB5OYD{0>q8#d zKm;LWbv{ttXo=^59`ko0Lq}!)5(VU#zYD$qX(2}(D)Sd8Xv9*#72VRxQooJ1qui|M z95XsPPr&PP6(m@GBSh2{O*>G(W#wNEg^*<;E{~}S2tAY{H}@!H>PnI41p4-uf5y0p z`@HbhRyS^v(vT9gdGsAEm&|%Lb!}b(gHH6=gie}1gvT5Qbd+2*(OXw?2?8#>yV9-I&lBQSX4Lx-|ONRkFrh(Xnm(I#GG%)C(??>WG75?h_egOnN>V*F|4}x`d zBBenI{WJQG4r-=h?-MnvRo6cgIB22gL|<;HRXy4sAFCcsUC&AKpoUt=-^z6gb#cpc zK>sjAVfys-Vl^EN7j!4lgbuAyqd}Hcy?H1uQK6jFpEn}7RM($3F$N@T`N~nvejC{_ zKeELMmHFW~@Cy3=eh`hqyKqfi-@jo&1#PeUhSrtL*Su6!NY%By3JARz2Pm4Yj%nSv znj5T)0|^aEF>;iv<5?fcd9R}=}f?^X=nS#iI3UXmHp><9o33a*PIiREG zzFF|3(II;7AVC4W2DczhzRK728UhIXm;%?J93%yS1O-G1A0ZCZM@(SQL0RQ)g2?E) zvg$Bk-wrKz(*>cE9ann)t7QRt-frhis3J0{u1H;EA_%xBQ`;pU-YtApSEd38eAKzu zlacDK*VQ@C0UbTU*K{Q2;x(PLn!PdA^#~;oYUt~RZ}TM8^>qafTG4MSI)7bcOQqi& z2Xyp4U-PGYIho&7o1Khb*ZV9{p^TdOhVI}L$*QZF4x`y`55smCus_8ORjXNJ&~MMT=1A#1eP= z+I;*dq>J-a_r6F&Tiae;@ zNYv<`D_=fF)9&E5|waH!DMur8b1&Aafsdcp=qM(7uyQ1(um^!}-nYzfE(x7xZ z_>(TC<5^a^9(_D~Inaw^EH4+iCvzrL5tEw&lW#z;i^-Y@#SiG_sv)f-=jhoxn)uVc zXsS+yNkfrIL9Pi+KagaIUr&ERH};HA^j=59=JS-1=|(6dZ=^pTE@pIl7X<`Shz!k7 z3duDi6{6SD-&38O&~7*(X(&f2B9jCYf+ANr2+U}9BcFZPH&-PY;#X2rN7Piwu8X1k zrhq)HjtH@j)8EpX6l#IjG+#^i59`-l!_}uLE7Q&3FhMw*ngY5ggz}e0uH`z6eVr}I z5Wkw*Ol!zqs&NU!2KAJXr8*!XCu;0$vRculC^DJ**4PMzpclud+*QB9)kUpQK z&jBGNfiD8R# z1i`H>*j#zE5W=#{SFfC5p?o`8$4e>1QX8*&==7zJdV_8PXgl zl4q8D;jl<|m(ttjb5Dh2Q)}Gs-Iu-WoylcOd|-pFafVYtB&yW{&|!kA>uY-R5@|m~ zU3X9jHkAx3*`AHpbj5SEs!XbaLiJ{J&x)3my&9JywXG@k*{nrVCN#Oj;eYKl3+c3V z;Myev5{gaJz;_r6kJdL04h4lvF-`pOgJYp#7^jMlO9uuRRGMhWUwl2E>V@yNj$z4f z2@q;Gwkvm5B8`}@$36GI{cpQ>T2hElUHVDHLiJ`*RaQR3Ibwp+E<24=kyphN-)sPURm09ldw#&%<*6wof!L0ay-Ms2iKGjvfC6bE!$bC zm-i}4MOtn+rejOx@YDV^nnVH@DV33gzIVq0%a@;n=msuyRmomW`BrVwARM4%2P!mW ztfsWOxGF>~FPLZKE3mDq>*Z7pd>us9W1%Wz7NvDN&r`d9%u2vJl=BoHNLi-&BeI6i zEnbbk-Hz9r-qCh49l4h<^;&IjD}YL)H9iw~q#n@|KjPi%tHm3=_Q>*9AQMxvAb~?4 z@e}%C9H8U{!|{pAp(PuX0PN6tLGMSWJfikFAw`WlOkN0ln++uWIez#KY!GtkZLu!X94+$Lli0>#5^pmPliL(nM$WZ=}K1gdL{kftGC?_;QC!BA2J(Z+VF-+;O z;JxjZ4!h?$EFt*ovo8Rl2fauHq|8DS*^Q~%!t>khWW;L(=Gs)lMmzUxFgBsU-uK=2 z{6D`EPB7e1rO2Le0Dvdab8n9jSZNm4y@n@-19!-=ouXXjdWr6xJI$ws_7PAOBKN zsNQUT;LeK=e+p5C)li_$kH z!}Mlk$W*38=-r6F^>?Ir_Y1cg28bd=3A#&d0uqWB;*a?sLdh^d6d#sK4h4m#tnkNl zvjFv!hpMk!pKp>0&G%l@HBr5+O*GVE_h3j35TM?AP3Hoy#>X7h!#{@$S}-EKW=TrG zc$pR^M6czdvdkNn6#>yA*zDlGfM0U=R_-J-tVYGdLdKJjnv1W;M@Os0YrbxeyeK?p zSk03>9Yh2TDwmSqWre`7<|}zz%Qzf#C~u-Zf6=Gqw<1ZF%Gw}GS`G<4Du9_@e>0GG zgBadB6HJ??!$LPrCx+7xn9hiV-X&U^PapQ~OzB?6e^IBXSi+Kj+^0>Upm7r#i}{>p zh@ZJ#`Rdw3OK>kpDIydvL(z2ubg~Sat-|vnS&;>mt6Jrr+-+*9WrZ|BhiFhjdhXKc zFqeAD&pn~+oZw`{4lvY;y!(h6VuNZZn^GcourH?`$-JPs?jp4KL@sx@n^&NGg zu+-%|vx-<~e;Bmy&38*1M(PUXu|$RP#i+cU>4aKZmpq~OXsrvApnwv|pXd2kS0Wo0 zR6avG-YjW#$G!Qh$!am5(Pp&g^dhW#q=pgok{jF5umKVBKFwI1YG>9($cXx{pMLKz zzQ_LuF=X6B+AyHC>M{-_t?+~z(ZeW!1O*h0@VN>ibw#6LLFHP=%YWUDS8pH8j~6;I zmd;0B&IJxyAEa9CA;j|T*P5k3SYXfRHp6WOW=?ulD z+Mu(nu7raG1ytDQ<4x|fx(XXn&_K@M3+1o6oJnBNxj-4XrWc=4@5}MH^P+xP|KMbt3E8@49xa7ZBJ{YE;eY#-4k&-lX%qch%R3ebQmx@Z>yy{(6S`#k zxOeK;2CivpV=(H|01>w%Le{XdEW$Rk>CfXIMKTQd6hHH041IbRqn$c5s5)Ep2TPfs zmgWn|NiAqW!-SufO_;gsVw^d`4~EfX0KNBvNz#gx4nsc1bF{;A+N0Fd*u;Q)V*TxE zB5W{BZh<9iD1ssX0UmL`I-v=!b$?BJPt<9(mcCdi7ji0uKNP~W*8Fs_q}h1>k4Uwp z1KO%Av5>wkq{9?O=59-~)he7qAsZ`)bIO_z7wXe;6WZ8&Li?tU2ejZ!j;k2fl_Dj1 zhPUuxj4XER)5$TNM^2Mz{R#CML@*niG5255#sxlqpcnq3_J-HyegO;VkKfFu zz0qREqd#|_JbJ+QY;)h)Rl2Sz2g~^%e-y!xzky%T3APh9BcDGv1YHdg`jQOckMuK6 z*uOD|WE+Z|MzzZaK8%Q|Uv8(rAO)j7$&7lzKD@J-abkr<|9)7DgbvL4+p;-NSBoLF9ro{rAU54}~>=C-yV?onxUcBkxCLJ^X?Hw2u zWMIr^Wlv4kp}`Wl_n+^=o~U$|Nwk(C?;E}olcEw#YKcg>IqxDO$&TAE%Nd3~PM=r* zt(SBiv&gyeJIJ|$B>eSh*+|+en1_V_cn79MAsEyW$ML%?9K4G-F2rD%>p{63Uafny z5@WFG-Q!K&p{JZKY%#nBE#G=X>|wT(VSvjj`Ln0I$!2xOO)!d5WEguo!vcYZ3D>x^ ztOsv;Zam1_B6JOdeL%#NYaYZd;FnHE$QZ_z@vxBbBnZURxQ`3@Seu%Z2eDf)h?2|0 zC{%{lLw#kjq2K`H86tI>4C%kdGw}yFgUp@0+NaUmm5M^fcL2`1U4|5OV3z9`F(I1e zcJmDA)k|cyVJR>YxXYFX4g*{#S{SgM7c%9sE$p4;i^zsN7r)hV*rUr-s5{Z)zM33G zGYnly1WH3jZIR4RF*}5$r$X}k->JQmzd75TYB?wqfV)9|&`@(&4@zf<4NoU({j^~_ zV}Lk+m4VQ^8NQ~GF&bdx?gp*dR>KR1`ILg7CPMKl{gxIQj``%R@J~@43{!U?AblDK zsq^3Qdh`LGvheHAg@|FDwR_epq!h3(xbOKm9akkCVd}BDkR>2bx6s{@-?H|LGeXB_7p^v|#8-01$ zy*GG8XN2&gm_8o?#vjWpH#BUK<;&DAGSYb?KI4`k_c!11M1Uv?hE;?SB83GqC~p7! z+^ z+M?^0^uEXk)eN)S@o{gqfJGPPROCtc zZpEiz(^J=L7Vb4nnMF+5hyaD^mH6}f6w6=eb59LHJOZR%#6jt&@rRt@v~_~T+TCr~ zUKW8;xfKsfuEqx+7hi1+-RVe>(hUzTB2A>^<4_E z=abZ)7j&sXyCH^mvk1!!$TJ0O5{4xrDT$fDidRwe)nTmPskOogqCkl4jysvO%H>k+_u z7tkQ$OHuVYyTB0u{V|u1JNoD?!?s{it{ebJ7l`igS^qjpbPYri0`xg&ExoMLIsd{5 zmVS2{e`rG8F#z^9)6Q19W=>ACceWW2jizN-YPUrN+CzYL4L{WUmz#np{z4xu) z{mRhIO$#hN4%`)odovs_H>DHZ45KQd?%oq5h`21f_hu=>ZPzSw03cnK-KXPsS9g_j zyJlI00PV6&cYC^K89xu;Rdx|xghy4&*@cr83Nn|ROwtWXr>6`TIY^C!1A)u@i?7D> zu{$%LvO^R?!zh+e5FkjnnDNzgaik7W>>4uy0$5jRzLF86Yo(#bfpaC~tIa);{;nm2 zp9j#{r_KWGY9BogoNL@49P1qF+PHfHpe}1@{pmto$lEn*0s`2JTqyi!_i0s%aH(O? zSQM!Q1HAXFe3|R)+2*~-J7G@i|7Bt7>;#XHR?6Yi&Q>?z@1+oKIetqg51@w0U@!2+0jUjtaiqF1hB3>dpJ>-4s~tM z8~{kyp7AGpcR?ZqXm2g8kQJWoY%K$TbhYZC%&M;Cl^zGq#nXp-##4SCK-aZ@G}t`S z$KrPF+JgbGt6B7+I$OGH&GH05VeRnr3mF0`taS{4U2Jt)?&U}1f7jTWV1Rf10r&YM znx55*3A^?O1PBt1Yv@fo?ax%Xh8O_5ey@{!&Ijeq)mn(I{a#6ei0ktF3x zGwfp&?VCbD#zkiT-DV)&)HO0U6u_G@ly_XK%8%AYGR6C!_4OsB4xr6u_@>p?OTlsJ+1bacc2`VJ=vdJI#WSd*k3Q z|1hEJbLfpHt)X4tI8qJ-T&wtaF`q7IHMgL5eanjwpk2Y!J*2J$kDmw7H4XHEdN=Rd zGR}?*dpy+v&Rzv^|sQ6OLe|j*G}s*j{w&Bly;{JOS}4%p9j#j&GbRm zW9`~Dg8{Jf>T}vzyq{M+0Z?x(wU7Enrq0#|2Eg80ihg@q>j;4Q%-YJ6syb&DJrAI3 zaA^OMpEMU`plgHEPylzdaH^@`U#O|=t^v>iB$7NW%Hr4-(%JcMlkrq`HoMyC34pqK=n6|MEWYgN!Vow0nRaRPT zA~LIMW##7qbS|I|+}bZ`X;&9C6u{kk+R&{iJsr>2wAx45-Ss_9k|5%$#>?^B*Nc@b z8(pgg7y!GMrx_0y^yzYGSwFhIJS7<5UHAAkEp3==#&YDeYxg)pfTni{S~hV?8(!Q$ z=z`aQ>^T@#Tt`G$ypjW<_ObivWYPQLi1r{2Xd;fn$>R!mka7b zyv52H_gR?_D?ZRx+@lkOHxC!;jE@c`&@tch4NX!l%T_denDAMv2~S;WMB)GXFusUZ z1PRzeZ+G5lUs9)OqVmC-{ge+(k?98zO0*;hO6xK0%-$@93;DWdSW6rje@_Rfy63fI zLWb^*RM)*MXR{lYg?rxk9l{M7%D1C3pPfV_>f_m9d8+%69a3FzvL@%++vDRgb%%={ zHyr11hQ~D>`V`WAZr@qVNBOP0hSl2;&J*1rp%y)Tm#%O=Sq*0ICbbzI`Z1{B7foSE zM@#;-LtQQw@Ei{dK83%-x@=wFQ!`$4FryG&TNGdk^%Q*0I}=1Kvn-DG4;SKz$3Z3L z_Iv%y!VAv9ggqM0gIUM@26@0pyELM}v+dO*>mtR4< zkiC)%*(TYm1@-tAs~DF=e(&GgqJXdXFo7npd?_oo35I=#Xx*_KWTm-7J~g5SzLEvs%ILMaCM=Y!*MYn^$# zU%k!PP>*HzIUU6DF3WDthY2wtm%EO8^`aUi)MCay&rh4&zpV*Sh{e|dT4ypI%($qj zveY3S(fcGZWLXm27S(Sk621%7z=i6E2thPdM^S`N!ir%d?U;24gXLgU;KPQGavRD~ zqf0YbjEId9jR35OP5z6)y1L2V(6chH9Ss_>((tEWtrlCkgt0@VDGPZd)Z(bdi&H9t z^p@8er@G{Bq1#>L!;1JC|AKbuF1B@}IP@A{NO1r{$&VS)C=M&F3cb<}@3Sqv(v%F@ zCR2I3J9~pS9Ll-78PALAFHm8=q4S#Pau%wwvWHO^tohIVnxZq5;0tY8)_%M*%i5G+ z+0E!P4y=t&(;(NSxh}>R7hD@Qv}2H6#~|CIJmX+1`kEcyeiKqNx=BSp`5X$c!dDL( z|9(^q3gT9QI~HRUaFSd8t7X@frR3Zjz&klFGq5+?(?%NJU`|#63+v8(S1OT#>*uw zxRoK>FmE8a4F>oh9MNVlQSuFI3)BHE4guhMd=+`V3)x`mdNbP4-t}+^V1ohqFY`;z z4YuagW^weDqwhZNefjU7^Rfj#ibE}1GR!D3z-L=Vg4x%C$X&X5vnXR&f~92y3qt3D z5FZgBa?~(&r3D-V;48G^iUP%8#T)wEKLp+|UKat*SMjfigVK%o)$d8wNvt zjS#6OkWl<6{+NcBD0SjTsjlHP@raVT1#p`>Z|}cT^6|dv0u1%W+v4jq)%D&MNGP5g zo^Izadw2MMMHw>84*N&FYZD64KN`+Py*o2GX=@0){FsM^=K;LM7v=UI@S#uCqoY%% zXhLDVP*uy&PCJZOXaPd;BdzGf3nxw)UbEX(Qz(=#^UsHCIuDxu!76Z}i60kwhw2fbP(}H-87ZfI|0LNUs=UNNblRa{7!(Qz~%K zf^X9=3*#1bzAZqZdtIe5cdKDIGcZbt^gO6Zj~3Fmk4M#T%uSZ2>3ZrM%;-`W?jumc z+Ib)|P-5B&M5OLwqsUUC4jTF*WhF;~0_D~;+?Pj{{d6#y({>G^V=5pGBP6T&AVMKY zS(bcD6VZAo%`jh-B67vRgdoN3M)1jsqRV)c?GZPO8m5>`H045AIQMHhm^D+~*SQhe zDw*v>JA|azokrE7aW5N0!9nl$F^sdMl+3#c7AgHSeZZZP##111mGW=~fZl3AIX)fAfQAkOvO@U#!TL0- zhleVJ5f1sR1W?GDt^Y7lS9>2S{S6%kWa*DFGwpUCD*X|@TVBWFgUY92I7>a<$C-Qo zQ1TIu)QgT6w*sZDz>m)!3N-~lupv(G&aw##KgbH7VSY`ciV-;F!-%Yt@@VT?K^U7B z!b5dZlmtxqOeZ4zuDHed4~NPWpWLVcW3t968Y9QE57js&_*N61(X`@fJ<&b3Lz$4^ zVM10tqo2}paj5DU;gA;T`u!;UIFu z{JQ|Q;K|8!nFs9aCvm^&16G6!qtWV%PeUFDw@!Mq0KE3 zw0AndR(FBY>KPjPG^`x;8|%_KVj4k@3@zL+p-4SN_iMULfTslAzeQHt1sx()6if)x zm~tlg2X%arX-v7Hv}rOHveZv%9(b{MIhGrWP5q<>kSTg1#Lf-ZuX=YUG`X*it2M07 z;72_^VE}y5gNK`E`Qm89svE_Qm<(T-ZL7hnSvKdE=kp0~KNMxGt6RW;-S2V2#&ia) zT;22=Lj+H~?FoQhh|oU0*b93NU0&g82X+*|FZ1`?`Q#0)kIRdR;S4pw7a&NSANmzm zU+`TK!hFLKP2pKz5K|85AB10gIXSsU+c^hw8iA)fob}c>%al~I5Ud>v-5dHRU(fa7 z0G4$cJ2X8Idgp@Pox2Yo3MX3XL$2a5U|$UE-#@$e{OgA=1l}?SoZ~@)!u6o=aB{Sw z6F?s3_oZ8A>~kH-gWAVYZL^tiQ2@ewG z-msGVEtdn(Oi;fC_w?Ts}aa6Q4mjpAJ}&eW6zTD?dd>*Tp8!0ll%G=)d}% z;MdykNks*9d*vPqL@Fx$?l*@@1CgN6)MiTCKMR4{+TcJrf4Z2<1F&lO4g@|T->}ag z7ivRYx1*?5Dl4zCWb{4Lxb6do#L?Nr-)e0hFU5!y>%b#Z|hSOGxVWgoIay<_u z)j84@NnR}`qXYGJ0t)G9^5k{aWvk5-Pl7@dtK8=*8MUzrEUmJ9+o$WD_4s6+O2dN6 zO`6VK)9yYV0ACJ9y%+S~qlKI|whXy?ihs2!6QOuzL@#IVwq}yOpPlw;5K940G5x?3 zA$Ebj8uRVfJ^qIX$A%&uABIYTf&wR}`Ix1IilIXh0lA99L8(bgrc$34p>Q>t!XJ;u zQ}q^Y7=nrfnV5!$)HHtM@A$g!1NklDpmZtPwE2$jMHf1TZdiO=CCS5}a-H^QO=g3s zpU*DM&lpBK!SG5YAmlFLr*v`1Y^fIS7=i;H7fN8|B8BOuYLURoMDF_ZitMQs0Sh9x zk>2oyzXnf_M;pe#!4ZDTppdQ z(}TDWEQnk|TIe*R`C>&uS;!c=%m9eQG_*|UYg)LId#zTep+V>e*$PF&jHx_h!4bf_ zIHIXtUSe}MpW?OjCBoC*JrV_p%aHi}W;SIRkq4FnRT7CX$lQVqR@S-;lGM1lCH9om zG!vrd>8O+*?>6Giog!U^W4-y=;J5?=^d{B?>Dr!XS(hUdF?1~&F$SOZqnVcE+<0%VX&O6#>dfJJJ7J;Mtr#E zjvnyaghd|hXcgkaZOVKaK|n(B=kcK)C7CxR_l~x7IC_8iHvU8C?^qocQEmFI0eXFGCc7VD$LUJ(`CZZt6}mr*&-IQ6^Woe630-Tqr2CEe zkFVUnMc(gNAs9(57PRtV%g2%61{nH$B9t3q$WFuAvELvvTCCuq3q^+hwb5d@8PjEJ zcgIKDlfs#&mN(jf@G-l9Fi%d}{upn|niQK0H?o?}M89~`06^Lzu zh2_zE3I<}EU?JD`6jUeG#(cZ?hF+!BUh&#|11n3_lkH}?rBlzx!jek?L@#`>_Mf(j#1y>FaZel?Y7KS=I zqc)zprM-LHLw@A{5T($t+ux@Zq@-@(BLRm2H|1koyeQ{ouYAW~gzRuYsURM~5Wb;= z3yIz_EG2bml#33>{`Kd7zsrCi0R0dPW;_#5r#;iXe{Qy>$A*5<{4H|9-1BnO)C*^+ zz$%mn_xtULP6v1P@V|s5I|e7DYs!`=GSqK}JYn@C>Qy;$?)3<5^GjM$TXLbCrkm!h zsVZ=~AMn3~_I~NsWT=N1F=sD|5bHlG6iV|uM=|v!I;;r2Zf^zOFSVqK==|U=gW|u0 zFAQh3CHbjK5i^Ri9FvtKEd zTquWkG|CA&&(OcE-yhRui0*HpZZ0K(mE=wf9X5orn*Pc+Vg)O945Z2^vD*s4haDjo zQacJ3nCt6q3j!J1w|uz{&$MKLxz%cwPQXwO0~6s9;h1!^X2(>L(eVNe^)ME zZTQ$fQ;@a$xJ@=dq4?f-zMb{%(fz*26XR}`_qBka?#x<4gu;FC(9pw$%{Q`q)gatSZAQ@7AUBkcRzYC z-`vw#YM9Pe0-$8<%r#YP;T@l&&&Ep{0#aqMdyYnow4640X7KKog95fMEdx69N#tku z(&7-HUgWvK;cQ8F@2u!Q0&OTNc-mDW{1H%)xW=DP<~036>yD@62mCLgW0+TJ5K&1J zA@`U0PB_Ey3F-tc&j9l3vAgwv7H;(JhkuC#7?zke1fPH$2(kB$SBvk)b3JQhD4lZU zQG)^b{o@V20v`45zj!LlHx5ot+NCyhGgFFFOFu}kkiEn`EYf@N^if`647)qs<3UJ*as@hsYO|HavQ8m@ zpzxtHVmO`f0f?Lwngp8D)*QW{$nZvzlA2VN(U8BLKE(3R#x&d@zDT+rh zq(A!qd3)FGxNa+5G>L6pDUsCGvV1AqN!sbSsKj#Iy>t3>4~mp*rgdRN%1+X~4|lPu zNLEy=s?W2F_)%&vPRhHsqJP>R-L0TKX@#`;!YnW-eV z;tirJeVT&B`BW*xJiGPn&J<}fR?>aIk~DD!76#r8yaOYQ8mP(_qGx$G4y7c42g|fS z_i1&dO;JNeSeK7k5~7lXMbfsxXhNss#mvEz-FNtM4W)rANfX0oL9SpYNX_?lo^0-Z zEjmcXoQz*ql>9*>F~Pd{`e1KQCVnjOqMGCW#(-_Qg=Oz{yO0W{5XD0RHfS`BwLl7KG5$8liHn!sie z-gj@22sGG6*faX9!-=qauuP2F^vfOzrA{0bVQ1E1L`hY2HWS`;4^v5TJZFH(L!_`7 zi|r07!Yh%PJ}7U5chT}1NGANy2}$L}ysxp_7@tHGoiR{4tVn?aXci!7-9-Mdhe*$e z1dF!r5Sv8^bbyIfe==;wTKJ+m2%uSj51itt685U-Gp3CWDN+Rjn8`nPubeiTCv@%9 z*~SALkHY;=J29h{;T$-~K#FPx7Uv(_yY69ogvK)w{?M2)pK-92BE?u(tdHIMPArlp z(oQoL_Z(WKG#)q$@tJ$g6GANk@5E{LP-tLa0BJFPmNzaJW;1 z3TRlcUpW9L7*d3``maYE2^;B989_7-xKgq>4~zCohcGk)z)1O9Y_lU-!rQZGOri!- z${zzt7SXfR@_8(|)16GE`|2`6b*oC9l+Wj5;l8Xw@*d`L$z|V{Z%K<$Vixy~6PFG{ zZ#-`N7|ZCKv31~p0-c4pOns}PoyrZh=e{{So}6N>TIwXn%QGmNH4e#?>r9C)$y4mA z1{rp8W?wNjhgKrOhJ}vN7URIYL=LS)wAVTAVJBfI7ue?|a%d$YG^b|!FuXZqULuFa zMDHMNolw@-)BAuD!_Q8a12f%$b&q^_?IWyC~nV6P%l06u1yv1U8KHJ1c*bFdn}`J0=Rh}hc3*uRI}@5y#TG=jeEZSIWXju;5@Be_ zCWHY&lr1Bs#KA;J9V*iXC4Jf+zwQrT3erVO%9wG=Z{C7(EhbY+<$mMT;Lq_FRIZ20 zv{Jd>up)fY1(j8rc**HbEuQ6LI0bNgOQly-7bz} zi)NVNt;m=&g}`_pAbRH*R?fIA`0Ej61w$y4v>q8t%#5Uz#2>ULBw(5PIzK~0RBUT5 zW7UlzPT*G{pOSIM_*);CS+9COhK0`sh{1flIs1dN$(S|*yfMY%HW5l|qKOTaPP70X8I z6(%g>bU}ng!B})UKZ+Y95SMs(CZjMjW{3Q;Dh7YhNK9};d>u;~kP(B$7-b#?WV%cI z=#%eeRTaM}NC3mo>-@lz@0iu^fElw61_&4!jfqzHxhGGyABj?AtPJzJl7oO4{yING z@XYO(3c^e6PcC>xFwE{%<_nB*4A zL`A|6Tx4H`8GCk&QYx7T$&^luk)#`QYtdjaiEVbL;f*r$Hai8x@V42}w=tc~+w6Qi zCcAX1JoHzcw#>`k>Pb&za}6 zHT|;Y548oJ`hU#=M2kM1}79ozRJi*Vmj>4K43=B4H7f3Zs?l(zC7VSpKc5g z= z#}1dNN|26IB?cPyo3Nc&L4nsa9Cm_Fl?!73PhL7NcIx~MdfhlEWpk1J+%%Z$TI@7Ly#!B zMrPuV!gv0F%bzLWN-YEk0Wub*La?X+l7R)e5x)BvGibq|v6dTRMEMmk)7}nW+0`vs zFfXeYFgBByYQ3!VW!1Vyt|We5()O~5H8K;II-2W?zRS6+j^@x=fV*LR>$6N{#b=yK z3ZbH{&BtdUei6Rev}d^~UwQ0UcgA{J2pSb9&cuR!9%6WpM;9J5mSjW7X<}I(7V76A zf=TVJ4|+b)dEP~T{f`XSC>WrkQbmbatk05Sp{u` z&L?8AN>0-NSz9(XN012-$Y{`_6D-SVDv_`_C0nkZ+=Wa+j%C?$ht2|g5>~EyL>~t& ziIK6?9l}MsU&z72{5pJFHb&Lj$*&^wCiF9SEA2eR&LaO~hRCLa3W@vwRT48f3w*iP z9uJ!v>c2vwjJdFWRaL2v!q6+do=)lX^l6Y8Dr2I`?`m`(h~d}x5rQwB63$r7=l4q# z;*jtv^0^&SoDOXpbldVS<&5btzphyVELRru1I4ppM_qRJoU)kr1&ak^nyW0#Q}wv0 z?~HgAep`?jD5hBBhn}mH&`TjW5;{G8-{>MqhG@p~>(PKQ%jNzE_h};IA`Tb}hK!X}ysFFLLHM|IFz|8brCgDj z4c9_2?p2VEXqWW>Z7fJ*kYUR`k$n__j*zGWY@CK((TwOG3Zt)q9Z_wkSSINnjBr(h zPBAI?b23fN@v-qk{tl zct((cfzbF7IOe)4xa7WR#&UfnjoUR{Gta!}=|3b#hMyJTa9CbBup5WtEO6y;+mKLK zjv?sK+eTXghzYI_ULLE%oI9rj{9ifEOHPwA5Sk}~$7JgsStR{Oj@7B43Nn9OViX!qIfeF2{lEMs2P z;2sQPuX@;}2}y>3U4bvABR2*E9Pt`&><*E<^=y~^4)&LFTA0Sr1&QIg5)J!D2rB}e z`d4Tyr&F5OHB*4aBo_w5K8}8krJI#eAA!4VVHkL2FoLr&!l^j?SBRd|*M;al5W{~w zI6I*DE~THd=1%WbquXhzX%8BN^P4ZH`$@T+Q8q-R)&g^>&y-Auo( z@Ixe~xG`$uL^9c{s;bQhg=7rP6a!?sTS%*^B0Th_&z|`tRF{!y)1es3C@7QOagUpn zuuR^I0OH`(P-#!2D%63HyoN-Rl z;RL(^EE9W83mJvudS0Yy2~Z~WN~_Dc^wI{fOnlR+hbjNPEuEQ+nX3Z{bnIg?9^a5I*4wliFbVCtYT z81m-mbUbKnY_|_5>ZJKzIp=W3Buj&6(W7`wx2m61OKqhPha4p-bdSg(F~z#3pmSDR zCk;fy$PK0p-?vm6AB$<$98E-LIn6dK3b7a{CRrg8a@HQ>H_`1fW_A3o)s_V+!4vgT z;1v+VD-{tbeOp>2$T791^r8e7jA^cn)M2>|{m;zB&@XEW0mS&9Xke2+TAgEV!^Mav zEYHX-Dd0TbY66zzws@5!i8Q^8I7a~!mmp|}pNm)cl=AaxJ!FKB2*|P&6(p>SJK}ZZ za(Ia#Gq`mBPWZ z6rT$5b>@LY%Xl$;@+$z#`iN4nG`GadPG^3VYm^OG5j@# zuLyt6SSMrzLE^zN)m46QYcdRvRp)qpv9cH_rnt=%*!VzzLmL|s<9;)Ui_Dp3$GAdF zCcVt0&-=5V6O0iN4ujtqjSy*yrNr@ed(<3u=86d-3|%`hFs8afkLj@B2SIYcoT;kM z;ZPX-GJ)&ZA349vn1%`Q8H0hZ(yzGv0}YO@DHJYD#_o{7_Fx$Pnt^{f9QKDMip@8H zIStp>3@Cgkrct`bZ_f_@iq%$8h*@>-P#Bz5v`6R7`qImrLq!b3@GSeD8u%BL-JmeI zk{!2tevjbFMP>J37=D$i7ucPnGumsAO*3cp$FEx-hY6JY`iIhX->ka#U>N=;Z8>5q zyn}o9o>CsQ?sgdFoU?@LK(v`~pFL3Kd}lP48ymAPD*}Mg)__KbAmcgZa@HL5`$q5p zi&<6;OEjhh1lxB3Fbp*2q&HQT~|1S38r6I{#>vAL^sm5cbTOQNi{^s-j7rQ%8AITKN zIU6C>d_F3(zBihLxn(m3r*Mr>VKC&?(b?&k4j*i6bsIq~j0+#*KEd)8M|0ybs$b75g#!yAC z>^FugtBpUrXH*iuu9U|g7%N6n3XEESL}4+>+PK}t5er&3+*f}ItB}zU-21vPAsiEZ zgqVVX(%BxJ%4xUA7WRk8!cbCRhApyShBO7u65O>fS!$O)z^}lJH9ZR@`6Iy0{vk4= zk2hd0D0Gi5W9&5d@y+uI*39M5m|>+9mZ46dGWQL^{Y2%=lAIZFHWi$V#$4|Uu07ld z!uu+|iZi-n1)q<|oHfY_9a9#rtzlzyf|w2HTQus7!_rmU5oDI3E@U`F0{kXIwGOal zi2*_-#HY{usPZkWBnyH5JbjI>LZGQMEZr}Kbo#asmTjxsZkS89gjgAesw>2*#%FoH zNXUauIeOMZs7fhJJ0qztkLKj%H!WaB3ZZW-H+_)d%j$WX_eGTDK%2XH}k+ z>y8`?C6Np(IYzvS)gf|OR~=nBpGwa7R7E9os9be4r8F8D{-}F9P@_mx;+3VGtYeX~ z$OIi;4Y}kQvo`!HwK+ttp*2_def5?YE^>UuDlP-ZM4tL6C+O_1N+pj%i_moY&ET}> zBDJK^m}YGZ)(t(;KcK&b+A_j0)cd-*g-Fb?LeF%@8~gZ2sw-nb%DihCEDobz8e_W` zrvWzhWs;wa#VCGLgF6_8{*WKQihF<9Jn8qb3%IeR{}qb*Q^qiB@CBA&7QZkH%W~Jr za(YS@kMf}5sAef0T1H@_c{w02!!q|R=5F;6AJl8bQhaC7`Y3`sfMr^%ewvxt0>|>R zW$fF<${fXI_K#Rx?PSC*99|Hf~T+=Q09&4oE~{=IuF2Ej&)mpYyx2=Ik@*OL)!vC zbhaZ4$!s6+!^rG2Y8&JBl)7kbGG>$zs|qExE=tIlO!&U95d5e^_(R2J43<7lNwET$scko< zMrWVcE_+8$^UX%I{f5{qfT&$Ov_EW1S9%G`R+vmEO8oE*jZkrYFIwUdn*|WYg6PXR zLl*6~4wXr*V?dQtUFMus)RdKy$V|TGw@cdI6$4VnDK-E7QoB}wOl2JaD(82lo}06{ zkt&}?WHM2cJH5eV{H)iNCwUgFNr%d$c1}SheB3x}cgyW(hB-yFvwE=AwCajxQIkud z)v!z}Oe0n2)Bd>qpx>8M)?5dKM}kc^U|bE@Nt<~^j3r!Oa`UmF4|iiDwAIG#nj`B zDCi6`l4wsgkW44K%ig#Z_eB@&E&`aTMR(a>y5-e~Om@{*Yp{Nmvt*gF@ql9*F>sYU zlSKzE;g*Qrh^mGgj6ALKCdx(as|U*^barR_l46Mt`-j2AWfr>w3^_depixS)N{692 zUzE~}8SZeyg3$%L*K65;qP zxZ-J+K`Tn95SdIg9%{{{3sM%XNejx9&YnWNA3Ck$wp`tq#h%6rXds#H=6HyV&FC1f z+Cwbx=p4UtEiGqfP=V;45yfM=%bISV9umVuM(D48)g#d;41G)ee%NTf+)y6Y-URj~ zNL83qTO^u7aZF{<2q}{4G+!>8RDd$+hpwbb1ti|XH_diAU_K`#sj9pYXcpjoB>*CD zv17Ec-N(&LJT5oAgfypnq(}`U)2$0Sq>+@ZHpki|*%Ts^ z-SElwdX2&8q%S*vZu_lLsRd<9-TlquXly#bTJ+2umoZgFhsvaPL^+vsyK^MdEaXhp zvxpTklZzVNr}sr^7p+l^$Yesj>L==}f^bpwI#ecoZ#==%|Ns)$N#4F>;aE!>_ z=Z)99K`eAexVL#(_iq8j_-hV-Up*j%&xsk;umOd^Viqn1R`c6SDTM)I{F|l}yj!r< zKms&5l;$|p<)Q?D%(udPCyjxu?wrl@2#vyFbk>GjusxQmiqQJ`#I!E_(!Je6>s6Qea3h|ikx~8*+UdiH<<;47iWDNVIuNceW{odkoj)-d^_;NOXo=P+GCW?;#ISS zgg<=ja%NE6Bluu&KR~8S9dARne`=T^Kkl=i^ z@35GK`)k5T%-3H7K<0C$8upPKyC=Pec}vAu%tCGiHJ2?!N{4gvJX;<%Hb!Cww&fB4`#-jO;ix)an{rqoOMFn9kHujz3%6Y3Q;PbYujMilGq8>P4ri@O zgXMfS(n2xEMboN+(In&A9P^^@ZUBUFxu!8NpN_r{Z|t704jdMt$bl%L4O^xN%xqj&(wd^EYG5z_p;M?+I@j^)Ji01_fH zBabEacey$|-&o>-g*-I3ZS9v<6X)acz?g^I_S5$3easw1iZ zk~|b2jhWag<8H3T>E58-6s4KZDmyG@VU6L8DO@_4mSR4QF%mPdy~JWoIiJ*g_R>Nz z2e;$rZR|RZI!GEJlr>-b^1zsf%M$IH^OeOyF~=oi1wxN2XG62x^9hBK*;?-5{x2CO zF`u>6IE>CcV^1ILA7MR4RKk2#-$!F6UY+3I9$?BUx#n9hka*0-R+)cA$Vcgx%A8G} zNZlAsF(NaD<$KiaH>6=+tb7`;ifyOY3hv-sj7{S)Ti8l)gXR)j3867lsKw`WzE^N9 zRxXXlZ0xa>4v);|u_+kFzG5r_eHr-vd8_x~wA%nNzLh;3GUt??U>KXn7aER{H9+Wp zzVU^Tn1NQasetDDvUicQ?^Eua0*<+OOr{^pWB+_(vcqB)9?kT9nI-pmzR}DBW1c&c zUI(K-vLJA}qJ4ZQrRB(op|e10hG{>QV41mQAK4l8>7KZjx)8k6j|z}+wUfn@0#u>1 z9P9SIC~-#1u>g|T!ZFiz`yl;fZhxC`CSf7UTm~@Crem-~*UOl&rG#wAMm%ccvXCPLlty}cMogjr()5+k%>J=>$!9OmH*%`MCrpc=@mY@dg&df{ zk4#YQ%w`}hfsf4GA60ReRgjU!TY!~S;0ch@z#gt9i5dMILzvcpj~v&4_r%-KKnb3u z_y?o9p}zXU#yY6x>6|T(1 z(tQv}N7t9cl$GOS>ej=Gi7CrRX9?Jj@OxVg+#&yHe>WyYM%sg*JTWOk29_k$1ziph zlVUl#@X=WUw&<*j3N_@6DAOy$1807=XO_RwYo5J8GASe(2|@ufu1CnIibs-w}xV zkcB1sW$->dYoZBMCi+;N{pZpY6=Pz_ejbx7X>tFuJh@6dEY+tGsg$DP6`12mPw(ec zDFF$~6ZSKDG*)NJv3Nc@OAuOrdS(~ttY7zsttZEFJ#0DFKV)D@HX?Q7N%BKyd}12h z^LC>v6ArYN)^<{iEa|VOORDa+Cf`Ch!Hu^irlVsSW47u!GKW#huviOQo~;U5SfaZT zt?k7`$@kQGn5;6J7M^7Y$5+a<)gB^83A7Rz@8yiI0RhVqT1S|lH)qM=Z8_F4&cjmu zBB&wtblG+F*Bbs~DJ{B!h~)}fj(YsQEq4|~ju-pgM9buXs<<@A_mr0ae#>2wjMA}TOr$56elqz-|Y;Wj6w z-e^)1{R93em@*b>`8|E~!hQ-snf1==cH`x+eYEid{zc3j1>fLYNq8pvyXiKQfm9*+ zLm8EculbK43(ZMiZX{>y6EQ-G(ZDg)DnCflgdrdq8;tyViN_BFxyw%xiP{*fP-RAf z2ZkyUhPYh9HGbo$gA1z>iXs|K#^xr!FBmNt(_H4q&|m~ZMyw0JDi{cd!9RIDI)+no zv~hxjBe-C0L>F1Kx4zwp+3k#>!@`YEyPw++71%7qhtUUP5@Z~lw^)@DFfh~KwXd+8 z73I%qM6AvzyNAo<-ff54(e`6YC<2>QGo>uISXNN5(}wv`*#zEUgv zPX8;~dq%z#3nPjjU^3|!{PakrDLpW^)&8*e?T&G+Vj9Sp>NBqHb*4p3C1J5@{CfF~ z$fcthD~yacMH~apV%*`^#t0D^ZK!n#oXu)C*hghzYk;&;kQQP{`$Ecn6+K{H0~Et$^7px(aonn_(nH3yo#O(wc`J9g$})uJU3gP}>?+F<5nE5VC+DIVfL1^S97Z z#@dYo%an_GSe#ECLPQ+Woe(Kwd(#2VCX(V}v1$&*7fVf-)z~AX%GeQhc$rdpR4mk8 z2jUC$M>?<}G;jbJ=Z|~Qb@t2w!$-5$$^SB-U{O9G zE&0!F?{CN4-HbK%5Gg8#2hSpuw1H&Co$(nwpMDpoUqlC6mNo(k7UjdR49euh^pUZ4 z8Dd5CAqZHEl13i4-*j+~QB06!X(XU1iGnslPTXh%O&VS^22@%h5S257PBfIzNCg24 zqJ~dusQz>AV6;Cu%?MuOx|t$}!)Gzn_(Wm=0h1t1Qa3ioNL6t-8Mj9}I7lNjl5v9| zOJcx;N-8;6n$P&{*ppB9O7dimPgK5Kc?=6nq^z#g&rT2N#K<9Q#H?;c7zP(IEmE0= zWwK4jX-QANuo)1XMxCJvPm>0z;P*5E%W;Pb;^e^Pa;3yK8B=)%O3T3D%&*)SSvTm+ z&s8fH&2|Q3pO(PEvkW(=?1Sb;v)e(7Fxg}TdB*7siNRf_49ldqMoYSVpcf;MAG zQKCd>Eie;bm#;i(OuF)PSjOswgovl6|{`1OHi?JG%2o*#;xBET8B+@OT+*B_b-Z{ekv51k;n)Dx?B#a{u^7I_pqNFWFF0E z%rQ(2#Ahvg3LVecnk^Qizx&t8=~A?za4c#Umyrp1 z=hU&nVbq@mbG3h-zAPPU4?tnWcYEOluye|(a2WNcQlWE>bptEq&ju23&T<2VC4Bd9 zIJv)!`cXKHdVYvgfY_NAz;jv|hGOhOFJ`X|1wBE@~ehi1(+Y1kQn)$;Y13Y z5k?woumr=H=SJnFxjCgZNR0gMXxx_VY|g%*a2WO6xa|7ODX&3d7iLg0y-9cupN?AcH$8uF&+OdD`mhJB?`ealT$ZqyTBbmKZ`OBcvI+2RHJlb37Tg z^*qEv8Z0iz?Rp)@e48)pCrAieKg8Zot3EhuN}VOv6%E;GtBY*TAypiisjt@S#?`BL z2Cu#m#Y@~~G^Ka~lBsSvD(vTs>!<3P1X;*L_+=)gfM)9J^}6=q>W7_U6!^F^mb{6m zuPMA`TqeC{Ns)`}K;$0T> zFV!B;6jD>r1P>P+6>T1-4s_c25&b`uWB!VcLNm3~`C!;T>YzW!c~)WrB(L}mmMPb4 zX$NO;UV?^|2cT76WW85J!s*UE1{YC3Uu(M z-K-CAQlRrj)M_GOtB|0((gV*TW65gwHb-T!FFVOn?JR zLO%-;5Ev7nZ&8WrZ}h+~>wS7HRO`qgG8NTAKbYYrT+b=>te_bBLOs@qrYot+S1~P; z;V;(fDsOII&P=BJLUHvl7Q??^ufN9W@;Z(bVg@&=j~d83h=V_JjWV&1KSfm);7q^H z^ds#5m4~gwo^lqiLuEp^CQ2mbUBc_bc`>Qj`CXGTE|bFG+8?pbsr*hvimQKv?6~tA z+!O-~f&oT7h814KbinOB#=f@fchmjes)idwW@2=8{qvhQb-F=R7?k-vGq=3}Pec*4 z4o{(3Byb2?@cf=g36{%*Aw>U1S6j(>(RAaLRANgbG7sYl3BfuBz zqh)ZWhsUML3I7&Tt3gN3Sm*b+0#K&oHfp{2I@}Yf-UZuefE*I5Sz)7l+()eai9Bww zAaQ`q#FveN(QsuV`9yNg9P_8}A|$d*i<6w%5#1|^v?_~}xV<^}C93Ik$8xVXu_KzL zEx@s|utK0HPTQyb;aSC?_;l{MT^yUqu|}XCpu|_Bkz90|e~myuGSv-9RUZx-LE4r? zELo0HO&JU@)AFc4czImcYc^s$Sa8($P)mf!XN+EfR4_{=bf`?obvQUHZ$2(qhYZP7 zJhal(i58?p$>yJ-s`g?rne2{fFld+cR{My80P7=4DlEHuA}TJY)kM%)03LKllcVL$ z+f-Q%A``KrIKqNJ`xKK!bPb`}1sz3!%cR^f%#SFdpj@zHc&JQ>8MrRIE+zWL>7W%{ zXEOf`JPOU!Tvp}l)G-a0O=!WgdZP(-q_ z0pr@w?o!IV>mfd03gUAQac?PzdmiHVOF{hJL;PVWh(CCUe_9ISpFG6Fr63-9h|;Xj z+s2z7qI62;MQnM9GX3eih$kMRoD9s1*zpkMO3=KBZvE$H^}j8puK(uAC>@7+Wpv9& zKdVocBICr9QErgUE2G#kk>)F#sJKrAc?d;28asGK0mZ0lCDjWAp z4cuB4+4W2;^JCsQM5@4h^rkwj;6iusRo!)h_ceB>*X&MO?K&>TH0PB?mCn!9unJpY zrWOu&3iQO*-js4+?n7XKq7axP7i|(7lT!#36vN-rCFu3*lq?A|fm1rUEW1;}J)J^T zf@RusinbwCwu}nVxYDZ5kL#M0#+9~peq3i=HLkR<^W!=jdzUuvaAphB8|r1aW}X5! z>a7WKnhB+698&Y3f^O%22`RXqKX#8mj!q9V@lH#H9#N>7Y|($JUMlBi=Al)KQf6Uk zu6Xa)rNfc1a5IrR2Skub&tX|)&XW*iQmxA(b5}wNGMSrmS!6C#ry!FZa9L!oI|{PD zijJ}@vcFo(F398#&a%i{)Vd&(TVl&1b30>#Ozs3Pi_FC`3o_|hE{n{0nu08Qe`qEP z;tqETGHJG#RWj@G{;!|>%bspyp&m!x)7qFEo`duQ{WhS+fBkCA< zL|FCs5t=G3XChc)W@-h_te1~*mKWpUAwsT2VKcl&^=dHq(RUh*8P*L07GU8BP|%j( z$%yr@nIYbLx@AO6k-1&h<+G>v*$b%&+IKvPyK+sgp*A|s)`ubl-{ocm7-zR^S z+H80sTJOn|EB3)D$ZxMv~=my2Xzhk`uLnIOey+>Lxuw<-+M|oZ{@)TjF)|pR1y@a!GA@ z+I5Xd^1b~QB>Ci0+49QgT94#=Tdmc#8_6eU%gZaDYcIES6hOUxiui{EGymDBi*}kZ zM0@XsHb|Y95b$=*_*bLu}3nAAI-Xj0qDF46E81%2A z8ZuTyXVXE+&tDrMEE7Y*1Sf0MA!os#h?xJLbO~s`#}0c z(U6Qa9Agv55x89Zeo!>?HG?wUIzLVa1}Umgw&jfJ5(8B5F)9w;?&P(B!IdR3oAu`zQrP8>S^{cix zBP1Y_KG&j!u}kWOYXAs(UT#rbT#2ihmCeHk>aL>`Uo=F6aQrMaRG-jHwJN2V)b z;}aBNu^7viok^}R3(Yl_SPmEdU>WAwqR`TX4Vl!Z zcRbh;zQ)DSNh(W+VRGgZ)s^CbGU3gDP^X;|3d~sgNEFX-8eFDbXIh$Z98G#bHm}86 zg>zt6ndY=JqLgEzT#J#oWhz@1?1sQs!q&qQX?V3{B66?cFTx?e*ikCP+7VOL}rmlTk6k8{p3&!8F%oz=;?Excl zue@NI*wzvi=1erB%ab3AsmXN@M&Dne?5+|RU9K4{Cc7IV8C^#3Er#v}E=FIb^>aOq z(d8<{VzN5}&ggQpVKH=Pxfxx~5*9;u#+1?J6k#!RXGIx(nS+fpZg**(tdd0{S!J^i zLjfNV=diK9DJO-AGsx^EGF0d&^7n9ZG)3J_;65+?2!56P*b5!=4dGJda9aL{m>lE& zpsx08|0`sfQYWaH(sJoib>Sv-HzK-_6ZoYPyT%YBmYr&;#IE*Z#InCFmDp8vj9AXo zmrCsFc%ADQ-R%%LJA!4*40po<1d|>99?|~nZmjWlH2-Xjn=?;z?fX?+Ziu~ZpT#~6 zqUcJIlFKNX8*_asHW9*xY~x(u3^wxQDvPK^P@8AoG)GuGS;K+qQSw{@qsE0(CVNUV>pa8+#yq;Iq+fve;-RPsU*75skLnhPimUv59r4n$#~tw76>K8J;VwUn7%T+W<2+;o(bCO+D_oaKqyge-4ntM& zmhsundF7oa&SDC$h_krF4`a;mXHOZM?fhm%@tlcp9C96gaSpdT;yC28!{Qun>A`VG zmw#~%>*r633v`zTCe^2Zr)xCc+1S_+_41qQgSf}t{%C|HT0N^Kh&sK^jq2U6#{K&O z>$fvusn;3ooqzpT84d^1@nH1(d-sqqYP6w;w2l7o_}=|{5xIWjq7uCKlrm0 zY__JMUT3g(o;-gh1e>jp^tOfCeJFK58x+0GP?vSfsNMg~Z+;`BOJwGVG+d2RS11g9 zL4Vni2K09`H9HHzpjZCV?$!E7HT{E-IFW-OA~A64{iC|UVfaf22S*cJ@6|py5ZH;E z(<0a&2m@a{I2d*N<57V7%}m;G7z}&8afmE*2pOo+Z9lbUw~-&_6cL=!R9J0YqcPPb zbMzz3`!}0vJP-!HfC%3SW$+LhpRJu(2nPMIF*@rtPlo+oe=@3>WP!EQMz3)ktkfh{ z7-AaoU@=EkIS7&XUBfat5|nu4$L(Hw*ckWa+IeCEIE~f;GT|q2!WsgW%gl)sh1tw? zi_9Y26e6gf!;>Tle_$H1#Y@nI8eWu+@R;tRO~@k}>1^HCVK~^=jSddO1%Vhd!deW5 zy?of|!QrWuB0Od@>Ka8Jvb}~Y2!{RF?N$wmZE-5bClcksKTL18`I4mrxGqK|o6W(Ig4HnZ}pgrzVtXxF2^Mz!Igm+{X~12ZM614 z7#LS(53v9k=3}4DWH}6my=K3vQIHeem?Pw#&8}Fmx&>pRi& zz3Q}I3$EF^mqV&6B&N7XGi{ZbS%A-2!4`vIFSjPRSQ827!UeC{##A4Lp)Vl^Kczbf z+x%=*?13=w8Ws$7oz^1JinCc73uW%xw64*GBa;YQsC%|?$wIK?m&tXB4bih{TdmRt zgY%mDvdRURO(_;C^ZnhrzHn>{m6NMj% z#%z7xK$Sg=6(*tVq{1jB5{y@=3`y`646Euk9z1MxYaMv0Lnspets%ZaP6`rx@-ZHT zhzuJRk?whLd-7M^ZPGQ|CM`-dTVHoTbS<^*D;Mbd(tKgIzHT8{Q5QR>r;|me)((SV zFLzEUZoO8zX=S#7NuyAlpxe;BpuY@;h1t|#Ay{6hf#eOHmf6gM!(iCUsPJh-}rW3mf&&C0i$Ggc?5 zhgOFqXt>ff2dKZewSxRlaf>*c!2(R#8m{46Tv^_#*(F+E9kZES1BDBI%z`ni>n zu%fHaHeJ(5)>*YJdgZini~$*&{wICe-)C!l3Wj162!`c9e~O5u(Du!?@yQ4bxklj$ z%KT$_wd7RK)}9GUjR9C=RZvWFk$x#J&CO=D9R|am!&jk}XKNn@fB|po&sYl{^}ARU z>SJ%NbVKcI-iSuTf-oc2H6l}6}!vTqfylxFs*Dwse+H1eYD#sbtB+9*VHalpMg6-9Fk^P9- z+I6tbah^5gkGHcmK1N_QTpTopXd`e+L>11~LL3Ieu9F+AHn3YUn>t$yAuP3h-3pEB zB}IdM<{(@1Y|Cs4UxP^b)ptvhUtxvvuR8f_C;h&h^3B!=T_NfUiA%Dkept@hn1u@0 z#?Gq=NwB^@W5c8=jknrzeb7fLEqsHSv2_mpc0b#~jzcTEnyW}Aqt~jywYj?^dcusg z;E?Ks#I=| z=f}W>vxDf8!O@}F)T5E;6rx7rlDs$Sb^@Ce_E4Ny2O zxJdUuwo4&LvyEd8gXLbswo|`%ToD;D+tffqMdBi^(5N#RtZu=W=sL$7EN3%?(PEn^ z*I#vpV+>Si_V}ycEA`yjhIfO8#_!O$RI5yN+Gs+rvKP!|Et!Uq48^2?`Dy(g@j*ys zO|k6fzPgXOjBH(rfZo?9jqwPzaqp{*`#PjuyH+9>AA1Ip0hw-Pc6`uuYOmx z^qlbHz2f{%Q}`goCp&H(x~Bd%J1eGmRH%zz{Z3EuWkn^XXk}6cC_a1Ie*I-_2SFD| z7|{AssqZ<`jN?P?iCUg8iu`6yMSe3?k(cS*0;U*mU@LMB5Fg;7S2cl$QJkX&05B-) zssgtTo4`-Bx;VarDSk`1wg2-!|6bdijQgh;#9Jm3y!KUX+^^k-Kh~DNRsg1;*w~H;?fIpgldFJ@E_j)r}_YFM}3?u8BGQ>y}`hZ+H3@gZW6&X zwz1sb_$RH}YRKZwuA!^#X}X$fJVXb1ZhZ4~{jf8xH=306vOeq_pNwS{C&mCS`0Gw@ z*gn>hl);Ks%~9JUPwfaH{@}g9(c?nN3D2QfZwxy3_$||7O+5SGi(8u<+Wt&MYL04; z8)vX!V7kli&_o|Qq>TyY{2cS(dy9Xpj&b0EPKI6lxiKUMpD*c5!51}_>j8129iDur zqb+JiPSqwXM5_b)h{~uEF%kBWC1MP}_>^VbR_ql*u2~_Ev8;nER-)n(o;C|c7h5f)jx?6CFUfy`+ddT&%7TW zR)JoM=twkltFPfPR=-9j5um|f&*NI7^{Rnz>K5)9I-DFIhuanj=RL?=> zcQ(zJwQU8D!P^)QYOmK2u-r#x36PrQ8fh^SvGk@FoA+@cl5P=YyyD|c`z8048g>le zNYuV-HwGlfx{;$lthZp_ar2U>!F$#HS&Kn;b?`~QPRrdp{2t*-tVC+~&@ixfhIQxD+FpD33X@=Efmev_^+DtCaM+f~ND`H3No6A;q`E=k zrt%I9j?hbD@!yV~_gvr&mkB7vwFkJ_rQN{BjV@6iDn~_JM1&O15+Ns{AWDoJj%b8< zfo}U?G(H_$CI%}$*)%uEU`JTtlQUnllW9f1?!vQ1SfG48mM72?jZr;(&wJg}o(=b6 zyy62R2Nn%SwFfZKwOtj7V5;y6hNg;+m{2x%M63fCVu4bu>ApwJ=E0=XZK={Ksx}f~ zw@QbpXQgr|#o9wgi3v?}-XksO~f`Sl=75M!_xZc{ZqY#&=5PDBVmLXy2qXdjm zd~O_sFKhdlw(CjLb3XV|+oDBHRj}*CjP9hCIb&DZC6)%G5`&JiV6%dq@7#$I!GbPsyM+pecMD0l?BJMfAb8s)l3TBS7? zS*BT=i$*BkQ&mXKko46!RBJA@CE>fDiDe00PvTWu4i61pFvgbfqJ;LqOgfO z+_Y8h_LWm(I4d!W&-L`mvYIe(^p_D@y+UXeC@rDqhr!7s8bj8lBPjl>q{ ziu(Rh=vwQZpC`57uy5DBA=8&2F+N%KBlxV-4d{Km;>ISE1|#!jY;a+N0xcmZ_|%q+ z7n#u^6u;QjSa#z~8>T}VpJ<@MEEY2(D)~A9l>dsr0mP4Cg(3C!<;IAje6VdE47rIjz|+VaU~zeKueQtZpgRY@svV?OPWYXU zDdM+jq~Zn@OvB2eUDaQj4Hj8TiBXDc$!22Ha|Xp`vDn+au96X>FKUkzHYndyN3?|w6D&@L@#c;b?pRve;?sc2LR?e~wN_iE zqD$=UWU#;uKl*#|k!7->s>DN+UK(~$JVTCUI8np}$qBBwt=m6}T*GJC1<*X{d+PRr zH!%w26k6dG?>pkMUD0Uospd+tKogDizaMNyH|7;#`?ZwVQ8C_Y;K0P-uETzfW>I$_ndBSu~w z{B$!~sPZ#Taa&QE6^q)Qa-5JML^b#|#fcpmy10X8y`l*uER^fR&^6xon0>Uu64V|V z0+bY{nBLOKE$ZsH32DIwU(3S3s9rR2O`yCuFpUBWq241kD~0WzNxvhP}0IEL$RHHy}>yZq=X3{S5znv#*NWSuTmvuacR>Lph9*24m{%y zF5`R}f)G#I6ssy1d!ARTDHNjBekEn7!Y@9-3=kWI*fYlFu`WLLR_x??|)J_Y!wa)w{6)}S;(XUHdhAhrMQfbAc9o1Ww^+P&t8P4W2?h@ikELr&wx48Ly z(xYXg+5hF>95#ZI2nMb=|5&g3P`}mwDinP>>5kzphjxFI{dx(Y3$2rnsIVvZd)(5XuED2kh&bo&(5rm0b(D^@s+ z-=eeRt~yX-z`KEp2(9>F5C72mLgz>2$)d(^105aqSBkOI)p2uBZ#PdcZ|!#Ads85G zsW;7_npkhDq9{Jv-`cGaIgaEJc}+#P?EL_Oq3Ad*jw-~`+(}ACGNq9kD&SJuk z)B{=V2d05ytT{)x9@1-!ya7kl*9`Mr_Fx0YHbPK*?zoF{^c3Gx;Ej~NPNy+b+r2ZeHM*xmpew`86@*~X!lIYj@S z!J&;UoUkMYxsv%9$GwC8GsDVBd6AxZ4KDM39@Yn{8fA@!7xk&$?`IRxH z6EhQCf6YwAhu_hM+7HC57iU!m9`*Y@-G58QMooeaD0WIz)3bazBQq=3mimd#g}PI@ zys~23$f(GY zuZwDyLam2yxbKyr_~KW}zuL1hVd&Pga2U{(=p$-%LiE4nw-_fx+|0P&kv@xfSed2P zOQY<8>L@~%r!&Y>n(9~;;+ML{X8yZjcc=Du(4_Eusf-!APjwTfUociHaF*bUk_64c z0nK&}^lV4Bsc>;-h9N+;7Q7#?nQ+#{Ph;hTrd@$ETrI42SO2SoEj!0nSmzw`q{ntt z1R=dSph)-dxYi6)!YMYKDC$g6{3BNXYWfprf*mPeU~lK!ou~V{r|x{a|M2;fsK-ja zLm1^UgU4Fk5E+;oAumx|RVm;9;7AU2Gb~Y0QImqN1HSkNHKnLE)D;HU_~hK$N=cpc3=+@mIpRx>!=QXMI0y3G{{F66fS|f6 z%ktHdW%-KtKg+VH#Sq;GNS3Sc*WchAps{m8jzm15)rorBXhb40H0y%c))0YmTJN+_ zE0j+p2t!INsitC3LdfF!jw7gj@stu)sp-lU#okqcLcyWSMD5TPSO+BHA~hzx5;OxztwB#3hyU~>0Hl_8J9;be@|1nT^p zXd;Ow_eRlk9~mb0&1rXI)Odr_q?Ct|`;Jkv04_eD$UZC0=;@w5cz#6b*Pxbb zo;J2B1Xc3;e_7gm?CKq|K%dDUCgWM zE?01#8QTXq{oM=;m9V#5M>g#H6zd^eJRc8-P=IgY(H~YCuW%PRPR76{pNRq|&aE*Y zl0Dc1c|J^W^C@iXhz_9&c<{ZaA^-)^oHm}EDh!V*;Lp#cjxVoJ6xX;P8=wd-6#SRlr9UFOs#xr6G?V%!F9Mf6i&{~w|hS7*bMrW0tM@9qWIGMoq$o7?C zbM)(62@%gVq&Hxo3KG0Wx;RdGh3BthO zqI##4P}ZyZ$!NVNhJ5Zy7*vLX=7yexni4BU3s_t=B6wDP-H@tXAWU5X?-{y5Us&Ntys1>B!n|ZIVmNHx?Ai^ z^$%A58)si4vY1YztJ`Uu=E*@<2gUs!mobv+vPgjpQgOpbwM~o3G}Yyk=$G(T>wr@G zNuMfVr2R&QmP>8bI~zcFD#IU~sWq^wBVxFZQ&XUn*Xap#=n)b*;X0D?pqilO${r&c z4$J1YtR+13WW%B+%Ma~baP6=|iHf`!bYIIEA+h>>W+p5zs-A~l^da?2%y4JbB)u&- z7>OCK;KU^s7|Ag92eRri>`~ZyeW>E|2c7Y2$j>PZ==?hdKuUXr06^WI$ta$O2=tuj zI*HQx?FQ+S)OAL-!)m1B4yuhVCN$82X}WyaZS-E^c0T0b6|7maN8AdB!?4{097pM% zjXF&2K^B)E(5IRvKoQqD@{&g%N&9WJdnQh_Vz;XQ@(}-Ts?@|-I?w{=tC9Q-Gaz+{ z#|(8N49pE&+)9s=!fzZ>@LL@~l#c;-->Gw#e)~;i(&nxcRDBE)2HK>2_}(7vyr#Ly z%34G2GiP+#7_-1DRw(Gy_q=avR;>JX2B+^!G;YB z_Kae?z+$d_szmoKEFz_P7$YA7oG_bt0n~RjHKzGCcpYa7v_B@K$e4J>lphB!?vN(n z_u5!>`1yLMCVikwko>(#w;K~BBP2K~iU)@kWD)@1c(kVd(U`l;_9yU)m3_eb?GFZr z3adtXq49(dmTGkx2>pvIoCwu?>AdOHf+dj*qk={E+rPtxn;vY^(2xx$7X(A@m&m~X zWes&twRyqNO1qXAK~hFsQ)1k&NEvgP$YRrp-&NaDefo}GG`+`zz%*n( z?h%q7HPw~aG-i0dzVdd|2_=;t3N`#5QVca@D)2<(b=6y50nk9&P^!P(l%JZ?^+R0y z3*VJOGccRRJ!JVyyxf{!w~-M^p&0!~Ad3$k=x=GdWQhC*@b2NLC2y+#b#?Qiw8TBm zx20Yzw*K<)`Lp`guWdcsepuUiTHF8bVQu%%``n&Xm09mhR3EFQGKpI84o5pd>^YRr#Kji zNe)eo5W=NG_pewvN2g;M=8%|GX9=kQi{I|)rJk~USm9|SRa*B;?Okd?P!ejTMy!}s zPRxRVHdf{`%K&*UasyY6!p1uh#p$x`{m${0Z;e z@tYSVy^mOYk(7j{YJN1M6>4yXt9^QeM4Qb*u!Pg5Vy5rW8-YXt9M!nV2eYe)s2VOQ zay3s8d8c5o;*S5}9k0vjo-LR7J6lb+D0N{Rvi=F^VJ}(?`c@ps-VgkreKr zPR%y1ZR07mJI0H3tLkO=@iYXE0;8KS_B{Hjw;I^A_PHGz+$s`|<_Q@2kU++4Z^P8< zuhl|?H1!z^XME*p$V%TUUyey1ncGZNV~5=UDYCDrWj9f~iEgIt23ixn=9SXo=w@Wf zNDF$@jMix3Os$x)eetU`QAA^=_-#YT9~lgK#aFdWT9We}iHk%_f=ZQU$cj`^k(D=#4DQ4 z$0$D1?dhH#`<`ZHIrc^rueySy)Hz;EKsAFju2WiJNBC?2ee#9Y2HL7S2X7>!g!3N?rD(JN)c7&1Z zjt=hhkH)VXf!mp|5J!!_g_~p%uwvr}?3U=UzcWHe*0A+|AsZU125 zbPvM=PC)$|3H46%zx_9%4Crw@82$d1D%er4SHy54zCxNw>BU6w(b2UZZBvbjR(928C_I)I$h-0HeV%naeIqsAMNi( zw)@_t0A*3ogvNC1q&K*bc(=H+g)i*kLESX)ja{I};k=H_1)6ZlSeGsa)lmhA#f@iO zY}?gNkX^d2qQ2F|PiO^KNkqD!H8TB6cwKH99>mWCaLAj0Gws?b;h#7gA{GA%eTjCf zTbodBVnDH;SE*|VwBnO3{h9lwbr5Pt!~SV)izIlDB#;(1VHI4ty)_M|cDN(&5vTGB zRuys`sq@q=g_0wqUL!FEAtHCd3-rSnOVC1t8IC{)JLpb)g-~3e5~x3+o{LRNI!f>Y zIuZ9#ZutyQT+_o`jR?qC(UoD~fb@eAk_1WV6VooHP;asL27<&le*$_9&|}QaU9v%c z*iM8Xxr&bEjw_)SYhWcJk;iZa!PdM8EekhwRHZjf$$Sj#K;WZqC@(gTDN`}lnM4I; z)IDA_3>Jag(+YuNi?19@knnWa9tm6vQrz6ajy@{Aafqden*Cn2G3+NDBT4JTHC z?7SO^$Ml<~B>WK#SKoX>prE*>AH?BMJ;@B`_=yqNa$z0qH$II3EAD8%5$?5D;VQ-* zFim^~qe}B7<$0ouTm3ee$Vkiz^*X7K!j*L%G4-YG_>6jj>!fm_a+x#;qrO+ZCN$xB zPU$XPgkfQ4W{dvyavmx(d0i3Jb=oX*T3cu+u|(!*!(oV+0?gtAKax|i*3@A=OmL`; z+|+_-|GsX2@hdCKU_?a;QPEy_vJM|j-^pqQMv~>0mSup67Q8kjM#L#tbRMCXtfz*3UQ^W%c{PpkyUkQ=+JzwZmH(8t97E<&RxZe zP-BE!p4REou*nG71l32OtEbhDV!91gU>83>z%drIu>!e-`*f!4<(M4ctvuxfCF!|*G#lA$(y;4=#Jgy^h(&+hstCJF%4J4#xrM;H9w zRCo63JCOrdCgI957s<)dVd`&*Mmc!#KE0%rQ-JFThPRyUablSDn8kxYcJs` zj%p8SWl#ANSh3lr6)Uoj$`&cHC70*29vVgi?-RJzR9VOOzdA5?8HjQ|tsZH)oNBLcgHiY{25$H$Ah7w{ zzZd_mA2(bZPxSo>zsJ=WScx0aVJ(_e^z;rQ?|GVh1j@A{>4C_z&C5iLKzx;S+wUfc z7E-<7;9+6$$bC}g;c=(;(yXsu)U0Hqe9pv%v&YHz;5Zdw^$bWwT{CJ8v}(jheKyLhikbW4m*vg&mN|K!P&)xH_gpQzs1-FgIbRMliQ5D1`;LFKh=))E2|?+i#o*RDOKDOLrp* z+d$>V53~f?k6c-nFcM~t!>{}7KAI}MX25o(wyh}rDtJc-!?q%3T0&QF=ZZ?8;w}Z+ ztDELtVJ@O+e8s;<)N-N*mRX{8AlT0BSbK`eN} zLM&;(vxdfSeJ%tnKKTLD3CuPy@1-e}uC6!Z8n)5(T`7UububX z;57+T+}x*?Nef*wtJfgBX1>Lh_coNl@0p3B+p&`Blis(TlfSSo*PSiRjnFAv)rCFE zk#A;xQI_Fg(8o>)ZjM6G`hi~Y7s~j)dTx>}7P3oQj=JGsJ4KEIrXv&CRTG1&bCJr? z%oeM-#q~hY&K0DNaf_bPFHt(XcVS%NC&EYLh7+* zpMyH?2yx#e6#V=iEryny#l&dmG!dDMIyBs#BH5~7?vC<<222BQPuF9`!72-KuRbqF;a2mQuS|W2;2MxUUA+8 zNfDW@9>U$A`|Uh6!|ycT ziWZhJGc&o*ygQT}RCwharU-^5TBgL3j5C@gHzGu=C?QmdJA2Wq0442CqL6y5#2frF zH)s#4xc1ye{Hc3^P0zj99CRm`>rW(GV%5T12b0Mn98z(I!`~j-fOp!5-}?2hwY8v} z<1{QNb0z9BL9A_C)4XfSD3K5YsF7WyJ>9iLu`J%$c%Ov0qBoQw#BdNK4@eA)6zHvQ z3RdCF^w9`nc8@h0f-878`T6dX+5l-Y;2bJbakDw>(^fc^bzn`RVgHFCCcz&=#TL8A z28{>7{^y#*v%y%-EOH`M)LUF|g@Eak`tlfYl_y9M;in8(X^vj$J-=`lEMvxqcMXvb zQZZY?BW7z?Hs@J+EJ$&|3_QlngW%|NjMbrGc*R4)vFBk<6vcxnKHEmjDyB1fdCi4b zBX|isv^cEjf8A84wM=R)>OXd$t4;xQIM9S7QLTC_450h-bpJ|28%@tZQ~Z2WCHkVa zWu?*Kd|H~Ck_H{_A4}4!!x4)h=4`h zIuh=6TO+JHn9V!dhof^qSf>&8dVj8_HH|@~lt89Nl7R*ew-=~{Hgcd*-7z9lKqMtA zay>#wnb>VlC@unueSgE`T04y#hUQbx5++kcI-Q2H)Na-kwY(2XStouDgzTPlU# z-Bqh$5YbGEDA|3(ouK_RC>j=1I=GIkS;BUyS>j z3;OuTiPD0@g*!jH2(F9TpNu(mte&u?8v!nEK_LDiFekS4xFM{%PoUNw{IwcpI z5jujYLl+`edOkB!f-Kf{EQ`w{^$Sy5neIz#tkTuTAM;peEe8T zP%{!x9wKI9Vd#rBwz#*Jx4TF^+hw6g($i<|8%UtmgkxU(-tr!w;mcV$dZ5Iv!H z(-ocr+n3Z&bsShd?$NMQrxVTf{t)3}VhEgX4xGcnTV=*y!`)g#ocg9{X5S1Xw#*U@ z-(eLO_be`kTQ)t^j%fA}-JF`w^pqfrwSCIb<+FGW5Uu4QJ!{DU`d?rFO!7GNWyfBGPv=$tQ>Cr?jdV)s?u_!}Fy3_WeR4=Pfl=S+;sDhLsa)qQXr z_TTuYes3Cjok}LU>yd~cuoj@q9sm|sb)p%+=!RRXh({D@eG&(&0`8LPL)f6X-8O3t zn6n_}1uKyzo1!p&3Ex_`JQINeOXer-tb)cVXtlsWT^#F;hLM6=AOh`*PI`*OUB_jSq`p~7OpG$53V?AO zPZ4UdNIoRTP|qkcam5!$Dkl+LA;jPg>WYOUZC4EIV`LfDhsI(3^b;^0IMgzfD`<&v zL6F6p2HK6m#D0-!6I9g4{p07F3oQW_kpxgNE;0*PVw=i!3-_*HV1vddFga*shk|tw z#m^fKM$NH9pb2ujuyl{SJ_ISX`Q)@IqYm{~xzn*zWXh+n1*W!tm%nM_&;g~phJS>N zwiFB@t2(i&tG7h;>!RR4#z1i)q!F!Md!i_7n~su(2j#z-E)unm8J=t`^FI5mZf^q6Wvf;F*8T-o>>l3AwHuw1$7le!?MKI-saf1h5qrm zt_dz!`f)>4az^kIBLtczCXH9D+rNEk*SzTGAN##!H7^TStnr^d?4$KxQSXE+H(h1Ko&RcnmRh-A1Mxml`x43W!i`09g z#iJ?JPUV-@H3%%!h>SI`IMWZ~x3CSw&ha8b89TTF2b zux1E1ME?dY42y1^cIVqKVb1uZ-$Dvo06^&D-W&K?P=Ui$(cClhqLFPh@Bd zSIs*IIz&+LCoH~R|G}+h$X(2RNtegq6z|*UPD;T=&8=pB0xO&%YLO^*ul+i*{g+sj z!~m%iyWhjBY8rUJ-PZ~dLL&s#@OhEbYS#FB(aA}y$*A4J>;yruDyms1B;k#6h0v)? zb?I6JN*}FqKOg{Bb3h~L`!eTYBI4Hd{qi|3f+^O?EyG{(^wxEJgP9|gj+Iz_kF7M@ z8Ot5m(L;_fgoV4CC}XHt<1t*`m95m=F5&6UDcub$sS|TnSK4@X77r2Y0S;a_Zdh!r ztzoIm$E)$L09#zCUT$v81{xyoRP3b@sFqI1JhCf`bPO6Tw?VuImMv4Lx@{^xUDW1r|+@8Z}`k%O*KS+;0Yv+ zo2>GLRNR?D>t+QCacSG+)e|8Mfua>8Mpzai9Q7O!k9?*IaMWOkkm6Ug zm>cpWx|VC-n9KSL$}F=)EpF_9LODme%tWgSiB_m(!wWnC&TNHdE^XiER$s!SR>)t< zNxc194Gluc3Aap-BTn#;ScB03W?8@MzuxcHzMbG^Q0jZOYQy#OgcF*fa%`8pZ*Tmf zw(cZQ%6=CzO9v|BWJ#$hjcr=%+b!Ccz(xqp+#uKs0eo->z$+A);SlH-ODrGk`i+!U0fI>Hf7zxdCr}19pDs@;iySATd`?$19sT6MME1Dk+)e}NTo53{c72MPKR(QrBkE6#p&teG$RB`7X(C^WAn1Sld z!_QnYwRdUnQIs%ipf4R$RxlW5Ia$qF4W?Wrwb8>YzOU0os?z2r20hlMytaU73{G*| zBO_?JYJdl0MkkSr!x$aBXf)|Tz|P8WqE)ls)d*&|H8fy-%^cpW8WLWxye z-B##+y34DEFjlsVmO^ibd<XW2(#T{SqejCAt1ejQGJr!>J%d3#nx; ziYRU4{D~o=BZTHY38{{5_ zk`QQd#R);5LHhyGs*}9+29n??LyCJJ(2L}FkT|7d5$=^YAF9DAT@x11Ou~IjO$!cs z751*h)%!0rXMr*?as^p4vP8o=Jc4+rTuw2%*s2W)a5hD%W$1_SIt3_6og`d!D?6G6 zQsB36l^}+wklLcEq)UpR_RHG7^6qfq=drr~?uNyxyUC;IDv2FrZ-UB6;-hegFyN}9 zR)N8jTSd7;BzmTOE$j_iiyEu=avSK}KX_BfbcNa%kK4zM=9$V`4V9@t>Q5~$8UQyM zUUyM3)j}VMbUGF&)mE!GirZe3H7hc;ZS*x#*@qU|mr>6}WV88W_1I`JGR0%~;+iMf z9wy_|RKt1IPWESoSbS^?kC7jn2uBF+qF*{a+ozpnIf(kF zS(5OZp;h7UvD#!MVHK!Waj8WS_Ki^ox5W8AW1>O0A-8HR)j<}Q$jw4VaKcCRuMr)s zzaoqcamK;+YhuN#Olpc6;yHueZ`O6d2zI=O6izP+m@$x=a1;Hup(}%8hSP8U>B-~g zyIYjtK}M(Dz&%y8@`(ZURRhBYj;{nacV+|;8w@K!8L(K{H29oBc%6w=-IiE$rUY7Y z$?DLGi>g*je0qaDT!WaG&!H6;_2xPuqaj`6^1+42teS2N6V;m-2iZ@Gs?~$Tdac7& z2GrE0c~S5s2EsI-#>6nY-EZ!rrTFvKo3@bpDLUC2?DizALk_P&EN&Y1M~cCpqlYr! zSQOhxEma4-b$dwFR^f}ZYkWxg@bTZF=01VH9~gx zX8*WHXBL!b*4AVBxsG%puQ8#QV$Eyo1z@p4BJGT86zyODiLaTquMlu43nU%_Qg=Nbp#-m5AL-}|X@dDAM+YIHGiG47*yZGpjl^CovVdrpy z%Xcv2j522oR#E0MYH{N!a#ysTVsGe4W8jN&okXFlXDlyC9ZeJ22#G|lJ z#o#l;MImOLtvbvno6)NytPYE=vH1UKd$;vCjw4-kmM!swGeHtO=ukS?l5908l9DBB zw)ff;2})Q)kT3yRo|!cpUjt|WZ35_acY`E!)EVO z^O>1euQfP|sdaN~gkC5uPa<`lNU^hqI+dd$lJlrR3T%z+7+8eeJy~5LH&h@QcQvcC zBTV%qACssv1Lmeljl=}8Y91m-ih`8JXtGJ>Rt?b26X8do5ff*@N=>H*=fJfNR~)@p zH{3mn4i9pL%Xjs;Sdb@?s|X6WyN80zGQDx!7_L4%i`v%h$=d5%<7E9K>L5niUq7D8|O@f?;}yI0{r99U(sYFxl`- zAZ2xh>K`8*05NEg6f^>Ho~$kt&2^?3kHF&2Xh*Xsle{zt_#&Yjws9wtWQTfQ61Z@J zZahflkosy#yPY;&kZjdk#%L%*g2Hwd7P;p3Y7M4<>ONSZbMv-H0Y|B8m89?thG(|fO3n|9?>eIwoz4;8#Knaqr5phZ=amkf z0#fMb(GF^^Kkx3kejV=cY&G&m3MlmPDn1#Et09mj9fb+6^lB(A3VeL;TgKBn_tb6MXU8skP^S zzKO1ic{7yU;(}Vc*jd51uS4MCt=7QX_B)S+1qlg+*xotRlF$Fh8 z?qAR=aHK*8!d1fyRvRibO%E7m-iT!L5Yd7bNVpHy@F%$x_=24y+?=_EvJ33|Q8vKi zwV21h(lrrDdC#0hH=lmYq^03z{z#kASdJEBj&P4XnH{FXGL}V%6S#BpYp=#cSedkf zx%YqUBen$fTCn0FaOK-#ITGpHH}BHmnJGuFbAZK|dmZ20luJ=^iyNTN3AU9Zy11)e zdIf6wDsxExisKgG-Ta?X#gSBX;qT|A?t0g-a(F-@Hm0-w*mnJY-zbN5TJAD&iSO&2E*MVfYC$uekKY_;jO}LryapQaNWO)go6XA0 zB>R=t`1{ENssm$`_w(4rIwsC`_KYshBcPx05w1Vj7 z_zS2IIR#_8?0iSBlr@8wX<=#qhF87*3P|pgW&NzdM)2L=Ll!XII&`n!Kj`{A3{1!Q z0E1fuP-NP6bpwZ*yj9^rvD}xa030R5yuhVV2vT6%)Ekmy7b4=G+3@U=nz$7Bg0@Ot zRg!Uho!&_?s9Q?)m%p>*Ja!O#rMZ=fjBBEl^mJBM3Fs~_dvK(rZ6BZ(DlK6w7#G7+ zEnFi%prCRiA(hRD^MD4BwYeQ#XU9@58oL;N-K_pj9?~7)zRFCboNUHc9zix(rP}J zURd+%JF8#U6`a4 z;~;JfsA~cWN()4ZUGln+m_}t1@=~NMkh`>gyv2P@+YV|Z`OK(&Z+H5=ZEHK+KHYYp zc6h<&*HuJjfHo$3D8s+1tT=nf0=b*ZJ9`~oH@HS$u`%d!5fV)#`jnslEY=#coxuRd zf?9vfbY^CSRc4I-v`B7tnZ78zo6RrfNaF4dsvLAPGInE0z2v_}70F&xB|+}#frP5u)y}lSW-`FGg)DzR!nJrs*;Z^|Ac0wo0 zoi70s=L=f!#-`su%=KxWpSGhjN;JGTp1cS2hny%s`Ew5*9h&g6QL(drE+AsQRr4$} zBOYFh)5^k^9t$S1wv+AR(uqNl#XjMZ&tfs-;B}$tXBevHM`hN~Kzn@8_~fYfN~Syu zd<1--a(=x_WhtQf^eAs$8Y#)B#PIrfW<+)sH=P-EHQ?Yf*3o_|IGhY0nd;`@{afMH zsT~WHMYhT99s{(K)~Ck5C&+Y&l!gt3wIsuE7&Wh2}v~&S|kc&^f(Sn7D?c z-SXC%=ff7%B#v81Y+^l`2@^=34Ub24-^9nlr8lA2@@MsW1&++Cz>dW2f6Tzgdlbn; z`9@gN{6#7#`$_qBG$Re?nZj!0IX{hnd-Bsh%1iVRV$epdEl~c??tc}({X_Ae|M=Vg zM(-XX(Eq=RK^ym~V2VaX|6lAQ8iA&%<{%dwNY8$aE7Z2_HbTyQL@WNNUhJBQsvg^# z1f+Y1TrE4jVx{0;3kjjcA0Wugyu-}UoyNGF1Qy#4_P9r#7HS-!{DkS?%tRT_(l}uE zuf*6k`V5@$Lx??R`luoW1`1(7Zfk9;vXksk=KDPHUDvsH#(Or1Nq#}*aQQyYM^EUw zkm4a-hy;NLYB%!?Iz%zI?hbq-Tx$yDP-!JL-89JzN~5|@%fZtw zsy>N1J```+yVM{mxgx~oII`91n@9Ohss(`Lk=_5p6P+gsN&FD*!~IWh zeMZ;2(%)fbGp|%7q8%>DfjqX4cszN+N0eKG_6v&R^4K|mT76*1x>_$W>Z_qvZ{GVGrsCnorb24Fm@ z`#i`A9s=85oIMW(^HBJRDDLdb1bBRegelxaz=uLLb(%R7!^`y`p)?}J2Ave`L(Fo- z`EY4k^x=;}`4LfO)2aySQZF;Y^&n8WQZ|uU#_Stnv1)Did9JpIo)oh*y_&H-Lqx#c zo40SP4j6~&KK!YRn2GzoE9n)kae`Yb5W&PZNibX2Q*51J8&av|lsU_4$d?CoU(sL> z_j|_&JLpwDZz~Q@unEB_JdPD8ryI#!H1n_~Aziz(bKDo<~|<&uH$}3KqK~EXt!|h?pdfH1l0R z>InTr%P`%mcoTKNPIw4sqb>7^&Iaoz3nMj*Gik z^DE^?G8b|w2U_ZAcL!^5iQ?X0DgPq@0p&@b3sItRvl|rOiSIZG81CFd4R=Me zmZ+_meJB#xX`y&-i%&!eUna!CJPF;GF#KqmbCHeT&;Q~Ki_futbWw{+1>!*r9-36jt`ljaiw=f#kD9Rk6 zYLkciq+R`t19CaAa898}2IcVMRwEvEA~h@`TIlyF`ckd~v$Qjw0;L_jS~8$mZu%iL zR5pMtQ|IY<@-SOMnbXWb$XCwx4!9CW&jz>^DQ$Uby*t7xnO6wUe54=WrUxzKnYBq7 z9~TB7U{X3nYV^R=moG6UXZh2KrPe?h`Pa(k41s|?IE@2M`%)StwUFlBqJIhd#+HVE znEBp727~6ME;@nv5<$5?FnJ229Dc61Hx!S^NqkQ?0-rN?%SX?<%Jm_2n5$s0egrl;S;gF> zt=f>YM94s-#W|LWj9pez6&(~BSp%fCkjd~YR5BR#bG!cP4ns3zf0i`II0hBZErnY_ zIQGeS1*e&;YT~%LnS*~h;^jAeONo|(;D&im+TTJFDfYQt#E$e{Yz|KjDJ#f!aHbfn z3QlZC(Q*mP`0Jd|LWFcpJ1Z>3-peRN!WD!EKhI!8O$){@VP>*LM%SB9gLswI$_ zhgt0`P4_GEQZjN(4@WMpOZk-^0(s60Z8sa8Z0W-?BL#v(Nw7MU2KFv3&}yrV3W6prlT9oBwNZn zfXQAnl>OD#A+7~}%$gWyHaVw@F{d-CDF5GLV~|ijth@Md zW6e7%;u$+dJg9*YueJ?r2E2-q^l}ryz$>z`789AJOv2XI$*9vF4BCxNP8E}ohv-RJ zFdelEfygVX*l`4gLFJrhaI)}?jAi5^$2{XG-vUiht8W6DaTHqm9a8u+4%IrA^#E9QV4M2~3j4k!nDMres8N23WCe22X>>{qL{d*M72uII%O?c}i~>t{@R7Wc$O*ecfE1j&gA8#4oiRvC{hHiN_)a2Q$bY1Z z!DuHy#=dMS{0~VrmvM{u&6t0?)IEe8u-ts08|}uft6bo;m~9T!`y)p+`RQXNn{ft< zsZ!!t`UzZjekIVrlE~9iIw7XmV0VEXLx^Km`Y<-nYeTtLm%=YNrf6;Nbt&i;X}+d; znN7B;N4#lUHmu-P=uUy|4y+Max>jFi1YZUc4j+U=jC9G5VBk6^|BBbG`Q76IPWuLF z*UaPbXZ_kbtwF~Zn*|hYa0Q!0iN7*wj%Rj{spN?1*Nk0PPM3r^B1o{^`9o=p@Q6wqw}x}Gdw_5ob&X!-De3K(XXb7 zjU+fZ&V=MHGXa*Z=poYf)DjLwGUPrPKUMX4ZUa)fRyf!cNSF^CR?+GWZT-v4e30TY zhi!j*WsKm8?*)(jlTiu&)%Lc8LJ<3qOCd^mDhSUrt!Qw%no~Gc=&&U3bq_#pWOYm? z+)HMC>1_+|yX%j!H2S~}i9Oq)4YJ;|duH#Tw^h;GjU=J2%RG{7uH=tWpYgIUU(!j$ zE+Wh;3vb3ct+kGMj&R(2-}6^=(!f4`Ie^yq8W#F%z$}8kSp&IP!89u)n8tY}UFoTK9CyysViCNiKZ=+lqX3t#)srkUH{z%jqYV=v zOSum2ZfJ|`{0Iq{OP(<~5Q>t>VxuDyrK@bo4dRBK8l?L*-P8{6H?H^C!+BRoJC(Cq z&6DE}n?qpSK4N6|a6R{E|In_5nSFxtL$BkrGGwtx4u<=UZ`#i5UQww>QcIXm2= zH?X#EMhcbG5Cyh6{SeCo^7|ZLknl1=|N5MQJ>a6Ca(pu$;K zJaSEx2Ow?=h8LRzrp-BDB6C_6ofeK&_tlAQTHVB29pFm0t()xG$L-(J{4vnTx7gTN z<2z;Ufuyc6k<;ZebLArx{ka0pn&a+ha3+y*sHcIk(19a~PQ*zG9b?$N?p1zor@Mz# zhw=UNn4TJbd+Qb|OAl{K4ED|5VDHx5TPpEmc}iiscZsbBOm$38y~B)gq7Q}B3+KV5 z6?a%Bx${)!#^Jl`#2`nfC%bK$x${PX8NP{wHVvYiBKlr{XbNA7e@=Eo#!q)@H~5AG zTxj5ud~A10yHl0;8?1BGglGaO3f4Igi#;C;+}J+SzHp$o(>mOXwM| zny0h6XAIyEYD`ETVIM_e20T^Fxc@|tPdG(lrfNjo#}y`jg5|eHOwi1U2S=340HtCn z6g8>vUPrmqfJM1H_4E?jZjQSUil2&1VVyD^mRWIh6zTPw@_HmU5uPrnA~572IHm}^ zYTRpsz)B`nDt80r7Fa;#JM5?lUZp zo2}5PjI>G53nc4idyTtkIQnZ=^PT6Zk zbL~QRCz;HVk?+zMpAM0X5Z(LeThda<*P!ZW6uQ4#V3wg`-ENnn?ZCn>@wZW6pOXlt zHGaj%N^iQe6k>sb-Gnt2W5=^6<5D=iJtezH#VVQST@PZ zMN2R`=dnxLLx^xC13D9WST<~otOY>aY^$G5DDDhs_P^8(k{O%^J6n1gbIOm8L2@%I ztM}Hv)bl!$K2Iy9H7BE`NJ=Z(@XR5oNNOtcT(%CYM$*oOC(MP@RY-U3o{!_i1gnrk zbAKJ4r(issl_D67oM#;b%*8o8@jU!-{M=UEC27DuDy$(1_v^qPc;Wo$l9x)l&^%%O zGfE28aNT9%ibz2uZAqasc)05R$jC@J59+5O9%+22*+=pOmzB{>9h@U(q=5?stA&RDx; zrwNA6V(R$TPK4(^;vilqEZAT}EFsj?8Mkmb#UoS0vvP#n!dA&8KN#+J`?y&hH>lXe(Hp2{J&;?y4qB)rjSXlz zX1+lu(93Y)NiSqz-F4LVSE3JuX1wt*JaIPTo9C$tYj|3wlGiq}|9ad{-s7yMNvwg^ z#%my*kaX(@mA0m^fX<-aT@`e9E$Xec+N}dq6z$=!fish)kpVQuq>Lcl6h(w60n8f^ zL@7e764ms<%q%Tq3h446yr``%k=#c7o0Ls;DIwa*|e9`;*Bzr=2Bn+Yqk%)v@2uA5)oElav)x_ z!c2??8PJxJVQ}BCTCAU^yGLZsCdzAN;xNPdSeA(~Fz($IM%B7*Wi2DA;)ThFcK44* z{xCS{l4;Jr@Z~%$gt&*6Jn&0m6Ey(+CxT5LJtgY8PhU5QXa}(d5Wvhx}E35j(o=sbs{?x$d0hF zGE_6mR-P&&xy$5wgCC(YkW!fxg$D{T&3c6Gq%;Ky1}z2EvhNM)9Aw=QJ*-P~&WZv- z^Z~{tvAaFtbH%Kwa?MCnXF1C1&AU-bE3~ zVu;Fzpp4FVr^XY8XSe$jwaL0RoHb+EHeoG>bzh9*5I3Z}EIy@4A~p!*7d?ZeM2N2I9|AcL1^{og;>B3&k&RQzlM+3^NmS zP7Tj}NM-J5gU*_OiIDd|9xUt7NWVm{TUI9M7lY;AeE`Q5l`k4vTa`<6afe*wk@0U0 zB}+SA9y8&y!t_A&J76R2+%)!)kXMHdt?$%KmtI6zuD@H}wvgg$NPEW|_(f zP$oc^hsY{{jI&_eaHJsJ;+iLf`kH|dxDeZ9i2Ud6eTv_=mj+E>o5WC#oVMNF6H?8x zYekvHVX@BCD3E`@6q6wiBP7G**v9BiASMP2w-Mw64rPKNh@sqj8w5-vpn{0#y`yJXpk+4% z2H-eiv$VB+XlH0f{nH%drR5f2X$J-)F6I|zU(Ow?G)oc*89Qb2@DTbjH{UlG+A?E~`KSvxdyw(Vc48tBBm;JDwc2%&Nc z=s`yD>7&kGd;6q7oD`WXY;v+l((4E9lOFsDy?)KlpV3qjf#7XOI~o?xy%(`Xp=F>| zJm|eRLK!Ezk%4-Imq=peugBd^l9S95nc>91;S{p$A7$jn6{64P0nwKtrcm4!>CEhy zPZxz4)Xn*E-1OfPc{Yteo^|pjX-2Dgv5)!`LZ|*6%c2Y z0OA-5FG#Uza=KlF_YyK$qLJ&Gr#!yW($P@WaJ%t($p#A5h?Qu~q&q7khTe^bOWu1s zQPb;qZi(5z55+1!9lNr4PzGGeoO{RU<%}AD6^2V1X+)!!OE#h}aq>s>6vmRX)ct zIODnB!j|gn(Jl&(6V}~FUQHC(wd}$Be9%2a9beWC5SVjdik@%GN_jXn?xexvxp`$J zzFGoH2IchQ6!N+CCuBT}CCRacTw_$XK!iOFtQYWi(!AuB4vs2CLo)tt?R3V*d!f^j zsR$HOg_N||85Icn9`&|+*e;Pras9YYC)r*V1vgT1GGrD?B~J%e5oz&B1u&|jTsD?J z%MP;n^I`Wgr*A=;tRAQRGd1|osml`C86RzzAC=MjSJ#}`bF2y*35RhBwLRkpc;D; z?Kz@*01&X?FF-@Tp6Lz?+zW16mq|*_l4%jpcv9!IdW<18*uKrZhV_ISX3u~JajiMJ9iRP$>bzsctS;qJXa;gv|2)!>2t|8@4>Vz(G zBl{;Uo}EUTUY%}?q*)BJ&+Lu3u^2U=5MN?kL2|SI#?bLfeZ@y!^Nl>%JfyDO$_THm zxe#Mv@mDNu*|`wq9k(eXCgp@rn|=Y$o%^>afPD5DE=oGqvrDVRUbP1;5_*uohw85rL3pbgZ~!G#UlZR>D4|s8N#qZW0w5S+3cjpryF`2 z3geShwO_d0=WMlxNAf6j z$c)l|CC8!;GQZ>-@5y_|;tdLK@KZJTm(z5sM?4MY4cqWlx`b2Tm!X3ZZ$)mD?OHv! zMn<)lm`xQUC2LS2*_5SFl0nzbQB6*CelpA~W2BYdL6oh;Od2K%`gG9ALmrKKSeqbIvO=9;Qz#jBTKB245c<^ z-d|OsLSvC_jSjSfLm(R1Px7`OFuuPp zAi3*u-wbWGeI_fSzHkWB+hfXe^e#48Vc!!sG$W&`gj5&DanV&sH}^=0#G*5er=BIL zHt^L*c{WV%(B={fQVQgl)CDvanJL>ycQiIa#wO9`StVb>xP?c(J#3Ev8B;n#&o{TV z#!(>%S*~q7JH&+GTgY4LLq<(w8uVJVF)@_8j0WM0djcId>Y9HKWS^7cf2XCsLc>5N zTr#y_%9@zKMDm`eQxHqEfNpr-Bq@X|$_8=d-KaGUDDDDw> zno7DDrzCICZP4LRK3jh=vhxOci%G=FPrvtJt*rc#JVrSq|12J35++l`#$u7Uk74nj z-i^F9@*@>@qkbQEJ1R*3rp?o%?eAL=O&jqz5(#)j< zIn>lT4kj!mm}s&GckkbivtN)Q%K3Q6>XWcX4k`F}?E9^7fry>H|MAB9PWX)JsJp1z zWfTS}?3iJEGhG&eyKA<~=qG<`iP(UCv7j(PbSdx}zXn)TKc^4G)r3tQJ^@BCIfDN=;@?6*Eg*1m+MByWQaslA+vKzfiQrNl8Ff`3K>>>CzTn4*OZ7lIOoOVgtaIM@+pqL!%trDA@nogmz)^5d;O>q zv6~44DK{fy_Lv3~I}`bv6XJRCAVY-6ZgOts(avxasT3XSN@-v~Bl{A?8vHGy+7g9C zs1HH1Xc8^S0|hM_n@f0FtlF|Vx78ULJE&@g@WELU&|P{IOkHe^q!c$ZFm=#7+Ea}i z?;B3vU*bibh9!iXTY*CkMrdq(VgkN^g3r~s%vf8r>SJ?`ke5o0%QUKMeb+fb9gyNr z<7!=gTi_HkoYi6!7Ew4G+ej@+K(*1WVV>E)iRUv^-cBL8Uq#V4_jW>s67Stv6T&1u$DXU`~nAzbF-F8kjkW%FJQYVP-?zQ zQJ;s4yP1K@ggfR3E}*&dt3O1YS<1-aj@`UWEF%Qu-dbIK@X*Q#zE3r2Vi}3>+!T?E znib}FYPp_tjw=>qLIx?8iSrn^qfJU1H3OCriP9ny^DfM9xfvR=pe1c?ZZfdcwmF9w z@$N3p*9@J^8W6eHIVXhvR$3m(eYg(BeRcxHDAA6D?`x)q#RT$tTHf%%*mlKjcFZt_ zhk)p=uKEUs>N*nnt;=A4%z~fk>M%E=1wV$th~8VPuJxGZeI4>xsb!9?>s1fz(PyusMsLO$sm6?p(N;4@q7^7gC=}*{ja(zvk`(*1cNcAt)_2`X-<;-Dw z@T`(Tlj+wWCH$6BWCTnQMc#pJM&D6v78PY?hiwlLQeJ(dij9v}=bR8Ts2R~Z2fskqg9f8JcXxA6lGsN?AIC7-O0 zQbZj709PAkEJin;GMNPDvRiA1e&di&D}QtbFXE~J!@;R>h4PLUBzfO0tnvp4aJbS6 zCdaHis*wbSOvc%ygNaQv9a`M<(Fwk^QUw!Z%cOl!0!_=<(d;2WmJ`>bpKga(|ZoK;o&P*+6O9 z%U2XcM`;FM>~q@8UwW0YY?(Dc+hcFavrtN5p1+op=vIwLCWuOjR1UFga7qYMh_a=U zg56*Wm6=u*9Bh$miB%+PpjD5w&4_p8V^eQi82y0dzNVE^^2j*R*VEphhMpGkt>OU+0U@z2Vq*628GKTkq{6nU>2#T$M@imO zB@_w<6BM0WXATc>TY=Sg4QgK>9(q)H+bymhAB-SBfHKjyQy|!)9Bb%fBRZLRtDO7S zJfR53-S9sZ|M=VAi=TjwQ<6CQ>Kv%nBMN^reglQrdVPh-A(C&EGd__uLmAJIz!^M% z6wuZ-Peap|%sw*|PrGyTtI&`L#$6<>Aeb7uM%1P~HI#pElcg` z4dBKEXFWlGx0z{QW~|1NR2Oa;`(6z9a2H5p zSsdFw#Sw!3ubAK^=}?@?Q*BajjGAU=U1cYE8Av10lP^S}PDfBA3!LjPeYmH84WuCv0u-6%D)f z`yiCUCM#|q$sgM=ye+-VvMtBNxHMa9;HI#k*+7BLU1AEDp%5rs;B}B(6&kF^q>FGG z-h0;V=myE+QI8UVcqy1U9Ci`Lfiq9KY0d~!X6F)wX^0}hz9PN_atjX>G$wa}p5i-C zY@cRS&^THi#hqCm4A3l+$g_mLcWmRvGCTQk&;;S8zW;GWZ>k`0W}S_=*JjvG2!be ze?%a?Aqe@p%>3ZS2>6{Spx=*C+&P)}8xsl>LVdir5#1WF3-O*5Fzp{H3~g|AQGd~! z=qhn1nYFDEOFmB-sO}3yUvLmC_-W%d#iKonjp6{QLGQ3+v3v#my)XO)hb+QuC9PYc zxvWz7(|E%$%pUHD02g;)__9XB&B3EV$>haD6tQZLSlqAGIHRi=kydDVYEY580yKuF zfbJIQb~L&X$Cuw@n&_*m6(BWMEJF<^wa&M9`eI7c)CCU5M(0 z1jb#W&HZDA^??Y~urr`l)eV_lQShYP>b%4ai)0aEL#EzykL50c5(?7U5v<2{%?sbNGe|v$Xs{ndz=f^jFSsszSQ2)+OwdM+nNOgZxa4mnT_p zQ3jN9qB@-Tr||F77%ovA(K}z!hKB3qgmozHl1$iN-DNTk&|Uor*Nzce6a@h@mO$i;n}n&ReZ8VDi$ z^=lITI%>Pc8cTSJTI|EJO;a<6QlY7LZ~8l=Vi0#$;n1%0^h<}r+6;I`QKZ2I!o4m3 z0{8|2?{?bZ7OocgYFqp0ZL5YGwfUkFxz8R@niOfAWjd*&%A!0_sJnWP z?tv%Q&W6y&pq*1V(+L?lm5o0vURZJdxH&+$cf~bYy*MqZq&IzZH0mc;pa$MOdKdla zTOI?s>Bo<8n|S1zy?`Rj6hj3+qG?(t6iS*#?|BL(f}3O017CO=q`c1IQA&fhb3CIf zOS_|fQDVSySBRAUX(Nz+SuN|8aZ{GWYB4!n)9d1Qh~Mh8k?3H&VrTFpTr{T7GDDN6 z0=<6fJ!j}eU&bi#5G*2irr$gqk+_}dJi;-G9LT$b0*kQvqNQV4m+)HYedb6Su z@{5fNmF`&ZysrTns0KE~n(LME9c#Bylk4IB9NZ2*lya#w!IEfzV#iXMeH zSCCk2c}PW)xO=C1o9#oW*CEEhjOwYY5cZ2Qp1oFypc}?B!oEQ~b*jlb9#qyvoK;8! zF`PS57z#CU1CGCrENWj2he zAFV8=A>Dg@P#Nul+6nyYnCc`W;bb~mYaQ&JxkOWmRS|Xwp`{NHrlV;iK z>7Kdc0Sc9G;nqwP@zX4eanMv`mx$_NY;3Yk<0UQz3Qv~30wOatRRHwe(DD+=y%z%J zJps=0(BLzksq^}NYj}K!P;-0ooDslM{A*@b4bm+>@eI&qQz){6a>iT%?z}!~XI;hv zQIbusG$o)ruSB__Hzcn_{B|wqB|rSA<86sIxUO)ghhT(q#A&vqaosdZE7L~gAv+!+ z@Wckh9OsWXwW6sH*>6!faXOrhrM`h>rcgTclu0%Iu0qfv^9@OKpmff^Z zJ{AdJ_wjvCt?=h%#cf;-GJq2gHj2JLI=Pe;{WkD-$Mnt{-TAgal}*&0 z!Z49EqcD_29%VSZ`_JO=?%&;)H4g8lI4nNhBb7@x_jYzZJEcdz{Acm|<=qOpeD|+wS|L#4$Kgl zGFG=YIKEZHiav#qjKP;OGfcbiwEcAD5xc5@EtvAWNkFOz4{DE}-+@ za2b403w;IS%MT378nqF6feXOMI5uL_z~obyN(WUy-7LIk0xJ$62R`_vZh*4p9nQ@Q;M*tb=tbL_B#jGWS(4vtEg`7dtN?xN6mDM z@UTORSU@!;QU%GGKDqFWg?I0>tBb5TPr3M%4xc}Zr~A9waeURIiZ|kIAm|-yS~b|{ zC|E_lacCJtJ3zw&f~yw;MXVc$ffuUizK<1(`6~Zl=isoF2uN)Zm7p*Q_Vg$3ehd`c z4dPONEx5C>LHG2*=ymt9#AO5ueFjOD1yilm*0Mx*3TkjrJ;4@~IG(*Cnr*N?!jq z0znFi=6z`qy%~Y1N~__bi=6PXHpWp23k|?f1d82QtV1UHlgG` z|D)%JgG^$c3fvwr@M{f{V%Ua6OFmL+twFoX^Fx#=j>5tsVFY1);s#_0xObikb+5{C zq6eW+g-PO2S`opOM41Y>kszMMlUos0R5$lj^Vf>+nU0Z3O@s`~Ou`j3xlE2jcT4Mf zGpk5g>=b%0jAZrox@YL|#Dkc|c9*M+1s~Dnh%HJClBL0nTE<;@%IbqU@Fk?1r;}*@ z%J&Ni&ZR&f$BKvDqaF@Mt+%wnai(HareuuhrZysc5MI!i()FM-$8x7MI+T}o=i(yN zzY6r=g~J&RNeU?@e9Z<+LPCF>SPZfx+&e$U9H`QXjDpfOq97GD!Rb832*%{LQ4Q8z z{t1-Wtd$NKQZd*6P7?C#&~f}$zc)k#Tn}}IOH-l7S%drpMXkt8o`(A{uvzj^nh}BL zw}5VUm0ye>OCmXh3;9;ac;&ZYEkQI6{S`KBEB>M~0Ga5rpfC}Xiqiqq*nunDw-u-2 zW5PA25Q3Y$H6i0EE-9r79L0cc>d8}cSHgU6u!nW|XPO7~dvY4MlR`B}j$W>zxl2z1 z0eeZ#FM4)(emj16J7yg`j*Ds z@ic-;2}BgYUFTf02OYUq1R>F$wof~oB3el8p>r2AIWs|5DQXJgE)zYuvQ$sie6yxK zDMU0^97_$N3VKn?KtM3uAGmRdjPBq#_rAZon{Q^hr*6m3*;HCSdfpu%t{Se=;!kwr zJY199*E3)Wa|ecLr+sMqJ2N{HJrIGoOU#x(%@&Uv+*cUcv!GV1rF8q1#+6@p#cFrB z-NALxh$=hA75021FjD8C^eC=Es9hjxlJa1NHgnvcXqX~UI;LD@DKW#;m((VbAbO?? z;)cwtNl<_&>0q0Mk>zk9&{@*54sZ~Ttq##-b5*SlF%B2yaj1$!qCmu4Z}^hTQ@sn^ zG&>UnS1G<*MRC`k9v^Y6q`&yP;G3V@1yXIPr?1Fv9HEW_6eVJ}f9vi|dqk26+6?Oi z-toGKHd>Sb6XCVKgm#y0{z~)%(Z3+{=^8lG;>`37G|RP#X)*>*-|3Gc+#(l+VlN3T zzt!iHVe-G&8QQ=hUD5DNybh`{2-8A!)O&_dRnx|d52IYb#vFb#QICnUXKu6q6TLda zG;u@#k`=v}ov8eLG>!qmef`LTvFf|G{p_gs0{+E45gEQfZ{-O0$lyNdHpSnr_jX6P z!I;nfr3W-vCf13&S{t?zSOqw z1`CIHBK@Lxs&~m>*1FlDswNpWW~dva6Jp9BbQ#LBQhX{6?mp3o4|$J*)noEn#6lJ% z#h^kGwq$U|h$1+yb$H9a&TmV%SU~sw2DVYQmbcVgDL!30SzF-~*^BxPtv0Rt=w!4^ zIUA(0mWK!r6^5kB#U^ef9qmhH)fu=hu&(TPhIBe?hNThBnz3r}+#=SL5}z-8;9kFg z=lJ%uNlZ&ZzWg9$N?xf{eB8QbmQb{B;zphR|XH`CS$jBhhm4W^I})8gi;jEo1z zHK0PexVL_PWks$KhwA!{Nkfay0f-6*B%{U}>;yPgjY^0HUJP2mkM-AE{r1qdJEJ4Z zc~OtHXB;U^L?3OG{VZk&>U?e;cTqf`qN*|)K`ptk0G0*sD}YWY6oCS|bDAfrs_$6( zGV#qy^5<@!wiMcv&>#xrrq?jl<32n~gf@5WRDT7FnEAx(x`LnUclxa_?tXdK$YW+9 zjVu(OMiUU+2W!h~1+cy?NN4`zZ~vR@F_etChN?z@%0z4+j1bd&zOy`zxcLTgM~;pAE6G! zsDsT5-#RfYbZ>VOleY0$6ZF8>w{aLLq!E2ZonA>NhoWKzVybs0Xt2-GlcD|^;Z zRm4>JNI0aTJfVOpD47T4bxK&dE3vZL?ccmM7vKEd-4-ss`PRn)YrzzBKdI%7eQfri zz_H=$K;Q9A^%(iH)Qr1dSPnAYf=J|ji8KXp1vBsk7`U&2PY8d5D5?vHI^NU!y=n0T z^nU+$_bZ|Id&rsS?@+0xxYsB751U!;=exJRcug5&1TSL%qv4ht2Gar9O4WvUy|QG3 zD&n}_<;LRUw+Oh!nH)0UFpYKj4tWT{Hf>;yfw*G zinJyp;AD-oCcwVs@>YS|if=0zpthF9 zhYOh5Qecp$3UB$ggf(pIIgg@1WHd(!RwvVKJB26d8_ePNJ!_c6_qO0j!$ClSdn`M} z{R0>?;%4)Map!BJGbSJi1oycRyz}+9*tp2;OEX zC+j@AD^C!p?QfGS_Pd^?a(TLA=l!dX004aB?_knFvgsB&sT*9i$V#erUzaKX{Gxal zRF|b72wLv5u(ykN}kc7=8isMVH6Qt67SRc$BP3|wdwPMasKo0Tg&8&H8-&e2OJ^;8+xl6x7 z`@;H*1%F7bZLM?CSEM05UAu32^@e_hhI+c#w){xD^#X@?KX*29I*LRiOdxg*ar$G~ z!CzU$JON$kWf7sTpqBl1X>*flZEn(@NxZHl$#1NY(}bi|698~ua2J0A6GyZ?tE2~= zgU%k-I#L)^!EXI{%SVyo{4?0Ezkl_vw)6quK4JR5M^`^2=Pw1k`$WE{9kQ9>YYL05 zjPUPYy{9W=(bKX=`aOEuF9wg=s9jFJblN8TgkJBxC>6w)Fh1ig{3~}g0f_aAPu~`Q z>JCOI7zHOxI8=*>RgB12Ck6mf4PTN82@h3k9hGKjG|P=x7{)KZwx(n=a{l~-tSka> zt2B)GgqeDTqd}sz-GM&|)iGhlQTUpCgs-^RIzeqliC(A9MyeJEW$h{zr!u7k)PEAa>U}5?7GlEb{uyk`13bvh_V-V4H+k|#(u}{bbV{XhA*c1-8Z4JTpG@|Q_92zC^z@OqZVAWpQUWp6HFC&ZjhNNZyS1w zWUnom@^s*Hvo$*!)C@}yVHkIHjhaaECAK5qw28D!ZrKG-vDdRjU@|9)nO-Cmq<9`9 z{$>|9RwC_Qb}US4!IKK2W}BF)$dI8Jfnfrd0!mr;J;q3}9Cii9cj!|{>-i{pa=7k;;7J-QQe5wP4vo~{yKK-w9{^Q63V z+F*@9l3}GPOy<-f)BOR;Ek5#nti zG6yx0k3^lfLdT+|$ltyBHIZNNMG$F%Uyg#$OXr4MK!`8wZjqO<&mF2F-mgXpy}BLVJK81W?S50q2YB7en$0` zhGzYQo^c#s%fgrlD26u&{xl*p+h86@s@ZE=l?els zxEB%)Pr-n=cfRXj!4JU}E451VQ=l4d(TSCNhNe!UF6wp#ssY3;u6H<{hDv&bZ_$r) z^fzV?%#UrVgk+l7z}&;sfF2k|Bx5l5sm5Ct?X9f=Jmf5-!{SpREB9A|EJv4|#g_oH z-P}lcXc{4EL~G+J4)&&uNQ*RiIC!QN93zSYOI}DXB>7-%%K`y5tSi<(bqOM7Iy z7>XG^k*AozEtdq*S4f3N6+BymFeA;C;ApS(6a=Q1pz=CEuxQ{7|4^S2eAz#W7;)Xg z#U0xq{Q-owj|UVHbaVHZ3ySL4vhq!mKq!hZwFU;nK?^rPq)Q;)J&J!YeV&Pt)EVtx z3mh7W_RCg~kxE z!kCs7EX}|+$f5Eerm2W6juG9vIIasNGHHK6%37&&cSA=KFIA0|*@@KGU_79i ze*-6z1dJxX1u|AAW{x7YcdJVv5Mu4Ow~3wn@iu7@(|3&`hf|f`iAT!S^_cF;x_%~y zN}D>4uA!jzob#WpfMyc!Nyaf+N)Hp+F6! zuiy_pWtK7l$(6N1Aqw1DIp}ZS6c1_;q7*O>EC0YZTg59ZO;-M86DFiph7A_?RN*)U zL^2Klb-3sC>rG!}uIYfQC}l}0rczsos0}ehLn~hmb|0sZ^Po!aD(JmDfy)pM*wALRM zk5=w4KVDxh?tTAsd3kmD@ka5GGVlI<rd$;14_3_B=lc$|Fm(8QqLoFi?3j_#T4rNOBY#-_vrSG>oTxrj+ zm2rqfan$;%?<)(30}*^tEbBv}i|HBcQVg-o_NLsMdn;BIu;SpjkEr;jmR*L!s84Yk z1yaav;GNY4ZZ5^d+LfTmkp*6YdWxDUFzx~qmp^!^A-4L@?D9Ej^9Tp=4!P!ek>d7E zMc2lf?)}YpZ4|x2je{lWd(!)uRyffDO`FG~a83SY2*)IQp$v%z<{rK2JFtqR%Jtp; z$(^sUEu(GdQ5z>eh@ywm*p}QJLokyb9eD}W8JdN4Ur~gG##K;=E5&z2{@Je!iYE3f zQN(cv0bFd6p;NYD#-SWo7rXE39wXzhElmuQ2vS9J@7%{dpJ0cw2*_uO_=JcUhUF4C zIM^ECRx*T>CGCqQmOo?Y;3V+ejGV|t>&=oU%(($*d6IU<$kNqbU<~aVWI99YTK{C1 zoUh`pK(gQM+qhhVl%J85jENZ}h1E8vIae@SC8i4Lx&Fx^9F09&`#WPIixDnCiP}z& zAQuQIAeCCd9R=RGw}7uZhsfvLI!4VfT+M2=R%XYOBv^rRzkNW!1p^mQmeG14td`uc zs4p@*DE5x?eH@zZA|c2!lv&Azprq9PPhID3_OM#}t8>LL2;i2|Q6)CK=vqXftzf@EdE1&j| zh8gTu@8HU`RS6PeaI(tDQHkZ|J?WJI51P}`wAK(c;;cKW!O>&nTor19qC=h%;26s`xVT#jKO-85<`9e2DzO*Cia0llEoOp1(#)lSV34VZ3*sp^H7M0T3V zrX11@tTukv_bD|;VLY99_}-=hO?K;;IjbvI?|QnL0J+5t*x&rw=0nX5FlxO+^~qWl zn$hXnk@C7UstRR8be0C~7jWV3cI9j$?bdJLe26iWZW`DvJ#D|Z&m`CAIK=KxVHg8S z>IEYdt32v5vXogxLKpaRmhph9il*?0ZW|1h2Gth^C6xf-ZanSmp?V#8v~gs@bzjuE z&5Ps(5L79PeZLKsjfkEipyWZF+>mz7L?i^2%6+`9@JUX|3~@o zJaL>N?@x==+S)5RHeC)QPn_xILS3F8((MIhs&A`I!y zF#*_b6-5^Pl*a`jd&H?!2Ld`Mx$w6_((BlQuQH{ z?3n@TP$O9eS2k@|jEDxuu~0K~ePh(?F&ND%|2Gvd=ZhY35-2w(W68k)>~5o)f5p7b zjCAA>u{9S;Bsc$5Pn#vJ3t<5-TWP+9Ng_bIgy8sgU2ik~rXRq^;>IIK%)t}5kr&xsiqT-hr z?rK6i|M29ejVIKl=kONp3amupHdu4Y8$kksyQyV%xMowgRNSmrZZKp> zDemTZM|>I9rpe4#^r(p4t=I`Npi3(wFoXq5S~GcG_!rIfrnW;<;Dm-01>)5$<%|KR zx*0JKm<`(BF_4=fKMw&@)-SIEmj<0f=(ionntF8a+N8P6IvBYcey{WrXzuJ&Awq4# z!lN5kY}IY!GX86NR!Nxm-NFN`b2R_Ie)@9=pdpALnuo8i_yEhCtY78I*vu2iLRxVXGb+aVGA{$ixOd2KA=;{6K!#=r2 z?Kn5mua(d+1E#`!ad1GV+;o%;cQWtd%&0bKAyvWfLR`mkS72rH9)enkZRxQO%V9Z& z`HdpC z%7wu(YE84HY&tt*D5yAd!*UDj`dv(Q7V*W{xeWWAZA!Q^c zgWTu1-sEFOCBH{e11qf0w_hh!cMe%U1KeCgeb&5QRbS|CZy33AB1XjD70Z zIJo`OfKA*k7VHrC+v+d+~vG=z}3eSlJmcQ6G35H@D1gH;`QyWIxr9 zv0|OHP`s7O23vZWD1TMm=r;z~RDhuGD!6JJVU{1Z`}@6dhYk&nHY%2E0uZ)=QqhwK zuUnONYIB`AdDZ5QC9QZd<;YcgZbs_!skzxrSR|CV;D#~>o|(bSHD5X-l+3RhCA zGFu>R-A;EGmk@d{d<_hDi+KE1TIB7)6_zbe8)0798y#6m$^;^nTTR+n(FL)Hf*fSsz6qbHw(UP8qkBd$|ZAbgiX*y5Wrt6$t*Fb7jT%I`LSkjpo!LsR< zt!HSpz`1MX4e+!-Mw}ITUw%W=uj=D$e8JofM{%+1sKG%{a{Ozc?y7c%%E7W^8*^8{ z7L=~g84>ev>M)>nu%~r@T!nJ;N;$Up7jcG)!x@R5O;K&O->Sxrr%)+3j%aZpZOp?j z5$My@IxI)MJl*xKNJ4Sb$iE{CzJJg@;V!*^uT$;H9AT>Z@L7cs02%M2m~{-8+@94r zdj1>-(xw@il}{?szrgVX3dQKWu}JO{Yz%Rxc07d1B~)Pag^DlXhF5MSEbY;8Kjl-& zIE-mSB}J>nTSBgiz)OkdKK==-9M(793xSp6J{|Iv?iIE{Xo>J#VC&cI+Y!yo=p!E_7v zl#X7{PLu9e1erZR4u zNl)L*xk84$8l;=ouj1~y>p8&MG@?p0P%X%6+Cij1tFsGt8x^l&O+(pE;<>g9N_(Qt zdnIxx?pfom2;9L3)<3CC>dU@WgTt}C+F)BEAZE}jfHK`19(cr)&4cHjH)n zbzw*F1THzy4f4&#@{|NmGUm;6(j?z7W8Gc8m~?pDrxS3x!mdTD0osY{->~9AENQ!e zFdFPAee6$c&j01~$?V^U1V#Ng30++^E_e>XR8w&(%`-pA)LfOe5)$^d{0C;H-l^fw zbnx4+JW15Bhs)U?MV{N}i1AP%CRVgFOoV9I#V{r-gB#P3etVwCzTAhozIbTQT8Z=1y>_6a!fa=@yoNZEObjq%)`Yjm6o!{JKJh_l(dU!bM zC)Hkq$QgRKR30%9_Q|UoYq5Jz2&GP38yt0}52~4UMa0$_6#ZcgJUuc?C>#NC5a{{Yot zLr2G;G@`pBspR|;BdKHc*v126lPMY;#35cx?njB~BZwLb_|9-sYPD{0r!8PY&(= zVE9*Ds@u8SLg-=NhkRj2L7$L1(5?FV8(iq_0e#<}itgUMCzScL7}m5yO*1=ycj*Z(}PiikxjlZUMwZZ1a>&=8mAu$MaSvj&cZacri+-6CpW zDJ>pNUsLa5#FywOtA{e{;c26%aPF?}CUg;fSFFcMhqREdOBO39lCUd*HylR6$)O`2 z_f%#*$@6C+-Ryn-BGw5(zgHFua1rStPY0tN z41n@^`1D4$b0;+bs+fTVEyu!QUhRkS$9TTKW=cYlW;|V4IVsWH`KOvaN9#b) zKBNIsi@>DXC&sIpguy;Xq(YDG8!(NW)IJYj?%amrqKRROvt@25O*+K|2_AA;ZAq6^ z7uc|pAm|Uq2x2U)piR1xL~!mMFJ^R+n;eaLhJJjy!jo=(IK+8HdFPI0p@~Oss7JO{ zAUAzK#zjBR5wWA*5jG>+w0kr?-6RqqrWND3cY{9%U$+$BJ9oID(?mPOLBtv*Qzkjg zn3!+?q1ZkNq=`;Y$FXf#$AW z+>*)L^d|%Sj^DA$`)=-jac^w}muI!NP)lIMSIx}{cne=4CAX6Mn-Pg|R7xPXbf1pK zu&z+TAD8?^Xe}5JMZ-Mt(@=?gRBn1MGwZXY0~m4$JT3(?4efwkq{VQjjcN>KOT zGd%?e4=odV%5>sG*GrZIc1zhBznKZI%^%Nz$3rkfM4v(^ZS47#zy(32JEFk}V3H4u z2#>tygujowLI*>5euINi0o1{$cf)mb0|Fs&WdlASeghx2I{WSC-JTti1_3ZQm*^0H zPPMVP?n5Pt96eDwLK=U5r^GQsNKnX8g^e0%<;2GS@pwOEu;*`$IgUzUyLZ<4Yg{u3 zalx%|mNa-;D0zZ6rdCTRW3!4n0-%2{bdztQ!a2RkvwW00iJZAOxgoPL;v@PtUNSSL zg3cgmh~XjvL-BP^omOTZ8tPD#JTh{(>T4@XgM|}283UgO?Qw#ZCdq-6N z;?>t7dOuLMSnhplXYmBZMhBlGr}1Y*1X1hn1#0MTSisDJhCUe%nz)$wb;Ch`vJr-) z0f|8oJyJr{;f7v=Ivao#QY?uGp%wtcFRO}yB3dNoKS+NgOSHFRlsyoItpP^T#CN5-EI z95h3mnaZLz%e$_|!C^CM2^C5R@_e4&sz)njwxTKHF<_|YasjYh9hy`)mFuy>(_qJB zYW&pE5RXz)K#?X}^oP0@2~4Czh&nm!>g94W8yD46C5)dzV_@Bv-~d$6+Tsa02Fqe| z;#=XG0pVqTmmcZw#gatY2hl_X18|MYltnI%0C5aQJ-F^nYeX$gJPn_DF%W*7~Z#x{tw%|FO6an%(W<`}SZ9fhX{= z97J{N=7zZMtB2d+JDuTn8&w-(YpuaJn0-bC%FW7+G=7)IoiQ^!8R7;_WTTMkG}JP} zuJVVMahvC8e>2j%2G4y()d1<&@+w?%X|V=48Q!Fq{RI)YFPD;a3i^t4!7RYBd40qC zUW^_(6A}5_dK5ynzH)8%RBB@Iv@`s~&!SO&Nfdj?249w^BVT=vmY521mb1 zHtMME;&Px=2qo_F6eC!WaA@|X8S$uY<{`JUK;7CN%o$oiv@_Jej3-V5uUN7R6wA$R zvmW=%lRU@=8nugpRVgkFea- z2EH!77i3a?qt3z6n3(JadvQ ziV>0Wh(R90onSOmgR{k6XkZND-v1+x{3+8+YzhF&?So27R1*>I4RxtCq#LxAu?+nP z%Op8Wk)_>&VBs!fL#4qUFBtQOIQ7+zEzzJOme)5n*PbpvT=_G#3PU&?Z6kv>DK)P` zkarI?G3yu?sO2$N+~x;D%}c$@j0vL4XQA6)SR!Hrht#RY;jYUI`tF z4ycG=yq0BVd)0%K#B%R!Fo^;cP2u-n7ZQaxhDl(rrrv9{`(49F#x!lh2jjW-lDvG1 z_=nFlSYXz3qf2qz7nyMm5@zeVR=}{XOJ_vu`VIfgkn%2&w6CL3>w%0bXG{+yA>9X_ z2Tt?=!7wJDZmgI6a9!9+-k2Tt$;SATBJC48>q%Y8ouL3Nz#TRAN^W`AD!1F?SxI*g z&M7_@I_Lvf6KrVEPWyXgF+f;3bymEqB)-o`T9^1JZ<_**THT#7F_jHG>*ayoI6#EO z6P04+0SA@91uP1FmR|_gk(nhK&7h-EAzb3P^AAy}S)$fML+R-A=v@37}=d!-*TOA`& zl8;Okb_@MTIfP=A_YM)y*u(V{iS+s=D=yy0h%3non4Tz|N4!^y??pHIGSiji`NY^8 z)k{nmaEg!62EBKk+Bb`Adp;mbv@YYblm*MgSXF@B>_7hYe@6X+!T<5M|Br~BC$Czk zW;tYzkJ;2 zA8Ijurw$&T2@&a(F__T-rRY>rip$0*qRQvnI0uFsKi1d{E_|zOp%{X4!T?qLiIP7H z+L2<0lW_cURLQW(h+o+PmgY(sPy%ub8!(jciQ)?3j-hZ05Vo-nkM^mcSH(4w>B~S^UyP_Klsk7% zKZ48xH*v7lg=`K^aCwYfYciXTKr7uy1L>~b)4z**gFTcV$0bE{X(rFKS>XYfKH_@9 zir{2scwiukf{5BX2zYKj&|LE*(DExpb&HGEA}ATg+xEe6^+2^r^Dzm_^(PJKE`FzU zphZ0$uyB!CfQJv~$a+u|%W{*(3wd8bKY`~y`3X51w93m3N=&VIfV+DT_dr+s6_45{ zTA|`R1HdKl%!qmuiAzes7DKsj_+Q>$(PP~sXeQoqaae`KNp%j8v4jX4oWXGYj7Pm5 z4h_&rGs081vpYhOe8X49B*9CZ-gB!qJP1J-B=_NW^tspote&xgD~{)ZaBk6rAO_|Q z1EUxAezc6=u);$;M#==Cxtpi+!7eb=ha43voYTNl28Qf5uJ%MjO|LXjOqep2D~qX- z5ukhLN1BV8T+~L&Dx&EFJ#1URz6;B+io)QO#i-AKVEsENqH9KTZNl4Ds@&e{)f;iIRPydH3CW) z2ls|?4?^hf(^oB&1-@7MBYZRYS+3S;x-+v;IE}D?xf^S^Y>gPe0ey--+X8ToV^WZT zW4)w}1Sw?;#DMN9Z%E;A`MF2;G7u@Yd3d9Aoh2!DH(;^mh13dGCJHC?L{%pmFGdL) zoDI;1s3fP0Xt`$7dsxXyPsTFWWZB|1n?eAd2U|?MDIU-L_8!FrNW|xmvRBD5#~mbZ z#ooEFOpvuoXWZ8K%$Vw-OUP2k5d%U;k8x{TB%J}#eRN+xBdl1;s*CoKyI|?0BJLW0 zZ?qkqCI-cLRsy8ExQaU)sLa%Ty`Q>VE2Zv2^~5mamN@n@D7Ww!w3A zAPw6D6bkZDm1B+MyzU{+Pj+oeS(6?YqLF0~VYv?;2ypT6pob2p)wqXwgNcZ0$Vd^u zg<5DlD<){J_VEE`V#R)M(&)(>d@vTYR!RTV8*5aCszxmY`xP0+y*B5N6j{ zqA{qOeh~kO@s&oR=5(xLGrQbCPpTtCx{L}}!`p#rj8Di3(!L}qVuNz0w~bywH^2Jq zNefYl=Pp0!ZS!&^s$<>L0cqZJuvK81*u<8oD=fh=k(;y}fXoFF79V~UcV#BiF?40s zX7MoY@-l~Wu}-kHRd{z9@?=}v`)!tA)50c;L5;E|*_MzLm7jAK1>7c=^l1mm6 zVOUMH!*~Wfpu6+5-Q~RkX-4*D(?nf`zUY!a<;Nr33CJG~rKJF#QZt{49|CfeA3Fodolq4=RQN$Yd5^R_D0k@Mk`5d_Q zqIc$iyoDs<^UkmsLI z^`g-xozBL`F6tSR8a6F$LL6>cHmmw%RYfDMc%PhJLCPCvXkc072H*pn-h%qKPQD`qN*Z;Eo=noZ7NRvi-cYf34E!Eim-`z*FiDQD&9lRE- zp!(5rd7&G1IU8R<8rU<7Ci;Zr4x<-&=LE-H`Dwo+VI%)e2PgOZb748|9zE~Td6Vhl zCMMUI7JD@Ej>^Z<6DW-*%Az%2y_HG(ql+^cND|34$+K7+Y}v1jY* zgXRL}3hdeQE8#N;ouf(omtp0&qRDYrvO$c5`WGla0xLNb*KlrtH z#phXj&_3MSX`3N#WXhzBXOHDBK4Q?Sg~8?%)k8xVR1bT`Sge}RtoaZlEQDVZCZ!t| z<{UU2zOziz8|1gO#9zm6ULv|hqUBw-`yG@=qY_XUU{+4_oTb{N$*hWY;H(E$xfBSN zdzX1%>V((~>tGJ^RNNQf}w?7q9x?Nzc*n)tiM z_I3%0c|?CelWlai_m8?5S8g546JL;P+SW)jr>3nyxq1G#VnVZW!Vmkn*&2R$D^*P- zxN1+tSZ-=HLPn=@kdC--)Y6QlxQW$XTYD^=n-v#M9R0-7;+@E*N1I4X&H1cA?kw!G zWACS77p4CN{u91^)%Il*9W;(siRj*0eu?HC}(+pLD=wcaA9IE+!lxc92buYR9 zI*b6}C8IOD`yy&|rt<>68&dcn&svzCW-VceH|c?Kv!+CJGfW-JE$gSSz|s@GM-0^_ zJFrB*mtbyA39gpo%?kODJi{%?;2`}Gi*l2mt|_7_AV^n8poe+W%TK~7ZD=+ztLoFo zySL$HXJX{(u53AZ{u~`2ZdEHiH#COB#<^VK6wRG|>~YaDwpT@@wt#IPSfB zWG|q6)m9H?@Z&blJH;3-qd?e5?d??D*_kxFu%y^d z)G{lY$Y@p18ZdYLiCm0|wZxa3SfQOWQv&(RWQL>t*a`UfJa#)-5S`L5l#(?n=%^D`j1b88BUX7WH%@TC!-CKQrNkCEIQ{Zm;rZ%}`t$Jz5lv0{gv zHtM%X^l;p(P3)oS$d1EBao&<*u^LfC(^(<)pY649b0}^W!4Xm0`jML`q+eguMD)*p1A!?kY4pvg*Gn@kGi7S;sPM#ZsO>Yr@4xA$M2SiPwp z$lX9X0)=JZ2xbTA2pTvjCqLTLe?4wfF=)yrgHOWx9w+g_RPo&0ABBQ0v!Qnfaz<%- zw~2zRI&c-oUDQ)g>%L_p6qmA8(r70(LIuiQB8LxuuAJNRXkrGn2bC)C6N!!jx!I@K zl|xLQdSnbB>*66UZ0`81Fw>V!*0h?W8Z`IrI)TdqzzYu475-fI*DQhsUg`KHtE!p| zWSTfuop*fw{3P`tKWZw*TB?bLth;X&>HjD0O_$?3l61kkU6Q!(;v#CP)K*%P5O<2V z`&NShNa6}xVG*U81(N`hKsFOdR4ybTvuoB5kpFI7v$;nyhg)m z-aXf`;?hVhNg63$3~*J9IQUeYD(z-ZANd9C5|PS*@5o=MVeL3g@sE;R=mBT@u23}zo5H>C9K@t&lL zF)|7l*)*L%m~O;a!%p8ZLLwO%`2egG2KY#YM4`0j4PJyhma#G1Eb`0^wAyDXEl{%L2wHq5?*oxJ=>BM zdBBQ*hd0)g&b!Ssp8^Lv;R;W8L||7+W5k^t!40pk0pEq3=7P%D{2JtLk)@blg-eQq z(#tS?C=^+#d7qe_Kk=&hy1Dn-4C#_9oW9|yP&S|$V)*ILEog3BQxA^wT<3?|HeSTu z;I0;u)V@TEV?$*}Udket8{skF@WKmFz!3Bls;S=WH2Qm;H>SoZR;QH9Dy=}nQ!fBn zTj;#`3yp13Q+$UD+yAYmO%Ii_R&puN5+dP_Y}S*j!a|hq(2Z+Tp?jl~is%hvOgdaT z=;=u*A?UT=*2Mn(}0uLm7TZT2?njHTtr) zgHTS&TFe(~c^dTU6oiLY>R6qbzN$10BD~>cj_gDFib>MK+;ybsd7k%>G~MQKE>T{i zJI%r1jS~d_tWpEIgmumS_qCVZ&TlyK1`9aPaJ#@}64#AyK6<8DK>@qF6h_*rJ_G6iHa3MM|pVp(K(EsG)M^<+Qg8p9;>aBBvnX98~_wNaUdG7%C=6=CIY(1V>0T+m5026lwS+ z4x=q{nG=VsGv44%}0aVJ}zH z=oSxwfQp@o!D^T4?^F_%p!PANyqZe#P(fS~8&KTHMU^b^){JRoMT0(ajaN`Xr`}1b z{3$~<^`2o3--FwK+s&AahliMH$?7}~Yxth?XHbXT#LOhu1X^cVH$<1TbOqTlz7FEl&FKu*vY+D;&6svtr1=gmqX=tE-NEs)_K!HY7-o71h2TB z!`h9z|IIolh)tEjWs{Yn&YrV4!*j3&2)Fip@x|&QweKbQ#o-+?&UDPm8N%#q+{IGT z8NJ{aF51^b0NIqnMb0V9Or1+S6;2AlFe1c&xGn5fRBrc`cBk)exH@N`faszTDy9+( zY_tFhG`y(|u;`*A+$w}_KwucU;7=fiw-*7Ph_S?e5BYX6%tr(@ERJ_LD4cJNQgENe zq2NIV8XQ^}R$Tlpdx^JBHJJkBWDz)QLxYt$vr5q{H?(Yh7k6Xn0)5fJV#2&voJfWk z6&vwJ4_1n@K!l50lwMEbvN`1pXDmUw6qY z)}e{_dOaI_P+}Xf3wVM6GP1gZLV8XIH9YSUV<3}eb8ls3PFnR9+@pK?AWvZu`1yot zb~(Rgmr{=OVmc1ULK!2mY@S_>ZBF z96gj$pFOh;+?=M@2&!si?bU5C_R>lsmigXHvv?JLyzZ%ek zmvKBV54Uuu9G9CYuBJjE<6clrZeNJh>UP{~y6DmymL9JeK=-59ZS_ku{8%vp$l(Qb z?J5Z*xalQeUm`{F7Rpev(3Q!M2OVBw^-n~!&~arU$5}7OZglCl#98l{Q6L&;1fkb@ zWQb#wH)`|v9$ZjpwAaOe+=Wq9SltrGOIdXd-tg)?;G6AsW3Sm6AW3Id+jCxmoFP|| zsmL)0mX%h6L582Ku`0_dyhipNz57J*!>mFtd0ynep!`sFpq2P39Cz_}_gHE}T+C>o zdOA3b3AYJjXY(6ZDC$)C7Up+c&lf_1u6^Gz!*5yN+-}v~PQtJ!EEy;naz|jp_Z>gJ zuHl!mTcL3!txLbB%+;?V-)YG}-WY7lnO!EoLTJAdpY$zfy+AT)#{uT^gZ}2Ii2IWJ zFvcQ)aoc&df&Z7fTSR2o@L5J`oG?xvd0ktbs(t-ze)XH$>sEu_sejqp9yrepwaKYL z|K%g<2OB1Ecf1|1?_p&C2+(%x)!ORQ`XgEydF=p23sKT>im?*+vA8I-m{wR(hNsr_ zpQs9F2LrrZqPyU5B$rUA*+XRoKSVK)dYykwxyR|1R5}>4lO-wRKHMbxoha#eggHF_ zGbcEgI6Bq_XWVbdduT~ZEPbsPW+Pr{ay1KKhG!hlDubf+PQS(my3@sRrQJc61d6!s zp%Q|hAq=mtVjBGHzo0BW{mv#r<3V+jqJir1OGqU|TA3`S$RiB@2x}|@#gV4V;X|V3(NiBLohShUcH-q8t(6l@4UGraGVx&@fnwqr3(shT{k(hoSX2 z0j~!csYd(~!&pJ{*0y%EgG2H=97c3o8=MORmEo^>%%YFG2Rp58oBO|{B5p8gDbM3D zT$0Y80f|V6?VZ|O^EL7qBEdIQH_dzsQYiF8lsLY%lHrTh24{GdA{0WG?`2s*vD4@` zw-I?2&BqdJMA>u=b`>nZ8(x0lmVBh8_9UodE&p4({2lnKLyfmQUThs&+@ zwbIHBu3*Dk?A4_$?iAK*%12gP!05-EXL>IL&==pPaT{8&Nj#EY?pS6?(YCUFqEyMcI^wS}2b$u2rM^cCylx^u7mqCJaZxxCO7;%f1k@DSd8px~7l2zgwp>df)>WT|*gk?-j&s5Z?RhbkEDUM9Yb72)} z_Tk2;nMEaPE%Tw_)QBxqTT6w@anp1r9*m{)(!45XIFQC3U`koTsz5o?#q5^%MLz1P zLuwdY^*gs7m>QSZcEJ(Z17W2@Gmlh%0B;QieE-M4|IZ%lP=wIPhKOibamq0pR#<)w z{LtKYZ`}*HsS=7bJfVMq=&}l1hnEt^Vt60gP?d}*Ejf{=%CLr~vcExhP78raA-kAkt!XIOA`ApIl=3Y3YLM zSv&zvpRSSaZepF2lr7YRdz#ZG(4o<1>n)a+VG%~E=3Hh6vu%?pL zU8ag|hf>L5v99lR$RA>#9=UgHJp!cRe|AElM;4lIU>Z)rLZYY#GR|P0 zyDQkpyN3>I;=a*dT~oKv2CYE2M-^Hu)-0~=AK|$tC)}f2y*7!-MMnnoBB{Ss$EO;; z17!!H3Y}5z->x7}ybvnV@CTOX{%s6jIh~^z3XU}8<2%|`y8IQAB&DE*?pvi;apuzK z1k&)oIEn5)rc`0%5 zhMS1xl1tB=^h(T2?oYZ-<)VSIi&gnC|DcMND3%Ud!u9Bb`!wd^qrj5F^ATBtairry zBe9Xj3RlAw>@L2OOilDVa>(W7dw6WE2c+SD<<@&htp`7SZxbELPh_aS0XI7SI}Y47 zn&i^v?ta-ocK0s5q`}VHgBo2DBJEZr>#?=vL$syS9}l5%mz(?m=K&dN3QLD#0tQpAGf|c`|hq3x~|51ZxRXFms{|d zxYK0LdYbRmNB53PG9V4#XUQJjL$8wmo^OX0>C;EY);~ZR-gB(zpUIjZKQy$(S5ku# z>vrBE;t@~IBdQCk9)6L6wy2`B3VZ1hbk<*-RM1)TjaPWNH9LKqYruVmixIU3{7g8+ zeui{)7}UPr&>MO`kVF)r6h(+ix*Td0@RJlRV`BQ_1f-|<_6M4hr6N@ z=Z_XH*cBN#JnQDJd_I|7WIwJrezMNQm8L$9lH!b`)jBf(8=ek6nBmhKY@pL=8)|Bs z#u$(301S*7G8nTV)Nl9dw{O>P+euVy2xVB>lL3!D`)w+g#uHbJVi))cak^RR|3k|*ux_UaaCjO=NQ#b{`!P$u!@lkQ1H0WysrcPnMWg~Y`~*?C*fQ)i zdw4f;i^5(gHvx=sP94B2Z%&9GADWsUO$dMu?=Nyh8RtDgs5n%+oL@<(q5JM%J|j0m zyZM;}pqbT<8VE`3aDBm^`=w2?q83uL;R)ozV_bB|2Rd5sLQyrgu%SWJ9YwcWC0P>e zq5zm`w{ORTA;uh@fg1zWbqwKDVEzK%cw&8vm<7%F$4z}VaNl){o}c5Zg5eTay}lL` zH+6_Z_7gn%KGFuG8q>a&+M-a1k_T`VV??9pV23xAZx8jV~011EM7Jl%kC23nvD7 zhCT4`EX{(a%7Y&GR6#OP=;R%W!zqC%{CQ#YiLU~cN)uy4YdSV;#Gx9Xw=#zmru7}t zOlIb|O3`s1L^Ok?`pmJI2!VI#*<(vJ(l8@LQRNo)*-=GNOrtPA)CT6BV%1TsGE1)e zDa5Egics+`yZdHBBnlPi=L#0eBfl$DJd6-=rFO{~(D$=Q-a&W_w z{!dVvc0QU(SJ2J@V5~*|qz%P&_10dU7D8wTYe%FV^c7aS0C{+64omj{S*IpwnPoOK z#VCmo)5$+JBj8vh^2j43GAm8imJ$VTo2dFqQvhtzrhGi2r(EVd(<&u*<`iUvk_dzl z+#q@ETx$cdUDicN!zLFzkapxQ3m~|u;u4MXbk{fCHpx`DFFtl=`ZT@bgs6Gq}fQNs4I{8c7 zxTe8NBSh;CkO?kYK8`G!g8JdQEG#30fK!c9Fq{54vJeXDg+Qw?3xqIxl9!u%eS1lv z`kusL4c~SD1(R8y zK=8F8fa|_Xj~KQ2F(p1bFZ7PCRrY~#(!)^{!!KMeMD>?K!3L6qj$ET=9474p3x%z& zW(t6Z*PMvD`3;3KE3Jl&hBig@Nv~)o9M!nPVz*+*TiqQNqoz13BeCe5iSq2@f?0H& zaul&F>hNQVO92tinht7v$l12xf>U1dDI5)SqyFi@>c=XP3`Mg^z;Z{!q^Iz25AGZz z5rK^)ilSeuFK8q+1;E~fbB-P>P?x6}MHtUKZ+eQ^IcYYMR8mn^{jdlbUC+2nJ* z+A{>N>}wt}`tsYN?tO6IMq?eVF#tAv=43%Y);ylcg6kcA`mGic)zA|Q6d1NOjby(R zz_$zOdNsg-!MF2earO zO(1}coK6q#9w!k3k}q@3A0i-mrP+STDV&OHc$`C*Vm<%th$)t^i%g>A21Je_iZpH0 zJMPr{beXJJ7#p5<#OBt(^#>0rLQm&(4`HW!q_UfPNC1udmM$(0v&Mz%7&|_B_;YAC21R0nAv8l)DqD>u1SuAYu@*zDf?lj{EfxTmb?7Le^yD*axnmJZ zfz6Ss@yEIv^l%A?>`kNns{0!wP*t~PXVbM#qUt*v01f{M{{w^1%vY^@*r?U#tD>2f zG-j{-qVN#7y4f3}mLC2Zrx-4ywh`P{d|F=JDVBpBUR)NY@SNP}@7@k&CNhJo`l2FW z!}sKm*wF8FkZ{U6ypBNTz(D5yhzD8k@3g2|tD*WJQ?%g;{VP{FUb>H~B^?+l=l;l5 zZh+i`Q8wQrR8G)_pRBmQ_-f2D!oDe1o-*0A@&A1`NqrnDZK!$&)(Mh!N33YuMo7ay z(*L5W#x;-c5YB*%U8ZTPyXG@IM4)?Yu$t2k>>Kv!f`TEf?$Yvbct=8!D+J{!dVvIYg<;3|;j( z#8AU`_&;&YG-Z&Xs$Me>H$3V81f{W5B%x)!E%(U`b#+T62Rr;i5@go)4{kNzHgRes z7ue*aZ+^eG#>YL4Ozm6;Zk;$KSBARE6AeA+X$a{dm$6dT^ z+s`GSNK?&W))|~n-L-hb>!hm)n&L}>!wOoCvM`DVrfi;HpqwKOppTL6 zv56evugQ<|Q}Y1%4Y#r!5{s06qez-Z*5!Bu*fh@sWwQ~EQ^EBnTh9e5%G(QP&)tPZv4@@ z=Z?~FfEs?r!u$y5+#KCVsjb48p?57ByBo+E>zgVk#qkZMAK{e~DKMCxx{S7P!ij58 zJcVp0M^fDX!QL)DLR%0NwmMA=4`=qrRJV_<+3y2t_%$^<{(6j@8JHok_%VsdAFj{P z%{d2YVYP2tr}$B-4XELFP8PVtDU}Ciaf7ca<03BK$tPz_P4CPWOy&D`tV{eT;sDBB zUM{*#w{gBf@8N2!?mckEvHNOHk{ew&-=4*cg?Gf{X)4bObF z-Av)TF0d4X0MK|G-8sH-1gK%n2}Qnjy7RPyJoc2<+@)X9`~*1}j&IuB!L)H>`3_|g zac|dCo&e40k6=*1`i%cz{SlS_tpg~plq*$ zg_2{v3hn@>UF9fPB11rAQ22HA`QpO-U#Lzre2 z=cV!Ik?|$yY~SlB<9%;hSZXmLVGX~SUZp)ZM;ET}pjd6}lj7Z=;i|b6Bg0O%%3;l` z>N$Z5x8IrX>p?xY=Sy>w=PMlT_%b8xq2@Ilb*hwRgvncGx*@q+2y1SJX2U!CEkgNh zcJZ{~J(`>Wb%T%%CNeo+BaY2F-qHqBo=mZ@F1V1)X-b~m*(Ym~bMx1}uK$AEMX$fH zYVRT6$i7=e7w3h*4&gqaTrw2=1=F&*-PlA1GiPHqkpcwSox}*w7AFy+itZgDgg0*P zLif^EDSOXnl^uk2XY?Z3PZw8-irVB}6_r~o4xpT&d;cC(E(~3qh`2SVCL#F#`GmMp z?p3iGMo0mxfrB9K--Fel!=$r`=a2W?I$eVv+Uo^*$YN>k+pHF83a3~aK)KWJ`}dIm z@Hyhc>l^UFZ`E$?A8c}}yT}4|gCt7Tb|eX4+VT1O{rfQO_%a!i#MU;jPkgoCffM)Z z!nuMdm%}UF5p96|YkZ9`Zt@4mHw*za{E=7w2N;IP#?#a^Eu1dGEd%m`3NJ?bLJ|2t z3wz_i@r?&S4evYQFdlN*7$-L=i3{0oE;KjW5flqnWd~5)Ne?hgzITFQm@IXA{rwJw zG|gnjKax&Ojxu)Luzg@7)Q&Q20X2N!UueD3}$zXG6*4ITHv3(`*=+V(aU>2n$FE z`Q0}=@kwgQgvuV}E_yP^K@G30BG(=N4Zj$!fzx75^X4?ZLzo&o%+`P`Ie5zW+ReAf zP1#;Yf}Hk2ucc1|WQfBLUic4`H}XvrHyQh#SJ)a7`K>oQ2e@9eSMS$bbv#H}$Da+P zdfw)@^eELjzQ8*;7!SD@X?__UjfMND6Y#?VMqB()EW_I`b`B_{4>{TUwOKrgMSCj5 z#HwKAX2TbmV1J>?oTSPiLz}hw?;K7{E1qrWa4do#jG{`2rP-b?FU~$ZR&cTg6XNl}wqep9{xT4t99yg?xwSP36@qw98pO ztUX^_V+^;WO2iN49 zHw_o}yFv80SV;$#R1pu~w$Xf4Ir0tjTTh!&;`v`)>bMp3e{NfF-NNGJkao8)>r{C?Dv$J&ZSK6ea{;#y#3SI z-_aAGJ~|>V*ExEq2JOzz+gs5}CYBcs?;43z24?ux3-=kvP)NPHik~6Lu+ zPI#(ad5e+C4zK+(KS!s?^4LarEBp$6P=7sW@8QbDhCZknwr9x>q=+nsHM~OPF#|gC z5}5gE^~(LYe*lB2A%i!MHoOF8evQ2wb|vvraN&r4ED0wM>)UI*#a@O`WYp$BnSPmn z64GBK`u)xNX1fJDz3?TelD$_T0zhs#kW7L+?(q7|+XlsdP^M|T+Ck1<|7iHT2d!q? zu2LnsEYqAlj-y!b^>_PXy*VJa72&__R^$|aM^?2_(EDSKWwh8%vkGT7j-5juhS>!3N%SJ9Bhx>5TZB$)pz1mm_R zz4ft6EK4yz*xzo|IsXF3fzs33rddkvRA~P@FxT^f!3J>1XQ{0}UtN?mmXbI)%oQ$1lFk@YjU7D1g%B@`=+q z(u5-TI>F-u!w+vl2l{XGkDh-ROGu^kQS@+NrfB9;*+SsqM^h}`z+H2NRZZd6|NbzK_J*iw!tKASW$1LOyv@}1lf1w zRXq)jMH*0s|EEiOty8GuBv#ZYyQGx=AiSmHTbw>Uv$C9vAk6>Xa#Xt3Ac42b)*Y!o)SS2Q* z4y_!z2U6^Fg1xf#WMyjEv{Az1KLTICl;g^iwb{Ap^{K^$mDTm1W`13tkGj3Y_8VD~ z0!ZaM?fB+qS5{4h5;nZK3NZ~MDf%gg9@n8tZ!kCkMc6AdR`AN$1fzKcobsHWTAW{+#F7xH(F$52KvMKG&~B@f zvkNORe1+K+LMi?`Q;SQ#nx3vQjtD~$&lBSM)8(0&^`9q~R}6NQ-nD4Ta%OsFZe|th z@G4$}3r)5P?Gi#M{#p5QdS-d%sUfJKbqtm=XbqlDM$1X{8ZeaNpA*(+bBj+Vt*WT7 z0$VWU&^jzk&RhLfy$%ee_*#eKu_B}nkri=zdUk4ceST*7nXN*F`5Pc<4bJd)YfICU zs}{aW3z47#rTFJ&7N*4*g$$X10F|_Pd%GiU7yTBSFo)zAd9_#HZwh26`O$+`yA7~ zfaH@;BD<%;$gyC`agx5yHBE(9_c)4tg1(uXSupLAaQYP+DGH;wSLlmhXJ@dlc)Gke zpBKKuo}vg+`OZC`{28m*^0T%1nFZU+6?(yfDaV=F`K86>Rj!a}uL?RSgo^QxV-*m5 zvkIvEE31=s`c{{pp;Z2NXLHt71^e8ADCW8Ux;DSG{$z6Mrx%mU)27uc^s5C^j+^G| z^@YWCypKDxyu7w#2U3DhCY}~0$jW|}e*<-xt6&A4ZLpN#eg1a#>H5>jxfR&g%j-*# zja`!Oc9i}u#8k#B`md|YYlVarW`7Z+@}2zY#X1djYb96Ej~+*n&ya6neR63D3%414 z73NF`W%1o&ek}L`rTFKVbain(zbmgWe=L}Cyg#=%NygL4%(C0^E-yzWRE6*`77rvnVLhbOt)0nzvu9j=>q=?bL6*26?WD!obsHNe^^{uTRyT? zXt0#wwELDEh^DnF*!}^MMb9@;Rdk1>=x!|Kc8^uZlG!_+;o21J9II##nq&f{vOE0w z8C>r?x^^Obfl_?eHaUBwYTFoVsDf&(N zj!h)BmDknaGsC}v4O@b&>>m{VW?^x`E;k9sz_9^68d$kM9`Tb^81fN+LbysIzksU@ z#q}rS*EIfd)t`a$+_Hx#?)al{=YW;_hHv}eC%I-%h|3$<>@lt~e^ks|(CG_@pSGpg zDnVi0b6tK+bvHeJg5+C`v{QwZM`5%^Czh6Ha>rp+a0NzjF9COHeR*biau(aqocE!^ zS$`f-xlS+PcykqccFDRps%Y5^NzuR*9&V$w~I0$ z#Xje{0Ov{Yl-cFKg8UXtIZjANo7Sl?iWEk1-&>wpfpgEmK05r|78FIjxIDAEw!A>$ zE*PJy(Z039ZZC(YOlRd^j>R``u$1AQmDov9;S7>76!8)Q6xLwnE-WmrPSW1qj+qKG zHxH;>C-6_lVNWZJ;-0223J#7cXoLVML&umYI6kd{o*^mvnHBynzxA!K7YLyg|Fruu zxB0Csz1jVqb?61#-wK{hgB8i2+n`pK-|SFD{(?i(%JN5Nrthr0h(fKZ%vi$E7CF1d zp=h%UKf@VkbY%sZ4VE&Tci%3|JcCB~+3Mp8yRQgMSx(9Ki?$LKyaO4KVoME{7FTAE zuLd4XSx|!|99zTzK$U8sK#F}qunV`q6+DMAobp_Hfxt}Jw6fu5d!vH>&jTvg8FyNk zUmh#yx)4h6CD0WCyA-EOfv%^YOs>pKJ)N73ETNJ?>~36Y46Q`*JIH!~rd2x2-z_cW zIZ6zRu^fu0ET^8#O|LvhU&;t??8YWW=>TIX64G61&ol#FarR*Ev@&I83JF znB0;nKE758s5}=DIrnt-8BQVA3;L+!kf@X@##FZJF`J4LhPjo*{~v}_p_Th`z^(H& zq%Fy39&yXZgDgmj z{Kv)UETZB#Cm6*%yR^LcbarlLeRXo>Cu28M9Onj4S>9V(Tb_Mt1FkE!wje3;WtS|M z?9qo|*hw^D%os_>L}rGaLRIBSa4C{#WI3DpZvNyGZpid9OI1T%KrM^{ksl;=asLu%q*=zntlo05aNv9%OZ!mWF7l|W|O%r7%jYx#KHBh0n{QMp8u zJe^#dTYWycFg+IqO&>v%7)<4pUVJ{e@_c2+ZU+Cyi9h_OKhXaTkIY76rc^VVSj{$|xgtVQ~#{p75O7b?^uyHb7J^QDv|zXXj`CW|@wl!91Sw zhz47ljIN&_L4z@t;!B$?%}uUi(=k13&!msgW&xsdiTNPrvWx#m^V!Bbg87gKR%RKC zOTY5fS~4MK?e_TyW6^>tql}N0$)_{9zB|JB@Oa82D-eY&;2hK_jw7r<3a2chIaZ%z z4=|lKV~?OYLdckHd2(u|Kp`H5Er3)u(Y&jF%k@)>ib%h^cq6LV`C4-ODAo=&rs5rvl^LWZ5$_YtN?HdwDP)>}c_%gV0Q21mqs>Trp zx56pQ2X0x!WqKP%M}tjPf|(BVux($faBL-IIG_~8-wkhf&6?lB>h$pFHJWa@GWk;T((aL z1WBdNZ&F^siN*$Acf_lx2Dd&M*On57Ym1h-9;>&5r zwbAL=EVbW^Bcl?+cHs&BZX)r%G$7UCtl$n_zKq^V|86WYm+{#A$-kmX*cSx*px3)Y7%o2n4&Jo|P*{O8*{|&+`8I_>=gK((?}fP1;PeiFk$Y@|Qwb6I z+!X#cO>)jjyV=<9A$PX{{(hXiQb@2*PB{#o)GBQA(88jG0G^$~-$gADKaDoN1yI6+ z;_nbtx{Kaw-!#=9+g)5lV8586^0jVry9G6N;Bt5m_UW+|B&nANcxVV}dm}L+-r6vP zm9^>~xUi^lhIX(h0TO z4`atqR#3=3m~vm$er|N3G~0Fthzf^*Map!n3eU<38&cYH4#w;sxZjZMd>5}>h)&g! z-09jUdJ+a*w;Y>- zF}A(3azb)Bc$_+*krv85XFj%tsDy{c-&h{;!cN#kQiJB(&E`J8VRg6~WaX5`CzZ#; za(i^p$?K-nfYQ_&g0VI5xp1*=#ffi4vAk?|8rG;8t5~>*NPO)nm8Ye5iC&%y8%GJ~ z#bG1%cmgUS1m~Xei^V~I%D7auWuV87OD!en7xneAP;gm>w>R|#(@<-mVEHoaiwVUS zD^AZ+8%-S`HTq`lS);pwhfeU844wtyaTQoc+f8ePjkS(YK&USHN0h_rh{fWv?wZyb zYq7X8iayJab5T9!OHboI(JB#GrU38QmVA_Onn(^^Xh!O&NX%>Gs@YIU2 z(qu~V1Mv7a(?MgWq?Qtfi=H8v^CEg1){6ljD>{|X_L#%p;lxnT4zz4I#m9r9gn(Y4 z4C>p~yb&7;FQg!)wS^vQLrEcRi+P7(8r#EndpnpLq2vkhTu9(=U{!9^cCn=b5bu0d z<6#hr+SqOGcDi;aGFEN4GD31`o)Ks&L+9x$aI$i`U%qZN-YxqjwF_JAqkx&ULBkO3vkdZdu*8-wprCMG&Q{MUg#?jIIQ(8sj*w^Ugv-ha&1ujm65wS8=r#X7 zpoQD?$k-J?O9}L)6+tn*BF>{;^lI8z^9Th5_smMu=zlR?dN9eXz+;zLE+VMsR;YY9 zYh`RgVPJ=7T4L<%a%BYhg0qHJfJ09p9ng4@Zp0=Y>-qpMOBnpI-I$dVjvLse@4_!A z0~I??#RZu*`GI8_-{c4CCc3$Zw`$$~VCA5PM?h<9eSOXe1kwZj0j7tk$k-m>BH9D1 zR6gth(VKV}+QN?2n^Zzj&(h=3A*d)e`pFKqI<`$vs9dr6V%qSo#ogOwO!XX~WG|py zWQnITP$;Hl#xC(vXjCl(8qdU%f9P<~Qb?e0;sG|o&^BV{1pArTe3s^dTLELY6%Ev} z&E<;;*(oz_MBBj4ah6>9@bvKnmK{=Gl?*BQy+F(EsWvUAAa0fMpgfa1`v+ar z&zjF=Gg%902TbV~B=Kcr6oGSU1KqT@J(1u1-5xD_zN9dGI2~ZtWUCbHG;36n#zk*p z9ZG$$--ma;w~lY|;1wKHcH2>MIy(+WG~uqE5z_BGMcTVVWWL-&a0Kkre%fg3w;)nPPnkp5BBZ88hd@LF*kN-(W9{p?=5}NApeBCqZ;1X{h!Z#-!nQ5R@l{+}g!yQ4kDiG0-VA!XoaEys zkI3Z(*nATtk%y&){7_d#OsVkZKX5l!oH>EcEbUO#GnqwHmt8sgT|v_ zPEuCBs1Sd(rdW87&v$njFm32>7AEMp`MYY~D{Kz)2bfn>>^~t>sD&D1+#<9iVMV(tdfKg3gDqhm^ z1x2;XXB0~%;1_+TYH;;UefJ#^U&u=5XBS{bDVV635Z=lN$?=*s0CzUO9_yZk%$_F< zdVH_>h74V6F(vi5mJ~6*ndXP=(eNw}^>dBP@!sRwWUq(w(I%Y2o&DA(_x^`jT@+^> zTBw85K9-FsUD{aj;Vzd z5#+1VW7$Mh{FB@5POpawnkFjQLhA1Y`Q$S#Pm0AoIo#O80>sOXRkJ0EC09`3Z%$@d zwI}pS`w|7y!Ewf_wbE!34~-EVRH3a5p^FY(ERWd!{i z&^hpoUabaH?Rn=-eYHdSP%5!WK{fFh8e0i1B{W|yIgnsclASP_Loy2P6025h(CtO5 z;rNPi8Dacnia(Ld)sJ1a02~=nU3Be{#a)cnvh;YNz&W(1K42RHt2$ zCQcg+Ny*xhl@R#TGbmkqzW8EwF_2yZ03vliR{E@*z<;En0}YN?^Nr>S&p3(lD!OFK z2StSDoOCwB@?^QHKY~HdL(y4=;XbQmuTfZ7xF$#+J4~`fr-Yh^!SpI7Y?IZe^W?6& zAkqs0xZl`<-=JqT1#m~H&ZwA3@D(XPDn*!16wAsIbx01b~ z9yUfv)`igsBF~4jik_c|G^oxwgm!0pJD&0-i=!zdOy}ktMmAutnV;dU+0HA(roJ-s zp=3{6Tw2&JD%+HzqB7Ez`v*lD3t5c#RcY3W?wk8MF4Z+27o82J0S9+_GoR z*En>074zAZ(>*=UB(W9?OxhADOd*ltTd^uhg~`~{wX?`?bx|ydhN zPMgb$w7&jwK*xvc>qdr>4RpSwNb+5V#qvC5;2KUcaomSPjoKD(u>F4GVurNaXzfK3 zl(ctTPWZoCUw1gnj;(sV%||#~e`57(V*s!K&i6Iaa5w?#}+I6_zA$iik&6lZmqeqrsIJO$CmzF4D zY*86u`i}l)s%5khFZpk}h|;P}&OUw0AMwXjjU4yPd(I1sD<{bc))W%vPkA2=t2%dV zywdEx*4@G-U$ncq(|R2*yd~R{TtVUegae^y_o=G~Z4)OwJQ~*zTiiU!Z&DJ5t(FtY z=lYo&ny$5AlaJ7D%v(M+sbhQ5taV&i@%Pbvm)>9l_5lAb>Ve#~krL&ZwFa(;h*;nA z#S@lk=H<)QW{YMpe~0TsFKe)z%wWpMl0ypJ2$60$ba!M$>@*KfS7 zt#+GkkY(-PJJ{RYiDH&h+F!~^MSpC_XGhB)peZ_oUd=7~+7S~N68mueHfuW=6m54~ z%PSH_Y1z$f|deZzZ*%6b4{ zKRrW;wK;+W;mugiEH2+LmTV+OBY4W}jzD1@)kSF-4^u}45W-X5=}A?*77OT>e?wNX zmnbeROefrm&x+{7_?PW=@lY-CkC#9Q&~+KRC>^3zJ%BJ@ToS}E zhA-E+`yHIuSWny`8rPK;!jnscMd35(#T#+cz-8&;F2nt9!lR%v+v-|g$ZlYdzXxU4 z#a&Ta0O1Q_cqYFZlOxh^U;~Is+zy3>h4wx8o8{JKt|_~NJ^1FUj#F1!Xih9M7FQ<6 z1HVVJVSP=9=rUJYc~%&Ud2*@+D>oV)ZcjTT520Ez1mQco;xXMYc|UG!S~N@(mYfO~ zl@+3!E41=rk(3(~7$2=&#CE+NLECTitheG2v{Y7T-}krE+^Af|KXKz)lc3YJgE7@4 zKsh1$nx_Rm=htB|2?7h?yl*I6E^OID_Y!ZfEhWS^uvG#E)6UQz!o#)9OpU=-D_#Tv zFxJ#?#f0k1hWp4|2+42l!*2r9zT0?H9qQA~-s2#K^-5Hb>2`*34 zcQuDsb1|}@^X<8TUCo1gX1FG_rz<5CkK8A&BW;pyKlr{z|Gj(1{rAB=_uohNYi#(> z>|wJAQ-s^w8?+l+8%Bx*gBC?Zgq!%2`KO!6FhCbXUeZ0bH=XV)YTT^0xPcTM+N9K$ zO9|EcPxzCoO1Mw*^J4=)=xw&_Ib_28&~idl*Uwxr+*(5TPrtU&?7wL?_iFTya=tdX zGBwLP-=La3Ty!(dnN&?GCG1~pwCEFayG!lv3p%iGw6}2t-{0A#w#}+d@owm;EWyt(?M|i&6`0Wl;$b~`P4Q~9_+P_0v5#5=Z z8sh3aBEj(BLb(1X)KJR_^Mrn8dOge5FYDbVsfaCmQQX&gbK8!qggT>$Fn^6dnG}0( z3PXPeqBqD_kezl1Hx7JXXRv42v=nA4B+P%>qz}x@&K2^g@Kko!W&IdagpLt^fgQ3GwzT9px#m*_E^B2j6C4{ zssWHrw-;S`NztiNPK3FoINBZ(E8Fu6CjX!YCiux&1n-?Eb&tM_GpQta=d+R`#`oDb zEC{7-A=hCzHe9F39y1sqdz*tUUBk9J*`xvDi;5Vq;pMA7&ghz(2;7ZMByd~7(OD}Y zsm@wb$ga@|Q-)XDcafwt{QZ6``{!HE6=G*W!hS4|AoLUYf8nN|Yar1IZVqijAVizB zam|EwIo$Q$*hX2z#Iu9huIdTKc34(qfilYQbR>dcK$o(x-jWZW#DVjfn#X(AQ49w- z@r{%O&$=%t0$iquLbjKtJS2#Mp$^6WwvQoblx|wLOG%-+2X6U>Yr3X4k9f9|m$9B5 zO381z@xvic0J%&tX+vI%ia1z#SR6vrmZzU&xnrosgLQ7-&am+@4a3Nll?o7=`I^5|21eD1L;@ zzQW)V`z;j7_q&T;nK zw{kClnlr0aJ|;S)R$NL*f7s+t%sWXlr%Ca-8vRt01)QgpJ8!lE8oAi)OV8?|3olM6g0x_8WUm8)KX<3zrpH?usn@o%ECY8|n?C9y-R|S8$ERm5JI0 zf!1hOvbfF6Pm(7qEArf&8qjxYX$E$-)vmO?QJXt7uoJXvP*g}i3clhtn5I+~!C|;x z%IJsrX_2s$`GP`unkiQK)&Yi^HyH7|e1fb5gHg)~{GatRR|nQAj#=p|p6rx>tLAC} zYOh|lHmu7!LA{`e5Ppk4nTvajLd*HC4J%DVYJM?M?|}35=tyW*fFNHDWe5TGpgbnHw$5TL4P80^!;lc?our$-#Msq*XVt zkJ3H0Uvy9?yCWA4k_5#XmX&&czS4Qwf78HuguDBu69zJ6G^lc>>hKR}4~(XeJVn)M zL1Df}(lC-!MzG=eQXEa!EbL7+z6;5XI=+JiI*JHM>3CO6#P}X*eF=qySfxLBq|wEJ z*WRx*O7NS^S{v(`Vv5V^lA z`nSg}MHRIw_cAuD#7;`Z9~ZlF@QFZ?!c!VfvxMVfTUunfVZVJ`bbBCKmp4uDa%Xp@|W7l&12tBO|$^ zd~uQHrfVVpH5v(f7Ro-zjS{KcA_bSMa#e-x^mp6;7=G`F<;yYpjM~Bbv!r00FE_!T zm6ep*KgzyA42ee})GBjs zT<=uO-JeTvDpDC?{*?Y^((nL}zT~7{;!Mnpu5NeFy3|sPE-EB^Utv8$&K)|fTY>i( z2isdU_mw*(!C}enhHRFy8K-NPRXQm%&X*MaE8bb{7eqUjUp5Bqz6Jq>i+{pc4$BJP zx8ZkO?diepzRPyuE|R04H=A@iO>^2e^vg}e!x}3fp`p2uCnf}Dq_YzKC)Oz~7~E|+ zld9pQINF%falz)U9npXsw<(ump4_1@{Zl%CAj5hZDU~+){{Ivih22(9hL@kughIib zjlS*ag!vp46(L+Y?56@3&RhCzYY+QM)4&Py))y3tfA(K+P2JLkkbWEl!i~BIZwo8! zT@0xf<*#E>+?%05L>_kD7eYYsiDY84qnL>E!P9(GPi}G~BC4Np?V*9OhJ>R#h07Ha zu5Vwuk6dwfC{Y#m5C8>td>?B#Zu=7pY;79YUS}dkinA5l4o+!%Ehqwf;*nT{WihMh z{(^=$cm?7Evn*?Z0?A4W?PWyF(na9fQw{dwj`Z%9m;L?N8X2XSk z&)%~tL{w0Sp7HqxeZlQYcOh`PfI}m4`lwK>rm}N1N?Ab~l9GIe!CclxEI)UQ zAi3PaTS+8>*BdBKCv8RsK#yA*q?ictxqM_P=>9M_uAbmI4H>i2nQ8@ADkiKCz{)4H zWO&SzIwo&4^3J=~&h}*P%p7Os{wkWcw2)52o?s_fT2w|vxJ7?+tyx=Y^Y?d*&TPKL zIS;?mgqHW`4}1U_tCfWF2Q4Qe{HuOuF?7OVE80Jx6ID0xo9?y_|Fqt2y~6pf$r$Us zuiMelQiAstMMRXF_>-j|<7698lk9UC5uHX*?`MsU;7HT;DUFUYLi49>{LMU}dCOn& zifcyNPNTOIH!^U>jc+L?jCJ|wND&4D-!6RxTYzjJ*+1b#a~sZ1)^*UbBpy_TZsLPhm$HVaHJ0b++wuoYi$#Ddu9n(S3zcG}oYcjr@HQl|Vi0 zy$Dq77KxP0R-52OFoi`B_&owdZV#8(i|<0yb;{?f^K&)lhicb6HH7j;FGDyzY?>s& z=naaBKo~I)NVGcdvM9kh9)u$?XaN4ge+gYU(`cX@{-iGH>rA^!<=xO*h0PKi7z7o? zuf>K5`#!0nzNl1`pAZzZjJCj3@{U~+5FvY=SFPs1Me)=Lj!j!ygy214hRJeJx{a3H zB-I)5oSMYdoTt3^oCK(LT}{|+hGj(_PCO>^h@C^s91|tM&w5YZ_6jX{k;gN&S6opM z;3F2weU8lZLikZB~vJF7h6BJX0AVcxQHcZpJJR zIIGT?_W1F*h*6#MsmW>iju=-pnVf@B@V!~-W#YW*a z2sFU5OTh-DqHuZxsc>!tb>LTbs14J439CDb2{3NkAo$?pu6HF&AB+`6HBSjAWy<>9DwFfczO%Tq; z_u<7dqXQUYwSX%oY?uX%!eew+{%+HWw>bNW(p&$$Aw-%T!wycy zUHWBZ@Od+}bL>`l6H zM=LF783>$fnRe0CVx~qZ+C>XWt-jBal<|F&rPuc+W|v++ptaRqv!sY?8UIx4Or7pq zYdb}q?yIr=%>pjqNhQgKL!LcKsJS~pnnK>W5@%LzDEmsj6FQCKf>P~&^EA+h|*|8H>nnvO_V`KgQu^C|t!a{Sko#RZtu zd{ECL8KGcwXisc@zP@T6P-w6r1k$+qD#e8JEBVN@6s4kuooEdCXSQ(sw8hyG??eoB z!nDdq5xc-%5Lj9F|WbQf1 z(gznD9r_*ckanFwBg^k66atq3aNWYRd%}Lgmd=`hYXcLWFpW6wE4kG{g7{Ps3gxeq zhnuT}R1tA`5$4PIdn1k~3#WGbw_R&DB}{E9BaC(Wn_1|92rE5j`O9L7=KeN6Y26uq z7*H_SM#sKp4AgPMK#B?fUHQl&1UKj9Yq)T5DHxYMT683==TxDxp&#N&YBLrRr9d%} z;!{BpDHze+;?WR!>U}@+@U|cP9)>bu=DAYB_}Pkj_z?Z(+$b;+Xmueyw@M4G(Wxk$ zdzUb&n&HcYKL`p}Q|7zRuIMxP@=ncL~P#~JJRxR1Cda;}CRIPdUqexa9SdfRPng2N*$ zEBv>@@3>L%-YdMUoIw_08$HOffsEjC)7y?>_ajq#z>ZZJu9ygLX}0La+-!38u!PuC zgOth1rG(+`E`Q?6(d8hvbX>B&`POE)(?bL?EJFBraNiJTS#*$0^$cWqz1g*!ha?%O zR3-y`Vi}OC{^g)ulh?%Mgqz$6^DDKV@r*>OQbv{> zxB4IhP6+5VRyI1eIAB7JuLgB?kK9G1nO!IQ^$**_oYMl-;|8-76CtlTHH;nNG+niM z4%-iwo_nrNTMi|*@o8LC=9X`SzMTBVre=-kOiyu~i z0lPBT`;UMBpS{|`>`LwHUlHPkiZ+gO-7qU)3wM;&iB4d zZvzHFI@W+n=xr$`_5Maaa<$0|fo(aV@_BaX5aH#>pEuAO7L=e0x2;UWC!99~MMZ`O z!B;GYI-EPT#g!G#f&kNw!Z#%IRWrYXB$?wyI-xP7mqTB3mI6pnd3(d% z3O9Y5U~jlmLhxs~Sx!ziaes{35o9&w%jkK3S4s`Dq9VX|P5?%8?d!dbBAQ$lluI1m z5sg4ytjwVXPgowgP*!yyFsE6z5J7;8(DY01eDMp%{;O>YP&TxH8@KpNF(Lj^J~Fkt zjn)h<8oLN+_dv1Q0-8G05GN>5Eho(Xs-KyZx?vIp#M}>s#`+fSrWTZ@XJGhHSD;Tu;(&EbOFS?}okl}2??{~4z zm_d*-;klHMf3nY?n4OgiWpRS*jlYdNx-g+gp&CBGj2-Q+m=L}nD9k1IFHu^oeZ0mU z&f^4+J&FkYr})$LTdz6T>eR6cyDSIhB0;tWys-}I6s|X#g6re`H!cMiRmlg^(Y(-T zDjzMnf3S`&rNls{Y6;PzSxKqkx7jybQ5XPW!XbBrSu`&WHrpF^>z^`MxRg+Tz0aRq z`??@{x8bjCbn$QMlclJm@<7QWT zU#5&Pz4i|%#Lvza5R4tYu9%2&=dBO&>D^*H7V9acSpNlqKBS>YYdY5{UQ7X@S)#es zOk*T7N`-LRN)wgyqwA2ePTMN0daZybG8~~D!!0MBP z)mF<%RX^9yuCfbj$f)OlUBHNjLwl14*RHzp`Uv!^zNhjM-(g-L*qFi8q z{Y?}%LW3-*wbO5=dy{JI$_f8h8qB}~EKA%6W-Y}pw)Wf!gJexsZr3!5^4>4u^<*v`V|? zrpqA*Ehakvaq1fO9!@;%(wV@{g@pYB{=n=r{9*uq9>i}zAT2En5^LB4Vcc+&V#4(o z`N(X3LgPz{5w;VW+Z=o72B%O_cC@?Cf6v8mI=PPQ5qr?}RC8Gi{2h$|&LU%F4+7%v)#$VE?6GzZ?pAiGmWA@#ODh;b$2 z>+uPP+`gc2f8)Pk`ru&28weN4Ln#LwOHTYkv;bLj;RyLZqU;G098_rhmG`JpNBUz;c|H0lStOzp za>_bu$1*mArV&!cGRg?~m%VU9iIXwB241|c^wwDK?+BD>-Zi8^8@oKZV#0f0P+Xrs zsnfeJcW(WV8Gu~zmA}r>RMYJ(*WB-;dp+v}OV~%Fi12@lKbd=VZe?O+Wv=#yZs3bA zUtWg@!ZS0~f#h?h<|)mMGD72Y!YUlrGi6G1 zDS`hSA)(ZwG^JtQl0!?rv1?J#zVv%^gpG_yYF{lW+}}DT!pgcBbGL?w8TSy zDy$`i{W2n|1*=wc@QD-`>@+YnOqn)PPH65c4%ajDn)l%bBm){=zAn4VT}lo24ojpj zqa5fd`qF0`_yK2(u0#1~D>Hg%L?dDfO~8H=qdWXnJQQB1!?1Ncv2N98!c{y|Set{~ zp9GdgjM3#5Y7P9H&pRb92#aO|?>=G*;0P46F56!m^qj$FdM0Imp#?>jX)rn@ZXh_A zUt=SsfgA`zaHc=^jx`aZU4Nz!4tfa3G;*crK`tdieFdR_!4kPE$nLYaa(qM&HHr6h zV4&_b_V%nRJYlSAIpLnr&&*B+9Vda{+ef<_NLEf}IR%BmouC0F<>bnq#5c778RB8U5&q`pSRV2N&oIvJ#wy*qruI=h&W0#kVNdW z4BX(0$e8UKIvYC0gWi4HC)3i@FsXN4IjQBJDH5M>WH8|hG#jjBR*?S;14x6nvZ2gR zBI6f^J7p+qK~JtqCHT~ zNks*swIxAkx>7>=$bI5U&NmyB?n@n$FeB+7Nrm;0#kdVIpyGSD2edC~I=x4}Z{HJ2 z@W}V|F`-YNp@(^$YW}kEy ze<7PzQfvNltD;EqiTIvG!sXUHLfkPKwvkD`rqG4meYcOzjTz)L>>ze|ixiq^phJwA z5JN<(tI*-Uv2ZIwSYv(tqP2zWFw|hVA=8gSDh@GZP*mjjTIIl3Oh4nZ_rGCkzDrVb z6Dlu4q&yBILZ(H$2z~c3+3G7YjBzgjT7+uP+XBD;>UUl>?G?R*{TCOKD*wPAxUy3? zI^bt!TrfW0(G;EH;%JZz&BZcj3nbAaJ*pWCDGQ{O^X)F5-GG!2CdId$;-Tv^4cgho zx@iM<0612Ix?)285gtn*6lPwch|t>VBF^Q#ahWwWW&bl3O=)T>Bvf}ff1s-(eO-e# zq_1A7<|Z!=dK$VyPSl*MA+rgn6z3ld*X9(PKnsc_w|yozRc28Fo7id(?DA!gd%%gz_`8X4yQ^ zSRXNMZS=9<(e($okZ-#_#X8|qLV43+I9C1#q*7vYA)3$ZRtvi~Wsp%JA^K-_^D)o# z0pfdcvO(X-{a;u@WQMtGOk`Pa=z~zsJBaC()%t+%1BbGt)S63)FrNaImU?Pyxx3Ex zJWGTmL{6D`MM`(0VVSXqE2K>rS3yzXt_5GQ0N6;g-8UVCTX{u>A0z8nw3kUxWLi#0 zKiAL7*vBngxr3~S0yLGpZ$*EP+fhg>8df^Nw_*y51YepjSqy@fYz5(kcb}Txl&Jd* z{-H1lsp*SRbRd|2WvM958;uPpnl1u#s8#&_1HZQCs0sTIDkE&y*669J6+PJtw|0JX z54yRvBVlyAQbO}5_sMnj@?7>1K@k4nO-m`sIo?e_CzzIDS>gWA;dd;7Pm=3%aC94Z zqn9t$$&b5DgkoWgqp4%Lc!94d7nc>ez7r~EFz~K~*VMJ;Ir17|M?(J2&Yqs?`YYOz zh~eN%xT0-Ki!2Z9x6(@d91~qLP-hycK^!koWJZm|q~`JVxI%O`I_~C(-6|#6<9P%T zub%%G7Ln6<%UM>Jczd_{u(lzU-=z+$%ROP2I#7T6R|Ds4&qvD*1};HEX8L6FanQ0G zvXuFVGJa6tZ#PZWW~ViA3i$<)?tz*e!(#dARPEmFJ9ms8z~R5Wd6K|OWrX(|`kQ%O z!gj2FZ~?q-b^DY~693jhlmXdW+~*|Baei=-!+_`-67-2m(oQ5$LfBBww>Y;r4|#O}uWw z%Aqq%meM;%J{H4bf?%+rZZ>Zr1e2B-`r8bSe@^SS9Eb>dJ7bt}469)9eHwm8150|- zjHF(}8rnck8A&K6GJHWY;A5_lRwjSB!?zpY@6Qb)E{~lkDe2JEOB_T&@vtd^uUVWY zaYj1GelPfUnRNpz;_+>3l0MjX79dt1)cSpcsj@DI83 zZ2*r`5>iY=_)I>s3@?x#&z*?Fe<5>jWNx!iz?BS>oKpy~h(1xI~9=9KL~etJB?{xH};~ z7nUo}5!^^AP{^q`CrGHx4Zj(f;O#z4$n{=-w{KNhNxrjD<&~G3lmm;s%bZ8;m8={& z5#fi4-gqwYBo-7EHuu!91GAO$Zu&e^Qsr!Up}R2SuG3(*>N&4w(q$LDY-^TirNY9( zb_Q1tWpHv6Udnz92Q{){*af;|4(199!_B8K&T2RuC$O5v+xys|i&?pXIbSmJ<8nfG ziG#~H)l+z>Gx#-Pmy(U1sF-kkOdO&)eX_@8-IUOLz7`e?(yNBXPKjkvTw2(330rSw zKbQL=>;Aq-NLb>n8jT>N7v~CYq6D?|*Q_ZzdUmAJl($_mHzdCDn_!)gjft39QpP(JVBbzhG3KO(vjR*gU)t0_x186%1d z^94FOqIhscMGIc=McnhPrh+Ip%20}m3B%PHegl@*Q}58{fq%^x&==DA&2&RoGS!Mp z3+o*;BJ?pFu}l2u`lNq!{c)`}+w0-bKvwwOmJ9l1kgvXuF&&jw>tTeB`p+_p>#OW z)<$7rq5cfdch9=p(rpTm^LfYV2*53q_4-qbj9BQch@Zji+V9e+dq%+AKTq z&iQ`HovM_C7??sr{^`$hf-)1Fpzu_ZTtuuLvMRsXY4rCZ)t^#jDJQI_UI3=H(0TJ0 z8X@O6U&h4dZa$?!No`Ca!Tkt(i7fXU&Bx$ih^Q_|DY+kNmt%m88Zc2Yp}UBMi|?7L z0U6W=xnKD;0-=D}E+2QkgV3N#PL(mb>@cPq>rlqsZ{_49^M&AhpL>+tgiWyaF*ygBCw zG>TX?P@-#0AtCzE=z*|4z(s`&ldVxAlUAvODbfXZZyjD2pv>5&i*&)=TZh*LC^MEO z(gk;K9bOlp%vhR87u>ydcwK-pV`(B?aQD{XbpgtZrHORG-CKv(1t>F?CZ`J?9a`nw zz4d4;&7)Ws{8)kJ$FVd&63t~ltv8VcWxE+)9W4oz$(Iz$Q&S!a4Cnpt@&;hZHr<(09Fg%AX%Huoz&fS--x7ertw|{&+d>0;3+xvh1 z@CVfB1fDj=vqyGUSmN%(E{`8eD*_fIg+5J*7~wa9GsN`yUq+j|NpcMQ)NF6(Ost)p1hyYU@e>rUa*OqSMW%RIfJCGc1L_H~i|+pF%}&=Y%|z2BN$8x>PcO(~K>pFv_?N{QBO zM3HvY+Big0ijyvTRrG#JHBIQD6#QKTp+;ALt7$@qlflxZP%~XB!ZMDB}A{)hkc2l_wd!bTOR7mY6R<#wYv`J|Fw zwRlQ%f>K{$+heLztqT-Mq2KKzKdOzTs5Utrj>4YB!46`0pa>d~5j$C_T@0L(yz6cn zhs$L}+4-up!k)kZ5nb;+hSpXjg?`Un)HBG{CaC}^@X0ql3SNpHVy(6=cqj#b?=A9F zZ`<~$Cba-5@aeY{&hDPJ345`cDI0((!5=9mHbkywrxA)k4u+@5IpvaNkYnl+B3tQV z_G9;MAF_!V!iDj}T>zY)N+KoeOi-79s%O|*vl}_u_0B$rdxX_pJ6?9BP$51ZCB!pcvPGZMu}tBuAhGwQF=N;vJuhQTkmw&J1^}Ow&NKQ8MfB`0!MRU7;d-d zez7&U5=ec<#-f49*cgV2t)%B2DI$qEY|?c3{P=cG;PlW+dC5`o|GJkj4C~Udu!iVL zd@&$?-DnT&0AD;lUI(tU(!_}5r#zR|*K|Bh?4gzNl&dLnK$@m~ek@faR3$nqMEsbg z;ri)#xE!$3opyATGTxBQ9t#=6D%B<2YQ+Q7oFDZuUbBuE6FSZv9TZN+47%>1mGxrC z3jeLWKsqkCyTaDq4}nTSB{N3AW#WD3?t z%`FG5tk<+}`AF|^qr08Aa+Z&ya~Z$x@scDO8G^RtoM5T;$1}fhU;YsbUxomE%uV4)}-KlxGeX=hwOI%rO05 zj&GReiBzJ?dmVS*;c4b)Rp1)@4`wxB)L#LJ5$^EKrcJ_p+H@c1sZb5y}6kpR)yhZ2vx4!ETm^y*U5de6=i5j zYOShb37<-p??sY|vLWP~YwLGxu8dJ7yAt;!as!(YpS0d*12<{J6US%)`u3#l*Waf- zuwU>pe3)wlSc0@=!E#|5BS|qGwlM-OZIs-)H`u17# za(<)L#VBk>oH{NqOFk8LBE5$gyd%)735lE z2JsJC)`U$mrw?a$D2+g`1iNDe-1zUYaU`5Rr=il)qE2Wn?PS zm$|70Lz=>v8f~`iozvG0@SPMB?XV-NkX41u_vRi_91UEGG9%mnks{k64O$$11#Bu) zez+GN!Tnw~f5CZNEYTKDzyCkng#>ikMzO-gPw)gLa+;Vv`+b(#j7y~{XdfqyjZRCN zdZcpv{7&%=d2zBZwRrCV1BJtNbE%<{#!v-`0y=G@c*#f7&AiG?THy{k$vlxt@@b@) z=q@X#2h4O>xXdM4{D)IY1&k_OuIos+tyYh6>mPn>R}f3NRG`>dm3M|Dt-BTWijGO; z_y3>ag{;`!a5x+rw!`7r@CS!K_>=z#f3d^mAj2TCnIBR#BARmWy6`iG02ndQrWC^LoLhhjTH% zE^6DFS2Y0@8HN^vYd0YM4>#f#Rk>z<N!^Y$wm3S9*{)ina&1f0XuIe3uA)9an z;Gh~thZPi!L^MoG5C?gL^$Zr`R%aU`JwzlG4j1dtAgs(U>gsOeKkCR?i-(*d_mO7M zcQe{Yll90YvX8ff*-uM$W*-j^IYsu-N7M#mB|EEL2!?E;>LsizC~7+zr$)Gf0hvU0 z0VdJF?2h~fp^!`DH~L(YxIa|Xfo&RiJS^n%N|4MRRx{Y@4&CWggKxeTx(kE(SjZ>L*7U9cG4C&``i-5N;~}fCuXebC{mU#(D{9G_v(Y%n zBCKdf)&02BxT^p}V8|wHSK)=T9J})1kWuK%lQE1wn1Mi6Rz;q(MWgEDA*Zm+;2qVI z<*Pwulr9 z77Mxbf~H;tLwkvV(A~IG(#~%;A`=56#jtUOiO^#=>)$x9ZeD~84_Sr7X>d5)01jPR z@x`Az7*2CQNF|)sr#IqJkRm5w^&Kp>K^UYF+eNj2a6{NpaE;xrMnx?l1Bk4`cz`cq?evXQ$p@Q2`d&sSPKMxRF=X#_XJzMnqm=k3rc>7;)cKkHLdO zMq&QqUWtmZsD0V82#pa~8K#**ba1MP0uwxQW2XGtBQS&(xxdqRpk-a`ZuwU*z`s$~aa5i!zvoWA^5vI$EO} z?wE+CF?O(Hf~_kLQz-RN9f+pRAZErWYE&8*5QD>_3DW{N!WTA5NRtFbsY=5V;%LYz zvXeQWI35n)RjO&vG3HCD!oglRAz*M8hZPVGnkOUz$1TRDDTWB>$)Y{HlgFP!B} zfd_|-!rk_;GJcj1+Mkw;*EOzhGA^1Y5kl&=>}FCCkkBzGx(FM~Z?{!*;}jLN;Lyn^)7} z5{|1M*l`1Y?x1K@QBz6*9`XvCmG}%rpIK1_+ahMhsK_rIQ=P-5<#Xs^g)4iCysELy z92W8kXI``8b4BCNjT^iO61j!8QkSRTUNOHEi(I~04fLUqPFMjKN0WoIIWx#ZN|UMQ z%Xo^csBzoE!52pahm690mV4#QW>^Bq&CH@?pvc2p*^4Cvk%ud@3KL~T5p-Kx77wiz zMs{sfZ{EtUc}00$J6>$AEW<4-$}`}WFH2Y`sCQ=uYc_Wg*}aBm|-UO@fHQ~=FP4&*%bEd6eqYE zZlF#%#)VI;J5W^18oG~!iAD=&>yV&>VDyTXJ-Ba6HjM~~NKPtIWxXgi6~%zWo-hqqW*UNM_v;Uwr?u|X_k6HfH1HaEC8ZU^fd zEDDl{T3EeL)}1wYCar&fiQK~JR+E(AT05UvQMKPDFVV~p5qZV6OzkZejyNouU)Y*f zaK>T8YPJ7q1t)u`u)=EFj+z%AE@`RN{$ezr#8=G~)wzZN(#JwV;ds|#1@V(vXE)o| z3=XmgYd$o9;jy?y`G}VWmb7FR23dri5%V~nB`YeMt*Gz`vM@R?=cjLMIZ)ELt#DXq z9f8foGh}12GHl*FLpBx**@UwtV7-`3(J0L}1!bU+OIVjyalqR_D{4`YL|BzpCu;2Y zOjb_%P)H|iIMaJ%iUt}Q7ZS%qR$-s;-jOx>*n$+yp0jR+$R;YdqIP0CHf&Bi>=M%b33`t+^ey%TT?fy0*M0RMtLxzk@5I7S(XSp3nLxr?6Lc*ste@7apvC$Nu`@{hz%)8mp_eA2~Vwr9LYA zfxdVfzq$rjyDi^=o;SQgAFaRgdjE}!{fiIQbR8tV@1fY^M5^%xd`QB~adFYlG+6rt zK6<}~1)v80)93!L-}=(0--iD*L?syC#+$E2}Ds;F$O;L4F&B zL2#Z|{p0#>wdh~1$NEBer!d_th_7d{Yu&T8ayS9@h*&(2Vtp3xPwYKDO@*;<=RqEVq^*$04a!0aa&EV zGBa%F6k3iqV68wi5WxJZB#K<%>0GdRk za2e*(I-sD$$P_dHQur2{cwnrsKb-e3>rLmb+R&A)_-;{gfRq%zyV}7;GX~GA?RI4V z_%?$@+St~sCrLNhhx=^$AA(18PzFkjYy%CDDuXeE;j2MJ->wWmij1$sBYao}7QTxz z0GLD>s3*iAtOwJ{tmRaz!NZ77QDlsw#4Ujd2dZP4|7LG7AHN zwg~-lS>0duKZ5^s;Fn5_%s~Snh3{hgRO3HTpNEHs^Xd>*^VYNerNcu;WVFCeqfxUM-i>kj{laGOB!k<4evW;Dw5Q=NAAKj| zXiuRpVA6Yrk^1Qf`%HUP5&YTqs3OasVRuSU9lAQcvuziE3j0#jlR&4#(Hft@c44Q{ zpb*u2ocWM`R4r8(*ms8Qk^_*!n*nq=B_5l> z*!ZgV>w|AsEmbEviSBwbk?LodE=Q`LZDvTrTUaa)V-hE_{~6|`k^S|MLwna#Vr19T z0OzjFSVt2W;0OH=2Wp%y707h!MOV zZ}M%hT>w^MWGB=B$y%TXp*pAqT27ikrWTxS&os9Gna)^7wcsIjhofkC=EI2*gEOB7 zj2WEuJbujJtmp8f>Tvr^#}8=;6O$sE8}%dNnM}e)mN?U)?bZ6Lu*mDUS{~J7y~>L^ zjxmy)zt-2h$4HlJQw$S{#a9&FmztBrZkD z1H=Z60;(tHR`gBA-ApYR#u7)LLnQ$h2dZr<~G~9 zFvv-=00?A2Q$DU_)zLI6;0&h2{c6hN&heH`9LUTtW6;P_2#iYNaVj<)k)Xe(@86)!6dDM9^q`St!hWX$ z!#4J_@^b7D5}76Jcj_tOr@C$I=gG`6^q`TYU_bR1>?ecPhu4d3?dQo$vGZP`utG~d zT+LWcU}F@-l+${}BOL9QYFIUVfoX0YD4LCubeeJPB1w;haZ>SfvKD2-?j5-Gp;a~< zNJ>#LFlZRc7u?q^^93#_#e(Gv5{YoIr&-eCk%$(k^Ji2d)Zp;vgHP4&nHCL>Bra(c zAZr1!fO=R(0y(hW?@+A_=XIWLyTGrqZB9yLmYxGfij?j-d670F7GLZ}QI z%)z=~Bc^+fEJ7h0O82~1TBUnTPRb^bLXclmyT-m`IhSvjX6;&1W`-GqMmv!Y;c^!_ zJ~#8BNET-mJtmud2dfXg;tgo{)}nJx@Pll96Qm^=d2nbU3X)Dr)L=9Vl3Y-V2^&12 zu{ZiQ?0+|#6!FC*2>8A4*h_R*c`|I%mGe2kS)jvUU1{`~yo8bp_R7>AZ|nxOnvML$ z!qSEr7%+4ZYQmU|`rtrm)uIWL#AQe!AkvcUqz{!~q*~ZX3(HV4U`U99GAS12Jk9#x zOiqFZ%Xnxwoxa3|!;db_hSNh)2_6W9#)zx5YCU`!TUKchlcL}?PqEMXoeQ5vvwl8V z!xNXF=566Ga{d5~CM#0+O*aG9I#LbHNvR-r<9Y*;pYXuyyY z6=L|BGA*M-2Y3`Un4!2VC5?rQC~Za&ZaH5+HdM1B6hw-|B1j}hgUEuU$YONvTqBEl z*qgX9yG7oGOEzMoZRcGmPh^D;H+UDm7TIb$??Q1|O3X?WzOexHHfTuNn6Ebr-=QcT z6T+tysHkyeZycyu6h>yd($acqVHr9G44qph)Rp^aLRwgc5O*I+=9z_rQK@FhydW)0 zNe_Z;Fw*2W*l*FI)TT;Uj*$jKLNp%5)T(F9hnmgK29h#V00wzbhR?n}fwM#ylV<(E zNLGf6hT6a;9GhyxCK{gNWEE7Njmqb`vW=3Jv5kg8HgY}JCj~G%EnHX&%kk0Y5o{m? z*P(O!v>~K~(9jQOS%>3-f4U89oLK3DJZB zdOR*E5)!oSLNf^zTXuTNn~Nv|qW7Y7gHAGQl$w#eJS#upSgpSfi;fOfGq}qWf~7iK z>Pf^L-mlb!Y^TA=95)(G+d3h<_}uU0M~@-!{&0R0M#A?Rp;`$X62+pMP-lIA3hS3( zqH9{gnM%xMn|0QioB*3aAOku`Yrno<%_5yYY^F2H2$1n-!Or#l2(zJ`jf4nMi$yJ| zTt~xYOFS!q^pmO5F!96>{Ck%xR$kt28(grLH8(T`Nr zT?C92Y1qOlI@R;llJhkidy>S7)Hop0qR>8?t`^H`9uBcL3++xwK*0$|U<$RmE{f&U zEYvbN0lcd21c3}F)Q;4#1W_1j7HUaGh>W5Um8Mokb6Be|BUb(>U$dzdE-1j~AV`9; z#ZgqveICuS#Yk2_C4xdWG%C#MwojzlsIV`FbMT)~<408h*2@mzhB>&=gSGh0s(=#` zKs({6H?@MeP}f(vS*vR$M38!^af~-vMDE@Y&qxUHtXRaO<2m8dySRQeJ5~TiM2JQ( zLXu-g;hGg`Gsli(g(Skp2HB7Ss?qo$vUoECpa_nQzmhXkScMB1^pf4dQ5|%;nuS#+ zhl8_6#DIzbAFDNnGgz+7SC2F+f=HIk#6e*ZP#rs}hRd*VYv%J-0!K!%h(|?!)ZXV& zM1Y8b5t6p=9!(cwbJA?*xF;n5_QWGLh3=!(Vk&|+3*Ek$0Nn>bcxu8wRST!08rG}{ zCm9@=ekKnmpSm-yBFtt!WhHP#6pLC?o#rW=-&!=Q(@YM>W{*f?@@loNK2o_^AVU!$ zt`&?*KZ;$pDO^Js9EI>sqwbjz5WpFs2u5x^t%qYBHrvfh`(grM9{}O02CL(wrOi{# zYOp7TgL@CCXdU*6T!9;6J1GISdqCLaR%#$TD&=Nwg(5gA{z{NEo2KB@p=2-?Fk6P_ z)is+<3q=JKLLe-43SRn#`bhm|!HZ-B;1m}Tm4X+Xz7=6M3tmzzAr9joea5W81Gilbp;(|hS27)B0OJTmP=fVD;W?c#=L;}~s5tw`mzL|_8 zdpGkbk`cjL(TM7NYSr4OjD!HuibXt%8)AR0S=>Mo91(w|xItkO=84oX`;lpzg-K6J z0PKlJb-#{HVb~~LYSa$G*8!HdG>YbAl|P%Ilu-@6O4e;^HYXcMim(|B>gw#QdBmZ) zp`D!+3EzlEYziHUxk`iey-(Z(%|Ztk6f^KZkOVV;G(6bc09Hy2kKz%VqKD!gPxCa3 z9wZ~iHKIk-c#g0+sxURE$nY6Krz_lv3G0r76tf{J$_RADpDBzu)O*8uoY*!*MHvAq z{!FOU9NnGNkbXzXHfxTY5RU79Ct%8}@8228(`n7RhrSpN?mt0zI6h&q9RJcxxvF{0 zr-s!6yZ~l97lY+$2`y)Euz#*&fgfCOLJS4>_a46UVEv+66gRJ@VD7^nZ2w)&tDbxD z!SccS(c$#uXgD~T*C*9{dCCIq&nUEz^wP4iCODsZkyYguuS#O3kCTYwA|Gp_!KM@830G7&zl)s(#I39rv$8@xZ*_i zRISxOPkZmlZk$WwNlQPInk_cH35 z*Da*^bp6;B{f{2p3DKL@hqbOBc0#AK`l03d^+W$)>WBTOsvr8FiojE&8cs=ueQ(Q3 zuBAoMBCMrOs7K|6`#^HD|8@zs{v590UX5VR$1b!|zj?m@ z%2oKgNAE0p!_lZZSytoT{wYp5tJ3+-cygeF4`fYHMWA~CsUtKlu=;}+Q*IFt#ng;2 zQ)}pjJ&U&I(4g=P0~IcM>Q=|zG4y{Y5Uqjn@eoRNq|NuZno*fg_E&0^PZY0ynz10o zD_?>MSWjN{gu00JjQ^%wWVzOc9M~6QJ;wjZE4i2bsO7)2=+y@lx}JfN5^rVVB_aA;wYZ!Jd=8?tL_Yxu9wed5iWCNI62nWM(B138NmV7D%M$T2ZzJyw3_pDEtgf0l_s-s zb>G^>q)&S&YyH^U=9eD+0*GJJOWg-5Ir}_}idSLjuno7z>B8=kp=RGHR{ljZ&`+&+Idi3i;$5*)TzFM;S z`Z$V3cVfhHwKXD!5;!mX74r8Fpgx!g)~jb^pq^%+&Ggj4@H6FIgW+seD>tfVyzcxw zQ+ME7ME-0KgzWi3)_Yfmv)+5)g<5b0)naa`=ztDg82ytOp7=xUo{G!}qWfT??knTl zF>=W#BccTCSpn;d??I-1x9Ux1aAO4c{1{ujpY-k>okA)&gXc@2X+G#pmYT`ahKWms zl}%YW{i4(^Ubd+N$b93PjzG4n^oXH%euD@1vNh$&L*E%V~zftQrGm42P2*3O+MFkiK+hgOI0_L_PC_= zMa2gk7M#`o_ekB7)LX#Ph~<$AJz$&FvZpGRk>D(2xh;S(qf~4eOGyh@_l#u}5ktX2 z_S731S4S4~3z!bP8y=HY99dAvo)xlwOMB?JR$gd{=|{>pRp$$SRy}9)zWVVP?#$Gr zbk#9cT}_$YRsDlt%T96CF=F;SG3%F9&4!voZmPo=IL#1#n=Ld22>+ki_%=8gPJ-h| zaw#i(=)$cihLYWe_MRcP5iSU^oyJWhKmujoNF2Y5InUK8sb)~fnI zOYw$g@VsIGaYT`xPWEAF=d;yh4m&@BlWlT&3@a}u3r2gKto7@k3@6KQ=*s06g*2A_flf$OMbMpOKjDzg&^0K-MH zynb2gK1L2Nt5>e7)&MJaJ%jpluZC7gQ#BuGB2Q`};5mb1wU`k2aZ~-Qm;}h!b28Sy zF!9Bd6!K8{gDNPjW02Uu5F&UKRPZTOdGH#|>M_M?4hvrf&`O-Fw#=@SfITZ<{ifmL zH9;qHRVEPd4pgOv*fT$+s@)p_Ax-58MaA+TELNjCJm-9?)IL_ko)NMBT}$Us&))(o z$aqIb&|Is*46qNho%Rb?Opq3W!_3D6-BV(rrns0;#-5R}{(Y0Ms2T+0E=GRO^u$!W zt%hUOe;+~*dUh~@Yt%+6KLv^qt~4>-M8JnjD6T~`?_b_qqGwe++=P)*I5+cvjo_e5K$tMnA zRz&4FGH6k^J_5BO9q{@QgfWPs_t_xOiupisAMJ@u<` z5iJ=F!I&1gNH`Fo;Yi&2`44#>1+o)9y^@Zs}mTMfDWE&Wf_xqGm28r zKM-K@LHncXf@`Vk$KNqHsv~Jyc`&a77q-VW1NV2w5xAA=ftz2FZa~3f`}#t%gP!+C}rTruPlC0vdQ->!Xu_hQpilzBE4eTQfpXVBd{;x6WY^|a=3$SGEbCxHV_51k+R>dL zeaQtIXA&HCLlKr3{tQ!*M)JCM+x*LooT;%Y7!awUKI#4HV5ujMAYc3(f+S2!!pKNe zd9IgKo>+z@MY8u$_WJwp(vLm+qw$>@2K1n%HX~)g>;)$kCKwNAs*4~u3^^CaU=q!T z3(~zd;?X0G`I8=`4uGu+?`yV82jPf0axSTIpBRI`=03{s_>>d*RY8}w*pXp zFxx&>kk3H&GOtzS9t`(k%xY*hUHb!4x#eu6yB0HssVvAfkO&A?fql;xy#CQ8aF)X( z)4}hld2`j914fj%z<}?`k)0%Z!qD>u;+SEICO}ive4*>-Z$eBrJxlL*ny7io@KA$H zY9)_qMtKY@n(f2*1ra~w@h)aZow5X#H4n87l1i22nCFRWH9luT$a zl+5+luEQTt*VP{`_Ncl)aC2YG0Igz=61?XLUVrPh7iPQ%z~vjh6&ZzG7O}}QY(RXl ze*V%-^%Li{{Y4dl?YJpRJpSoKPulBAgQ$Vb`6e~mp#&3z&97j8Tw=I>#h-jrgR2X< zZG22`J4#H!6{Vbk082>i2k@ugUVLBuqT>msJT9BiZt_(l2nGdNx#WiAomG@@H5}=q zD@kjMd#9Suswu=ZeIYtd!RjSk--P!D&<#0^Hyq_cD`B(G4L55oKdbC zXhT6wO277ZfBxU-w{*q_9s3_CA9-pD86k}AdclrY(_D^1qy!;`ntrgyrLSL5t)fmD z^y4_){1%)n1|wF`E1KB$N)K$Zg8EIS9rAcda*&#SwnrGcYxZFMgUbl&r^dM0q?+m> zU+qFqs9|wcujDRxQMZ3?Bj|8ySy_>O-}~)jSWyYX3#vR}ga|CRnk-?YQLTc}lZ1+c zX7r@`Q?K2V6V9TT8;(SfOfSuRntp`&1n_0Ej1c@uGw6E7hXT_wJqBN;AB`K=hv34K z5e$$WLOZ<(CvnQ$I2K|{#Xf++Gm^gkj-KL&^ac7Q8XIy1dJ3laIxI^%g&7@K2f(Y; zKP+)w?_^RU*h65}CM_~D^mrs2J!a)VyrLj2%dw?q%4GyZRULc4_!VUY?DK$>mbiXOM=I6Rdi%=NYtAp8qEEfZ<(FSk z)D(mSEIjG!=Rd@zR0VKY0pvYYLDQaO7uA9bnWCavU_Un1;E5aipH?I2enYZmCIxj; zi~yKrGlLiP3{V2eHR>Wb30}YW5zH=Qt+kIio5$dwch&W`ae}YE+bY5sfqsNBzbM_m zs$z4z^zIKbrbT5ggd^TclwEn}8Y7JTW_1j;G|)RV=?UQvRK$&{t*T!#GBkjkg zMm~B)E!Af$gdaocaNySjCL&pFEb0&j0#H?b#Ni%FT|dL1VVROa1O1*v0ron{Fmt?K z=9C(5;AC(f?ssUruHv$K7~-<$;4zzk0~l#o`HGE#A6(E&vGL#%yHMCl^?DZ1UQtK) znQnzpF!SZ$-cdcR^kU;;4qioN0?;7y<(`(RCZ}NZ=4pRe9T$Y^K&|{z^%7OP8y#hk zYZ=K3;f^PisFrAHiLmbp<`a|wbS3aRcaKqhg_W@NU4CP0nPcK11xA3?AAj64Qq2&t z?hFrMLBhPM_U;W&dzY@?_{}9{g(o$Q^xSeTA0|75St!Z$nu)K{j|%oF_lexOEgB8V8PEUP0SY@bzBwO4 zZ)_@cQ*%{}DmnYyl(PAWx~e^$e7*xiPo|ME!}>ia6P2B*XbV<<)MbHDJCj>yNSUAe z-ZV9j-=e;_%Xgo4ZzX0}ZeB4y$`}n*H{9&etMEO9sqmFgTOLp&RA6a zoREke30*(`w%s2BLC}2wYieN7!W4`d;um&*78VSCPX&WNxPk$F@y8b7#tA`vQK%Pg ze&BDR@+S!K>jh@3--OkjuoP*aFE;0Ov}}zCjEb3E*+@r;+q2@m zVDhiR_?2+TNzuqOeTtAM2~tkmoa!a=YCa1dL1@sW{FqIO2m7o2Xm?*xV;2Z8@bAJMWYN-6Ym6j zE&R8=ea-qK)|q&60qg%Ehxe8|F)hoyGLm8aLI1wz%U-|u8#;|6F$wte;<&D%`%go6 z(Lg{^Gb~B5w6y$i%&>o3|J)0P;as?nC90rRn*0@NCv5I zWjo{l09JjBpp}M2>)zT;7_-B&ptU<+HPdX6fHFq8BO)kS)t{Pl=n)tqJgxvusr#Jn z0MaJ=#58%)pmj=;QQdSjF(~>I=Wl*Ar|D0s3npkT@73(24E$WX=M%8W*lvH8`VvKr zP9(yTCCSvMc>Xrq-`i7P!a%Fqe68&G2(}ZfXmT5c@B@p8hv=-I{TQV74p*=!U$57sZM4y}Ue9n9-vSedI|QoBNM8KJ5l zPiv9tS1?CErUx;FuSef8^+`*1w}p(HhqyeHYMghk^W+jHh5AmyT$X z&JD_ClHR#N(7Fl-20c$j6rD=NjG5cWmKLEc31yW!#_Id@DIL#(tKzAh;{A(U$SDzK z8I>OR@&d`!`>8UAeiU_}1tFGD?;~o5bT(ufMYD;E4)}0|rI%nNPn#$ztVo1q(&TK3 zZhrXGLF zVS|AU7=BgoN zl3&M~>ueUtviuq>R(;l!YNqpqRjawqU*dbqq-2?@b7WeImmXRza%5SKrL=MF<;zZ` z#L`LTL%GScjgl-U)&dm8K~gaqyeW!<>~l*Zwan7hXZp&`v@%l^g*-usC9q*_rAs|j zJ<{s{<#l*PsYfisvM674=dv;-EWP@!C@YIZSUTCYb}l(lpC=dH6(uL31dCs?#?B=s zxbzDbsQDd+qQoQ+U`eExzxhrPu3=-oS?Cm@3`=0+qBq|JY~2_mQD_1tz%ocKH1m*g zah9;;s|=Y7u*iBBaC(WC%gxwg8m4zqOk$r~?4s2-FH)FwaVfDtCbw2NE5-6@z81!1 z%(S?HnWiXXrcW)6>}m+-5O!KwTozH}5P<+R!fiAEtcOsGmO=E$w%$y4ay>-R2BU-^ zOR>Sa2Nywnk#>=SAHRwsNG!uLO00HpZHWJ6yzHT<4T(fp?1qaRJc~pV=gfD@EE37E ztTxZIyNWGMmNP0v6)jTy(HiXVxv=o4Ae2I zg8^fan-D7zhDO1SWJIS=aKP);oT%X#PQtI?4SwuoZu3ByILqyYn41R)>|V}_gL|s@ z&bM4#*(k|!qO0GWz2Hm)00KI%C$jzehwWOBmU<@ytw1X)sa3E?&6$Z9u; zfdMYr$_UqAsR?W5R@+uaE6XwxDkFkzBDEOag#)wsX=>Y&va-^o5DZ9Vy&Sd?Gb?TD zAj=~zLsiB%iOXf^AtkPOR&dMorm8A#}@&~w*)@CWId z^;TkGmd^8NnD`CFOXv@{7fqV(lWNu<2qalX)E@{QD>_0t1HnB z-j8OfnTG~~GF%i4*hOeMxro81%9WWLH)}d2ah4Y~ozgps-S5VgHFy=b_3#LlJ3^ye zq-9CxyCk83sgUBj*D>q#9llvM8OgHTD8-FlQ0B{$!mP6kQi&ATkwP#aC8W6Cd#zGj zCdXQcQe5^>Sw~25**hJjxJj9oAf>p;7Zus(W4FBt^Vv}olN$?7i?CE4$B<5PLf*s#P1RA% ztl4XpH^ss%Ey|nXH&l@c4KjNX&iab%)vQ65#940CAWQEkcAKoWI)OXkyRw=VmbIFJ z171R-LMlYrU9)i$Cdaa&Muk082Krv6s$e7NN2S~;(VInCI?qKR388>dE(X9r1uLvA zV*rS;OyU@zAb>^At^F>aZ<{UM+7oA4#cu7rqu2>UG*q&zx98Jq)(sZrS$;G`Bfg{v zz7YF@I#UF8IGj%T&}nWWJtxFcc@ka86A$>`jz5()_~cg6B_&wo#}F9>1FTT3;qVf; z^x3X~W6s;GS~EG80#$4FP}yJT;=>Ig)hybH*{q9CGAse=;?n~KE*W3g=hV>nY@?Gi zz7;IP!lI@~<7Ti{LRjV~7+`-AI|?k7to6~xaD?6dyn=>Vbb#Cz^d>?rx$mJvX5fLZ z&_~4&@a#X4ZL>aVN~GmVebm%@%8!Jk*}kqW))h%MOPU2~mLDa}!Yhhe+K6-`y~uAX zBSs<ID1JVKh>TOwAfHNt|U!4VmcHiR7sz4;ma-k{^y`V@5=1}{TTABkz zgyz8C6|xYc;et1Fy2ue+EYCc@SyIj9SPm4U*~3J+;5%vteFjTt_^^Jna*1SxfZ3?ZZppW<#GMxj~CKr$>or3~~S z;dZc(J1YKWZf7M}U~)SY3_1(3Af3iGiv>)Mr9iQOJyiM&;ZQurq*?2LA}l<$4*0u5 zelGUhDV(Pmw1&C8Kq&zh^-=VCD;6*Xho9ENv5vv*#^ii47M~p6f2K4SYQ8=WS6D~f ztmb=CEC;Ij-lG%+xUF8Q_zfvIDG>$tC_%vN0pyDV-ry<8cEzE@ zqzwTOz(QC+LxzB>LE#2QRwB(7&;*h!7g|6QJXUmsnIC-X3LOW`7&V(Oi-lQIG+!3K zp?C=`n0paA{ESkw7L3WUY^Vie4>x$t)!~94JiMLPC^0Fo(GYoaT&>4&da>Wn+0GnV zPRbkx1c(TY3z`hBq+v9+tH&V4lAy-L2LKA0unHe{QID0FWQiz~H22jPB*?FvPSNfnBQ02Z0>sb1lgWV?8w6blUjEHd>)z0yT}(Q+)0sJm>w5I?sJRYsC! z6o)Dc1avYv+^ylPlQ9x4$5M%MI0KR=ayzPT+jYLQoD>lQvVq9aiDFFtDG5= z?GjrQW!XfDEk0KvCS#Y6s{38oMTtq-MMD4!VYX1^7bjtJ-fXrIMObv2EyUlI{z8c; z)Z{J3%}OK`6_!Z&Trm=+t@TxlkujQ0TaygSfu^nLfdUs+OWW^5NaLokT0#tK1Ou!vf(ge?s*%U~T@uF4M1~eP5_M}*RnoaQ@DGJZT%N)X`3b`vr#IG&n*Kvh} z5(rR2zNl)MS>!vaVJ#!mxLLj!NU{_tUko0njIZg$m)18lzLOFe-#tA{*xa$UClcSBYzwG&! zqO0@udUq!axF~$`Ib1&p!-fF!waE-#noiZVrG8}j-7FSSlnKo}0;CSC!$QRXmmwBy?1J~#tuI6xa zr~?44JYYD^QD4Kr19TZMeQSZge|a^Tj@iAn^Gow?7tk89YhhvA%SpSvq1@jaII6}1ykgDdgu8f*ux zTpHQ}d#^Cly9kDu$8 z#KCGdQZEhEjmvi@!Huc8JUK1G(s}iU6{%FWp-o@gsACKQ>-z8v34^1I=JgmZg;sIS z4{W*ARs7nrc>dB1E^Ku|d&?ThC~t6sOmoDI$SPMr0cxGZ!PK%{Hg~n7}W%Pb8$2|(F7jFi+wM|Z8Zo>-nYj; zv#=Yl27a7AyZd_ojo16HGYh|7f@eRph~Kh*_Fj8`I9mUwr*Xsz5`mH@3xk z!(u&cu-@pscIjk3nWm85*j6j}&>}sjkl@eWYqwR@KHi5*zY}`B(ce-p_|T#~YtTTi ztJP=&*v0LP_(uPt1$)MTT?8Yp4q>ma((4VOye@8QMflLSBK#Rx@uG;fr4=ud6}2bA zpS{;^jFz=6F&S%1BVHsU>Jo!Ld5IaY$NVZ5TJb_*4Rc0RYH1sKzVXJJ+JpfTw_rIE zx}ibhUML~G8F)r15`1SJ<0;Sy{_4F3Z2(+de)07;ei|$EW>B%pVNf9h1SK&1m9Vmo&=rX zFK9qkvr75GTd^m^)EhsOfVMN-&&hB~9r(+sBcS|ZOLgEo&uH+M zLV-Imz-T{@b@|1X6$rkwC@RdsUx8-}P`|gOLhzlZ5d7s7`bDhJ?`^3NeCK%q{N;Or zNmf>?zkIN!frL-%{pn=C51XmRFqAf~M~nWXzEI6BK$ZtxnF|lrUoo#dc>iawkH&xY z;I;KvPfmY%41EPy_VQ=$@oV(r`fG2fkk=nqcVB<7rXkl&NNz;t6(fDm0)IODAHVda z<%7lg5da=dhl>T^zPA3R75HIwT+h`V8h`Qs{??a1{ipDs^(}0AHetH4cP31m@D=vc z1IuFlnEm-C9REC>R%-OX0sm%eU=+uo@kavxu?2_W1A`7-*wGz0_i53;v|84ehs)6s z3<7*Oxj#|8I7jT0Qer5W@t_}L5HyP|tiHeuwYY4kULGz~7te9~PrBhI!63WuSi2o- zU+HU?nS5T2uR$-Iak){-#Y#F_9#7FxMB&KbX@SAnIql09JyVc=iR|24o(uV4;jzNl zb#20eBdZ{bhv=yzqa$9E|EQEtdEB)qSdBsou-j8Do^>YK2?dRU6rSW(s9>6rF(|G)4UC{ckifS& z0k}MPHL3>c+DFFYPj*lkJ{Hn>(bB=n(}&^L6V(t6W@g=!E1dDxlt{QAaOp>mh{V2^ zBv#KVXgGl)GuUL;>>Mmo{BB4Q276{O*E_EdVOfV7iFC%Rc0@0LL~7r+)TCC;Ki=9A zEUtQmZKp#)PQ4r_7<}gy@uO0MmGaRD$mK$o%TWb4gsAsnSR4K~43wkJsR@9{6dQlB zBu7yMEpAkb&E|*C)%xp@#p5J|ZdM+(mK?*#@+r)I`c6;Futc62~Xo;^Q z(&|{9`R82sdTDt?F?$T6IHr;v0v?%t?p**XQ4CPa4guAPCLL+0L@_`u8v%c0O-lBM zi3gYp(+83AE()VFC^b0A^#ecsmf;j?*K3}$ zOiSS-?<4)4WL8wdbMj3Lrt}V4mGtmyNO3NXQe+{iW-?2+cU@)g=hH!dnU7(tz`u-4x z2nKYUx^tNYB>u->sL4Xl{kkai>r%%ok!%^h^d8iK`mS24@ZNx@SaJDL;>*P$RP<^DoFSCz8@`!g zi=%n5cw~7+Tgt3|F}T1os9tE+fo;!%=5WjE6-%|8Ub|Jn$+a^TafY~D7|MDw!^(!1 zRR(=g)_4H*%p4T$!T=qyyAk(T63*H_0kPkRO?!R?gg|1Rv*K{E^|7sV|a7B z_)V7d1zVo4z#csS(<>#b-o42ZDvD&s*ErWjHJ{Kr$^nQNs5TfD-0(hbao?jr!MqKidwZqAHpEw#4vXJZ-y(dh;Fdu&g##SCO&nId z>e(^c4!GWSdNO0acT}9t zM8!@$8`XT9ewX!tT+a+h(pqvCN-vhyH8+h3>CgLmcJ-IN`D&)ypPQ#Jm_F;_@CU4w zUG&r~Ot73>r+zy7_2I{}pI#!kN?JUWfVC%KzbwS#Mk& zLs*A(hmZye*(Uf~^ayTeQlQoFdVe!mlmz%WogUBHlU739HQQ)Macc zo150PU3iFJ4Q5cO`LrAD$S6fNGA#b@eNxZwsLVpOgguZB?TlIltTzup%eYX-BEVX7 zZRy@?@V}5ns6ei#{J*XmKs8!2)2m)xQPZKi8%a3T0r*F0RhJiFeh? zo)R+Mqda)c`f`r|e4L6GI~aa#RsZsPvvGAlRb6Ox@+Mn))#VlQZ`gLypw>KYJ{rJ< zsntAkm*SQ=rm^QFu77+BrT1Xq1AKX=R`Wu?uCvk9*!H`rl@-a1Z#bO9u3Ql2Fq|HE*CT zRPpoeR1^f~)HAQ|X&!rez)!1|9hgfMU1A)qo1#ky&*^49*+ZAzv%0FH+j3Ozr9^2W z1gpZuv+Aq@TtHcVm`wO4zWQJ-2hBg&Ko@Slh23kD{goP6<)e|IH~zcryb&2@#yxE$ zk!v4*zvnRpXVokJ_RP4c_Sdb3GgEaFLER`_XpJrFrXV=yzxeu|?cddNt!txEy&r9I z0jLy^n1>23+ZDGz!uQGs=T+4b7?_A!Fcx@WlSXXpE(kt<-cm0nyQu8U7khe$QtMbc zj(BmCp7B^33qSv&ovIgN@nto2aR`m49f0361L13VbnmAL4Ov#fhD<{@{javuF$0h* zQ}&t8c5o7=W1yv#nLQX(!bJ^UF#Q_WHZB z8YoRE@_VGnxV|@2BaT~T)qhp08qZj~6xo|k541#L#pyM!k9cd7ZpO|0IqNV?{Ka;9 z34*!%C3G_1g*i3qv$3oanQqXMZCO?c;YE6-^J&!W+NQEXuWpce{)g=f50T0<&qQgW zpbaS~nqZ^5qP%o=xuv@bf{Th3zvF2p>f_Q7v`-LP@N>-h0zdt;cEyKMn`r_y(595A z#xIIJlcjipGA(ne0h8TKr7({~#atgRQ9dkd$!1gkX1k)w02HanzK_x>tEb+(_c9XH zyY&{M$;oNIo*!O-KQHLNVAI~0^*`L6J-&7B@qIWi2bQxe`nOjwAo#(@Flzth+oQ=% z7!&vkY}SVp0UoSB+XzFs&IOmJ7&@>4V7{pOFs(J59wLZs3N>Hx1zMW;EhFWF`rZd> zp85)`qaN<-wL$;){|9^g{vY_y8m<&K2Sy~Vkfs+3_L+sxh}5fw)Ie>Q9E{Z3Zk4k1 zqxWC?^dXY`zE2WH3-nc*130Cvf7SkRyHaP-I*R{A3p?5?&ihA`YOcm^Pkj{MsM#0E z!mk+e@yl1tP3_m!LdM;3_fYcOy%#rg{{qNRHPVGAE&QhmF! z2V_TE_1(j(H*Wsotv4B+HdQ|qEHkp8*t&ctG|<&*wy18bmar(0F>4buJ!VdNf}VSU z4EIdP@q^npu3lp7Xa~_2A=9zba%ElyGHJCN_-@I3BJTpKd%}%S{l{kjUrW3mJ7y~-4XMJP7a~0@%BH!tv9uNBuy`_-J%~jp%KlDodUD0xIW8!(pOys%& zT%Uq1Gm%a{s8{X!d*9Mi6>odLcABKX?rg6IYl%i*iBllB%2Wm z-7|O1fr7)9Ey{p>)_#}lAsQ{}#ymuOd6~fcq*fd8`j_s&xv+0seNP=fs(;ekUR+1~ zpS8>}GdN-SW?rQdf7ZDmzJB>8TouKt2rcf|GW}$dQ!EWEdZL%H)7Q68)B($}WM>U+oFu$0tf;9BoQh_vFN|*E(q?R4pQ}G#{^U7*}GJ3a~ z!_}BldC&|>TXiCsq#Dti5B~ZaU;3>tssF<&@}f{Y>NCNiRvlFfZ6_l?%RH#e{g|n% z!PWTVS>S+vJNP#pQO^OUbjf`~?&S6U(4Bq-$IcwNkAwE9%|P+QbJ_?crAG83aTlt> z2e*HHIa3^6RfQNP#Xf$M=>Kl)SMc`j69`UKPKkfjkx!+-GOEbruu2Qr4q#;KM_1X7 zfRj-pqJ$dQ$sONMKY)~CIKQ55E&j5r;t+t6ItcHQUkRzv_3_OpY3nLAva(ZD5gJYG zjhJA-xef+~^9(XJrm5zZO_+$3WG>P|J%q$KwsBX9v6h_TX<(6;5YTVJF$O0)59kp} zl5a!@xeJNrt;^Sv%)3f71B?{!;5Djm-T*Xu^sW5^)(vSp0PV?5vI9u8qY#L1!Ct*w zqtaC%7I2b`1xl#FkK?vcNtW9mKjHe<9Yy0LT23389_l1?3U5`1tLbq54qQx>^zyDc zg$b;*J~B1bMu_9LkL!AQl=HH#;<$*E(nNfj>dId1Y32jDFnwS9>yCUagO}Gyridl< zy;!p-@$uF9#~rB?f~0f^-=iWCny|tCLJ#gN`j>?cVppk*m7OAt&}d*`gkdmJeb_JB zAfFIzts-B9p#>}sp*!enA^6Qh9#{}MfR=ESOR;RCt1ftil5+g$MXIWj=fFi%C$J>$ zVn5dsbd|dW7%2^c*NFcw;utv~{;o;>qL1bDTzRDiG+5<1 zx1%R!(Qbd@jghf3ikeHmkh)6WI~qsH>LPRzSP6Bdi-3~~55lVyBHqfmT(Xzt?dQszm`RyI(an)DdML{R1dZ(a#Ke5Pxsnpfj zSpqAiRN{3~OA6npRy^J5*M+XSei2GamFPuM;(4KL=KBZzhdlNz*%oM->e3I#@O|5M z)g=uuQkD%~BfCm{wfW(spBTU0iN7bXlBy(zu`x6Wu0p}qFM)>^>5~M{OK=xDA;yBU zaX+(Y$T#k}UezRY7)ie`-V8i$*s1&1>iH5jD_@%g+g4lckYQq3on%iaqTo`ix<7#P zP!*r^!3&p%1Fu=N9KlWw^FJ``(XF{Wv4Od~CuA;M9v;!sOCG}w$amUgr!{JfqGfvc zlqll%$htqA9~{6%mdoK)Nb*=)&}w^RAUL4KK{3iZyXofx^bAs8#wCz@o)(n z$@?Gb|50~;s?$xG?dWi!ZPuG400JAzB+!q=_9lDw)CYq<%}^o^rfU?f{o2%vXV7TO}ie6BXv~1oyv4PdRCuA?&B@+cxX03-3ryn(aqNAdZS78Mr-`qshU z$S#jLa5!XFUs3G_Rp_?mEh3yk(h@^>1B12hn-2fR)myAEK5nTy$P2L*1R_7~A;-J( z>BQzORW}>{BYXpd6rOYxZdJo+RQh!D-IgR!Xh;KpCtKKcimJ?DYujAS%svEPv~`rR zcqmS3GbcvmjJ?yY&*c;zlAGEMeT)makRQ>{%wO&Hz4`=B%Y?g(`tk*m#i zM<$h39R`P$*skn!U)8JGSY1`**tA*M8OW9S7)WG<;q2oR7>BNIL-!NTm*M*d+bl82!-%Y9LTF;!PawJP&EPDK zMfLu0RPTcttn}OT6H)*o<&XrDwOxCX^{e^mw7x5HZL`=ZAz!2#P(Y@3H6ls+VE^E7 z0cxqjfV1%7@^bFLZ6+#nAR=dp3=)6Iw&Yml%y86|dIo)lAq-M6hd6DM*rX6-%6bck zM+5nWhQ40U)VA2++%pVNSD7tOl=R1 z-0T*tdp0b2xhGU4q`;6!=!|eAF4h}Z%KOlp zQ#)Biwr2FsdquZn<}!JyqMgfH9~HroNf!nyoiC`78J#dZ)I{(Pf;M1~A}Oa9zTwYR zu49+)Iu}am_0R%{-JanXPF3EpKY+tdrAFJgbSDj)03rrG;XMk1c0YsDVWykp{$)RV z_L)D#*H(JxU;pH3gKcURu&NH*a0j1-C*?j^5HnY9pdzP z{PDxKjqS%HCph?gaSA7&pPPzl8?k_2R6G3m`j9KA&1(Y2K~3@bKE#R|c%&`;G5jwJ zCI6_!_>HxLk||VG4Tbg8PKN}R3(0iQPRU#p5K?)j?ctB!{3_`Q&09Plmg(90?Z4(X$Pf8`pPsL=FW@YEcKaB?z1@3X74_lb562A&OJ<74q{th#kU=iBgqmudYB>yVFqqen(m04lPr*P4~d*z zM-wJ9EV`X}mV{$2VE|&RI*1-FdI`pI4->{x;bkW&B?%T-(K8~&jpfC>t^)=I@dT}) z9pIj&qU>&rg@Pqk_$*~C7lXSt7D-Of+F&e9FnwAbRKsRjZQxndV02v#T_YzND{6|k zXQ}33C!R%u1y=Md;aOfAntPUNE_dQtBv>dydY14k zuMO|mvz+7vt-!PFnh={hz}h5rIiy)^aRaWQ94>ir) zMWL<6IZg7yrKhPPJaV-2!b#=-&2K7AqVjI$WV64ZJ>2NjccDRxWmS_Q2CQlcG zI&f+@I}G;6w#*N>WQml6MP6>`Qh%+FRGPqbxWB3A^{nQzDs2{sVCjYc63g%%DpMCx zG+Bvb%ZTF3m8cau0#zXk(wKb(@G62GlAHdRs@{CwG{|y zInVUlhlfxhLVlkeLHls7nhIR{ffh6jDR}$#YuRVij)Q_FpTlQVL+x3pSlb7Nn;fZq zqUWgL2wx{C^J6;(YyhLv!zo+M0e{Usvx{lNUtNP&44kbUW+b7sM^+g79k!OT*@GqMy0U;TWrKbh6XOStg}PDqD;eFXm! z_PG7)Ho?~b!L3TLb8ax24i}3G_FHkZnE4?80jXoRjVKpf^wplJ8$O0$|* z%A(H9%%p9On>C0`wrEoi8rwGu@1SnbLix0^K?1oKiVK^zd ze{CYwxqsGqogXjt3mRicecf{l@nPETqTH5UDkR(Gn?cW+-6qQ<}KTmufaSq=U^ z>4K@7(d7=@Hhnl;>4O2FC(j$Q_EEwY9W(Zy5H{$C?A=qC_<^f) zxF59YcxnX2fCI=Z`8yf5A3}SoT2V;Ge*NJU7KpoH%K>Dz{2gM;lMJQ0eo;4f%j!CG zPh-;U16~p*!#$#etqKmIIQO_&PZo=Mc6GA2!>rwEij923lP=TsULZU3#zg54uJHEk z5Dr;j6x+AVOtwtWL8A>ZD|a@$UGLX?rmEF&30Y6em1!ABq{NejIZRP4CwHsC910bV zH8y|UfXF1#Uu_IpO%w;i43_dM?ibaH8muTA?v655<_ zHWv@QT2?Aylj-ZxeW?U!o3#l(Af0eX$yDs1RBplnFAyhh300{3l#qjM)`-7P3fYs+ zZB`yABvd)SoX&k*;Q3^r+(#;p7mDg%bRO+Iq|N2zy-bCa^|~O}_Y0_duj60^+VEZy zHb!0_*W(;|7cQ*PF^%=heBuwKL&)+d zm5H5){u7P|Qw|pNTzso_(;?viv8yV}@OQ{PBeFrqrF*g*KqkxIA+jvzQA&N`I#0Mf zk$l7Ny!f_$h(v*U;?AfO*&<8 z8I4i|Q7tx^lvE22(m6H5m@JO`ZR`F=0b&E?JesKAYj&Pr$7n*kJ%O53>0x@f{!%T) z;U{taRdi(#LgC1cz_Rk)?wtjB5 zI)))AyXWhJ$?Vef@a_3L*az2U6eJey2ln_W1#mlI3oAe%TFms4D)X;ThVvPut}K0M zbNYD_!6%x0iTK*=)V&DnX5ij|p<0NqH8`idt)11Shp=jDS@kcCM$lT0PP^utMDXpL ze2MIA7gf0z-?PlYrzOg5HgV=aWYz*1%pYxj>|_o;TMftRS{yYBEPUt(m~*3r&8q?} zz;V=Kv2*S^ws#IoYwYcqZ{N7qZM2I;GdGEW(K)ad(i^}Kb}z${4SM{F-(SjB7`?fVjTT@)BHU8M|ql(XB{wQ1}5XI;mYG zgJ0i-iQh^l*YeUujnBnP4EY;^Z)!PkB7(gRROb2+3~3ikp&=c^KqKETAF4@R$wN@G zSD3AO1Gj8gWrV3crmsO%r-){czWG{QXwS9Jb zS@T_@ZO;4lWC}Di6ozhlrilGQDycR{DR8j@7X(B)cBO#&j_!oL@lcBiZ&V8yJ*@Jw zNkM2Jw4)!U&a~icW))o)BN1!UlBNKdZ{a;~cw-HcKrgc$Kaw?|e}!N8_I&8HaSwvI zJLd9me5I}q4kn{X1;d|gxU)@?ZO_{e#QXM@-=M&TGi!$C0GfR`T4^w@)Mx!b?D=7h zi!V=9rxlK!Q2+C`wXQtY`4=r(3fRD&fnmnZzDY*Mtsnl|==Q!7w@D8eX)8QQ6~VF2 z;c8t&(40K}g|o6dT|rTc zFJ7-<_6lyHKCHr%3_5V9G}0#ioEGYVE8L7bS?MrB0e2tV8qV%WRk+m(w>(Z-hnNy- zz$=8+U@%_P)4P?Lq&5GDzxSikIaBGUc6OZ^Yfw$VqhNGf)d~Ecb6i9IenTa=fBL0! z4yz5WS+(ca{92tJ7sshKgCY>8^to(KbWk~hr!^pWR3(T7J!dP7G^4{!ZwUns0I+HF5!CWZ$76lfzf9+}ojgdP3 zySfVNbtKMz)}||{*@zf1Y4J5;jRyp4iLmuJ4lixSgv_E$6dQBHCqxHBh^BKLwgGP} z`&Mq7g^B4V31JAq!zs1g!9BC8Y+=HPI>5`U+B)BU%+}LJI>_GS$B}d5*qFJ?ML~|| zGe1*LXDfRnGbcUG=Xs4YKiDXI zUco)ws)K*Qejfw%Q8ETkyF`gTm_YkEA06?_O8>KMpixqqME?liA^q(wu1M$ZXUqh* zw%~F1vkU={kA`^6S{|1vGvJ#|fKh^ki_Zx5Q3ITRs=+)s zSTZHAHh_a~1tcXA?P)z3eo|ut45*1G+wWyCEg1prZhQP-1mj(5xP>8q+)PD1s&TYD zp1$H&)_w$m6s!-?np%e4#D_?Npf^1uQ`;G8^5m#H?a4?$BLeFDh;gP# z&6K^|1hbZ)YEsX7608DJ3ji6+JMCeNP}BxX5Eq^?v_>U}5=7nXvNlrDhCNWxE_`9Q z?{}aj%0)%LVT#QRO>T{5M>gXsV&x*5^-%lzKAa}YAe(roCqpo;_mqsw7YmI}mq+z% z5OLUVU}THpiAq!PULr<(jgWm~I*bD4!PcCNu#K!NCKeOtOH5j8NG2gE9h>O6=#ZtgwC$r$=9`r@(dpr>TaRWP8R4Yc%p1%<3 ztS6GT*V)WN2|63Oq0Z)YJD1H+8|lo%NIJ6@NM{?s*gP*I(IkK|DQOO-ks=Bvn5EndV#)??t0SU|u zO?tVg6-mmlp?8Q5m4%+-U?iHAg_(?z%ECy-T7WCk>=cC!M|K{H;eXnwL<~L`Ct5;! zk<9UR)3)kyYeweXCS>%OqhJd4J3+A%u7dMI8T3(O=s=oe1~V+mPjVz`=%e~2=)I~f zgD{x0{YZ?N2k;~%DS7V@9lQS82sw_+<~NNEWP~J1SPXPo+Y>YRaGDw`ohCgol8{7J z(h(NhNL>mzkjbzcwHHiGk^tdY7Iv($f}YA)k2Tua=@06AA5?d%>6PIW_HMy0jltls zTEb4FY96x%xRM_;oWI93rM$Fx0?dkK-iGLvQLveUQKsPRs(Dx zYe*nj8`2}iNA+sP$MxDQGM2?>i5db(Gv&Dl^ZIyT8jjt0t_PB(?7c^xo3gJS!Do~^ zwXZipkf>&c0NQuYyoCeiG@{p{Nk@0L~xu~A75yM=Ucs$B5GzA zB5(d|GG@im=Gfp8ux2^|IaJ6lb=izDt%8yHf3wq)QgF?b(gabhVh@~8;Ia@_RJ-*+ zjn_;uLlHHz8zk}tHdzd&)sPQMw>bj72(4Tzq=z~cmDb6;8r1V~Faf!{(jvTaz33CF zUdhM=M`M0k!@%P0YMD%!{CnrX!6}Rt*QVQACE}Iq;#ou0ZB7w`mFr{4p+ZGL!FXU3cNYxc(9vijaIMV1*@QwNVpW;<0SI z(k2b)X_I~_p^aT|=Dxdp^;&-nhs;94uv)@OVODM0EI3O;_@0%1i()e#7Dff2D8uS1 zzKy@lrUOnwiB410z~~#V7@u>a!>^VTlfMwM)X1`J?g|j4 zXSp)_+J()Y6y>Qmw4*{Q2=~{A!#ZtNcjjRdtR+HdV!N=}$$c+6Au$&{{_7U8FpDV$ zkj>mst?1y#4{qPMdMWMnZ3Z))9x;eqBJq0^N$m27P-f)uZT4j=${0$z`CN3K1#vZaawV%F)S=9Hq^OcM4z= zY349^`XgEV)~_yRnx8hi3>@DGL#7x1t6xI59YYGd1SJ4zDO74onFjYO@~x+oXyea8Apg%qD8l&fxBF zy5cU@W@xMsuS_XU5#7uVCgqS!pFcQ-zs+D$30SF4M6Ot&PlqGP?{=e*11nR=y-&Uu zC6s;zRo)8caKNwyiv-;ylrm76B9;`EN?wW8XjCm02P=L%_YRaGpaLc6T`Gxaq+?U_ z(#=SRfFjcuUL@{#zApu1^)gjN<~*xTdLvAJny;gPt`d#TDM>6U`#V{?8J!Cu(tH^a zq#U)?D38ZnpLaKHwTP1^&nck>QEuuaQ-t;DcaxjOAe*=onT^D~NV+@X4kS<9y+;)? z>SCiYgmB(X7n=j*2?ya@ChH=kZ{ZHf5>xHgn&>loMP)IiK9shw!oR{@?FVMGo6UQT}C9b@epc zd^LhT#c;t>p)G9`7qM@US z`gucYxl)|hb#UH8+aa}$XifAo^cv~}xlgcFc$Ye9v?e+kdZ?4vTSCiSR@ZsT=}p_- zk_?ez9}q#x-dF&a7vunbG;BK-kORuo4@hlPB52unrvwMeE5YBTQ0?{lxPiQO+gG4% zuP+6XC-0F#>wEnXE>lPw+V)2zfIQ(KHSos4xh&m`I_>z{w!iAA9W<3Ngvu)rzD*93 zSLLL>2WRh_oW^&X9jM|#6{zC9O{#da#=KNqTj=Z1c7`*7ktgq{pyNw5_O?!<+X9jupuN~-k#ML@n((*DySz1WRMBjaxcJJ-qwN~GG|VOyJVIC!8ILkI znGE0(HaIw*Y0$MtF{I5(sDm+(7V6UacE zEn!?s!nrfs)wos?t%*{G9_l1acu6R5WXoi{g2Rpc2CJ(HuN+_#&4?r_R}dF$+s75# zRa`)@Ql;>Hs#wAdUT8d67N=K}d8wjbW?fBbZH6sXQXq`wXHP3vX29g;3anQ;Jo=~} z9aZy-1(UM>p`%Qs05_#@!KYNf-eN)0c(p$ny<5$X;h39TW7c-DU;$oI!wf|%%Qxdm zt}F3pLATlW-2bktlH7#aK+Aw`GhKuJ=o#tCQ5)#WKO~P8CbNWcO+=%vCbP1L4RrKq zVp$4}zJMl-9d|YHlSFHvS1_vldqs6o_iV%YX5UNym)+G!3A=&5(&yx{LWfAOu@S~Fi(+XLgfM?T-;I#Cvvbr2#1N9t9R8Gk11gv;=xvQ)$1=c_*KDS(^ zP&~D~Lxr+4%Yp&;#Ii6;tG~&mFI~;jNiq@hqIc@n5vm-o9b%h zC=Hj=GyMgrB@8OZU%AYJm1tLk$~nMt)jX1zz6sMa<1LyJJW!DCrJjE3)RhNj5gX{` z(Zm`igpUMToELW$K5~E!wc|OkuyHkkMX94-d|ho^-GJFpMWTvDSQbPmN%S?`VGu#Q z2HN2#6hwslU9hFFRLR$|tNgtPxq-FpX5_7uCfZocLZ32eZz0P0+IQ8bY=Ga`27(G`2|0Tzn^oyB zdrAUkbWMIkt*>00qwj)w2fuVXtj!x>n!V ztFT%{su)T?YMuN->}s{jCeWr@5?QQ~g$)SxjC>_`*?=Hm69w@b@={@uwq($F_Mxjq z+DWt~YVo-SVM19#5y#~H!s}{6xfHyK#v*z2*utzJ7=-s#-(^<7VVfw;za$@)A}t(n zHk@BC*yhw(q|G5FmCSua`U%I6Tp!;|pEuRj@gpHfN{jG4A}%Z~#dm`Q&-cBqmX^v; zo0JHMVU^0L60ED;r79e1lPdgeDivXsESk#8M}0N^qNBOi7-o|S9w96VVW}U=wXIvQ zEu*WYei6zh@{SI27nb)&QU`DF130@{-Y)?aYoJJ>5<>2N9fEDOSeC@wt~z0P$fRO< zqNt*9zF#KZ{%J?mgF~cL;BQf>2(D$`3<8>8ue)+B2`EoLAcb~MDiMUT-6_F=@=EY` zsU(Ev+8D?SX1)SlHP<0Xp1el}tuLJKXJiT+C+>CX^9CSKIM^&9EEO?i#hnMfy}Mc} zl7`DGA`-+h5L!16$L>7vwdtyLi%<%b2sT0phx-|+t|9c9cXha5fRX3zsG!BYJ34S9 zzmXXCc~_k}y_TP6%loxSrt$WMZkc8`HW*{^Ee%rT934$g-lKgDyI#k2GYOZpc=8L1 z?81;&j1x3%zQ=bp1hit_KMM1`@v*tlL(=_}dQ*j^5> zTtSZ{mZGpbI>r*(_O5nEr@+dU3fg>Ot3Zq)Hm`oUb+uKX47yxdkvNv6FvgX@7jlHI z#<;SG4HXS?2VsdxjOH3|zdXBIVv@lt*UeGHk`p$&#z=9l(bZwe_!ubG6;ywwi8A9WG zs~RnfR?l_S_~rnU%H&9*a>9VIgcU58>uT&?rOj<57|UD zk0_Rw(7dMbb~jm{MQp0z#>x5=8qI(Eh1gZkWfN#qEr~1^WMNFP%{1RdxXYM=fK3#{ zZz#G8`LAS9VKJOvmR;q)WzbC&7KmfH3RBt&UtUfrZpP_qN_#VGPUQ`RQQd?a%U=g= zNSAJ$0&K3L*Pi?=-V2&Gsu!$%C;lHg8j33cZmz6H8cS4IX`aW9+nKIbnit@1r!sGI z646R_DP=JV=6*qU8Lc)$Z>KjA$HM*xO*~wPdcFbv_nmusOrW_LVj0wG34@8Zs>9WE zIDcn88E@`vb(eeOLDNd-zavG3Jo&cX!d}#)=_*goL#C9>e?=+^9cKBuE``d2QC26q~~< zR?U4v)lOJ-7gn!?`VoZduZZ z2OBbdjd#|FbIf90`Df&)!g_n<%=42s#`3C}uGZT}C@D>%7dLaicqZIElstFuMdFTU z57zx_^?W%W&fdOp?d|y-mWAJ&ERP28%c$BPj_$CtFh6gT@W)6;%i}4QfBZDyfz{%9 z+l8SIu1%&@e>ANZ72{fW!qo|9CYHdFAT9yp@64;=7|x4b@?`B^cO(fQLzLbjH+V_3 zrhX6pGv#bgJ7%j9HqkXS(73oUP%!Si8r5^Yb@NXqQcM_K zh&Z>}m6OKEkY-enHFiOq#Cm=_TrS}>=#63GpLb*S08oq;5WI4%P#fIWSoeqXgMTo%Pb`g3J;6BHL0SkHmxC6!#NZ>n~y!0ML zl@}DGMvvKFy>OH z|FT_K$apzL5}eSfaIC^txW|-wfxI;r^88-L3j( z5_?41NFHA#)62ebFkLNBe&<7@4#5CY64g{&2CF9L|0-oUXX*c1+)c*+AcWljyr{gDpQ&7Lvc1 zd&_P^3S$FtqJln?X07to#pH8t@s3#|#s=2-T7j)qCN`?aJ7tX+8(8CO#M*Vy?hWti zX77{XT{U2lX!`xp!IoXL1R!t56E7tiayuY3oy>;Q!~O@8*`?{`o@Sc?DFMmjFFZ{U zw>vV~2L&bYpSK9=B36ogf(zEzXH6SakLP{exm07)$I#PcEzqO|*+{bQ=g~v*?&ln@ z51|51`y#PBEs1f_Av6Azs6FGT-MD(I4--nu;hf(CRkh^h$qh+)kBHF|0izYqDF0Cx zY*sUo2|%GMc}4dB^Y*U2(j>`!-|lNezFW3n0~TaZqGj`pXSlqWf^6^3a5)r*JFA&l z38rB*`gGShr}yd8)zg>fG6q2q0zt1ynV`r8MF@mo2nHb-exVnFVHk$Lnj@<+vLYfQ zBI`^=&w>)U|1Wn|?2Us(wyoc}ptKo`-SM(}hN!t;V(kLl}+EUHVE@S1TOGCMb; z*9QTtKXYd`_bKfhPF60nEeFWFqv$+MR> zI^rO^8}w6s15JF;M<+AL`JFR3@lt~h6S(VHaX%TyPM$35EP%_qmwqd7?QH~uO#2c9qf0m4?h}4 z&CfyE10V2yS52FiX#d)-)I!)`SO-~p+OSV1Idqo4M0z^g;|mH#Fkex8C&k(8~O2)SoR`JK=!U zaHy87@taa%`Ow5FoH8X@a%keanNyI)gh~{<9^FI68_mlccs|0*u~J&C#`v4Co1?sn zgZ)?|ZIlLni?kWt%!#~c(z2WSm{X0Xjqy#Eha7N zW#!zg#bjr*%Y$$)Es(6An-=IL6(l!N=F||bOX<}AW(D$A%UY+7a9Bffhf)0vylrwm z%J(%wb{JiEv(qlU4l@E`vE-8ali|B@ANGecJPQMkzTX?Nq&8jY#WBIKD6+%;G%qVY z>(1AGn&!YVH3?+Iv>>F5vwf+Bu^%s8+|T4wD_k2@KiPK&QIg+_nBeGs=9OYZ!upWY zeqnjDhc9Nap)+LKuX&k6KjI*}+#-`!`{O%?9PF`dkEZHj$#RR%J^PtSKOkWV&Yd4uU{PB{n|7DaCH2>Z9%;!)kqDT3JIY2d@#=~wa2SI7>Pz#rYr!OuV# z{ru)pFXuUi*odwbmb`gn`lGU^nM_!ezbd9|pMUm#br|&+F-OaW)o7zrgvy_GE9Fgp zC+9UZo=ZOMX4p3o34%vTPF`+8I@vc#r$=*Z^d`u9 zfA_uh_QSq=c-U=r9lWIPX&jflkZ5=#t;u-85EJGQ=O2CeTVLqg)JsCF*rp*?{#+6u z%k{`3$Fw`kr`1d3dX;5^EW5=flrKHVzyACJ2jZU};l2w9UcDc_`7r(m5ISeby0S4(a8AO>)9XFAq&pKtR&0f>g`=)sbI&vP8FMIcTyb2!zdR zrflnrv_19EoxXoPY?4&(u1J``{j1rw%4Ez;#C)M~QS)Ff5%)_@rY znJ7!P20SOTqD_;84=%se_s`$|zA=pm=(44K4Ob#yV&pdzu=M#cWlFK+4F%P@Ln)>f zd2y4iZ1^_qNl%oICWowMxAf_^b1y9nsE!RI7dJ}jU5WG zdp=(GLL3?}jit6NJamn8`L#A$!hU##hRtV|yw+Bmw%D>`L{rl3eCc?tMx|RaY+(&f z5h}lHmkXsffhF(S3A+kXafw7cztW#e3exp*Kz>o%23c{9bUeS31@t-UiBYdxP7sP+k*bT`?+pKUiinQcS zeASm#5Q7El2B(l?+3(M%)%tW=zcY{I7fm4@CoG+u=gRUF*V6T~_38VfwY1@&0nE?a zZP|npaIv^k^ zZhy#n+H^bq8SO>eADVTSa&V7~xKUkMdFnQ=R!YV$+U)hb_{kBOIPSzC@= za0!J`#_basi0hhh%qUCa>xF|9rqHK@i!RD}udE&pWQrx#DQQ1)C6%)CsOK35yQy z=%U4&K@i#6{er^7;;z0TEp+#bIB8)Q7zB5+;&AwiHMi)j0Q)W6gfN5j)W5kYDcEn3 zCIlq4hJ$_o_&z_~3hieH^DgHIfSA_YK<;*g&J9{y9mzQYS~Eji%ZG{-xoU#L#79kMU>O+tH8*#Z`XdgP5cR@#hCg$mS z;Jbyfn9014IRGH0RrRpG{s5M^Z14=N`s~0(MTjPBSI?|tVMhl(Y=%HsYyOn3&=l8^ zhR&Zx`z_RjfTY#{Rb6o%IzT1sK4rS`1R1TFKfKX(>t$7O;nJ3;3bNI-(o1Nt8*{s+ zl^wKj2MCO>l>s^?fUE!f^!5k^Wplu+FpI>>utJ=)5>zD_8e%Z+vL@#UXys`VQ82>LJWbYHh*Otl4YZej5SlT}&}m_I z;FD$u45+nyx%6=C$xuVr1%vqpXaZo(#8<+`T2IiSxjvkG9-n1|QU=HR@ zD}8f5H8H13w;NJ@qjhjY8XPoGM~HSzVPbpBh6LtYpa3ufv*)j4250EDf7QYSfHvk{ z$Z&!&!F&TV0W>jB@SgJxD?OR_F$Vy|v{tKdtD15}Tk5YBU>+D;Fd@D7LBPU4_dy|UJU5^!NOi|3zvs$L3z-&F!#`6=8|%Uca(F}8EQ1| z;GxAkVqk96!&ff7A}bFXzL*1_RtU?@;A+b9*x>roa#kd7l07|`77R2O!h;JAn!!yF zm5^yUSZ3C`=8PJXUZoCi&HiFrR2 znC83|@1h;5@}}7vB;HlrG_WZUX0aV*sXGsjvMoHvf>Gr;-pVm4D9KZ`^nB5+9JY@} ze2WTxMsS7tJUY0h{JeyX=+Eo@+42)QBamJ_0T&><=#FZa8bHB(1G}ttI}ip z;$+^B=m3CKZw_?ul%k-B9q5XWCa{pEn-fd0D7ERa6U)&-lb5Q~y$~z%^zab7`t+Q; zP%I%(H+R(FQIN9M3ia3>HR7ci?1Fk-fo>o1ha zrCE<1(;U%yuKNK1G3}}svi0DqZ|y-*;ksS*igG=;>RstN22^O*%@qVn%UPR>T|uCW zMzTuzx*1}Wj?-CrY>0gUdk!&TVA`5}Yb{}q?OQz!duHV#cAIn%k<+*alP3Fq8XN}% zjH#Ies3E7Uu{q!?*>hYGqs^;m*@JmqF+1`KHM==^QRM8glNVRdKG9M^yE%MSiuTyy z%aODrDAlx^>xD^6PO~<4y-p+!B+|82{sy=6F8hdg=-86DlQ@Pg{ zUtm?(GWVd1FH}eEA`qcFrn8+YQs5q(Dz?HM3r8jHcB>N__uy7%irf*BsNC&*VDfX8 z(82k@95wQRJzIKVGtf!4K}WgRK!bH3H@R=-Y!Y-Z$k?1s=9`q0Sj3#_YI^tB0oWJ3 z=iEgM46C__s3q^QiwIBiURbH<-655#_h?dE_FhP-?%g95!uN1eQ~5rT66w23%C+zD zq?Y)dkWT7%r(ME8=27r;A_g$Xe0uc9Lh_8T2mpAcsB0H9L8Evc!3pQ1`+ z@J>vn4n8`jwh+FMQYE}iT1nx9NgXXbk}@&8xy&t6b(R6K%iQ9lk*`IV-_F^jSZBo1 z@wFB4CB9S=&$nh^lqmPB*Q)Y>t(nS!64~mR(iPaSqn4Xa1%qJ+2MyQ}LeGJzP>P;B zAP1y<7geaqt*~lh^3br_T5?&OX#&f;F7{lSj?)x~4lCGig*72y0ytq!lXiw09oFPv z2J4)#RvPl)uo@C_TC+?+ZYMw`AP*;1&+a%Wk&p8^A$bf%+ca4N=7hBeKLrp26V~Ca zrQ^}OmU5gGiVMfhOsI9^v6*1W#wjaPjq?qR>9I;Q9WXVp z2r9Vd=ga(|T5lb2zO1SWWgQ>C#E?PSq|8)1B?%wqT@BcxnHU>$JD2s7?e z5_vV>;htU{A`aL+4wg{T3`0Q#-*` zwA9hTHKo*3zCw|NlA2%j&7K4mW-X)+xawPV(h75d!9;elLaL~vvqBe9vtm&VwL>Z; z)X}86f|`+10kzf7*81tte%6vtPn=vmZOsiJN7(L0=-dE|yE&SiV{TeALwKfAPKVA6 zvx62W(@k5WRwbJb9kmSA^i<_cG;P+n&`ihHcw^gzDyGdER|M0sHE!yqNhpO}+FA>s zl$kZ6(6s=1@Do&OrLEwiMww2rLxXE8rKjK`1h##v53P05p?#<&lb%4iO4^DkYJP7P zQ(JjFp&|sv)Pz-Z$Ds)TI^Oj88#i6^Go|ylhI>VH96H>anqv~z@fvRotJU*YisR6p z-w+%VN~$-urqq+hmu70{l)AWZtG_%|62QvVtORDgYiPD+2QA#R*HU1u9H@lGp*dja zjHeu6GGlA>mn!4X(O(xCQ^M)U%?_eCZwn4$(VZH;BrrL824RM~1)v=Fw& zRXC4@xQ$}b0D&(NEaX_pjmIf&)QZ|J(F)e3PsL8jQDAqL|vYjWNil+w{MBMi;c zWW9wromyKxJgP`(AVYh2Tgy7-2tr^$tqEzZWDT8=T0&L|N_DI@Cj5d`d@v@M_iMgS z0PSdQgoZU5Q}p)jMmWrl+J zMusMUcGXMWYH-!-mp8L`64k05O(|Lp#?&>d6q8C;P0UKM8jEQNRtYB4t6IyXA|++{ z8M;g=F8my=#Hw~=rB*dKvbt22MwTj7>&>z(XkD#pscO(>8TVksl|NLPzr#BUMd{=u zns@Nf;vF%tyQ+tPTrfqj8Z-nj2R^NkteU~qG^??}^+l_!NZv$sdN578X)c5Z7aTN$ zn;)AqnuF|pw%@&Ax zKNXmo)y9-^)?iFq&x!@1f>!=|Q=0mar)ouO!0Sz#k49W8O{)`JA!>~duBmD*VI#8E zdXum`MP;P43k%vL)cmx9Op&lNGe=@nl~VTDk=WO^<^m!H@|vA*I_jv@t+Aaiy71$S zPnF3|y&aEb69U(uZO+Mh1C&Ty`3=IP1xq<8O^1LRgl$hgyTrous83{bG`dRW8gwE{ z?Kha2(A6ZZm9DX*p42rLhHG8Tz8EBiT_At1G=YWU z)ts4uMJaiWotcden!Hr>>V;TQy@rR_mA&TNg<=WaE5AXQ^f>S+sOW0pYrqY{x|e3K z3l1i=mmX648lE1u_;rdkRlj<$QvMnaYwKSpSSo-u``=mt8{7YS64;E&HL&LV0kVZ{ zl*G;-z`CEW$vx(&IgNyeDjjU>G%|Z=vN9#CIi^)o*w``6(Zc4sXJS~p>V+CMxawP* zI8+a7SG^*L4X%1u5sLv8l2~&Efr?eureaqR=%SIVQWa~47!|2>RvsH-Ul*H0j2PG( zn0;%ljE(JEJ!x!a<=R*?vZzbFU1WWAY^FsFjI7P8=wo9u!57FPuX`^qnH4D#+1M$8 ztC5{(?R$ACY?7(cOo$y69GNVFQk|?h3!n6 zY3HW!nlpq-E*qN+j$Sq=0~5@eGX$xajh!LblGy?|o%T7Q6i0p0p=_P=G1;t*DRr~K zn6_{hgGrUMc8v?^Y;cX6+F67o;@SF*`RO4`Jsb4Kyy~dY^mYBL8R&G9O?%kbK!bH3 zH@V08fSI%DjGIBm=4>+Gq@2#r&1nlNSZO$8JAYqCo3jNmFs$YTwpP-{PGCJLZDFNa zT89)SFf0S2Nx^<21(=-HBNckua8grHTVhHTwJs@_)W(xqnp#3SiE5p8RjX>F+m$D) zEwo%$>qHhNUpLKGu;0qogfOEAklNbl9I(Z;Q&fq%)`_W<*G7}t`r1ND1-3S6rLYYq zbtJY($~3m-600a+S+2$|v5JpIzE(0@C%#f=8y#O;Xj|e-mA2w4lJlnA2@7X3yG!@H zTCo5}Tt%We(ITupSGomp#6g~|6~Ynw8PY)mc!a<{%!VCxxpdMM3_Cbzz>W|IE0VVq zT+s$cB(JdVq6%fO6;@3c92!^5CZcVqn5L zytNECn%7hT(?W3(u$c+91~@hoObIYyWeQ-i^HLtG1i%qHFU-1|0ZjfYR3(#@r*89V zrKn*dR3)kxpPAxd=9=-9%H`Pj8p7qNP*k@pj%nFLwQM=!n6`G|N463z+hG-&<>0XD zl4VjHqF5Fe@sfwAI+*sf5f}05ZW`gGK$yAKBmrf@6g+g2;E0t=;Sd60tpOsPGgVUM z&;bHHxDm#O$_z|g7%`Pg=#(QajG)GSN}^I0#|p)UR0Gp2h&WcT9J$~U3bR6N*-y4B zg>uA}JvZ+IGkvm!S<90{F->)HDF_!QTYWCWXaZC5$s7-a_C%fwBLfInq()q$|Nj0xV9p>JCg{G)f3T+KgH@Po(f&iJbo2Y|(ta@waKWUF?riRY^ ziwl>wJk^|}WQ8*8146SkJ80piEujKy=NV=*tOa0%%7wNxNyqM`P;Za*Ao+*36#b((-UjRaq_o zFq(Els&(bT4at<16I8A$w=)#xv$w2zFz@$GeFDIkI+!5mzF~$Mf^r&9q9?a8rJOuC zLk%@K!K7kx6SLBi$6{Ji@(GhE$*o0d5qYzU4_%}d7k-XbGIBezQbisdSwlolB1<*o z^{ORH%~vZp<5EQAL93S9ixJ=Y!O|7fyTRq*T1OtV8_Yeln7NYN;T=`nwD*eU9Xzyn zM-1$0>)|VxUQv?=4PVTGPb>7~W^gq@d2DcfML8>yH_4tJObZ5@3*o^92hHFn2+Ra8 zxM^*{Xv2e>Jj}tJ72HZ$9vxgqT3%|HY0I5vR*B2wVa=mL0!!rO^+=4*p|G1KZqP_9 zTr_e4K`?ne31tvAG zHM?ksio0p{25EK`Hw|nGgjsAyS<20WqipNVv0zkiF5dZsStog_R-8w?^Qrh~#JAF% zJHZvA^XTB3s`C;yB0I15XUkJm=1p@rXn$7o(+V<0!Yno?5~%v7?6DIGUwfVlh#1Ig zjveWYuTr1KjveU2k25}1=4$mx2$oF<(1UiEC+iJRB0(1yWlt?w%DrhiL|l|@dh*#N z7N$onMaa>(%|+RSKB>$b%uI-GlGaM}AkjpQgeOI(kCgm1`(oIS;9~UHzBrlpBRT+J z)tdtyJf-N-V+Xq8qX{e&>E^@|EJ{gw?8I_((B!3}bT7n;Dm^^Jt}H$0E)+}X(#;(; zcobBwwJ<$)M~!%C2D{*3QhVtkwdvvMVT;qJSW|Vn2P@_2;jp$oeS)O|b+iAi73#75 zuP0H@s9d9N&L1FK*gj9}`~j@{`I_8go|@B0c&O5;$4(=&hbAjis+(h4B~_0d(;TgO zu6rg{x2s;L)q|_PwFgD@>UPyDg7x64cNOaxP$5}2R}iQuXKgBW1%WOa$tqRrW{6QS zPG{w@A@+6aImC#8y@A=c*2?wRzSWbiXI8FVw@EAUdN8S@UPn?UUpI3ArQ^5D0bjtL zX%Pc+z~)sX?6EoPYuJ%jh}g}^i=twWoxHd*_KBA2*v;Xq60*k*U)Gi0(>j<*+0FIB zBq66+8@pa8KK#zMJl3AeWVJaPA7V2%duS4;J*L8ICPSrYk4*+g(w?)HY1+-Xj1;xU z&Sh*>dx4yeRh>|ZGu7x&whmO8vfVs6p`vq^rm-g{)J-E-HF0}=-vw5Mt!@vx??QFd zE`p+Ow^Kz5+=ElaR=8u~sKniFbwcAF-0Dn`J3ppIBk8?6JXOp0VLB{56GT)?}#3JU@5vArdoUsG2FL=+nix?PIa}iNX z-eVULp60!6(aa>(*9MGl*r&6QmKQFCbfm| zrT(cB-X^W2@WG^x79L5N7~Wjw7O6VR)!1cj@zKbFN)PYER|?{z<7+G8OMIy${uj@i z9msOd$Mxyl-EGc~r}gpa?g!oD`m%f7efVy(?|$`k>Q8rXc9*9W1Z30QuQ&YNlYjbj zxg5{G^4@#fesjJX4fdzU^k3f_{@Z(}?x8z%hfVk1V|VCIYk1Fg{L2i-PnYMtJZ79r ziL(fKeb(ulxIA8QqUMqET$xqMowMoLTJ#^Xb0!=#fVt$~h8?B$bZQw4J2+^-ju4m< zvWa5B6}f*%6Xo_@R3Y}a!m4TgL&NGx{dsYw^@S7Gv|6Gm5FJ*q-wJC&zyxr@n$}bd zH9D-x!3@?pVXY+o!C^HO{!<1pfxn#qmA*fm)HqtDq(t2>m%`;S)YQ{t4Vkh_4}J5Cn7L+rrJ6rBzLuE36pCv3rF4NlR7?3oqzjb`KeCmO-wvzL@dt<1 zknvB&Au4`(oH9K`74tN2Lyl8aH;wR8Ak18Al7P~A3LZL1@C5u=ID|l0Yk(-Kc}g2P zK%fUV!uU{`fyw)8O1Xq~Kji)zV%(=B%6)lwf;OZ=p2jug@WgQBf=ejO3VAS5Y~SYc zcxK)QW}1BqvzF|KoSz`3t=MNzl$^EtTu>r&y?$t)o2`ggwd?Qf<3AiFhb1jACYA3A9q?YF3@VBd+dqSud(vLn~W#DyXWwZ63t22X<0 zw-)P%+#*kK&`B%I_*`jqPF6^zesoq?LVZ#!s?&E!rA$AX)KcjaQYzB7I^0^LAKKyC z5`E<43Vmym06D_8XhJ6mVBF2o*0>_dkF9Y>lV3t9B>C2&0Oj(m5rr-a(1V|#Qjc#17j^J- zt{oa&PmPbkMF?#BRv%hx@k9GiTZ)gMT#0XDRzmz(OjCznFqsVBs(O^a->m9A5k8_K z1XjHXt4Q!e^VCz|7g!;{w`L`Z{yub8;>hm_DplWG15_ox4;`RP?R}wyYv#*{Z_WHC zxjW6&(3yX6;dZL!se)`}YZk?`K_E0+vx63H+8ZjcRt{8}`_LRPCHI&EOmS~bQl#KM zbdqA}?I*(Nc+(D|INJ;kV&hsTq2vLB06-sR`}n^)#gpY@L0`^)$Ml zCcmPxH#0|-;;(%6@RQHj0T%!I-|wwW0M`$96@za1kT6$Y6 z#7Qebu|q=)#$DFr9A{cqo+c3mBMi;cWW9wr=`*bH73J(SkfGzNC#uJMMFBBK~Aw9*Mbo6#Z zs%7-S4aru~PpDi(Z^snov#e_hjwzV;`zEHKcQA#3J{r@|&y#o(`MixO)$_ramUw=` zq}q8Cvy#roVw%eNg2{yQ)*`iN+F5>vE>epNKSwLoyd7C7nh%bwrJ0{1OC|I5swFGy zZ+eUT3GWsqUX1uEI5_mzyTRq*T2LOe8_Yeln7O3f;T`4NbYd0FJ9udEju;roHxEt;Pj6munc%#h>E!1s#d*+7hnV+MfoaZb@h;k-DsP&- zLE>G-O#_<(VHVp_mb&xcDBHqwEErXu%U4{>Om9;Z-!#M_uejDe8u2YCGlDDB=h4A6 z<>w{1M1NlI&z7gC-kSzEXn$7o(+V<0!a$o736y_R_SlJpFG9}+L=5CL$Bv@^rogdd z2fFa%j8B!hTD`-JWfMyDpdIGPdIOYb(d8}jr3FjfH;rz{E%KHppIu^Mdel;c9E}^@ zB0tfax5)EHN>-SpwIn@AG?63WY0~K9KurGVf=>0Dx6*4s`I8B214R z=!%afaN`#Fk}Y6SO44H|mZO6vFBPSGAy!oB;URWq={a|ySVEU>?x?||pmME+=|MVx z2?)J3gN+ZCwr8$8fL&_S!_&hSr%y$r>U0lQ%G1MPZGHL#O9kp?|6426WBXrEqMlK? zM%|o0K(?@bp4j;VSoiZaxyR1eoJPV!l}{p%(;iddHIt!Iw8ticBWcgcz%=dVTt!#hGe!C|d`rOxbRpoKVp@OViks6Y8dstD3mIzW4&G!dABjU3{TBY8OG#x7(>A z1@6JAVk_LSa8%-Mw>qJ54{mj)$Q>bx%H7Tft|_NuMQ}baM~!@7&z4@;40MuhQ1aM7 zgLNM_xyLz~nX^gI!60LEHkofyPGS*r>WETv8qU}O*cZI#+(irwtGS4%CGW9|2v74~ zSgGjUA(g84Xi{7DUP!6#-6Ivk_i$2E`96^n>AOqHweRtymiV2JPU?53UDfjU=yv7l z-wQ1lz&nwJ2{7xgq9Y6T8yyzYzBu zO<;M`V$Y@NI8A}*u!8+oSQ7#!fD_gVNDKZuufs+^A{3U6d2RM2Fzb-4?Zqp zU~nDYTIL+hYpI-Bp}5G|Oxs%H9GkY5#F?@(g)?7lPmfgs=YYjFx9(;DlQ)};Nu5hG zHI@;q`;5swW+*=kB_%C_TnZX+7OJ>t(vJ6IBeES$BR z3{oy31`fCogBkZJi4>S`5>7U11#Q44p)l`4jsRHi7G^D<4aKz7vr|Dv0K~MqE70$8 z?QCdwm8`q59NZ(LH44B(if}e`6euoQv_dv(O;y02RLzD?RYv7PzsQ+A31YiiFB@=?v+AT3<^qF>>|})$%SLB~u9aoQqEcChR4QeoNp+zt zBc(c7tDmi9vZ4K~rIMXExk%QUvuOI$&^e1OKb=q!0`t@w6e{s)=%8R|PYGr>V`l)Q zpOv6DHlU`claLBcr!@&gz2)sDf#|{QtMH*R3AC~mg_Jj&VcT-fDYyuM*=qFwwU{%s z2e7o96DXH*S}{do;>}`e%OfXLgus}Zu!=Y`v~}6qNCGRQk=9_PC?i7$D^nQBP^m7` z>R2mTWN61~s3Hj^6-8PT!byloGc|NVSX{WhRe7q}U1hl<>s>>$H9KhGLZl}-q?H4e z8ZtBo3^C-C1568PZ30LsWauVGlj8cFX%c$$`NEoU7 z&a7ymzKgABReVPXiT2I{Oov3Y9|{Eo<8G5q&T*u)YB`-AF~ZPVPS#t9)4`NAnxjyR z1~RmNwB>43Z6gE*)SAxKVztoeoTXKxpj4`6V@jo3Fs3e4qnK2u=3ok$S~RArQe&7z zq~>9AjaoRSCQ;*XdQX?9HEH>_(4jwzV;`zEGMb1;Q8EgDl* zrm=VuVVaF8b!owvx-5-iQdOFXS&7nOF%3-`!DNy&YmrgZVk|#H7a7HcpQDu?&5o>; zqXkD+SEJF$QZZV+)s!`Bt5vN=3p#J)9*ns1hsylP;T^SLbaE2SJ9udEju<#SsfU1E zFh!FVGz2gQKCMutnZea$X|cieb!n_f-b8hJFipB?E`$dc95jQQATSfW;HLRGqYV#k z@-PQ?3U1x!VsKFyM#CG_=L#1MVg$hud&sp!Egad?s7(dqA~m~zs8wpgDeTGA3NF*B z)ni(It`e#RjcLTZp9)N>W@AdNS}>+9R>Oi&wHnvirvaKgHLApD3k%TMYd#urEy_7; zV@_~|Vl6tjrev*zjcC^RRhF#aR3k8MrIxP6cE0Gsk25}1hU9uP4$CIgYeAcFll2BD(XZ8~RoO}{U<*2}qV|1GE@3lC zYYkg0sV8E~h2bhTvkwFD5SOvV_F>7qAJG8-Ta-CKz*CBnEp~t?KAONn%Vy4Kz@ikh z#m;C(2TfioXY)d==-I+U>K95w#D|pp13Wea&?i~e5c32gWTX0xil^enenVUIdECMr{2eC6obkRrz|LQ{0 zC!)%X632$v*Sh5pBL=2~*(cO$x7a?xle=YBu6Hw&7qw=$i>$AB%e07rk+pdh&0B0H z_@X!D6{xRApI*SM*NLr5ZsGa1v-6z!a18Ns^W$dh{< zO3ms{hgJ+Swz`w~CgpS>X7-yXNu%M69r1l(T&{M+z_6Ngzgij>JNNUnafOwN;~Y|{ zj*BL><#C0S>f=08A&?6vH5GCbDUryzq+BBxPil$e22H`s>XUApJhiUm00 zy>iWo7GdqVGT#zg0p!_Q@)xlcARRP-`A5xd*imRlCtbm?gM$X_2!T^BF_e{puTiN) zX(NWR%7cqrFf#A;XaCS4t`$?!#HL`17K`hpME5`*9F$5lz7gGnu-}NTCzdLfHv4YP z=U)-48gAa@904$8#R74%BehZy3q)q!hjf%u%*r^>u#PrjBvX7ec{2(|Rvd3Ii?zHf z;&`KW(PVaSBO~^NwktRpbZHlNk6{(Jk&%a}ii&mw5x0@)ZW`gGK!|U3xM|DtCKr4a za`fOr<3nY#Al|5)tO$kp=Ll~(#TLl z0}94n%H$j~)EW`s87__r?F5qb7UIW+(dt{lilU4P?OThB7Ol`lSu+=~CuLEgGndhR z3zmwaoZu>&sOaF@lBm)>K#_zZ%36!TlSP3z+ zrdlY6R7#Xb)?ONeC#_ zlGvD1N)n7|C`kw=6_PlZLPrvfsmn+xCQ*@im^VDcxb&N|sv%*RlZ3=>NVS3_v|GCL zrhtT?a{Y)MQ|Llj4;ozcVBYPTpfCW?Ztq*69f`)&r6V++L^)zdQwm3dF%8`a!KAVg z6SGo{#9~^akqMJ&My!cck#n&844p_77k-Ym1S6$j*W-45=@@V5EOoT+!e#_)QPzC= z^?HBp_{LNy>1f|2%?L;;UND82W(CY@1)H5|;U%;!5igjkUJPml2ifaQi}G+SZwcD8 z;2v7cT;SsHj^YwJ3ykI+JhXU642*BxMdZ>KbqNIy>LP>-pSXa`L9SIU;mDrMWhxlg zxzsb7@?<4+37XL`2dxM*sY~6lWm~n@C8%Sg_I*^YcBzM9v?S#&LBlXH-{7Qzm-;x1 z*ijTOLC0B@lQy!@ywtlI#AYpe3EI_=KHAt^_TprP(7i-wg(-X~MY8WSn#RjbPn9OL z`;EBM$net&GDT{3#A)-WQoqD@#OT83#;3|Ms6JH6RkIZWn4m+Y$$A5nNMOt%xrk3_ zPQ->4UHG*4R6DFNzhrav*sy|iA2hkgY&E+Dc!(=uV!MT8zDYT0Vaz@k>?mTG*gm)T zXaWm4j5)ypi&760JHZ(pGJX(Y(v}cH2#St&f zU>6*0dtQ1-VN7^>*vgnG)>Inf!AfmRIIJy>nP90p#+J*v}v6J<|zMlyr0_K3( z|5gf_*#6g%$mEbRjf}Z~M|}znY3u?%d+>vb7|pO&I+@t8IzpKoR;HA(!>UMSg2U=+ zWe`?~Wz0z!YFXH{CUz2rE*gm-^)hCNQLA#h%=HyBImC#8nQP9)lWc{u#!ec+x*yo& z9vRJ;W>pL0j7{6@p~;$h*}`iM2eoo0b~x~)Gr9h`cE*e>>Q-n5#6~uI@FR;Dm^|_?Rh;( zO<|>)8i!PhYNAPPRZStKvKo(6=xV}AO<~PMN|ZG&DVNs7lUmvuLOO|S%)Tm%Uv4;~ z@#Qszmg{Sr$U@i3Xrm(w_Wgd9OKdz+p|J@kHAOa4REf&QA(b+lXi{5eQ%I@M#wM+l zHo>Hh)CNhJ*2bK26(tPI)!0qN;-itTmE6Xh)hc?M*jcSBxXBR~iW?JFk=(?>x|*8| zD?~SZG7C9<`}<^6CrU=B&y|T6k1~C>7Tg3xxpL3|=5iYwc9gl$Nn$YU;Gh9JLf{mU z54}^ti^7G{225#d4=!%On891?Y@&HBnGGuxSK08vf<9P@Yyt)gX}=L$Cb8iQu*uR! z>Q(|4VBES(Ik?B#=R2U>O0E3}*a1~sG-1PRty0QRIFA#^Ml?YCg58o>#!B1VV~uBkDg;(6Dnf8br3N9IRF@zy zQmR1U3t#!z>s|LIdf}`2Xr%%W4=C8BSqld|UZ?3Bx^T!2Twa7gSZj=^j`%~z2;+o* ziatBwHv_7i@5ctzJl-dy;&k7d#o)<1%h=Fa40`bEUmopS!Nnu>n`Ntgus;PCAuwCH z&}VwCK7tNVqzLnFSos086;nL;y;)4N0~Zw`Fs9aUFrE#wbPXL2M*A&Pdh~2fXW*dn z)^o+;!sRVbm05w63HfZ5MK`qT$_`q%X;D*Ptp$xdx(!{>=qI;R+oK1!Ry6Uz^k(hK zKDM1e5dzzl)mPPrwxNBMb!JOJ>5;9CDNk&JG4%smib>CF9ZYdt8;z-+)-p_TSnFZ( zv)XV>?WmSxPA9c?L%PW|2o%G*2BCVUbW3(jq4#1vXmCuyyxV{BGg=2z9MMK&swcE8 zp5%bm#)MzoGMZq%5zPe9>^-Z)+1O|rXR{=l>}b}Sl9W?Z7SYfhmg2&XYIQElU-n1^ z%cqPtd}UwvVt^|+m=*QnsytkuAO3+7o&q~9x#@$krT$B zId69GgY$8HI(K)h;Pga~b`k+EmRo*WL8eHU#byszj`t{hY9E z!_&h)dz@lT4<9{PdHNU*Yac&Ou=M<~K8$A1RR@qkhtZXjW=_Z>NORqR$A2`HW7i$o zgO7|Dn8N1pQ5{3Z4j;}rWUd5u5NU^1If)Dot9ulQu;MJzob2FH;VpJ2kR=~9HWEP| zN17qVqrlr`u74nzi-j1Nx%KH;ey~203_3ld_Wj`ULrF8Tcp!MY$Yu{dEn;9~&5>d} zIAp0CJ5r1enzZz2(wy~7M}joGv9q4y!$&TUm6e5=68ZFy#W=P<%O0AlJiQJlpk2elUgU1gmgNxblO#YW*ObCyhF=EJ7UaeSJ0=i zo;5nMVBhao`N5@=1M&j*a8mQ=a*8TByL3olF@4jRg8f!Z6GFT8tMkj?m^ufT7*lqF zY0g~A`67#J?98S3XvDTU#Jm$5(TDZ^@$S2)<9hSzS5K$@boXX=d0K(_O?MCf#)|Mi zKV2@z^RK-3-WEO{kqz~y$Mj#{8_d3U>K?jNci43AJ$8rg1h>O)$G=QF-<89s%ky6D zB2^CwD$JH&v`h1Y{=@$8x;p{Lrt?bmPlHRv9XCqHA2v$)UudQLWOsnCoPT;uQHE+; ztv2iZUfdb~$6-Y?ys6nYRG#sJ($4?(tTNSSy?=DOBH72jdWrZ6@SFmzw?FQ82Y&nN z%?gyA&8{MZ!?yJ|XVj29NcsI+)ebnCU62HYh4{~B6asp8_#f8O{o`AeWArtiaA zrFq?LzOmAPua}f2p{=?nD2ewStysUgzMOV%KU*JO{loR?usb|@bA~?+D_-r^oH5jo8uJA? zGaZJn&#y35_~b`-=YId1f3qiKW?K8OD~O|D>)~sZ^AU0pDg-7rwLmRk<}d9lwDOUX zKPG8CU5O>NW+;S|PfGY!aCxj~!RVG+z*cbOz>8{uzyz>iYdKmltR+UH1>#aPe(*+~ ztAuC)2XDf>A60g#1%ET8*r}9f{qhct8TSyG>WuGBF&nk!EMRx4_RvD*dNVViLTwfs zP*rP2ib9lTd?`(yp`tF@?gIoFx)(pN6sOSx6k!*|j_d)@fk%wblu_WXu~|e3fm{+j z2evGI6~tU)D2+S?y$n~CMdoQT?uBr0j(|qPhi4Q$S!Ba69vY}ZOJ;QVU`;B?B0K!i ze1nv#$n3Bx8nWQ9nhLU#p->#5ALDaX`e2c3(N-TYSJiwp0$flqdF^D7y0PG7&{bo! zNK`XsV@kzXFs7~-qnK1JX3VEi>qP56az35ydv%WpSno!!T8XV9dsRbfRf5TcR#qq# znN?^gO_9}vDI`|LY#-Jym)&vyj_oEyj`irkt#*XKdN;y~nx5^%7`ZFm~Iu#Y~SNV1dOK9fsQ&SmZFgz=xDydNkvq~pg-xBXh;#`@u5%nAS-0;my83^HaQqYb4b{gLs6%A%5D) z8Ek#j?bp}C`kfW#g*!Qx4-HvELF#FS&n?ygUO2;7%)6{SxFU;7i5_-`?drUHKJL4> z;aRMDaiJLwhIo1zkjG%Zd$?!~aN)~sxO8w4!RE5-4?_ce!oTpo@SiU`yqN7&E88qs zEa;^3a(vcpdZEs% zgq1Pvl2W^0Ub_?D)?2tsS{ZjxN9PDA8g?$u@XYEy$!LdZL3qP9{Isws5|%*E5K@8* zWDF}nV1@`c^Y{lK#Gl@;ttxSKT<=73FT6~|aM8pbK@fQoVN-kKg)U_*$Txzq!2fYT zADS~q_vREt|3R5w{w+Q{{QW1G7B}Al_$r`0#1ogh4Y4JEH56`>baeQ^XE2hj50Crq z4i0Rl%BWlM9|f>`&a|rVo-Z{qy_Vq>=!E5D3HE2VD^zj#f`XObl)~AywL5%+wN*K5 z6smf@6v(bE`kN^bbV(dsTdKns6l{XTj&9l-6RCJU?sr@!zi?|zv+tvi2uLcH$Dd*A zxO?62ug`q=i&!2@2R>_tKvqUPE0mD|F34aTmVeC8mT*sMh=4;{hg48+gT=PnII4ge`|Ni^Uy6EFJg4D9L+7v z0ELAR+sc~l^Qyb6T^uI86y0K=lp%CS>Fyk<;0=-cJk z=xly*G8`7DJtKhk**36lKfwQEiFTtI0dY68P~;aS<$kU?BiO(;1nfpUp86|qKtH`r z1ET)s7K|cdg^7)NrBiq~_0LML9kEgGdYf4)f`?^lC*klTrSHB`5)yYWDV6BI+r#VV zNA%z~8eY-YiwZ<~@pjiYc&PgE8+Cof*-Og9`tq4sr}XBx%(@r#=R*)gkKWF@9Y`=Q zy9+<9zERepubH)kkC%>IoCGT!(C+Y>jY|sI9$Jk2e~h=t{tZqOUH+UlDA91i9Voqh$}pWkG%COpn7m-tc1H*=@pb68g& z^3?&7*}$vF^q z%r1VpFNDTC9v|Jb@$tzLecXOl!vZSP?y&7P{qwOu@6yQ!OP)pB&odpii=;qe-QYA# z^>qZ*%kC`8v}hXU`)L3@|6iNVrG9bWzW z(fYEU(UJb);*L~zS@op)V@6ksFI)^|`u^_H9KlbEi&4B(<{2t;Fk_& zi$-bRYgL%Je3)JTHO(#%4xQn0hSg@jKA*eu-S>8f{`rgUeEDqn_q*e%KZ4c>n)Yh5 zV{PRBTwFgd@?E!|7yZ0+(zrezf-FryUgUBg_WK7`+(ql-8P3|}6L46aGYfRw!!5pa z=)7ftlCzf-Xn?~4{kL9ze!AVBKTE=aTu-nS|B$wDHr)zdJnT-d*ZlVV|2sTOXArcD zKEp`KSiF;6O`;z{=XCB5pXG2^Vv4^E4}$;4Bpqi>|S@D?ar@e4p#qP zc)iYpXoq2*ol^H~{w&k`i_0{ZUoXcz;>FDh5gpqj;s6QNt_K zY%E$NUYY0brRAif(Cm`cL(pwYHgo);3CIT@cRuyS^;P%om*iYZEpF}-FMa~ zM-7Jsva6wkg*oUg`H4wzHK30MK0a1@KRhq3D>iK@Jf^R%t?qk%9n7Nh(uSi3KZnB5 zqX?&Ad-eX7rP3l1PTSW@ijvTG; zvD!&S;-P_^F_72pk)GG5#~plShs8U%M?xPB zW_+wf886YQ6HdLJZ~`tO=kU+*5a6r#rN68C>+y0LI4(wcQTSoBnb+Ya?!O zJ7kU;{Os8|g@6w}+=HI%&2D>nV)2hI1a;IZ1bwy?!XC5EJNT#;d_C=;RYvfbC4IGu zBGIrluoKQNpEq}K;noGN1AADXFDrQG@y+_g$KFL3BMx1I;iWEt@nES5)~%C=hd}^t zHe-3Tyjxd1xXc9uW6jR;i8Vz?x%@1@vhT7A(Io52sih8X&t_p=-jz%9KIZ^{0c8`e zWaksuygYpT4!&`>x!!kn5-*={HN5GC@bIuqs8=mbMf|8_72U;Iq*rZunpKv9h2>z< z8zovw(l3|Zn0{uJK{Ns;?9wb(jbXX4%W^Z1pEZuE0)8`n&jN%JpiKSyzxm0k zqZdGZwDj-z=1ED=;qhUQ;nMv8-p4l!vgpl|S?-+jSb*3v@IBAs=ZF3749DRg!I_KQ zWi5Kov*}7NjtPcEVYAYdyX+S`xI+(LVUbfSFK~Ek^j!(#g~l#=%kG<`d7Bft!!4E>+)5u>SG2r>sG6jhraYz53neA zrW-LSuRGHD^=C`ZTIJ02e914G@G&`4J88ie7)*A&YO5ssWK&7?MOST^E?Uqc&8t-k zL9UWKW|bm5G=W)ySGnZFaFVKBaU!JSA3*jEz^*e?S! zVX*F^+AZz$dIg8wFhRfe*R%e*+w$P*PHJNPxzf_uMh1U&BX-l5Z)8;VTet}U(}2w} zxFvYG8)V}A#iHeN4An=A7*UX#jdH@`TX?6CZ^0}d8mG2Ml7GxD;{RVm}CW;8gpyaJrv8Q#TW^(`$Zq8choJTh*Tskd&>JdFLX!+U09yX}-ltI$38> zfIB6`_XVQ|g~3A;cEG@}I*sal;fMaw2>|xntdp?LS;d{N$MmW%>tCZ+aoI$BILk=0fDi5gPbhaf%ptcZbWAg2VAwR+PbWJ(|$G-&yTg9)oFeq&*srEe)vhQP?0 z4Xms*X)44vFm&NZ7oTc3FuCB3ZD7`Nw?sC%$FQ0?pe%J`bHG{X7E-ay^7fP8m#20n$m8(fOt4PFr{d7VaHeL2!Gt|U4xMQ}ELStyjv7G*bOP1R z4P`GNI5(Wl01``n3~u*rWfe~29o)B}k4C8Ru^D}v+z|-QXlqMgiZ9(0usaH6Qy@4Q zoLzwlR%{Enyz+1>p4U3wV!ZT#ORf#sgJOOgvNjYB8fgpBC7T0s8)LFn?GA*@bGiKn zD%&5h(?HoE2u=fMhkzD{Z4o%U^&UYquf0h?c=;}Yoe9-8L2xFR`vem!+bFPS4zf20 z?q}Ow0qqAIOtD!IjcM!_OyQ*41vaMKF9^o8HVh_Ax?>=hWYbfkOAT3)QR|IPigc!S z&tLBv1o!;*wgD*$+c&W5U2Yr%*SocIKtZRi1A8T=?Hz<13=xoVU!au%V)wv~tlT~b zj;ytRFcpYyAh2s1hI>7BhsV2*^2zph_q+A^N2kM`>;;xz)8P85W9>d(Cg1EjW&0=a za>FXWHj$bP*D(L(;@!sij$cyF3L4jS?DhW2_pe>y3hgh}_xtWHb@+6}^vCff<=$o# zkN==lUL<)%jH^B7W0qILv4k@k^Pve{uUVCZAuU zkOM0AH7~13S;%joBEMc46DSt(@2btzN`WfnX1jdSI7h9Vx_=o-e-FQ35ojj~qezEmTuP-R9!2Q}~m2-!0rmW!g z>y?$RZRe#i2~^cN-!P4Z+pkwz)39d>Y0 z-}AXz%l=7RVGVaq6&t@OV=()mms_kVBWQ&#|De~4e7~^36*^X`zGV6W*6!z2m)-WG z?f@TLeD_)RV|d*gK4g~G4y&g%f6*au$uz^YQ}!9ZE)}njTAl^jj|Yxg4Yyyj$h0T_ zuG(#ReygOR`TqaLwdt2Ie9b^qMZx@M-{&YT@JB!R(P!WNLGvSv%RjoSdaQ1iR-e*8 zzIgq^f8+S>SJHO}yVK>}pZ@lr{_G#-6S7bGH=lH`yZwjj{eIZ2ddOdcW;<3(PRL9T zw9?FnO1sQk(ba?J-Q!_>xt{oD;*zas+l5O!fnXL{$k%gsT5aLOqb$au$i;<=T%IaX z&gYOxT`}CzfA_tQzJGVVbjQ_Mewum7Iiz8q!Wxeh(j46Bv5!9e;V=Kf&l|8yf@{0b zc`Fdihuq{Qd!Ky%=||r+h?g`u(}NByF_1T3zC2m`blZL2r%R*_<|UUeyIyo|4F}ot zY2ak_v)}l@N{%I`ftCZESU@o-|*pcmnHX1H~d)48WNTOd(!^y&|P5b6^Ku}VXC-0!zb!lfERU6 zh6BcIJX6xZhCM&6k37!7u!DmJ>+W>RD@3rYZydm9(KHZ0Hx{q#1_mNNcQK7?kAFI6E^1aJN?>;KVeLirGg90jnD;qHX z>H_aQ((U`0BSMq(tM1g_l60`|la2^Tif^=xWga&cyVLjcPS@SG<9D_#dZWemp%AMm zNS${$az9l+$`f|U4u|bx7W0(6jX)o+&#Vu)MWDgQ9O#6CfyR$a8C6#|ye0b_R;&jv zbI5rkY_Qi&@fPe>gRF9vH%nA(k8%I4)NA}Ob#lM9-lfSeOO+*)^&IlbffDWNnUW;D zHHzmRftcY2v_{268+ZW0yymS@*sHTTpfzef+R!|sUFxr@p(UPr@X@9oQ83p3KAX>O z;ZsI3gEz~kve~S{h7J)YZ-?Z}AO2cb_>%3A%CZH;D_7yFt2Bzss>mT6y!!qKYsi@{%)DZxy8(#>J zcAnPf)n-o0u2 zYL-W!VQFwhD?Jc zw?-$jXx?G_Frr$aU~qA}pt4x^BTG(bNbEAoVBe?ZJqZd0D^j(sQc=+&q2MfcemPV? ztbo6rM{CuOXtK0Wf3#!-pW&=sBmsv7!gqZuAF@MP^scXF-AATfikbCwpAwt(UZ;{9 z2JcmP=eOzmJTs}AXF%sC%q#H}Pn15I4=G zPn2fPXY-r#lsdxE(JEjz?|X9#q2gg8^VvN2B8E6xqJY`F=c`#Bfrh0K9dW54*(xJC zVrtywrEOAl#KlJ4BqKUvZr+7-J7TcIdO?~A5nYF{Z-6octZ_asPC1nyQ?s6e2h58b z?)-A7fLJU(FBX18^3y^E%!^%T?IH;{ED)a;6Cbi^Mhuu!7JzjhnKn)_U`|%*))|}i z=71>?Fq*O(!5zEX%!|v0ptWk<@F&ax6EW4)r)eBAV0zxvr0{-F$|MI&`XiD1v_v5T zrtPa)9)X65BnM3NAX{a~fJuzIytGYPnO--^kO31B?H0+NC|M!9juQ?;b&Cw?I=Fo! znzIJXVyW3ELk3LOonHk(C5}8X(^IT3q#Zy&VoLi)G#LUWCU54%lC1K8X3nkql(f>#Xx6nJ8%?j; z)n+c*PyZ@6a~aHt_Ct+pv7~=5i7DDod8UqJMEl|9UC0r@$V#x2!z}|Dk(JE40ZH5= zqsYq1N*&9HtQ7WrP99C3mHXZPc3H`cD~#;#MpjPG)R7FxN@3oGK+8E{!pp$Ng*R2gew6q zm0oJ0LdNpZU@j<_34fyqGzNd{}|DqX=?SnzvkCkl24pKe}ADdbow;hl3q7KsX;1U-Mj55y6r8Sr> z@H=G|&CNCIF6ZDL8L^E?EA;|mQ5#duyOewhfn&{JXLah%*ZpO+*{{#%?tJ${SO}l{ z!)Koj|9p3>ubNpj*39==7ibjPVG;Nk>yBScv;0oZxo%%v)(IGkizk6< zfWNqO=S!~9E&r~_qLaWG&e}y2a9ALmD>Qv5DY|H`Fw^173YH+;mZwK?Ol%TtCOIN=T~+Ag2^HjA+22CEd1bPGDneb1Xy2Y2aFH);XYCkuYQ zTdvrhzBEP+vxd3kZn=gZwEzZE&Z6;J;&S6Kxt4gdzrwAvr@N;e?Bky{Pw(#5uvlI{ z@`PG4mo+`ma+nX5I>=48esD8rXIGKlTTn8cVjFJtr;f0)yaodR#B7Y6~PdJ+g}i zG=d-zexBj0QIHA^OJi2X?f~V2u7LCE8Fpna>4J<~RseC+ zvFHQJ@gY5Z)%dx683y8q663 zdClqA^ZM;)X-USCBX&B5E_`Bqs&wlfGOTC=w=?P%12BV&Ch`b^Q8qIg?2SX0ppMOG z;-v{*aF9J;qo~B91HClAmvG57ik5>0@d$yif6E$i;6lz-f1mn}diM2`1sg{-weaNQ zi-${&|D08h;r4Mj+lNl-Vb!0Y`-Ts@vo`wE(9)>>{4%LODJ9FB^>y6R*RoRWz!uyd zlrhKkzPpIcf+d^va~=9+Gaxbj%(ildTH5p7rP#JII%vR;5D06w6%fgoE0x%`B0Tx{ z;^C4}=8y|Ns5TU0hurL;$vt3T-1FIQose(VC%$R3ZfvuXf=I}B4@eQ%z2u*JZ5f~s${Y%pcF$c3{v*z&lnK{!2X zdrz=k**y<00?5w;E}Ff0UKp?UV2NqII5=(BjO-6^_aqDGW=YyHvpU`25JQ=jZxhab z{d~V&e{i@mrX|WZ#kLMMxi;wz*AK?0Za`OT>vZMMr7Ek~9pU>(yEA+q_Xc#uwoX_6 zTCY@fee6$*j&aIK-;VA3K|pp;jj?`PiATs{@TL1yR~AhFRqKZhcNiXRPX$ z5DB}KNc^c(S$^%V{CNY5iW6MByLsX>)g>>3YQ|MI>KsFsm3+m$$EVo;ZFRPC;;io^!VgVYz#Fy7UhZFb!Z$U`e;jtX4rN?vN! zf7Lh>)YLjj@ON?;UK;#lP?mmhq69zvdu-tci<*0*@M17tUif-6-fhWnOlm&;dvxKI z0eN(T!KXDJ-RyQsvrGS0dPG`y`1jammpoO&^6-zA|KQ+*|Ek#~|5N6X5h4Ad9u=34 z2*qmE0*X5|5yZf_xD~*7R}+w-ktV{>G1FHVmiB+UWU+ETxWU5z+f)BPJk2xle^@vG zj3!lrX$X)AJQ+g}>TKkr0Ih`+#Egx>i)$fStYR>@(P|<6A-EO>lPZB;3+egbS{O{K z2vet!cfnJ%4&B?!>S29`gVDfU@XE3T;%>2a@@`T3^{IPI+P~B4e!Y1G8d#PnOLmJi ziyQ()AS@)hO61 zQv`xHpolh+P>D@~4s-`Meh>@6w+i_x(KxI5e;&=e@dl zjZXkz28+PmVo8{apY3X3=n{$YmkNiHz1khskS+NZpfp@DQKtwsg$XX*cy+hg!24F> zb-#uAMePbC`lpg#S^of~8UG9y5B2-k=~jX9|6m>AyJd43-GfS5VPFLFEeIy>iho#c z$t?(uk6Fxsg491(rieTSTXjh33SFlBN==j0QpGBsV;m|Fc@taaO*<8;zYObSQ6*arWM4C2(heVRwEekh;(WXX{ zTp`6YU%+4Rk$T~Lp%^tdrtw;W$j&qb1dOU6$r(mO){EE)3aOWBGiZzx*$chp&Pn zJKmU}7(FlFlb1n(*2d~5BvZhsT0O~`l_~Hy-u;FIC0VslrVdzE5d4bwcTp^AhX)e{ z(&J5AbYrf=AL}k}iBJ^`a?4hHc&8_N;vIHDv_(bq#AsNhLZ?;|rR^G)&LI_-tg1MJ zJ7kdox+ud!NPx0ol?a_8R93lRo%7vST6IfQZmM++kGn@k(Ir)N7||tJRp`}V`dc*- zi>N^~tc3{wR{BXX*?^DI-DFQF+trZJCDxbdE$iMXqR|ajRhmKGgDf&SH(G+9?In2r zlT}~XAZc5Rm>fEt0J_8&<(n4ZTJ{dE6M?&%HrMCt9tpv-FYfwTa?^tE zhSsS6WC>^<5T~cN_xmreYkn}aWI(Je>yYRc!Hynra1SFJC6}BH=;n1u27s8k2@^Y22$wV%Vb=f~Tq02($){iT+YbH< z3)zx!KpNJWvQvc0??6nyt)jH#9SCk#2VybGubuJV!L8u@#*ihiozYox1k z?Q*=;V4f}OWat*TsyfvtMlp3-Y#VH4PKI>vji+cSD^ABArf%Kc`glC`Z+GzJBACRj z-wn4K^!s;*{u#crvm*$eNZPI4f7;7>*G7G1UcVA0KM`_&UOU@m@NBG`B zdiRUfeiR@Yw*c|)1&~aAu#mgMS)Kqao%(Ro7F>3Wu~SlSOmseIMx|c1ZNsJhYTA&` z@4C~b_X@7Kd@>vO?*?^Ul^2V+dazWw(ror?SWX|ry}nUdiN-Bb{Cfc;t9(qI=k=>D z$94t%4}4vaHK3)deA|r$tpH)>X5kLajp6D2`Ady`iEzj9;erzsq|VpeR2I+AeSdj^ zD{(aTp9E#~5FhEuErEQvBoA5fVyzzG`aYH}OIN(quthmI#o#L4#c}flT0IhOMi|vy zR9;Nn3J2MhF#tAyhb%cpG-YA}Ne4H5 z@JVOX#3b8x;0D)7rw2~L1qKdGJ8X0|tfHM@bh%NTCet?B;25KZgGPV1hEuD%ba_Vl zKN#4eK|>g3SmJLb(ekTKyZ-L!9=>}djtQ2$>NJ@YAm|9=lGSbF^KVXY%M=UA5_KD~ zSwoDjkYWl%suL;aT0VLcaR~EHHF!KZO zzaDn`E`8Lpy7Fj=sNM9Sb4m>4t>SowtBT=aR--X-%$9XNbZc_GdFs!%;mVeEE_91r z`8A;w{pa1`p=WVg@|sYwC^<$qn*XW`TI@erto#pd(Err*pP%dgXJOONCMyD~_eo@s zIIIp9B4m>S0Ugy*z`Uhr@Cy<2c7l!&0gpEOyEp6CsfU5L8^wsU=xCGM74cv$k!TvT z@y~UFEF80$VS~v^7Hr9ZHKq3)=t#r`_DI(IN7xWPY~Sp*mnW9BOX4C8)40gLmAOp* z#svNyK8<;oE<9Y_!)rmSd-$)b%ey0=T>RdGy@iG!4cS7%u;vTQsO5A&%fOz#oyBDc z|5Fe=cVTh!r%KTCU|W#;%_~q`t>aEZE6XZiaf_kMhsOEWo9)8~r!AjrFF7>kW)&iI zh&Vh zr-!Y$>-f674HUL)-$O(MB+Vn%M7r!uyFhJ=@sZF;5F%fd%8Y6B=z6n{Lr8H zhjRWPAO&q#8o2#*DT;_Md}VKakhjxD#1{=~nE1B>l^2p2-{CFY@pV>M1)X+pS-V-X zkTgB0nCWF%CD zvZ=E?mFVz^Rr&>tX}eUxJuKu{Z3RrMqqAz-|CW`iZTz?-jr0x~bzx<^Jn7tM@3%>w44XxHYN(k+V=c)9G9TOv|$d^n_P>WQZM z_830cc3@MZO0KXr`2;TgBHjPNJNJMITrq6$j7||MA4_7e6BNAh1$Wf*z4ax>l8S8$ z4P7H0?=v2D-F7dIzXSS=Y*t}HhlrCuK$Q!W{|fQcrs8jwuOTW2HX?yQSibYr+BOT= zc~V@c!1eweB4-5`#`gsKDX_wU>%7Lr#Om0;5!L^X0-~(D(a`lLO9SWK4D9ZOcQeVR z29{i55c$9+_V|JaHf~)Z;|~-@K5I!2?bqp*>{Y!b8Zc{-_6<&kfYIbb@Dm*HKg;ik z1q{JxS0TecmDuq$+td2+O57S1ux1;rsx*T;j1KRgpSu0C6afeH&)KX-lN}-sUn)Fx z=W}-meUB&iOp|35s<=fi5hmre_=qr#W;LSh5OMgX*rX+d*J1DAU}b!z0yf58vE@U+ zrkLYO!FHZ5jp6URK*KO&xFB$e62kF^2c6 z5DbgLH+gx8pqt<;n1D^*+Cvk3z(C&bIL!stHtDN+r|af|F9s+()&C;8v6yb#B{PAs zxW6#7xOo!&0I#5~#B~S%`z_1M{l2Kc{HLYY|6pc`&oDL0YX{cK{`oD7OPs!_tmJp4 zpkB*6cjDkQyyYbi%_0mKn2LOX%-gZ-tpgUwm4h}dY^EbDKXBL`;uKnCI`Uctn)K>? z!U_m@y%Sxh1?+84mUSR>i=p9LRq*R0d{0qqCkJd*6~j7Jc8XA02#&!$KXs?)-DS7t zCss=|>a}SNj5xN?&hMU|JJ^Shy9=VA71JtO`D@8?o?@?_(y{F7wC0k~fE1f7D`3+f z3m4xkf!7XsH3l4?B%2yba)lMgCz<08!0^p3wi!TMW56WSaHFsqPZoUMh3&Wez$f5% z4oqrT;0PngwvI;zR9ee%}=p`!bVo^i5mO$`PWPjBJasi`AF|5*{Qw$2<(1YLB>bQUn zJ+!MMacvyecfphw?k0ofZ3piwU-)JH0s1asUf~l@l-lI`%6VoE-`ZFo#P@9j4otaq z9TL<YCH4hkaN2>~&n3VIXJi?5gt+WHGGTGEPk}He|&+POIu967I?7^tP zG3As1ft!lB9y|gh8Pz}rXBZJa_J7GK0>=I?H3V>j{`uJdpu{z}7`K2^m1pZMH9!2jt>#Xq>g^7F&Q)A`|p%{lxvm~2)f$qo^R_ju>c z)0Ou%0X^PeR6!Y?86dkyA-{+KNk%o0!I=eeh}W2dZu&_FNzM?2kInF#@a1r_sm6oo zQAC2I>l)bntvH8~%oZOS-`mAa$d*weXBrR*tVeVP)}E z;Ao+|>%sySunH9BO~wfTF}VOV+v(xzoWr%ho>%J=uiW2WK4;c^*uWeGssARM>Q@%` z@7Blbq32WA-@gGmI-0|e&z9!Q4}-=+YvAy;Z?mN=KVs zz}~9ircGXeFlV#|d431ISNb;ZZ5m`TZ{n6GN|gDw%vgMN^C)0jhFdowi+cfzdT*|pdK-rCZihA z;0!@T^SIs*TU;xsQ`oH!Zywyd2FIT$&4Zti$TR4G6B00~;gEA?K4FLFZ}H+wHmjqs z7hiY=UDh|4o(@J8l+hVx5TBmH-*_emY#k+=I>t0f=H~&W>!QO_zxgFv{+H_6Ra4Dt4=YUVr7bFm}%XC3ZfIQ zv@f9`HYo-9=Taki@;CfxxD_1atm!jIt2gla*3*UexJxE~riY49#lQ^8&1$d)H%IPX z4`171nY^S~3A+^=afw8Ez#4uDdy$|B?l&Oi-}P{ZG4FYnEUenJ> zOZMdz+b$c4T0T)g3$W7(tI7?T5v}g|>D%uv*m-rmXv8`WMmF!jI#xGZ-sddYf%V}r7M5{bmfGrX|h-~SlaLVN-e zG4fF38XNt437MGJJ@nVp4u+m?zu&=k@5D<>5%aprgNj;VU_ixU39UV@ujjLTF(G2H zBprCP1p;C7Nde{!+N!@^yyT=nweDf^Z>)=z5;9&7yXum@h?SDC?{OjmMpKYtv{x|u zm*+zfq{6;NDju;Km3T~yvJs7{@-TyzjJWw*c$i7W8tl_-cQ6-)Y3So&ce#pB$^7Gh zao6$XmO(+oJP}<)@c^%Oz}%Zpz9PB^>A>Yih@bu^-}?5q(tnUTf7YqgL3ilVhqG6C zgJXPwR(?+QClNJZc~Z+^JzR2MEM*?k58!)>N+XR}%5d{0@dSY3mPx`eMGFl{65*hY zO4?_Bvz_Gz6iI0V^blpq^$~4XUI7#^jJxc_b6BuhQ2vlkoZI)H5dlfF?q-TaKfYjS z++h3LAx*LJp%Yh+mF6cVoR6nY-<^$^a8lzcCv}ct6?3A&M%fgl)gLh@V%AN>;vN~b zAmWB7MGOm~vmZMY0iAn*xKDQzKxdn907T~qD0V)cU=3fN`b6w}6w6xemOqx}A(lJv zoupxq)koKenOWsQKa=nm^t?8^*)?6$)_c&F~EJ5&c2 z5&JT#7n8NZL3Xh-fPFn}D-k;b*{;qv&OVVy41~|?BSaEj+JXZ$`5IKjKq%~MgyNBs zgCcg%Yxo5Cm7m{6#4g*_$wrqLJ2A)1zr58Plbd(=5CAd79FyC*!5mXMXrq!jrU83| zbI9t*G-5)Gu;{>p#b-)NWk~6I0tTdZ`1NT7lYZW#D^TOvY znblzihlnF4SL5$6Eoo;LF}Y&aZ8&s~jIuk~9d6T|jCNJ7>=KD&cQXDNxoOxUmaOpI zwp8G3-r++4#FQ zlvOr6Mu<4I(cP%vIuPQEi5a)6O?4tBW~!GqJmMg`n2;a4Q#yN2AI4O6j3OrFl?RQv zdZ={xqW6MN`o7s+_=#S`WGLHJ*|JNFpg7D;w}@)7i#W_Bwly;H=Mpb5K%V-GJpYau zAV;$*)94U`CDv2*Nz9TL`EeF7Sk++o$%|y^Z?U#JC#x#U;11&=CJyi|>!d+cnqb7l zfmv7Cn0sUtD<)<|41Wtxv}CZh=48yL+_a6RF6 zwG-d2iU=IDuHmr-!^IMZfzB-a&wGgr4BDjVvNdw(Bd)461UAT)FF?etiUa@7vYG@w9v92l-37 ze%-uI$N&&CcM8SM{W@J2(I4RkBmPdrl1@Rju0k^R$e0%{la<{WRA{V%mn>X_U7c%m ziA1@7pMD7+dwC_kg0!T6mxgtw>=dD}VPZ<&pXBRjiy9^~YXBvOh*Q;C!r?b<#njqh z*9MyI+fs@6l{|4o>|!2LpAdxUdLG$%-Jkk*+wSl_%k7ZP3oRRQ%5Jgl46YAu#`S^6 z^+Cz0I>oO-k{*=eVAdc?4lzu5|Dx0`dlpv)P{BDX}Ppcz;3sB;ATnLN9~PA|PZ+og^M<~pkm zKN!qdfA4F}x@P$?uvH{1f$Z$IJNT>wulkVAZnSF<4la=>Z-Pwqa)nr~4~K3IJ2rf> zv1Aj(u&)zx1dFtLyMdF$!{hVr?M+CzeU+3yQhFfSkREn#VL^B7;bR9ZIYSx}F|IO_ zzZbx~Q&=kH0nU&Z*^*sLW>rT@?yy>AhnQI4g`CH@jUom#m^P_K$A~5;lmps^H;Rx6 zWj1VMfm4L4k}Jh))8D__^A}TMl4~;Vz>UrkP_D6t!tIC1uI^cug{-ldc^k3-Af}v6 z4R#Kqc0*=)XxWBKZjno^-}KqcJ-@*tu6{@3HeGg(fO38{6z{x0f62dt6*9k?Y}W~!@rbKduxyhhx5%Y+bNBsKe0nQn-j{+lm^R5q$A~5;B@e^(TdbvqOiD(( zI@IXWB6{riumFoE8ttk?*(DOmPHo?<&zIHt%PU-$$VaM>PK}vY`PdUB%jAePJS9F} z5i(+B!!{Z?#n{OnZ8!=%ck9!JZ#;zbXvDY zUy-8qp8mdi-JS0HbGHJu&i)?u5Lwm#B&h0DPabxSh2@YVGK|Hmv6>ip$cQ}I)>$Xl zNGBH?&$~UJDTFLGl2w&xaEB~%b^s&ga6rN06f!$N%LY?+i(L7vw`3yzdX>J}Chpf< za@K1(a48W2VdZ?`(7m~cqn(iX!f01T%Px^fj?UwsSFcX*_Toz5kkOf$clZzhF=b0Q z9QJ(f5YiHoRUIn1Lzb-ZD+vKJnJv7!0&f8tL*DO3^n02Yl~sGNu*(EI?Y3~d$l7p7 z0*-c7zU&gCDQouB_k6+-QnSgbPLtdri=1wyUttrbbC{6n7BOy;p>qV3=LK*znV8&% zoEHpc4XET0apcNu_#H^ActVA&%!+9nYjBKca$p~SpT1qsl09T#pKLpDgKMOdgVtmr zeSe9cwuB5?!a;*`gg{u?LeEc+`~#XHEi_qGu?Ba@A}8$Ur~b_<^~CU9YgVx#6LxCd zU?c94QBK$|{qy;kzVpirFJvW|4Xb466rpn9(vobwzgypLwyX5nHaM#IimNx41WvV1 z@ze)OcapnbeCPzPv+nU0pQ!FvGp-Rb=NQCXv&;s(JQY^6(y$4ZoVrlrP-02Cai|^B zQpvv+C|;HKAYxj{n~P&|5Mo6Lw7=aA^?jlqGQlQMRiQp-Uvn<2jZk|9SP*k#8|98P65l4%y%u>GCz% zXrULk^DMb0o7mK7k}IUhvqSvFsG4WZZOQDAo7GsdL&OnH?0UI~q+T*_K$^j-1~a;| zS;QnYh^1p+1|*Q+4p~Gs0Vup{9$rnOStByZp^mdj-?|s+8;~{Gtb&6M4Vc?i1#}w zwC}h8F`%uFRt*|(htW}3xacs7g$WLGzcWBiV#BctD_J(V2DiwSUyUfG+MW2EY{{z;)Tm06oFT}6I*RJbZ~Ebc1ukD+!8KS< zV!L3;i@Bx;6|urVUQwaX$NgLQ(EN#S>qR75v8?fxKbAQ1<=duzN(#upx0o<|Xjr4d zzZEFHQi6NDFCX9s0vwkze_jAMiO; zM1B>^4i&gXE}36=*EbDSz)F16XTvHLIz_0wM_Y0;|6N3D$sTQO+5;o;$^u&Pd)Uf@ z_g#gEafyJ|u))McsMkE&+R&j=x!RvQd zOCj>#K~XMVp$phm+#uOt-NPH*yMYtw9~Za})G6wSPEudYEw1-FF0+f6TO^}emBjv+y778+x^OtB!_)V%YZFYG(VQ4Xi=svDU04EGF(-V)qU*tI3@+YYWC8R!?O`b3Q zx;Z~iu$WDPWT{g^W8mUBrA>3?H-HUtN+?rcajM8V+)+1oX==;BQJqkU!zm*Wz6{y4 zYxqQ0@~)J@GKAzxIHZz@xZ}WIN=qXH$C)I{RHT-;cz$Wq!j~74yRrrulu@imPAoBO*8 z88?!f1Bx?le2;N|e-T5W!5$+LEpSDxVHV{B9jhqe|6_h+FwjY^1Vt*zoA|Whz65h_ zn+Nmt#w1y!f)iPts=Au$Jf2RX(Sl82Ma+QZTY}(;3VqL2!o5D3@RfKo@|D{d6QfNFi19gsWJ+xBNiSr{a^9Sx4|N06q}`)a^Fc9 zkk%j;VPKRi0g*~FP~tT+H@5H^6q;d~ye1h__&2j-b&D}Yf^$IZKz(kVXBM-Ktn-|K zc@BO&x6X4d>o~zVAZ8s7wQY{D73xlW`D)N*L9hT7+JdF{4Gs4to|Vsgu%0uxp%Kd# z(clAQq?(2spLLyt`I6sYvo=Z2k$JTluJ*EmD7xw1Fq>I$1<4XuXbio{mvq~{yPn~G z?V)*MUr_;Wo+eBox#*Xa`QmbWXBD( z-}me8$dg9~1{%c*Jfx5e#G@6oZd%-sGDk9qRza|gG%C$P2?bVdpuAuiYE(*4+?C)5 zow`f%rl)}`kz5(ct0bbCE8(7j^_-0>p;(#6Da_yqSsM!+FIK`C6%tO;U%u6R=#QBq z>4pb2g|N-H0Q=Kp`i`~17QjoD%;VLObrRokjeHen(OF(>mS$SX@g*gE1u3Z#YOthq zLM0TZjO@Y}N)HW`;_Fw<<&wO~W3W()WeZqwbMPQO@sE$(wHIC@#bDx(MCaL@Vlo_` zNc`WYnJxpjE<&mf8;kd!uY{~kPOZk;M=6Q>j{kg<+eN?kUy&aQ^|jFhfM51*oVsxDTI8 z;oD!h=wK7P!CX3um5@e-WGU{=G?+=p5gun2eaB_4{r!|Aey%S`aOwh1Q(a z4$ZoS>ywA1Yc0?w(GuF!8qoO7*4M{-HbWZRYz2`53M!(Gv8Ad2fSjgfr_wY~|i$(}PZK9%xG0^EGn6hi}sKY`7V$k-b!j#;YUiaBmu# zM<{a(#lzeCd%i+2@Fpf)AY<(z5{Q7pO3)6_3(o_N%E^M1r=Bv-^5 zRc46VGh8T3W*GyIA4a(n5ve31?(su6e0bsO76Xs>QY9L%j#zkj!oNzZtr&!-QEY|= z6=reJy;wA`!9lSyj#EfDd_M?316wN`v`muoQ1L+v-z>|JO^70yHr}-DdA=ht zNFxqGvSgUh7`S*EadU zmyfVu>-qs-INl~(NrSi4xO4%IKM+jD#~^%uD!IdJFb17afygT(WAQQgX5XId^Cw=a zgyPi^3qJ|+FF6b^@0$LygKs9XaA|N7l*$+R@I8wNp-c)#w0y^DOp5Xgqz<7#3Wp&N z$EKc5NBJ5lArR^K&4e*W6MAQSY}fStp2y-p`$A>@3dSV zId5o6FI|K5>WPsrXvk?c=VY;Guw;m3D|}8h(Y+9dVf*$B? zr^1vi`{w-tuH|?93Z3k0f~OW_*uTpFWA8g!|8XQ|J?oujB0M+ zCm_P-1y3miZKt{cfE9la8yr>zah?S{-M>K`>F$eg=qiS@(PiEZ8y3^WyN2R!qE?s zJ@?R@*3U@}%g}R2@d`8n=$I$0@t=I#*${ISuV4}YVahIiZu;ls-9AGX_RzBXr6Mke{|b zcinLX1+rKqHMrbBas@1E3Tr~1N`wUMEKzQdN*u*XJflJ~5YLXezvDRwgABEonuEz@ z%ki)5?|pcw85U4ScA+CG2pmKE^6t<|_`g^Wa9iNKdwB=t@*o|wy2n?8;|1T3mdyNl9Rj6@LeyW8sr$Bp zEADWz4>|OeJMLrfe`N?iSEc=i`O~2T#!pWViE-Fpz<~hI)%=@UzXUbi{6icTb;(!7 zE`irdPH?EvZeWjm^a&Fll>V*VFOhU9zeRdH^a`zvd9T2qz~RhweSrW19tPv6-}BGq zEm|4hpiKWg0vvUZ>}KO2TiwG;EU?l)C2x}%y4hTl_EUTqim~W-$RnRgKQ_ZdvSBeC z`GTrjf5`|&Kjo!7V#eR@AC65B$Kn6gaMLko4my>6G~NsO!=R-nJ;|r0coi zrvxPW1;4I#4?HgT*|Z@V$mXSJ7M;P$@-<>YAg`xHHs^|K|95ubFt1VhIr%>du|?kh&>w=M@zRxs`=40H4Zp#m zP_O(8xmWh5)thz?uVAk3uZKgacm7Yq-YII`5Eb>g)Zsa#}?8ptM&B)r9Ka z5O{77>-V!nmO*Y1WeN~Z6;V(|*;DU^3tYrw9E&o_u~dO%R7Wh7{`Y^ihg=0LJNVJW zqVzwPEARxB8KS{2x0rn_h(@^*5ve31p6T90vyh=O$aGJVGgPBm;-YiJ(Z+#mbvGEE z(Mi%(KBvCOxb8aEr;E<$W{e)qpFKVeUkBw!x{F?Oo{7$5I>lsJo`Qxd43Fsb$r zlattQQ6;BDa2^em5)@y)jJ8`Ry8wgb%OqLDnl3Yl?gnWVzCE#XHx!*GbBf7ibOn-` z8=u&*(YxphTy$5EMTW!NY~AwA*x0dNc%E)lt^;;= z=VXdA1a!g`K(Cwt#mIOVj(pK&7a38s0*8tVXs_#`y;jjcF`4rk|mC|Y9!#e^oV1%~s`9Uggh-5{GW zP8p+g4bZD6Mt)U>OMw$bysUpcB(EPET$RZxDw4-g^dn>+c--*yjG+&JXay7%6Ph@9 zF8ArMwi`T7b{@{FCOR=bUf~4OISHTq?Be63AkR5H6HLhuLk?ZDS)I;?mFLEV-6&T= zBb8)6o@RrCM)LzJlqrxnRYbuLtgxx$Q?J2+m6w_!0d>T}`v_{Bwl(^Qb{Ky^mvC2uS zmnzs}R7Vz>QX`jrb9f0iQ6Ag3s~uh_Iv={rDyb;DFg23Xk#Oc73(h^oZ}%vE+xL2E zopVt$ERxx6AL;-WC4Y!={0t^0fUYaB(9qi ze6l#X#=7V=_M8TlIA9R(l#5Szk(@2q7v|yx@j9skAWSMRGW*d`N#<$TwLIOksJuv4 zg^n9QipX#!!@Xd~tZR!*Ds*IeD#VBBR#(znUEf2jxa^aI!G*WFvPyL92!?DuT^&zl z&MNpUygDw)FW@=^BAqsQT+(L0Hr?dSrK^-qJuyyisijijf+N1Bwrj4#rt9x{nev5i zsg-mU_-APJYjUBZy{->%Unwb}V>%9l3Y9%P6~YQ)9YSvJhjqfN; zePdLh@)893#&m~*kM39a7Uc=vlR2G|DP`du3Pp_$&VUF%=h_d~!}|H@G(7BirDRjr zj+ChA(R0B`axo8{h1m$W>#aS4iW2k)QnK~2fw!reQ+JoF_f2gbDN(Vb=Zdz5V~+=@ zHCofwL4^(-K*-j)$ajLbmAbnjjo7AI#Z*wGaxd0Zc=x0 z2e{msyh>&|(L_qh=p#%K{I%>Zw&0Tz9ejE&I81JE4(@|4P(Fum5NzE%=qO-co4$1@ zWbWKf{pp%~;&9<{EDwb!T_ttui7}J+kczHY<~>IF8YdxSNVjcwY$3b9UJZw~=hb#C zNE7)IY4S+$)@1D*)>y8b4Q8Ot*Uobl67T$}fSiQ1`I9SdVT;HhDY*?BV8|<`lXy1@ z;4{%{m`&joQfA|YC-I4B2{KYlXw%W8`}@lPxBioFIxKv1EtV@mkxC*;2K!?NZ%A}| z@$klC2qp3*!sLNZ;3$+>!FPr`9x$TqMqRVd1bHSXAw*{!M79ZP(pg`pb$`YiP7vZ0!a&XAE}LYtYa z7szZ(HcFPkNNt|$)WHccPrev&dC3{BQ7v)Jy0RyW#=8xht|ZYJGEz)vN#wYboZljH zkYEvul>W`X_obis68?wi!sQU}sQ49$C;n3DvdbZ{Scz;@sNwLL(+nrMzZQW`ch@BA z@FQe19R9@|_>!i(gn`{L744L8_`MY~oaE|Cgd^Nu8CwtMBQLkK?Alc%RrDOEjvOac zkr@A~JM!1=R*T+An1qTXsEk0ul^*{$n?39Z*wW9!C{C(`;?)sL5)~n9v_Hd1XRDYFiE3&MW(s%uy_u#bRv$8JExXe{7p~)ha-uzSt7Lk zeWfKrkSwAFwZxSSfEITD{2Hyr0B}-89;c325*v+gt0g^Xv0Mp~C8p3AoGTfa;Q{XZ z76Wqm1g~F~z7nL1wqxqa`NeelS$cNVKN6e^)OWjT-! zYk+`I5d@VHNXW(cF5b2M5z1+@9$J=*V{%2DQ6&*24m}d#qJvRcICLaiA#|fK+I;bA`FscGBOEqB{SWt(-YY>2D6yyCebok zP)uma(0f&3=z&ZTCK`H4$30X_A_vJ5QD_VyA?Y}HfV$SY<0jD=GEz((muz7l+QTE1 z+?}6WSZrZq;WA#NoB(HiO6lgO9taZ zg~13iMVM$XCKHdi^0kE9P=5V~*@B)YyDH1?oBEEgi#B3GoE=#mHp z5}=+Q)Qe(l77;2)&XA32i7VMq%`)#68!8kk(qNjOK$3WLIP((#i*-53lrbiX)Euvq zg9sCIfKZVGmF3Lwx`H`gXD}v;@W!U!EJ0b`-M+o9pf>vnzQ@(_cbt~Jv6;~z8ETF} zRtqnHaB1BJKOdIhE_(q)R-n-a2!c&kRjzK_7CuGY9C%+_tg2$+A|w{ABjp5`tVp{% z_)z)dYG_}xpk=XonM6x)Q)?I=$!vJO+ni=#7PBDkVTk9p&|?_BamcTK6i&FHwu`CTTIJAvWOJa5?3#sRGciaSRJJb^1c{BkUu6%Pm(pAP{p(sOV61G4R^vI-tbCdGP?SNMlE` zGkqCUQ*S04cc@dr?<8An+)=2=gUSdbx%MJu`Yo=#jB-Vs@o<5NlEun!hGoxw4PQ;% z^X;d_VkH(Xvc<}afXUX~7Vwq0L!N#BC@%s&)U@D30T7fI0h0`atp(*A!(>5FPJl_W z@9As8A-zQgk_1b>M{QZC4{AY;f<-7&N|s8(|I-I_=OGTV7U4fgma#}Jaiu*dU9&Lh z!BMbCMM?=OHI{e}%fwhDS;k6@m7EzqRk*_dGDVi?4ns00KDQTs25vDYqELy$DWh(p z6vU;u3@@8Q`xfd~xBa$*j}`L(x+n!9NoQ!%10fjDs@Xq;d_z*@Y|+I>CRU&#g=8|C zwAtUS9){+~Pv#dzbU}C?ZB$Nxsr#F|rawVJy%o6F zn(r_ctxM;!=U7}d(J{AzM=po)*r8@=a#=nZLkE1Wea?9a~Pp)hF$OWAHtQh(`A2xd%A00 zeslQ@n~I+^rcVS+7Hr`uUuceX@$%3Xm{AozIi0G-1tsw}EToK;akClInemHC~?gFE{E!w&F@Jiqw* z7pA6XdUSa9XfQh4I>o+!Z2Bz}HfJGz`Bp^Gpi>hDS)2+p&MXcWrH56IW0fKQsj0aq zB|7!=TrhOjRs45g;5%*oe&AIuY+Z%v(ec@%;TN#g=(=x?ZU5Mvj{6~r zm6LDq0K%SGeK2u2Df#3jaY)E~+d~A$TB_{7;WH087 z?fE>c;J(2Y(#74WN@$T(2$T{CA+s%;pZxbpo$cjYwjfu4b4wspNklBb+^^sZ+;18_ zikAl%5WCQBt~@HxI-$l6(;O`;{V zsWn*br{fLB{hp_J{%G-P3nWS)(|vgs748rFZTe}1( zboQ@#DY4~22PDo3Pz~v)t1QmdUp4*fYrBH#4*bT(qN^;ac)@DUrf_FeA2qf`NBR7VD4OOA(O^}%c#xO~Y$Vg(vf zn8TUxN=aH% zpnLg|q!%ippfcGm@O|!XNWR!-V3$#>07D81hpkB;#@3m2maj=;(RnO(@XosIfORH# z-eP%|d7*QhQ5o5Y#pA>N)VEuxz{)oi%j5ARSOA)o5)|t=SfHNX?Dm&a`^2Y-}dUCz z%Z!Y2!-+`j)yp#@iS#UNP){b77(-IE3L{C+GSUOVj_f#l{H58{?(*YoK|`KZO7u!@ zJ4^JjO_`b7&eY_|vuQ=XwDj?3o?SFpT1KL?m`bj3?5Ewv2Qy|+vk^tovw-wK@K$N| z-EH9es&LMENKVzwX5UDGLOMav@TYIi#t}A>wHo;H&mDOT+_ZF9KqV0XRavz1w_iZx`789x+E$xb`QUlgVP;u&E1X~#@{mNh~k z%l>+t!=Fill79`nK9(dU|I*4|C!V0_2KMl5FgLqyLq9^urY^s3!-eNzliaGb93K<2 zZy*nyfb_5~Ekd`o%zO6GUkn}ugnj_9I&Qrx^6BjUMGREW?;{(Ar#ZWM; zE^oS7e%&q<1o@gR34wZ?-Tn_hXO^&8e*2%vRtQVzyk36y#}r!q!2M+e!<+BV4QEuXLF${G4b75ET;|Pa*rQ&GFTmzoKoBLY^e& z!BDNrm1dIdxa5TL2p#8@r5G-xm(5~$Hp@(GEZHo@o8z>7ipQ{7yqV3{9k@;1oQC`KOKWDmpD4*PC(i|NX^{l?G_eE-zX)WuNFwQ3RC*vV zN(pp)3l(1_Tb<$H9xsCP9lcoseXb|ZJx3x(meM=tZhyMm!3!QeT)XGCHcRht9eHw& zLe!FPfHyyEnxveLnQxHvEGaz@e1lyI7$ago>{#qtekouQoF@aNWH>4D>@FHM7btg&(vgrXHN!v$)-cgKL=oDQxKd-1f^tCDeW}CH%}FcGIZ5l9rJV#t z3iKR`euT6s8TL?3^&rrjZAxMddF&X2c%{Yk@X+$_Zka7wQF5LS)e@H!neeY?%L22= zMAB70wpEr+rw5$dVEf0zz1it>5TBdAc442M!6(*&1Yz%S!1 zyV(pEYfxDO2JuQ8w^$nNl^L?x#w}5D6E(sRxEQxbL#Hp+*v0KhK@m89=|=Mkc#dDE zH1`VBa0~8q*-|rZdVk*BxS*g&8{etVMJ&F^FpXF`;Ph%wE@EApJ%4M(G-9E2)q+kv z4J2`bOt(9B6Op#xxu9C&5`7R?n8JHDc0M>M$XjrFCcsLI-HUq;E@rU+YPQ%7;tQY% zKsJ?5)x8{eUwU@BYIds5R1|Otgpl)=g+d}VEeqlcs0cuq;wVZ(rQIk}V`Lm0CG$bM z@B)OHV+QeA^MxmZ`6SFYP$8)6_s@KGG{X$yvzXzDfGPFz^D!yIY1YdqISc31lJ`l6 zSi-BlW`|f_cAm|@RZMg|>fmQx2lxm@3-_j*^A6rW<`cC+)Dct&tin^FquFbwP$zi< zMTuFkS^k>oC{+L()sgvFIx;$YiFXpq(~*48&G8>ETLDwtQuiNT1^+56Fz? zX4|eVP~~Sce^F;SV=Z^7k-FtUyI4UF2)*#Bs{iclUlo$6U)# z9B1++KsqiU1R`ZK27Xxg3U`O$9BkgZ%V&&KyvWG`2$Q`9eV%0imcIq#UIT@{&O_Y79DG-8Uf!4u^6(v z6N6lt%c~@-u>>am<@F5b^DP#f6OFe#fhjAISp^sZXWkdi_2U_Kx%ZLSIUKcwo}J+g z*W{&48yplX<2Z$69ku|6jdq3Fm7`PvW>iNkY;x)!$4aoP>uHbon)t<=<&)D~fj~Hi zAXv77o8NJW{cHIOZYF<@I(sB|9ILyOCLI50@f$N@qA^Y|G8Y?m&3WJR^1jRWc%xLo zDx*5;HI~DU?<=s-x;%#+ix#M)I}j}7!}Y{tvp(#tKRgoTN>HSdjKxYD%&uen@p8`* z?_oGaBf|A7?^wK~+Yzj{md8sHD;R|?dyq}IGedcdK6z!*z?r>N0cKQ3EZk$ljf*(+ zEMFujcRfN=2sJEk7hkN1nU?46BFS?rMU8=rrFNi}04Bqrt}k<=<*A)Xus}5_rS4D#P*t9puV1UL_H+=!<_jy92U3`jS|ghu!+%o|3L*3_L|#%&_Cq z1R?oAj0J*JS`@xQHk~f=C>x!U8b{elvd}eCV~Dccecc1;sjPwflH43q_8c}G%G|@;FEpkUn(ZC0ud=B9JYFWYP(n6 z4o>X(702bP*GcdkX=)37$BsIt_SyFqmmhU-;TjzK?jp-3MKbV^HBHbj&nC?ksGtNv zUCb^nCbDMP^5qv71r0@9meOYtcy=>mc?6cPWU#v!tWc$J31hW*HqYI@7?q8EcYXIC zoS%N%y{q=4AAjZDm?wvCWWfUC1O*w-yQg6f_b~9Akp7?8Z1t}`2WF5Ech>Zef+q5> zG15Z)g66P&d3R{w8+py!?Z@ri@v)A*P;!>bsnzVYZI5OeI>sKuDsu4qsq0b=JzN$YcHo(v)8Vg-=pL_SIO_;uPgaI zO4hh0zaN*_Y&667nppT+vcygWD^$}SQ<@wB>O)3l7VJ^7hV@}^`tcAg{Y@Y84__`h zM4O9N$sPh)#$=q#(qs=BSb^(Y&F?{So(t7doDlu~T+8pzEUUsh8I%%~*oo(Aeh-or zV}V+YtM4w`I^z)~XStkOjSDaD)Zs$OSuUqmp{#RoR%29TTwL$zcwX-E!Fwbs!nInRY^iA#!K!&9aB1%ef-DSnCm_0-pz9|7yb z{50fRgT3T_>?_TWpj!pg=f_L6bu>!O_M}rw{w3M#ayL|3ucBmy3)HGy)z%XiZ9RdF z1+HrLI&1cVMx6`tz;&jg3rNoQBdS&Vv9Gl*1TMwDP_522RI}Hh*$dPbxN42ZUh^+# z)VMYcT(qs?Urut)zr0$-UYlxpUne=wh3RIEt6JW7qvd^FW8f0j6B|gtvTn4>1EAon zwNR;MtZK>Cjh0+>jXGDYB-2JquDZq&SDhe%sowgUPS?st~{eGym%EKVU@w$pyWIk=8%X>8jnMzOyLFu z=c)8eA^vTp;DwSkEHzWO!DI^y^>&@8q;b4j>O?6{R7>M*v^0)u49=C|sx)H*mogZk zF>r}aUn#u=7EzoYltnK|5|@(3**LWYu3Gj|(m2R9#V@fR z`$}mXP@PZXxJKQ-FrQM#zmzl%a!vMxk7E|Xoan6Qd&T5pBHC=DW{0Nk)SlT^ zO+bSSkLev-D>N@UXSGqWVzvFI9-0%KMe~X^G$;)S)t=))U}iNZI*aBNYiQ5)(46Qj znpaF{LPQ&81Jr6}a*}gkUaiVi>w@ioDcn3)oM;usChYmr%(Ru4dC^%iub50GqE(A% z!&-}IzEzu_puR$->(Wkg-e#zlOeX9{hFa-q6r80hq^E~!>1ii9i&eV&J5;;->m=v7 z3U?s!uj?#+oMeq_TKq`PRVzIWSlP`kwgr!u;{7Z}n8kZFL^!qDNQBfUo4c*j(*p?3 zb|ESyD9KpR&a^ zO6lqO)j2a4)6&ykExEoFylSPV2PHj?ZR&W$Br=NZCYPEj>MGw+vmQ zZm(Lm31DG)zZ_0mY#NvI#;dq^q{4uU8BxbD?L4620H6t zrSvrZb*1=)k~OX=eo20hNn{ql%;rZeJq_m2ZyDkP)$El&{_tv*IPqNVHlLH6>qoCv zt!6KHpw8Q@$d!GY)ivt&f?Z3M@%W6_b@KK? zwPY`0>V9@tR~VSp)a^y*$#7E=(1Z~7TrK(KBxk`&$*<>X$uB24&s9i%;a}GYtxmGW zrA|fg*Ogv;cajw@{l$0u>q?;lC2L&ji|^0XUVL|wvs|SY-=C|!`0gaYcBYx}&b^`e@SobSr`MK#gy&$awMf1MSO3w~cKUx=EsH~U

MoHZ<&wdZQfF;taSDkR$8fh zORB9joyEtR#(Z(`J+=rU$l=vvi$I4%*5vU;eWkC*X9bq3$A=0_lgG>G$k*djXry{P z#YHBM59N)yzxaAQFSArVJ^%r4F>Ub6LQCHTHLtW(7t~m4X@g$WS~^3|iY;~Mq1w{q zHlfaOIk(~Uma5wXAlA5`R&nX;_avbg7X%=nfN6tI^^SQ5_-<%s0R&&&&=3sk9ADI3 z`p)rL;iWpqhssOS=}@Y7%nk2*FcD>t?bU;cNNA3VL)l}lgs=CLgr4^YAl6yGEWq@g zI`axlb?S^In5OWisKNAg{j3O6b^TC-PaS`|b(m9K|Zsm(i;q9oJV zyHZW2?p;)rX&cI-D${u=hqBCH>qB`i$F#W+FMZ4hg|iDWL0uPO)aXK{uE31bTovE0 z0Pcie?Fs~7jozj-(;T(0-y?g1t@`~00dSjkEukVZhwdBp@XAbe*Ajq$0;U~fS)1t_ z_T|)=ufj6kS*8~YJQL{Xso!)dMsDmc{!GbJ62;^>|GXPx#G@iu{7MV z6w4CERBBONBY0MaqHUd04T>cqfVu}>hUL02A$M|cZDE=Kz__$T1kk2ZgXJ0#L=gmE ziwGhej!}!xKtox8xHy zh~Y==0F{|@33(e{Q23XyM zp1vow9Qwv*ty1unl~`D!mr8|&YxKejEVSq))mK>N#G<^ybxzExE3`Q=6jxYweW{!w z_ZQb~M->KSqkTxUrVK=`%s8ekY_$+D`#b(YMFDzsTL)>K&By(p=0 zb@!~ILUZ>}P+*`T44E%<1_S#F$)=TiF#cFsBJmLyY2Kva>kGlu?jFc6AKoPM9^v zm;e~pmykG~<91zNcmlh&z62P?^`%T-cU@od>~(E@iOK7h-NW@HbJv}5r_^;FH)XCH zaf`%tZ`?6&y@7l5(?Tg=2YX+5*19|HkhI>yJ@{#%9Cw+r?mRm4jCFl<#)Ng7w}2*W z5_h&bu%{_ew>m;F&nhxm-5YnzRd3)P{j^Z-EizNx8Fxxl*Kt#xy2($9G<9FxS(dtr zJ0z)F_LnIwJYPLs_m@!w`MGwj73s{rUL>eH+dk!|>$V^Mv=I9GTxrXu6^Bm?CC+4N z{%N7~Ga7j8IGjp?YbokZ$KhN80WXikIoTT&nA5{^C-+uhlF(OR1~MGtlHzlkHS-v! zMU)93_~jzXsLbXMN#e_ypCt6mAAr2U{J5LS@w=NJ1PquTVOWPRXg%$#a`?X9PZ9>q zKLG&+#ulmIcD1B+r$tJLAQj3*O3+~^Sam4#*4=f;6W3ch#LV@vgWRZmksRne4D>I; zq~+^w9h29`LNr2OWUo7g2^o9xo-$0xXwY+PxMc#nGwzhZuH&W@_I~|i)=i6jL8T^x zEYIs7YlLqwzer>EHh;`xZIVJ=6^+=ukcBMr4-RSC*p1Y3kP9=z-c~d>E z3UoMWnw+P|g7>NFn{;!U;>sp!kuo~OjCwhutS_BI77N%6kUL;3DB*XRlm5KzDr z@mKQVeIp!}7_UY+DKp+QQ5LE3z7u7Z8?R23AvxZ(T}&zIx##=tRH6)W9d)M?32~h= zd4I@E&z11?ev;7h{s6=}b(T5uzEfwOB(F}LF-zX$`bC<&uj^-d@~Z2HM0rz;AT#BC zV}z6{uf_rOH! z&6_}DhC@CR`ho`TGz+Sr5dh49CJ&j?8gkUW9)j!%w(21h1nbfhlGbzRzDo~Jo>v2} z0K~fVl(1uO!-nIw+G*32ck09*xj7+F^haNNP zThK>ee`jtZbLzdJr=`OWpPeS_%n-Uj!`$8JgdyK$*Ag ztw5f(-B2KAZ4WG>nc|D&z6t(heKCa#BDDR$wmP=j9CmB}npe)AfQxN4r$O8UXBerG z%-Hrg!(iMAwK&6IBnWySVqtCOIDt*~9uZ4L1}PvSmI@)NF>rIuTE0H6uRErN$IW#q zf|L+9*Cn0Ze?-c;v;V}5bKQT2Urx`o)$+|fUQVxzp$-r)r`Kt*6D$)yhIWg*Js#l& z38aNK@dq+gVBqr#q%RM1tPXARh6_ukKIOu#8M8mr7EQxTD;}q ze0qMr`^dK*u3Mg*$<1Hv2yv4H0LKB|k>^e&#cfzdAk`n*` zZCRe6O(nzGb$N;+2)?#FMLO#+g@!V{*>#xC{0Y4_ObLYD{FO<@+x%>vX_!AvHI|Jz zXkJZhcHNj~LZ~COjd@1-21k;)Zr+ZRvfUbvMEP!(r3$o`Db3!{Q$}+GIwdq)c2#($ z!`CT~%gVUOPVC8Nv|ZHdAWx3r3 zFel&E?2Y1$6FD@&Rg0l^wKoYMqOL*W%%8ApK_YbGK50mdjd7PS`#57LJ%35Y| zI^#}BoI39DcaY;Y9rGYJY)7J|kG_MP;VzRmokwS$ zyQz=Pn7V26a#(_v^cG;>wK_sD&nhx))7i^`eINJmJII;0$ec}Q+$m*K_j1bEH2F!9 zu<46C%hyzKhjdL#xSJ9r^VQQe+>Ij0U$k&H(xI{*CEgDZ0QiwJI8i?QTZaj(V#G@%hM^;$=DO{GStav5cgR6K-Q>|=;@R`PzWI% z%JhMP5;Yk+-^-eoxt>nvdr}7JQJ(Kf!Z$dQNcZ%1q?qs7aHQcEhSLhUIcXW69xn_l za;O``3&RRAc7C<;X2qH)kbwLPpsKZ!V9690=5A-Jc0(U}Q-oIu50JLcp zt7K*Qu3{`FOI^iMMwZEKV$x+E&H1`b5Ycm+KxcLv$Y^4F8K-M|@(JMHa~lKzZev=5 zp$*Rg^_@DAJ;7F|&ItnGHmzLHsFDWiyK+Stq=C9}MM5;cY1BeXnF;DUYG(nYfI4ak z#v3}JGVQo`0-JeSoscFU)4m?GujYgL?&~ut)E(-+J|lgLN6B0qcaKW>I4zGd<>aJU zPG*I=qfcp}E%cNZI(B|Y=*z@V-@RC#8LIBZVrr;q9Vl``eb<33IaFN-LUyR>7%Svu z=5d4XDG<*ORgbX(5bFY5WQh72K1&f*4IgquZHBKTi8>p8mOzuGZupcYY6>}HdS>oA zz9DB2K`N*_l|W~X-ilOFU+2kkMOEhs$)ctmmRzBHL*=wQsXHuMn@k=bGBtC5@%4C~ zF{*le00L8u$?BN2nS=MWI&ddHSFMf!0JO>KAzw2G?rU|D(3@uh5KzDr6qK2xzCl5r zI;sW*F?ZBt`;fJ{ob5?M&-MWb*xt0gqSVbCzi&7>3n2JvI7u)7y=jjN34@F8aia{< zLETb>o9p%sp>E> zt<<#cmU*S#&{JY*1N!*upy`UBOf7YX9&<}u(1%|K<0mzP9>aJwzG3*fC}Y2l6C5fo~50t=u_V5f9U3&?mqH&&HmHvkDCHZa*+R-J#C7jz#o3Qi|Jv1+_Gu= z=eL7Go`mXOF;tTU`qaOcLhdDc_{bp_63;O61e}B zt-nDe;OjpZ5B6Q=x%kMKF!JZ(F*2jri(lm zUkD%#_`aZ^vZJ5NdGe{vVONvmngn#w&oIFD{Zp*OyjoP`aEet*ApHCkt0Y778x<%k zio6xb3yK;F#CoFssYE0+e4fZtp|cxa6tFlOKGv`3h97;eJl9sMUU7J@ToFSZz~3uZXst63 z#K2|gitEf1B#;)`%oE5^f&Pm-Nqbqh;_%`QV@|O7i#v=05nJZUO7^(xT*)%WwYf57 zja%kQ$kFD76RtxRxs$oIAv*yu&Xv%nl2PJ1S4I&8Uz;lEWFD%wBc)8#h9glfs%72; zt!0^nH}q5`(SS}x68)RIv`Wm-KkRp3v%@2Yo4c9}@*bYmRwG2`vFvd}y8mLkL|%5F z?QsJPKyO*RilPJ8#Ve~h&=#*ya$qufrQ*PKW8Qj}I{6Gyp~G1AwK2y(_ZZjcGDskw z*P_cnh6-4Grl>V=^_i^HK=YYUX?zXglz2G{;oro1azDyz%UNkGAG=1$mS{G+K`PI z;g+dg-aWZa?I|Bzo7yQI+%mO?B<#ifgeQY*lT3hN^pi3b+|^I=OmNLlVj{R@NhrE+C#DqZ+{ayyPNN92yA~%#I<$R1#}a3lWpXSNXF|+#EYr^jwErSb zqE~ZK9A3n!OCbgLi#T;sRA%hpgV@*; zh?AiLV`G=vRg+Sj#;y>dj$J|b79GmG6n7o+#FTRWNjk*Ll(GFsY*?hGI7K*20QEr` z;V>%ffw2gOnibh8PAgZ&o{*O-S4M-l$1XgwMrDGE(}jnWK^l}79+L14<`+3C-sX=< zDh>0GKC+t4x{E%ts>z{l;E$|o#OApuCWz!Kg6~`uM35rtTomX~hq2oPazvS|;&hvk zxD)d7HX)H9Xww8*xxM$DK-t~BI)SE}d(#98SFb!}#dicFdosE@f+q;p2^1Pt&WL>{ z&?tj6P$$qxXm%cGDHB(Goo5z63aHLQFy7D!74LWN1U3L#oshJD{hlaao~qvQpryGNx<&Xz}+E;?xf2F+y>i#z(1#nM7gX)I%DPz-&M$KsR*RR|$B zD$}3}O7tSr{y5~2YehDT@4A+yv#9G@$Y-$`zLL=5Z1~0# znprfOrL>s#^)ZzscOBn2G>9PoSL4t?hu&{;o+7Qq*LkwM7S(w|Vv8w$mJ`2k{G4We zHGZZk-{kQjt0eaqUytY6E$UPgfPlA*C0fulTjsYoC0gYC$=Az7i=4j*B>U3^Dyp6{ZL;F$1Yn(}4Fi|>@5QeM<4pK@MIQ+~)cSF0)at;$Z*>G=wtA5d<81XTAx5`)$cQmTlqnA-_jlijGRo*hl#y^W zqCBn-k9U84et{?EesVsa_=M>)=ST@kL@CKofj{lOeskDo?cSX}I~_ml&X2p}hClbV zzWqTQT@oqu9ri|!PL7I=9C1#H{bGOIts$|36n1sRB3O~=L2G!OvmkVI!?k!#orrJafWw;hU@K@r~Q$C5OXmNNti*y z01q_$lQ;IEOkntLOZ8v+VC?S<^c}(it^WLtTEP(`{KFh`vy@`9Eb6u29ng)y-KO4$ z-R3u@9>}t(hu}cH;rK($O~qw~U;I&#M5=nDHB7!avLpm}py6M=acW6hgnYm9u+;1l#ZfMd`M5tmviZf~Q|^a(vr)()&19D06k`^|sM5%B^VItDSBU(7@efQ9m*eJ~JHeO7 z%{d8z9ytKY+uZ$v!FJitbN&Qe?&mqto1k-x`$PYS5$OMb&_~V=b-57gh3Zz9Q({-VO%r~ivXCa>9J;T`bQnEyzQy{o zysdLN-zsHLkH{O-k`Oz@uEy!`fgcPlpa#kqQey%GY78HttS_(v!Ew;3b{yn)$F^LAOBRNWw^I-${5XU`R(_C_t7<WCWFvd*F{E%YK)|FP2T^o-oUNG{@We@?vYD6mk>Y-$aF42h3JPj zM~|EH>H6&c@e7(bh&$n~ZjJ%~06jb?ADGc>X$wAFZR5^cl!)pA(B>R<)Y7T<-ue>o}mdBV)Ryx($j3tivPn`XDC{ zzY#g{CbZQNISU84!}Ij(Ww)CAoI8r&Je>p(@ajCBsL+S0J@-3VC96m1^ z_!3tB1=R2(LhOIJ?!5N@ur2Z=X#C4{lQ4kQ|FA7mo_HAH@L}7TD?#HQwk3f>-FjJn z*e%hmfp4{2!;jdl{V)GrUhvfqJ{`Tg{e*|u5DA>1exDhN+Rri6ZA5P%@=x}x28gmscQWRKPp^(kj!DiF9eX?`Gj9k zq2X=l%csbk(dQ45>FDD#Wc}-mOzGkgGKcF7!Jh2SuQLP?`S(0<8G@B;Gc?K$FU|T%OZQlt9>(=_Qh($qg$Jw382Vd9Fk=dxEa4L(u_?Yz}SZUQ8hopGj0h2Xkt;~mOy0;1d19CPglvFqf%TYJVs@RwB#h{ z8EK^%P>Hl?`ZIWTc>8IoX@oyPrFeD#0iNBzj)`kk`TUf_bqwcDKFzOVI0-tm!QODi z{Iq`I>93wM3GpZ3ioF8}fNqEop%o-4vHg$dN;$J9;L1u#5CFGf=bzqp%AMRZLW~j! zy%HftGNaFg*PU|so<2kT+ddOO*v4q-?4DzE;!d!YF**YP(1s~oJ}u=rg{Oz5lqsB^ zl`>2z;Vq}7+=D+UrA#RSgv~w5=cGK{BY#XvagX?vlwsW|ACmF~ot}|WLDM5rHqhb; zDQD2}0Vy5y{Ct!VG{1-T1|5=b8la~H9MfTrxtMw#pl$BS%%_q8{0 zZ_n1C+x%FR4K%#cluv%npyNYPs*}(s(@db{BT>Gf(-ToDXnG*Z0=jq}$`y3>IFtrD zJPl=t{!$fl?joMiUzE^}{vsJhfBke3$k^g{4L`p+$g)~T)cRDF3^ZMP+F_>((}G@BMUQbtm0&h32>_7WWNp?JD}7Cu7|NJGU~>z5TY9G^CqVCT{&QH zJa4M7C-CXKsX~Le+s_V&M)>~WH>)Q(-{1J`fGUJ^NY4(al&HzT8W8*LVSn7NF8k+~ z!|ogA`yOjRRSM}M)_^LhwObDRhih#;bM2N)NT*veO4OwNzz*-xm&5wFTW$9c^vE|h zZ+u{y z3ZyT;D0Ha9XU!6I-VhgOn6i#gF#dFZI+XEn zZLa&%kqs)3Wv42I6cNi#l@yivY2VYTZKufWDX7V}RR;&38xcyXe#*UXq$O(JeoAv1 zt94doFn8lqnmt*hXL?Gr*8tV~$y+;i`?@~VXU+GE^(&J}>i%$~TUkR?`$un8Tk++m z#dJ;rN#VN@g;Oikwq4XSxyjFe{Ka|44-4Ko=rpq>5-n$YS5yew6Bcw#@qFk-<#ZcWh{9U z@^ob^2@vkM+rX}_IEnGtT9Zo<`=;9j2!MNFn?Q^YyY)li?;hI(!Jm+eZGs>|lMfsn zQ7gVV@HjdOj0vnbItsrc%64jI?n;o)DGumv%(p9;6WWw-S5VkS9z2`Drw_-Ghr9`I zedJBTO>V%$Sw}ZGHr?Q8bAzv5cV~Xq>F5R%^QIfj;=!&1XCmb1QeFhFnm^EJ3`!gS~9tS0*2+~6w zl$3O~*``>09A_KkO{nX$%_JO5-u{?KKA*y78n)5#pl}7Rs>9pdY;4^4F_FGBQYn2* zq~FBWC&l1!>=WeO?2}12^vS>_@PEepfb#239+$w0HGvhE!0C51ZTr=use66}XD{$x z%z^KKZhZBKb0(ze)g%5h0&RaifYaYW=#m`0Tmx?WdO%kgsgu4Q&~1Sl4(z*QS8xr_ z)gJQLclQL6refdSYh~}x{qZ;0pM|h)e-7uZR6V zr}OD}+OtL91HBYbM=z-c2Z?NU2a0Uq^|I@3wLb6GJb?6=^m+p8gQV9Awf%YjXtiK- zIi0WZFnM))SetGza#%9y|A+jrb+|biqWy^1G~{Z&dgD_?IbTvDJ>r%B zh!6)hGXzmfvGLfmVs-!~04;(dwX8eN0 z;6vF-etA}QdlaU4>LApGL|tfVvRu)lu1Kb%D2v9At6L{Eo6hdK-t zt0m=6=QGSmMXJ3=Ra8v~=^={MYLuwSz|K8udVvqKvZ3Iya~J#xzu378B7{D$g@~;% z9g_j~*g`Pw1Y2w=83}?ONbk?uoZ%9Bw_QE0UoYF!`Qd@7;E~?nkVOiK^!`QzRL?R& z?Or#B{dTwJ8&TK69Yv5b+5{EpP=}EagDL~>p4QK>_2!@VbqO(q0KzXr3_*qHEmPC} zvih)wK3Hw};gIXplnEg%w5chhL`?=ZanT!NQ=V1n8Z0Flq=(qV)xa3t>C5$Ivp(~v z+tr;&K*yZ|3_w4SP8s$7a(BGIKTqo;yf?|FDvxx^x){<#q*K;ut;6H}>tXZl$K&Pw z{)bE(*Wr-~=?ssI5;d_*wa^rnZcv2j;X2hu5u}AS)kZpNZ#=J|$Y^~$-HQ#8Yj0#i zI=zumT6+UljQ6Ln7wwHGqSG6Z4t20hxX0J$)#?5sR}R++H_0F^vMPm-=Pv^^oB|#L^UkuBOhNyDT3?y2y!Rr+WE)?06-hgqiWSQ zp65}-pMWdpQ31pl^vB)lc?Tszo7Ls8JHN0|>;YZyuR|9^=qdwyi5Mxyq5+29BV;N? zkOE>aQPK_0KV`!e?*otdrzV8-5Ho3w5;Ym9b$U6UHn6^5MKQ5Qty5x6s70+)`hC!I z;`2>+zdBvZb8rvODMi#hr=&w21}?43hIgwKd{}CK-94{XY$SMGTDQfKZsO9q-3Ij> zc)qF1{ubTl@44nt?qa%4q71st(4gN2ir6Z~frH)0BNRDo zt|w6t>`~9r6G(cBBDP*D?8$*7s~Ve^mjmC#dn8$Df=D}&WTjD~Rs;7wwdR-A4q_+1 zdGWaSX~-ho#Jx|W0jf7pNm}PnshIYtBy9;J1w|!ks|9NKr~RvUg@uUo)(&MwswC3w zJG_iYB}c{HwkoVIE7)xCyoiNnP7+0`^;d-e?H0E@pRO=-vUPnqx15Dp+>+pdhHr~q z;Oo*GsP#L-|Co*o#V(mR(y|}BWNpw(|N2eCZv(ZAP}2B#KE3il|8bc?n9Czgf4@5v z^G2xZ!1EK80sU}3Jy#YBkLM?v(nwA5{6w<}D)~0Qos_IB84LMsCT`eovo@&b+t&S= ziC8!mTK9u2(y+hohX$zL+t&SwL$Q1;G{Ht;q+oyDk1cL=)XE~Vq@%KBq(8wN4M-8%u9W^w-ZXCEbsLWaWBhQ}nxHqVaA*IBBb1B6pN#lymz}~DFAK7^kc5$%-S{iDKn-u{($xx{wK<5h>qWaXNHlh7Xod<8+<+$6_*`Bi{>$%t@>`$a zpI>|2CkjENmADEOM5u#lcA0d5>y%1g`OYp}5GkY1E}R;*8hFU#dfBbd8=juw@sJ1c zCCuU>k05l+c|OeVRaL9wJbXs*ultN3LhCj&VRjq*%-`oP)4zZEdYryoQNHzf+x@LB zgp`Q)w>l+i(%frQoBreae3WGbx9v4rVn~~~*J#nAKFx1w&W+cPJV3qeqm_{-A&noc zj6Wc(=G)*zxnF&|JD+$3bW7=nq^0o@i8he5p6JTpJ zgWY|9alhkT>#=?SPqLg?KTsH$t@&0C z*?3o5KyG_0M{p*H@vR*3^XQzi+w%)9mpKKP5dSZl*2{635ot6g4BBJs*+Xb09B*6=%G9qMuM0V$se z^13E`#RLiB09o_MAk0$N_5R4iuG@|b7+=B{j||w4!yP?Al(%6%9UWL}9UXp0tRs=w z?z%oK5a~>838Rd3W|4qzU`u*mizqy{q=7ME6kF2pD_U`2<9EM5iYq6VU>ms-KC$te z1rB!c>6^`oe`V#JN3cDyRl0ZMR{|7 z<{6|Oi!w4LaAHxO!~wE_`ET>I#Ne2?5;iga%>n`3z!Epn@_^x;!~8e1C3s?qBasGt z{)2bI5VrI+eABLeVDQe2cxI2s$RNICK{0rP&`}e@<84cHF|yUVcoJ#A$B)&0ToB)^ zYv8*KMuAZCegBcqEpGV2>{7VkB+_8NS2j1h;d^b^?{(OIM>zrd;6t_=zDXq5Z{T2V z^Mu6vEq@Ws?!so z;a5aCvMwK9p84j^BWT?qSHdUP9XaI)VY`q zxhiIx1P+6H<_~N+fqVX;3JwI0g1ataIpC^+LxE%9w(GAi{-a^yS_d}^1aJdU)^`60 zk0bhTk%%t=6j4?XI%vN=JjK8kVGqySB3H$JlRyABaB%|f2<>0s>CZFItnfH=ORNc| zxHw6_qa!vyM>8KMrUt7|nLTfN>%3%6c;j2=C4~v`@pOJ(9~MG9GjAa#@nGYDUEgG5 zp62k*Vb?daC6pqhC6Rz{AkvwM?jq!T$4N)hSApRwyl4f!SObT>nO*)Zgn7JUA> z1e2NGH}Jhje4`!xezA^5&W(Q*`C*~# z5x_8WCWvxf4nHH%k)Az2@L=4fXMw5GvnXzG{sU5Z`Ry_+X1;_^4hs?r5C;xMpf5K3 z?8aj&GjSz&;$UPJINY=RI>4!C!)1URv*(A=yiL$TcI-Qkpn76UhLb_{ED|g?62hGE zgy5WxL@Kf8VhpEy`e_W^u%`P`$Q6K?|g zZ+NbKF5C*2U$6MW4R(U0Far=IcbCh>VDMT34J-yE zkGt9{Wmjc)=X6zNO=VU0H1^gc+1c6I*+C|gE%$@$KFIV<`l3HV`ZHvv5Bf{w9_gML z9*>O3PA?D(Gje7sBi(=D;o;%o;o+%q$xD(a*v=&{*#?C@7Pnk$)N%82Glbi$I3sWe z=AtHUF&!hg`x%+L+<=}eS-tF%u4?AbVnDhQT5haXs4Y2L-=`aS0;;k>0-}V{-5?=5 zK$f$wgr+YEldR&}BUQrY?kf$$Y_ZAXCMB`mkBaSn{(#DbObJHdHM!)$GH!u3kvVyOV-(@mQSkT*%?VY||pa^{IYNzLuaoD;358~DVin58Eg zyIVt+=7Jl=Xj#IrW`rQm3M@hm6&wUajibSiGNE)rklka{zl<~YuDvuX8fWf3X@csU zx%bbnKGdGz~W9lGLlBF|s47)swgH2^zNW;Z0>|q}0GwG!GD4Hs5lFz4r-B-xNhVD4b3&8+6lY1siPqV+gfAvZ!=n+pC%S~u z3EeYOfS9o_qt<~#8jXFKpiXd|&7^38a?RK$&^z-0YK?t@Bu}uNeS&N=4tH}{+(dp5 zH$%uX1%57_hAA*q38iBST802F!xWgdZbFELDPY0`(J=-56o)>;3*qL{+-rCt9c9Al zcp=?m1ey_i?Ap6WQyRfXn>fLBf{%6!M4S;;=T}_78sR&OHsN)`cUA+0o3SXEH=Ikt z8jAwaC78~lz)S&R?v!fI<%UCTN&#U48Jbea7EpdCeYSRf2)_=A5<17PGwc9a#x@t5 z%89OGFOe!?bM2*J2;egIYY48Anb9W-`?Z!V!E^R&#Bu~ad6hv8A75q&;WO76a^)wp z9n|nW9gyEsoE90|$jFJE#@4JSO*oycS^qrObeG{HIu+C1(FygK+?=5=cTnw3 z#1T}6-jIz9eajN?Wmv?Edsp(_zs61%i4r!)A{us?$nGBk84!&iLw0~HV>!Mk)|cf{ z2Ea9zW1>s=oaLCA0>q5vm|DxTV2$ON2@^Q`-c+b zeg4jDP>{ejQzHW>|0;rP=|(h?m;%HMm)kyLx6isX?6yUlpgMNjYJd{W@W(FpP;*O| zZ4H0SP$h_tKh`n?a2bor#m(lWGiiTL6#TK4EWva99b%b{@7`hX0of=%WSNcc{$cO| z*(g3_nT@a9%0qai@ddI`e8>{;y^!8URq}-OuM~8z;^WmnlnIHz3NU44vsW)k8?BMe z4m3$xPBuF-%M_KIrYfRh6>~*p)GJ3+_YNScdofV~GZ0nAE(C%xv(vV2mAyb{>_U3d zG@i~bq<@ZBGeTbd3r^WAjgXg3obWm!FS`XI&Tv|*-TmsNOF3~hTm+&^I2~V$nPx+L z{L;-qAR^r;M8h;wM|by|-FAOfN|Y)(+L4avX!jgPJi|+x;Dsaff|`{qEYQa za5YXeI?9CAInn4IBhVZNM;6;sS+%bSn!9RWA*P&F`|1Fz_El`v24=aiHe#Ek;&*jH z8rSb?V>B5f_*fcfjS+mzM#ULHV3ns;kM(`Q#}Qu;SOKPtMIw+lt6}6szN};9`aIc; z_{-yU;N)8)ki~>)Ryy$)eu`4e2yQ%HKVFB*U~2?7EZT(C32s;o5N?JY4ujRO!yRRU z>e%7#F#^rl50cpO?#d+bE^HP#HE8G~iw`WYkW?2a_njLs2t)(l{kC#uT>gf)O>SX9U?PuVZ^m$J*q zQU8qiTDC3Dt*?lA(* zIH830(!;PHD>V!=LGSpa|deVf_S)KalD8&pv4-PD^Dw&;gq7V#d z$r47#&m)$AFJm*?HV#NrV>4?LC#=q9)^3qKujToW&b;PKB4=&Agu^HhWY)aqZ{XNQ zM`vCSetZWY((nP$ta*KaZ`uHe=)BJUrVSDaXrj)%X40{F&Che^^>VhTr01zJuMOGA zylz>-DChW8(&ni6RGbUw`cx(hFe4OxSua=hxm=YsLg7T0q~?UenJI`ZXK67I;mfyj zXjN3OBOOt}?m4Pp&JatCDnlIE_*~|0d@c{L@d277G1oX}Z+tEfu<-$!F<55flM!SI zRtC@rvM^x+=mc5#De74k$`#~f?5>43t%I^9979QLGf{>vbgQ70wF+EWGFw2Ik>0Xg zoi1cTuSR-{p-NJ8(py@Fnc(Vk=Tub%98!&dGYkP-hJUrJ&u4H8*SV9d;a_!>38b@c z>K^A#7XWI$P+~;Cba{aF5M*902n_{3z1M2u)$SiXxpEzIPP!SjqC19?= zkR2e)2!$`796(@C7?&$BUQ{k)W=&NLP}i#AEsS?H_=DA$+MDW3dBc~!1w^SYF!f`6?LI`lXY^l!=p zP_G$wAfpr^zXv%oAaZ$Jp;3y^p-RixXY;f=K`-M#_B&2c<9rBSGY%6iU}NwV&G z&W{mj#(~vpzudK7jB+mKYaCeF#0jo*U}d*J#2GQ4^(kEA7Gl-d6&k99(TVxA3;|rm z`J`zpFTkHDI2kQjg6Eu163Y?zx?edCL=oXtq5$S~$mYO=6CyjItpc(ZZHxrU*@AsfH>dZ0SZunV15^jFYQ% z+uAL(rEzlAlO~`}Qbhk8E#ergQYlrjvR=lp=I+R;a|ie^Ye$)+>MV@iV-#xE9Kz4O zA7Bn4+1MO1ECFAJhq0cU&(a^@Q@kDJm>`+)D4+)!af2lG-7@M&_NREMy{yuzanitq zNuJJ;7e7V4%n0XtXCWFfKqN}&oEV^C2gq_9Gaw>ux{70lR0*5wm>GtdT8M4oR* z4Tl^hWGF|b3qQv3%{U%jZ}9~u&a0w@L^z^_%ytaQM!yPW+x><=PUp@QgA&;0p{!4r zvtoTNqh=biWWr%t@>4{a5jf!Hv$;GC(b(ErvC`0-*AwgC~R?BvINrE zLJ&*9m*EYyjb}~yL`-!JZ>T3tI2~`Oe?CG%x5eTx3W|gYr!$QZr(v6~pxE3Ub}a=Z z+JrTrpv)ZLW>`?_oeX_y&3b^sG0(72O|Ua_)+4b43KeM&3e_+Np=RuQ>+5pe%%pFm zv1KE=1k>5|GSj?q-<&Si-n7>kcP1R3O#Bq5e1`u9&83;w@ZXRqp>zBb59hU#g;6| z&T$rrWv0$S@i%>)1ELX~Lw1?S>iLB}G9Vg3hU@@YM&xNzFK_(pL5;0+N0~4>A-wK! z?zFA1os0>UX^T_|pgV01Ly%&Im%7>3huNDlVS?y*sr(d0nBk>z^Fw&47Hz`nxc*iH zgqve-K&S`Un<9|Tm3GZd%M$Qq>`hxjo|C1qH|hDbnYh-WAPe;sp=+{B^rVOQ@P=Q&`%t5Fb zISiYo+%M{xU+YvOhruRJTHxd`*ey`N8R@c{MtW=-`Ncq!@Hy$S$P8d*m`@OURmelc z69sRrB}?EO^GPi8W)FOAZC0+GU4n*5V#0*cSu^=*t`vReNJWbF#R^x7-L;C0MQB^i z=f$p?J(eS_u?Y2~Ns`VY)IUdAj=*|zIIK63qix0ttO09=8QRwMt_gkeUc(I8#7VY} z8M0f9M=Za3uZ);Kdml$^zI#7T#xfSEjF>;F8AoistvL>{EQPF$m@NS~cFT(=eKbVkNMzZU+yhDOG}$AR!W8UJ20>_EnM>Du?G)VpxL zHNHzHs1tDKyL6(-D5=}^>20Oale)!WNa|LzQKm3ZMo@2>ieiGnY1)?*%=i>wJ51f> zb6egTp8}NRN!ZS(0A(ALbUtpr=zSpE@|JlRH$wp28Fxb3&ca8==NIMaja+>+uCqAw zN#f3R7N-%4d^B{q4CzDXm1q#US&YU&4@^x}=wf!pp!X9rdnK~JN^k4Bo=vnk4B14h z8LCajvB$RFuVsdhM*P%JC7@3Hv}Fk3GWM#?VZKP!k|lV~E{j+KzKke&*idLh$vet~ z(utCHk8zYo0F`Dz6DS*m2vB1R@_+`6fD%wK{e7VQ#Lozt+cV9c@)|Koi#83v6F##V zpaSH~q>E~PA>&ae3Q?cNkd4fwmL=fJ$e3uVxkRUNE{sG8o0BnN*ySQy%VS|3WL-kD zhYZ*OvJBJRRO`jL*gR;MZbOx%=9uo5A%M%sC2CgHcI}h|)5s+vx&+Y4C1R!kG2`%q zT1&mth%_=`0_j8=`6-TajvxaSXH*2)(v1j`m;%Hc>XUxpU$ibFU@hAN?Rw6JBEH@>?|zo?B`!)S?L*%Zy#bb$#}+P)QA69f=Y|$5%J(^2B+)tAW5}?M~Xs8lA$11f90bE9LWao2+8pV;jFBv-ZuYna{%2=;&UJ6t<*I2Ka zFp16Cqw!NjnIk!wK&K+PdxXrDocY8^j^yqgN^(RvA~|LYlFNwq-P{Y6uh)q8b(9IG z6YuLD=MJ&lFQ^PL?-JZ0HhY7dAr5_TN@a2o;m8m(+sq*jer`-SPBXW?%d0=QQO3TW<%U32_;y>4LhvU_K}+3$W;Y}eIV zMwS0&%Dyhjf?yv}3C(Cb)W{)QNH1O$TS#klqL7npp+lJPvZLTUMU+Fw#ZL3%dA+Q+ z)yHyYHR-rG#({8i;!>;`cHoC;Rbeqh2l%hT-~L+#U17o&59-9Xq_PAWVmE#~q8n%1 zdIiZI^|EX(rDOiDHG3l1P-k93 z8e{12y9Jv?DPx(chK@N^Il#&%oFoB1b`Ee?|>$J(O2f0i=&GbqXoHF;$UxSG$L+@I#)T^77a06!Ta00%sXBe~4GB8ABj813oH ze3TD$Q!Mk*#yG-%F?NKzE*-CzOZgRsh5C?6X4JXw4~?OGV`2|C%Ub$0hwLFT8`nbv z?>46B{l%jB5N;0E0p-*;MGiOWW>mChh@D?R@J7Tl&@e;7~#eLa`Va`arjfj#`Iu__=*9M5Lwo&8#_^N$ZN4`4|WcxjXb5UN6-A+5ZW zU${JYpAE}f^tpu!eSTx&IB#Id-^+-}<)H_<}dPF zO}e`OMt$t_K#)`(3~53hC6v?$I+EILYp8==K!`>-g;$@FjC%GYoj)Hhot}oaTz2)& z*(QCeaxv^D%BAgslD@!q2kNGTuiE`~^hL10rCbCJEq!64za@PU>?g`aRbRHW6wS7< z7Jd5mMXb8cR$*NquzzOiM2RUZ@)WaO|9nGv9~64EE-%`9ki2HNP{~3 za%P7GVCeko(>m|R6siMv+zu$bnBVCxnlQ1$?cV&K{`1fM&gbwy`zq9-du|65M)bUk zCcHmos6%^jyYu^l4tsz*>HVMOsz87QPX5=X3B`>dz(tVVruowsUtHAlhPDCq_8kA& z4p}li!QC!c#tIz#K74RDzvC1;7=7krvv#i4=|_qsGaB8&GavcJA)p{n>hoX-DEK0Fd;E;u zUzRs-KYADle;i=O3T9a|R=j~d93A2QNRUW|JoF>nX#gaN!3cMn3Q8xrSQN|hDO`pv zx99a$xs}OP({tGz>eMfh%jPse&_h=YOnOkU++4_1{z>JNdzu80Z$9)75LPl#%E%E8 zM#XmRWb%5>WC@%|l;UTIZ>T0i+Y=mTz&E>Wik18f;-q>30pf&}>jeZ_AmX7*8}!Qg zvXUn(lP+yoL)PhNRxocnQNETgVNB21KG8hR94o9g`cK)4G{oEbBVp&rRRxNa6%mY;cyDcz1@ZwM>%p&mOG(phmjR$8#$$Me}6(#)HTbOu6x3mVht4 zkK69Sv)Zoq>yMp6S_=C(n>Hbp`#8G+iZkuu@3-<+oq~rCBnh1K@R1c@N?Rgmcu#(v zPQelxqJ&FYqLy6_vU#zeU&w3t(~-4AL&%67AbUP_!siyxerNKG0E&d^5A0JqWR#;= z&`u8Fbj3oFA;mJR08?_)gAHeJhPs0aB5;{T4&?Mrk4v7gicOE(24$HHX246$lYOz( z-cNRP390ZJyN3udX_n{JcD^b#zuRY`0!)?w3bV}55MMGRiH)0`Ts5YLB#A1a6Cp`v zmrSj&ZhP!ovbd9F zjgRNsx`BYysh9`Ti#vr_P+vrGr%*fWL-OXd{UT&@mh&A%*3P!&6VZ|BH>aa~s5j!~ zbhI&cDH&$7-(D5l^J*<8{`4?gfCF_yM5zMJumi7-nKLz98HR5tg8>i&^53Y=mYxZ9 zt0v#GBI!js9y zoXHYEVa)j%j%<$d)oZk_0-%xzk#1CkhABY&R%&}Ki>JLcS$1ax>G$kS^BGDjIhtp) zdR<-@GMGPoG?{E@H2E3gOKxt?AnSh7q{CSI=ZH0V#CqmlpPqgah9n7_IAS%d z08{d~@XSeRpMG2j6bX?yE<{EEDCujREvs|z5rxH@?rRZM0w#PdW(eStxn*bdauGQC zot}Ww6DEiv0i}P6B1{`XKKC)4LHktKv;Swn<|CE!c$P|vnixq!s7{$SA#U{2qm zdh`jg*r9rjP_#*3%a2@4_q7a7f+&2gmRXKoo)`P3xwzRl^JcnU_Jj$b(98ZQ3NN{? znC9^9i`nHuu7J~RwN09kigm?)j#!iRvh5e3$^d-q)-Ad>yZ2cZ}BvV#q=8_6q` z;?4d`7_&3DTjEsFo_?irm>G3UT!J2cWBfpsSR4&%oQu^%d7zj_a-g^&cH>V|K9`UL zmUcbITJ1APj1ztNZzo&vI3w!NcWi$w-Wq%L)7$rIc2A~Y%n#Tx;6;7=US8i29CYtz zx9lDZO^n?1lEh3F&F68iBK$LTQIsU+XOUN?Xr^n!52l&e+l$?531Os+(L-1;bjhfh zBbh7629qCEn;z*8v7nxas9C5T_91yTFJ6SNhHRX&7Sqq>101La;%q+93_CDxk!`aJ zoI-8NwwrlSC*q4NH^gov{aMldb$KRZBGdg@k3PW{{;bysp(hg|#apiaOizS#$rEsq z2A3P#kSxNQ}!Z_%p~J|+#N z0j{gX?n11H+P$(FrF&(!#$Ju{WtwUUB`RPK8yYTUU&iG{eT(}t?hDwxaSI}Zf1zBE zJULcg5QznKCcYpt6zD@T@PVH=@(x2zrhAq|mavMzN5>NICBsLi@orl>_kk6*>4?w} zCX8~M-aSQ4$dRHS=1`HM9qDkT*abV1N5~+>i(+{O4i6k6I|ZSqA0a!`NuJ^e*=d48 zP2L8=cQ8J4S}z^Q({BR_+5}kK1`-VrZt|=G-l*1BW@#2Sd-_?0MVX+AvkL2RF3_MN zr~qZk5up4SfhObH&@nG2J3X#VR0*JnYcoRtmpo{Mwi~!rvXgnS(+?Uux&%<1a(53= ze#yg=^U}F&KK<|nNfIz|cw$%qrexZ}d36d=8Zkkpr!BNZ371G)Aa+^WRxLef3fk6E z4Qd-P1aRpfx_3WFA&8DN378C`8)g72z3#zRTg&b4V=oS$#HhkL?uJJxQI=%5_gR$(y$BT`PrY3nU4ioVLg+YoPb5({ee}&XGGOvcZ97 zmLu@VGtiUiir8Y{dtg!#=~>=V_A%@UojZsM#-*i7(vwRWF$CcyeQb0M4{}7?6DEkl z$L^n^2$TL5Hs=M}KKz{Swpf%2r|_?=#|SieW{2%NKgUKo{mjlLO;E*|o&7v(UgHa% zk99J6-Y{9hDCP}6Lww0~@8SUKo}o#|#Jblq16WDt&+JP)_iDQH*U=?-!ujhSqU3TQ zHs!o^(5qkn-`ftjQ7F&Yeu2985Nf4-yj)U(#*^ zAxt`SQ`e`*MtZ`8QP}PNX*S9VzFEGNUcU~?mT(Luu?1Nsle(%W(s!7i)CCj?mq_YD zMgS^c+Biwl9B^8XYAxhY!5pLOK4(PRvG^-5gbsZT{ zU)kuQzU3A?}tqfM zCBo5$Ri?CVoM5zyw18+tTF4HNCAV$Z1*{=(>f}~U-?mwl38UDyS&tED(s^E1>n&tV z!{LZfy6MhyPnci|=ed81D3ksl#8D5CSixiop|IZkEEk`jQE@We)KH>E1YgTCYn1DA zwxPDsRv6`uaB!5nrzpkrx>BEeL1=|_rKL*vNVG~=VmKnfG`dwJ1{raNXt;-u3 zKA7%z*`x`i@Vo5iI6sn^P^$vmnYKK(6G)hz2_lGt>?RoOCkiMQ_V6-N~>h6Jp_H zSdS5C(sr(@a(Suk)wV**6ty2_a`u5ppK!C;e*>8nH zOJJNFXF6!v)*X~He{dDinW z8h^29ZK&`B)ut&^AJBMif}nF9hl>S#Wdo|fE=y@8)f@+l0YMKr4pu8fpS({^)5Lmh z)<~Ce`mNX?59))sPaSMHM$7$lNi{9EvnE4Y-X%}wn#gKVLh@-1$6psxW7JHf&4I)n zGLd#O6n66RIt`PR2V&dC>6h0%`UGBFUiTUy^yKYn@2y!=7Ldc>>`12HGmbN&&WPL7 z@z&U@WaW8&J&c^!RhFew1WnxYlQMn zhpt;62y!;uugfZgu5H=`S%$9d2BXx2GdK>T(?oqprx^gqICnu6=^Qq2wFTAYK;T0Q zs@)8wo~z&1*{}^?O}~5k1Nz-JLg=}&7e_iacs1GE90p`>H^UC(y6+U(pI44Erslp| z3FEzBOy6jX!qlfwxOfepn_o9xo{E~nI7|i<#%YN?$=&8aY4$Bv?`#7p(D;EP8EH{FlkxdbM?z;Zeq-!XZlrEgLmkgk_`=*4 zJ~$;uLoHG#c~DnEkviFMj5@)LxLg!FdACnZotXN7I&l*OolF)bd%JC9IlAeYW<6no zDw0L}r-(B5)Xr2|D0WboWDcgs{SJ-V(S^r`dJsCb^V*J)dQ)oW_mNzI@PO2jEl52# zq}Y_}E|xfJmi5Lt2T%(s1{hHH2TPR%;-aV>EEes zF(Dm%RSb>3VGUSwtuGQht(|JaYSx#j6XKBd7N&``Lg>+}|so&ohBxS;f{Zlg$mUM8!n zD-v?ZP$UE77UFmB)~kyj7-WbaVF3Ep~6p@??lWxp-u#8j3&kWb1UA&i-t zuF2M$n!T+KPE9h>xylXA1DEC01l*Ay5OCLKjAC3@P@QaBeJmGtHQXKf0o+}iF^ci= zs@MoSqNW%~nb3w5!!QO7&OLn%RJK(+eHHa>L#MBOmD}`MxL?9iNWFq%18uqXl!J2Z zAEN@KtunT6;PZ(k+&U>X7f?7@dPfRYIlzLTORF4chkZzIaPY-;zLvATaH*Xcqj3Be zWJ3Lr8=PQE>`8jBX}`KQC$U0(6t)OH2kL{|Yx>Qw1L@>g`#pKPR3SN55GU9&Iaahl z#L03HtE*-KB`$=R74DC>R0*TJKTZq*T(Tm`y0|Q$B#GRtpG>|A#$*Yes7S)kPazb{~FA=vy37fcbP3!pComskaggh`ZGMMeN9x#@tfDdYELu#Pi) z9RR;fF2pu{)8R89xFUApw?g#E^Kkn$OdyBP&+O&#{`B+kAP?$;I1djt#BOA0g`DUb zTES%s9j!1$3X^xn*Yl_Mg&s`5Gma!lYN9fLVFf};p1-#rLh=fZPd|U}2@^hX{@y>u zp-fB8twf_BIUpI79J0!ioLRAPV=l&2L2@18pyaxzh%y-nL%)K{f(x9}17S94LMj4b z_H)FV41~EkRJKnyJrL$lC&VHU<}^XjN$0` z&URam@Zw1dPurX69k>~IRYQTn(lM7LmplO%L0Pv=-eg)9>-nWnScS=Ch!RFQnOb%r(PZVCjd##Gy>gAANw`Gi znwA;BN^WqSBuslfn!dr6#0jX_;K~*_#K{dVywX4}u^8j&8(gAF7{vyc83MTEu87*2 zQ+2rO=Xy@lcSSw}f-H7LeyhA$UtgEo*`k6^4a3Kx=Gsx;jYFQ0%USQVLEPzu0AE@b zGFR_p`a(ry38!2Lm?hv#dZ?!3P#P88MWMITJye@C;S?UK{TyYPtV(WP@PJOQO5V{W zl%gtm_b_j`H}m<-O=D9SZXz2TZf2P!LTrqQ`eLjVM96f5BIJj8BHY%e9zq2X64{^# znI(uYxo3Z}njgOn*LEB`KYi!f6DEve&)z>pDgG!`>8fvjd{)5OJKWN_F1GRn`|l>3 zp$Hek|GZu2D$*1?lZ@3{@4_V!$lTt_fY|g{eSiaXLd5C=&9DPWciVao?q@8VIPP?J z+oMn5g}d!FLg-0%+kUHTN@+NzyW1{#0xlL_w+-S>x;yyNyRb`Gzm2ir`TkV84Ab2m zp8;VP?vCFI(f=%G`bzZiX{#-ao>6T=DGNa!)DMxe5NwFuNG3kwo3P-#u|BVyPj*dDd=#_^wn%&w4G?bDEbrjP?U&9h z4>O{Uc(Xj*I(t_1uLtM2&aCj6#Ab!x5_^)&_Y@-<^3SH{dxlt0FGRj)s2%npEArBJ zAHFK)1ORj*FAfLlffspknqdc$F=Oocqx!U#xxv!|o*i8RD`LjoLxh+WVKESo-+S#} zJ$&aqu@TXUu-N1Yuoq#m+aT_&^{ag;8e!C#sXi0xgSUS9EwLwAo5A+gpuN%A3`z#n z18*}ZTaDD8fCr(eKP~xT{UHeB^rwAkc3L#0OwrTSADhXr{@5*X1hO_j?ZEjKQfC8X zQ77!)2FPlX4I0w1=i71vi3##kpgN!}>M_t(69k=Q&dn7HVI+0TxuHuyJ#*eN%~k9D z25LZ+a9kZ0uZ~*#Ok!&7w?ttl(;09cfI$?Zo}SJ?R0*p{XJCc^E@`uAlHw(ra%r-G z1kUL;+h;(Kh0XR`p=guG?(~}fJ=y8U?lx&cERNmn=ZH0#!T>M$CCyGIM@5({VH7D0 z{45(^vv)pAq=OI1#_$=IdGfnimesi|v8I8qB^$;^ECF9K{c8(mN>1|W>0gE>Art9e zEi-_X+>LL`d9?{9Pfy>C3)%!z?8ZfdJY!id&$i_gVT2TnWlNPHN@Gb3L6*r3e)wp* zJpP=X!H*;fmbm+1SY?gx)oc!*AFS5<+PUANFupeJ;P~1NaD0=yovr=G@eDqi2r<=} z81CuIdYB1yKfDET|JAG8Afe3oSaUWCygh2tP0XnqU5g5{`m$|Gp&Rm&o+R|EwHXQZ9Qc+B?7x!JF6 zXPF80W5CXG%UjHlsyVEk1^Ve3f*{5lC`b=>R|#!JYFVTeiJ;u74;yEtJ3t?RMOGgW z3iKfvewPLTI`1ga^zeIt1NA_J-viCC1Lv{+$RMpn1_q44NPpY4LfW2E zZ-NH=ZL&XOp*!E=QHQ=^u@6B95FqvB>A1956!gN<%5oz-{d7Feh;&Gtj>lVLuSO2Y z_Dbf#YYzy}r#=h}2!a6U$zx90b7vu&eoW<(C*b0k(`|#eN3Ox9IJZ~>wAbLa{P)Ff zwfxN|18Z;#WW3I}m0Y!T2I!}C20;Myk^B8-zuCaOdm(-8{XX%aE)4AV8O-<*fLv11 z1?>?4`soos5CA<{U;(B~dy3`Q&FKXeEXo8|6j-nxBhZ|f3Ih#C=T!V0j|D+@{T#0y z_91zWZ1wrr-EmDnl69yPa&eCAG(pfg_Oa`2C?cm~A6*Uv-nEZzGweW)ciF#Z$Kw9! zxzGL1=kUMB|Ih#XJD>YR#m#g$Q9sdPZq~Akd?$HX_UuRhvG@GZy`3b%32=HyHsJFi1_= zwiPN&jyG=;cYIfQ%)MyY!sl%tH^4&=nqn^vQB#tY);>Wme_iRugoa7MXhu7%OH>%Do2+I0i~6LcJC zCvc+-x(nOHLAODh?}#s>n=&+Bydr8Nwz>Sk6K6l0FCZCYKLc{>u49888uDa(2TBz^nsbEhEP~$)RvFq zAhxfryXBK1ndp{}fs8edZa79)>U}UKDs>9Qq;p2EW*3mDS3~i5?NUuJ=Q`3fCuPp4 z^&DqpPT;O57)+K@3EcTS2)!G)^BZC}a=hIBO*bN=;;{(w1m5*nL>t7NvzzW;3I%0U zcGDgU!tVydymr`!93x}BXvbyRaEywPaXC;ATqEN)8?QWWf|RoI^!ZV7<)QSboRhP@ zzwzuSm6NjwBN_(xLX<1OllXGvX@b1r#xQhOj&uX*jZe8ICwVBg?4R@vc2yOPTbxj1emWQaXSGt zZQNZ1Z2)&0LQB@36I;1x3~hQHttcO|JEHbnwDI_%aKmWIL(#|4;zL1!w4B&ZZ*85` zN+rr*Qzx;zQ3ksS3VYlt>j%@6S6Mrn7GGt%aN4+8>&DZRRizK8#Z`qOYU4KS9LciX zOXUr_jH$&p>~H;FYg-enN>E8SK& zUz7G8zwNuM*5}6$O|gMp`P#B7nqO??R|uxt`zW7~y^l7=F8wrBnlJkHv1|P2lW(C9 z@}jPN&o0h4_yTtCuWsKxsICN>i1ndoX!2yH^5%ejbs1B~U(M^d`!-4;c?r*x<6HY` zQGQgME@ii;U&0&UMEw+(@CKS=$C9O+2i`y4IDX{x(#;8O)Im|YIq}NmPP&uyu$}B3 zw(L%l|Mu?aiQ22^v8VI)V!hR$sspTPjDI{hSqI+70Z-Pl?Ud$ZzbfI5f3bXL4c}sE z%D3TjOqFA*rq{Afv7rY{*`%aG=YJ>`X{_Dv@J-FmuAAZaT5U-391Ve`Yzkcife^4)P+7Bp*8%@>Wy54i7UcZ>t>;5$y z@V68?>|M}VeJY)XBoylS%Og8(07K{B)98HI3u-n1oF1RcIr=tt~ z;y+p!X#KyvF5%MUT2 z{)k}Bk~URGk@g|5%H#nt>q4kRFWJA(s+LDwz+{ zxop2U`NfB?oxI_lGEC2h39+DFihP(*JM2R;X|sWE6O_dczdj6Ca4P3qdwSBQN1xD( zq)o38LVrG~sHMDN_Re&zD^~>X4}=N z)%mKJFRP6Z<@ArebaV-&_}EMLFmJ3c%jMF!j;S!#E!E&y6GM<+vg&_xSzZg#O|SZo zBng(N`fpePrtc>$3lNwW`}u_|+y23H1Je;Ed|wfErhAIRn*8Jmc4rOyJt4gl6^uxh z5Q2|xLOX!5%?j9nu}>ABPz15I?p1IcofhS6tSlqRK)&q-lR6|tF@G%!lY)p1X8ZZ{171~1IasXJv-ad zwJI6+njT0Fu^`|gkQ{0^Ld@`)TcHhFVg|Z#F(cF6Z}xXGytDmfc{96kHvI}9nQjmy zKSVjE=M}bwXx-^To?I);tDZ8!lm@lKV9xe@*8#aes@gj|#-@>?PLn z+GbhH)28X?dI1iEU!3a&nqdc$?%&ORSvJ+m(dy~$Uq_d~3iq#jh!B(h%Ey&cWMjI& zf+Pu;@K+2gz?3wo*bq(z#Huvipb}L=CJZVw%o5nDkZ~pjfdR>&z>pPSN*<(qZ1UEG zyrv(dv_uJ)I7lIOfb0+YBOZurmGZpsha;9~^EUDN7mw!E2RBEreee!;{);w?T?ysf zo$?t!8O4Su5UcOJ17A!>l5jWS2ucYZz5noy=7_Gt;KfJ7?t6&i%M!M^c z(I70}LM-i1h{ggz?F@|HwP47=`~5N8YhwEBJL}DUXS!bRclcN4TN`$^^y}kQv0E0W zLeEA?pD7UY@4oliNAJG&;Q#tRkIo?9^JouQpHk8VzEdOzGn=oH#<~tv*+k_!w{#%b1^W>VpGg7 zg|0ljHJp|h0ebe`*FJdd^`BdUNwsG>xX9Vutmro+JYz{ONcR3faBXE1M@pn)w8;FisoWWUl{=i zUnYS){~r7ulR?*Iy>E^nWori$u~T_$X;^>0XT4rjtHMc*`q2pP^gaQ&_uhWFtAHfl zP^-b992x3In{7QWn+8e*vMr$Z44mKV;nWM65%=;4DDW=9`2PEtvvzI(aA@Xe3(F2- z=vM)F!SMfr#ecJ_R**3!M&rk0Ko9{!a{PY#?|v=Z*7Xi7GxWa~MoljnG~f2ouqonp z0^QrUK}QCO2@=|8S_^cTVonJ`v{pM|8 z333GLS^DwLs)RvZ{Ph3(@BbIW4gNIpvMv&YVclIwWMeK8L@5%u=OW;MC*!j=3lVD7 z=JrR@agv1an=ypIl_6SNE{~ousa3tbYiex?%^S1jO3)>+FZf_3e@1M@K0M0X@(M!l ziy7<@;S#v?p2x&KQiKWfAN!aI!4V-~(4m=4FW(J;z17Ti2olI|_#ho{q1g?29mX2o zJv}>@bLdvHTaY7Q&+?Df^nUQ>TaQ>~mM7GW2fuQ6F8$RpZbyh1L3)PiTaaFVivfiO zkzcqwuTSA{S4@&y4WdJk2a$iafxZ9W*YCcT1#VHFFH0%0Y2aFd1K`>QS>TqaVsaBS z4O~l*z=gxqu>*Wg(BD#>4}Lh!V_i2VkBU&UfDf){Hc? zqVSt{*X8xDUOO{mOf)5gvn5F=kC>OGh9`#W-OOpSsjtCHRh%X*!2wPDz;I*%TKV^W zZ<}TFM8=}Vq4ST;36^>zNu8qkkU zUS~{JWYO;(B;hr?Iqa)<(s3UXSsbKF7@rSdG`zv)B69{iIE&2-<GRBZk$XYXN zpjvRTy?a{kA)+dc_^o`x2w}qe$IfGGVi5ucZJpD4)1U(ln=W}qb24S-3$m^r&_f$A za%Z@qor2TXyXQ5mmGYe7Ry&0-T>|`q^V9;|@@K@)1}y56VsrOCh+9mp*KQ+IrbMW| z`($4%Fz`K}L3T)WzJ@@^&Vq(a8Q9k&z|M*%0@q*O78ejASl>y&f|iUbv<<+J#a)Qw zL$-@^=yt1ZfFMT*pT!?7K{2-^tkZ3M1KK99mE0Z{lZ(LO$GNcXi;;5pT`wT0z zX);n@oHY;|6rgUkX|jkBq^~;zxH!9utQb)!NYfIjigS{xfOV@NjZ2ZRJ?CQUc{09` z+hC}bPv;P5UZ1b3r||y*;;r0<08v8uEeECK%s{PUif+9yG%s#Wr3W_Vn8GJTpuXyW zLM{v?s$~Jc<@Q=8+?8h>IB6%v$OeKRc-`6`!dvZ&Jdz}QJ|Nv;rOt=mJ#{C7_m)| zWC+W5e`Tmz2>^6-En6E%wm9InY9n3BQQ|PK6NKj;nSZq>{cvE+hsBNg*%Lb!w; zqK#Y#MhQcZAtXO~9dZotxVT&#wcL*k7w=5HeRxbD3`8sCfS!UU;O5qhNjVTy2;iSQ zYDLvL8E&SHc*B6Q9B}dQxVc(1cZ;o;Rx-u`k5VMC&mfaKO}&J#HR1Vf%Z}&PFtlZT zx^be}6QQ*fBhcE149yCA1^Ngl-=5gUc$9IH1n%pO+=wBgv(h+#)DDXE2tzq0jf37N zzOO!N$)Q@++iG{QYD_ZQqSzHj5NzGgcYBx|*7QW?M$aq zL23l<_dhf|j+h4s!B$~F-Wo0FGo7?qg2?XMErmFdQbdlhu_7Fh{#4^#Pt=+ zX)(lCrk_H4{(OwfVi6&5fBp!5^G6QVXH`HcyTwtl-4-{!nX*V2j8+w4?RiJ2Q{{}tT9FAK-byPGk5<}G6Udmpw$j!tSQ zh=3CsQXty~FCE`|>G&nl&zuxU`(B_LJ!ZJ6T^r}PnC_WB6Fr8rLL;|~LUgx`ia zzB;9k@UquO_$|e8LLXlZ^bvj==J=y2eT0|2KEiJ)juZO$qd*_ww_%Pyp3+Bn+3O?x zmf|>}k3SCd5q=xy_>(DpgqOWO!fz>#6Z-g*Kp){ZpCepwU{}Re)tn0s*1OchXV}XL zDym>7`!|jqFUA(TRPW?6HI5yxQWm?wB4zc?ofBi&^;4o_7n~6mJ6Ao&u{iR)d_uxBRb8=j=9*ejbq2%v)HA2 zcU#+X5By)pwwRy%;S;@kc|z}AcJ=fA@ymnk+)d0FVfK5NPMEgI@02=W1~*Dp?_gVVYhm`=B#Yhf z*twgeF}>^eNFBT27Rl-zY-n!XyMBXYu}k&t_L})a->Se*gR1hwyS8hLc{rKl2?1EtdYwT{n?YejDZM)1*gS~?t{H=S}M+Caw z4F?1e&g~Z1deKkbk#d{Bh$kTac5h?`b z^Y`vPJTf&G+R8p~;Rl5OLhz-NhmZqtj-SJX%F)gzangBEIV1_xyQZv6TYeFZ3nGxE51bgv&XxnZF-ZuBzXJ&*d(bx-+eSM zpc4NUQWOH6xq}_R-_1P!lc1c+r;s(oBQ%41rC92s5t@*$I6Hze0sqDuHs7ONwP_Q> zpfJz5w+Yvg?|vH(KeVtO2iDr zd9$upux?3s>93NGAx$8^^#OdYtc04gu#EM5O_rSn`d{{xWm&p=Bg_p~rTfC0SP$-< z_c{BdYKzhJt92kvb;N4jzRimAZd(EFwP*#netim+pc=70X;h&4d?#nVydtJjI_b`P zpXKnrUH^&J7Up5*cQ5`n&ss1ZA%4ozZo}e7kJ`NQ54^ftZ8OJ10EflP9vv|P^g4C9 zOCEKzMPZKF38kD}-tzVk`Kgbi5RK1#>>U|DQ*DGJ)8>J-!|=67kbq?})H?UfJT{$u zrqdbo+ly@;-yRCL2^IKR{!Dl2(15(qCh;NVqYe-xJ7W6m7Czu)(q?g$|7H}?tXOU? zWL=wdierKrq5HyXNLqkFEJp)xug{m2bfVLFs3~%U=8LZx;vSrD4ZOddLt#6410r29 zBuS3|ed)E9yoczyIEB-4C&wy%`*N5VVfp+6AnXBoe)!!De7a5wC!M~ZL6IPR)j;|H zd3eCSJwRq#EFe!*x_Ie&LurBp>&p*_fd^`6*!J74nEI234TyEa27mW}3{0?7Xn#*e zC8kWUmK=fk;sZl`44gor{V8x-at!Bn^Br&x&Nt#iJ-?{LD7}7r13d#;1mq82zo|Izf|CZxkn0A?{A&!H#d!gB`NcR* zfzy&BIL|z+_m~O)7P9a_4OpE8ef31ZnqqaBAOU-pfc>idETac)V9J+UC>krv8%&W` zOOA){4MW_6GvIFcpAwzoZWw9==4)@@S4!b-G;H%cL<3`IXh4}UwXtJ@gzGsQ7gj6t zE%v}dYlxwC33yW$+KwXO`*x2HzHW0AQ?X~`cJoYNOW#fzphTFy{-&uhe{=_Ke7yNR zZ#4gSfC9MX=lgP5ok`aueFZv;CgHpLX3OU2UEp(c=RvhypBDSo-A4r$q1rY+;%386EG+PCeB}=rkFTGjWB&7yf6)n;d!xdnv0u_ zQ?_8r81^Iy)wkY4CP!~0m-DiQV$KjV95a-74&i-addg5TK?3-~TkSasRR3Na_14Z` zC58lv7U-}4#Zr4ZD3+R=Y0*FC{0@lpR-Yh74my=`vmBq zG|1VK43bzm(zWEW>4qfwHt@a6meAAB?+(*OuNASLB!;36913n@UgL7&3!}3#n#ExPJ;0K16H^>8fkn;+@6{8o|YsnF` zFTQ1ndvJyghClMr^KW#A`y<48`?!vX|Yk+yjT(ZXM@cY#f#L-~4f?iz2drX6uaW4h%9Q%5U zz@vXldzK%d$9qw3?|xKmHsx;D{NU&#u-ixPz@l$0rv4ZVtoyiFDLcVENg9W*;>r~9 zfcsNd&zVL#Z0Ce3k2rN5BuenUj_~3O=YS3%LeFeY(E%oC3vRr<1b;YCBx{Pj>?jhj z=d88+k*UWu#y*+#+YNF}5gQXEbnp=~Sg?&z8XM>`l)&2;`ZgIF5F}{F1{(MhG^%&_ z-|SnAn!JD(LnnKuBK;Jny(dYCA;pM<8H=0@tlabwSLgExQ#7%oNbtV;SM7IVj~+en zR4@aW{M4}qu)PQD7ap*I&GjV|DwdI*DVu9UjR1Y&=Z}E&I4rwsnY=L#3sCE^z&|`J z0|R#1zze648z5%plmY7~5~i>G{1LJ6a1A)l@L9BF;e0-QisMZ52-9D_+mb)JLjiJY zcmIQ<2NiyD5)vfsO}}qI`urhpH6(6O^804h#x;a^N8}G>kfuI;^R{A1 z3izbs50Qet+?2JI2@o#FI0NhY zdj3=|Ed+@Xpyw_5K(+|43ZtO8Mr(@8ftH$}eUYrH>-`MGMDT6cqWR(PDKQb7C_#IH zpqb6zQ0RNWLpCPqrNR1IqZzDSJlef~rEyC=GVN!paFYF=&Ucxy}y>y$}q6D45J zJhB*h00%s5JmF9d<@Y2B+}9tq$0(6#et+f5iw88jJ$&tIhdBx}s4DGzxP8QxuQX-C z`rM>7QA@ErMm(SX^-+j8Z{wR1^virMWblAONw5wi&7 z0S&D0V1P6;FI#ei>8l?Z;yBmFOaZt73C^&WYcpk&*^?w_-|o*mt!SKwa&SlirRqv* zKq5uL_>CT8WHlYgurR~|&fAof1&gK+G2+X8Kb~7+$kEZq3>;!%kJDep%qL7>U+Lw^ zry%dq8L~Kf^|W9}%=^m{KDoU*UC3Rq$484{z3d9dNI%VU<*NuX>V%_Ss(n zlTAEdxG$v8dO@%am_uTebdX0BQjk;##J6GRWvC9{xpZv@W0^s1{&fv!(lYus+IIN# z2;Wy8FavLT3}Aw9KvZx?UQCTCn1~)>`nrizK0pqk>ltoTu=G)(jq)xjzWox zs9x?qUKMM(m`)H8(<4aVd%!;&-7)L8NgMkBZtu)5{b0E3cXqv8gwAJ1$CW&C1oE2? zS@+w6m{7LoA35$rM+=j~g?^aT&p-ABm5lUj7?`?%W3!_C_-eMpL+eC==G??-q32F`$e z0Yyg;3BbCoG=fBp^$8J$oC3Ed3VdP>D_gl=ULRc(rKdv(z6~E%Bg&@clKq*k_sZQx zy)f0R+?@iyBcw8Vr@&MQ%MU?~@oEgj4Z)grnHLaiwLa7Jh|yN-BU2s^@8i3HS0+4L z6fz}qbl}yd#A?({yVsUg(H#9^yM~0i*M4D&*~F2YOCvA=$vKCBzuqA+)d7z_G9RY9 z^YE>Y3>J5Kb$x*XWLIM3Mo%w6isbV0+a;VP!$;m^NxD<`T-xI3os(a}$ijCikLt6d z*B`!lbmwjOX&5G+EGfZ6QUvqW54tjAnMglKB5k&{)U(?Q6iE@%Z-Ui?YIbng0F{aE z)@M8;poY?;58qGd+ioEpy4&j;P$EFjLukMKMktKv!*bnJyBnx_`nWVjFyZ>n!w+#p z_xpeUn@_rr;%#917R~YI2FqX_*W2?K+h6W3>Ur}bgbbjB#EZZAM@<15xm4;GOR0%O+h zz`gNwUM{h;rO+pZf$InhINh(EjMx~MC%=N=iHRxnI;3C>EYdz0V##v(T^h1Cm&G}r z^7KG{J$;}IQ30W4!_3)Kzqzc7-OKlVWl=EIHf;xr#WaZM)mILOh-mwWm?u*a{ARtDp zChVTHKl_@i;GS5d14yLSN;tlTsKN0ywuKqiSBSQq2V8CieeEd=+4Mhqn$jM%X=_SL zRbU`SuBJSKw6&%@h^APiB@&CJ2M2N**XM_U)038P`ro_J;U)1S*qbfNr75x8Pi2KA zu_G*?biZ~$zDx$Cd*V-`%jt$iQV&CtQ^^((#J5%(p}|T5GK4)eEjw3negP|L$iq}H zF&1e7#`?V*FSdC2jD0?P6;Of`@-l6fA?dK&cK|pcM-$;NONPT(Ij;NQ9kMv>N$qFtWKNbiacW|it^iZ zk-sNE?HYrvK09m5U32{4uc4qcpnFiBn>@wdZvKbqmTK3S6qVy3Ga=8xmYsONo70mw z*3y;xcZcf-u*&KMLgHEVoxwi*x-0@i@ox{%g^ts354vVu2fC?f^vG2wZ10Z1e|I4G zN%1onmi@5)?6FRI(>yG&{zg9!4xv9it6}N)?K<(_8Pp$o;cfT`o#@2BKfn-Jys~;> zK=Du<=X3+l{x5vX^pA(@OwTc^OMUZhe14GKF?X8$PY3Q+a=Orfnoc1&9xFPKJf4MS z{OkK>SFavenrcs;|5?9J9>c+r@>+Mj8q`4fnm3&epn*Qe5&aTV>y;r5lx!^hwMXrL zJ@lycd`EP$f2kY8`y;#RPPzZ|sdO|o@d9IFPrpHr0ZuE+_l++n?EL{ehMv>lnDx!N zQTpc4D7nk+UVlh{MFR3ohxOY-Sl=ibaFvCi|6U(%%ViKT0bv6@2>Q)m|M30~Up_SG zmdhY$0>YpNw`+M5XM2iTSfW*J>zSlpANA)WEoj%$65K^}v+#rp6kLvY^(75`OP zUcP^3%&idp|EQ1LVK>+br)@W7zctjK_p138YdrS;{EdDu43k0ZEeuwe1mgB;*?|!Q zlLTUf!H5Sf3|tl7n>%_vqa!ww=CL)hP$OZ&UdT>`A4UrvSS8ekegl{+Ors<%@(;KeJ z96;lHPB~q$)n?Gnv_%GmF+YHvX}JsnCm^gm-yd3lu-Z*;0R;H}sJ{|PZi!9^VBDF( znb47UmFNI7!RD3M5nGW4?axQ>O>{952e3cLV-U6h!BQWDi~iW5;UbSgxCR8n9So$# z+{Xh1QY}_V@a)lYAO3h~*7jj<+d23j^e1e`Xb^wbs3_a!-otIl5sNT@q zEJ8T#=N(K(pqvKfwSMX0s3yCl$7zccRb0?C%p5uGSJ5e_Loj z=umP*+Lr9RuZVDLmnyJ@tB~++krqO=ejkLnApfvAmQI=tQ_o!xJOo}+0@0uY&JiP9 zzGrx`8r;QWIsdkFwP1$s85o$%loz{@$vqR&{A_yR96`3V zplV%lO!*I8a8Xz$ddflp`k%YuPv8rws1Cl+g%`lb40+rW_*hMB-PFMs(oDd|3>hB> z1S8`cxD%rg69ybDVRv+$8!@4UsOpvPGr1oO`7MkY?*fHpjKY#+krqO=e(&Z?3L@*U zt&~a-L$d}UGD}v=6hv0z13(N-9E8X$8RF2)#`b}!qcF33%HA+LlP9#|RCGzJyR8L| zw{vKr=XZb%OdSKmL!c$ULp12LGbGpbezm!o9orEDd*t=Du@;9AV(alBUUAsx%UBU_ zAD;-~?H_k|IW^L@_>H*$OEfmz_!>twv)~CdX)o-^_rP#5aV->s8 zo8$9x4X)1oxT}9;Plwrb6=S+$Ea{CKdVL+L4YSO3}M(r`YCnJ(?Pl3QVtpoEY7DO85! z1T6t)-kvDj*vAPzI$a0B&=;1*au8bP>>!BETxD|Mn&X9cyx=2NSa#V1@!^Umoplu6 z7h|p5h{QplvLE0>6;C>-VvS*_tNn6U9b1+D>`A8(+UY5avG0HG;0bq};fa`oFGV#E z#+PC1!L%${F@q9>LiXq7u~mCcS%N)fA;JFVPJ+R?9@>uif>bEF)a4lXvXqZHyqp(f zY!g)+qWXEZ3>8wzTdG2S#E6HM({HO9@}Qym_3@0hg1_ZT*qoXf!u8uPjLnN3pgV() z{1)JNH9Pp^Jw%1z|K){yg^)#rjTqNRn@;Jt)Spub%vLys$snl6@4VR#_bg-Er|~_Sbmq0rQYDgU5x+Pa|O4gFF8+JY5 zU|g&RksGl8cmUNWne`mAhNExZ^@&4vgMD(R#AmjM7sol=-pJxZZZ)3IaQ&{B%E=CS zQ|ACG=W`rXIlp^il{_<#8R`Lwhx1 zXWQk3TmR2`tuDS<;$xRpF%{Bq11tumj<$(a=o=IbbZLB6D|E&1QcWy-8vniin%Hs~ z6fOZ_`Np;pqEwa$LLOinA(&;Lr?MlRlJE(Qt0dlfM9WR(8{Iamb|j{ zc|1KyXTaH-qw?t zCHbrt*y5xVcTMR^MENzsKa;h!Vp`wz!_}GtXuZvAP;cypoz}-J%xABnRt%}BV`W>G z12})kV^FpR1UrAR;H6dEN_g4_2wqyOlDOSET3ou!ot%Aa*_QTasDu`uI)#9{6H(#R zDZ*w@-Y7%MaPQl1ke9m)_*@-+3!ME|D+l6uHZvK`vzbsDg+$pP69GTiqO%>m>e#K$ zw)F}=-?J#?_iz>Vz+o;?xE2tem%J&nD79zO#bPm=x4AEs16*NKmS7j_K@b{ug-wi4 zyP4J7MY%22znL?@D$#`=62s?cM2O~o9qNEWG-8lhvI{*d?gX0~k8b&7Uo55mE0~)I zn_=Jtg(34A>d{&i@)L3jYiNkaFjxe^Nck|pqp~em^;H?0t_p_%X^z9a@Bwn4_-aRt z!+yPQ%BUs!-=>EVvl(ag(1*(%9T>bdq*Z^qgXeHeb(rtlDeI0@yMrUjD_?*=AdwRZqp{LSgw2@rcO{CMkg! zM%wJp4vw_tF@TgnFw%hbIiEk*9q9A(7&c(bp!m?&8ie!nZFvrR95K!chrR(8aexGY zVSdH4*u}CsUkivj*ZX+xBKa6R!gvTDh5*_d9lrf&3AZ`hmQRGPDO|a6 z>BsQ3%vpk*6>Yy=p9yRVS<#Yu6d5pPTp_77uIW&g8q$wqGt7t3;XQI8H)V9Dmf^*2 zwd6AiTd0OPqx1dbVmHIY$I zT>d;ct)Fg|wfro->O3I^QFJYP2IvcJzN};%PgQV8Jp#=zW?a7D=Jo0nzQrxZR8?@q zAcl_EGeCbMPVdjos%<03S9K#U*bIXuC=59$Qz&F~SeYV&I84Ky0dj&(Z>r|?`l{US zW^K_4G4=`xHZeX?xB?8L4osnXBYjuhDFoD`2!ZhsuC2T`r;KYWKR9ZO7Z@`xe`$tG zn%nDYcOk}Cb!lb}QMnNS#^^6~^LoFQvs!hjGvuS_kTpZ|H*oX%N=Qz10|&&Tu&z2# zzAruBuU3VO2&sCjE&Uj@mN|;URNI=bIBq9GGvbQ@O0EniJ*_LCB9gjQ$d_sLl?!1xD&I zY{-~p=i8D+bwFDJ#G|N&Yze$qE#z>js#{Ax4h@+Ph|KZkRn70B-o zVgPIlfnoZV8ELGG!&&B*{s2H=&glH3qHf^j+NOF`)bog;WbNw@wZ7;bA~?ZQh4S~k zYL-tT$bc!!&L7!8Mv$rzZ0SdlnRFyZ=i8eSzMdqsPIYU6)MLnyG2`;rv+`QHDXPX9 zh{sR?TL$IZlJY6)8vG$9g7&i4g$mU-B6&hge*(}Qq>J5262dnJp=UjWN?z} z#B){mWQKeMT+5oF`Lh*~9nucB^kd*!=7Z=U0YeO|sx1L@KtGNSnKQb;uzCSB-C;%Y zQEV8yV`!Wq+na6^+na&OsTQ*etH%i$DkR|#uo{9aATfM@X9OQmfh;b^#aG=KF^3pf z2EZ77<7kqu7u8$_TU3o>$0CLj6VMF=hUp*G7#iCW0!s_&#i}0F*j$FdG7!e=J2dCg zj;lH}P@^t5gMmX1&OK*YBb%q&u(b`XTkmNE*hhUjbZ|a}1-43#i9%A!Ekny9U+b=|Ll-E&T{K zVm^%SkdaXY5RHts4?EfUXKdB_3=&7F5VM%1s%LD1O-zyk3JcU%L!ea)q^fF&)Z+l_ zPLu&PTtit*X-rgoz{=2%Vl&KHYJ6p__kK*7+fBW6vkeultOc1wae}K#Fc_@wR#lKq z4hh9_r>W{zF^3pT2EZ5tYS=ilT2~E$dK8;=))B(xY?G96t&1owD^wMj9?g31Y%X=D zhoK+GhRk_1{Vft|n{+!>w@8M344Yxi&;pYIW(<5?MxxW548$Q0um!*v{Wv6M|L-6S z=meluJeOq@c^#9v!?0d0_rhb z$e3~Yv*HpS*G(m5raCK_!vH=5fHC^Iwk!_mFeCK{Hp7^4aSfGzna0N=z+s<@E7VYl za~i-a05NudyS6;wwi{|;hj)>{bO4d``BXQM%jgLAbHmrWRnc4?&O=7(5jh#gEGa)g z;qKB@0~A0!it1@Md;wvVh0I$~HE=7S9)pF9Sy;Zm1RrLr9Av8gQcFLI%`j(lA*n5; z+AB*fs`#rC7&9(EinxNC=-ZpwzA2peoN5%&<`R{l1%&bXe&?#(IzUzZPD4J55Lq*{ zz-)CKCEeK?^^@#Ot^g<}i%S<&9gB>ufGtZZFd5uKJ>AIw)MG=4j2TxzSbKSdtShX2 z>;xG;Q`3R+9XEKotK7S2s*W3ThzX4Wu;6?r!^w(QUDDUF!33s^$d}rBS-@;{+(}ib zF^7oM_;H8Pw`J>k=Y$?qZJ8k-LuXjC`214{eAkUWsGdR)g8_JU{J}q@TQ{p>3EOA6 zsHz^)bu3~aI|u`E+^?%Ad+CDf%CTh-gGlTdpl|Xv&e4gg$phjMV91t1`O%Th9LjcF z;HRgASFRcz>3PH;_8=Ikzmjb#=R&0FN`};9=#Vkv@=eR8x^j|2RZWW_A4P_&8JZth zH}B4N#i_G1RSm3LOom_*3>gy?R7y^j^5~5tXcX{2viiCk z*?{ZgUI5f}eSmrl7Bc1$^tYyXGjQ)DXR2r{tHmK?yQjY*LjE8Wo4|qrfA6kwb65*pE zdAaG-y7B_*F?k_lmX|+Ix22z-t~yVNK@1(SXMq0FMeom+)umiwRhKTC%P`ay2;=n+ zxV9yhbrn-X^?<9TAH`^xGdkawZr`32Pn{G4RbSd-GKjNVg*S}LPu3sKIRaGNB|gPNKdiy zu5X%@^|WIWN7}()u>PKJ%ePsCL{&E`9g7&y4g$jrEZKP6XXnJ|EHw z2gDUU(KC!$UV({R!-w3Q%a^(nxn&TO8nI`9zIzClK-O|ZRoz2FJ_-(5GqixNZD7}O zxG@FlF<{7e09Ug=Js>Wi9>ax<8CSq2@3wo$jFCk(bZs(mh~Z-ZjM4XO0;`6qXVcP; z;B!_C|H?;GE=xEI3RD17z49U0#IOn|EKon7&^T8CR09e?JPNPBbna^+E{UFdsH%y~ zAqtNGu;Ba!7b%=Ai*xA{sxG)4ivg4^gkhMz3!@Ixuo!^ZLSUHwGSXaBXYznvbr~__ zWAF@XhUPCL&1HGOWdy0mfFWbX$0Hn74#na4)%OLSKlLq7(wWzOjMyODj?chkOY?pimSRk7PTpECH5n&0~f zaT`Q_EP-)90xM=8h<1o17}z>w19iGlbah|_h=W}tv0}R z0F<+T&;=FUJ`C?3;OTB#IHxVTJ{xg}4J88@5}dsEsw}vuvpZM0)cWVG8(2pZT=7Z=i7P4%w_EZ7-adgQ1pNh}@&gbwyh8dhQcrR2qf7){f84LhL z_JaT)H?>Uq(*}qP;s6bM1{j>wSb5}t*`A`;3xF~D0RW(|Dz=x4`dSK7H2`2S zi6iY`Fxa3#*HCj@=DcWINy8xyvjxBygSMyM&c&?Jp4~t{jt`kLx}Xh*eK&0TWJFKf zh7*rCN(RA5eZLlTW>an}=S)&HI@+-qz}Z3=hFQ%oo#S$Kn1;mw%oYN}430Y&_p^`P zw8x!z#DOvhMjD(y%@eumXwM&@A4iDH8C}o3)U%VG$nfxs|>I~@Gf8+3LhYs_o!a5^q=uw9dG=!0T?T5Pw4Tz#~~+OmivB?v6m z;QV>&cx~GA2j~v~w0yRJ5Frn;Ijgra*rO{%W)Z{4&xghu+iYqll&lXESq#B65O}Nu zE_xsS%L`Ahnxxy6Kg4tYyvP`$g}|AW!9}sutUL8moE-Oc{}7U7+gds(c5_&>t7g42liN zy`heE@tL@S^ILRat%b#EH7}hb1sy-!;V=Nx0APVyQ`n-gC~jt6!oSWG4saR3+5us_ zmTzWJGI_#c9n^7pTowaJTL=vEg?{E(G)!&{lyDAxF8V*Hq*=t74M2BcaVNev*oo-p zn*Z@oJ+V1vbjNONV6_v076}7k;8yI z4FJYydD2!tFzdt)-067IlEDx{E9oV?&_Oup4E+d!QhlLgE`v}B2n#ff7h=C>TlXfO zI$q{7fR~$ehBZ9>yI8dlu=@1x*bF14$UKYK`ofW=Qb_9t_gJ1@=zQTQ#wr25hs5xs z5{It~R8IEKAtc_i8HP2(3=NIMt5^`O3SYXIGyjL&_1FU?=5l9T5S7Jfa8+L`2*kcffYS=SC9{RT*zWHcZ zZ_DFivnlnj{5j+WIOkcXl^pQsp1YsvQV4k1w8Nl~X;fI|6IwC~qcBf;P~duQWFW?Q z);EV2{ai&uNfMs6&8HC+3~admKKba%d|#VAoX|V zrI2~OG5a>o=FL|;uwq6A|B8moi0t{ct{sv6Yl%pJgBAgwo+*|?xPed8x+OXjsKV%Y zpMS!@j?q}R#ApK58D*FKnKH_5X`dS}Fbbf+2s#)37+-Q@z22a6vC8FE8exIdkMYiR zI`C7bH)g#n)GX17fWQR?##ux7DQ;ex$J?xWh1CQN)UqCTI={~D|F!d`v2Kyn2nvk2 z;cgDu5l1t_#hL{+BOq|$t#cb*R?qhD&01%wTi`Q;0wdVFoos!(y$fG&9QN5AItF{U zdHoWz1P<)D?QW0R-GpYgi#1D(A|P;qUA@}gUf_klDUB6Aa=-I(uBmQ`)C3BR#oav~ z&)e`^#>{+E-4de-6d1wU%jE819zR{DkiB|ju=Y{_2;3+<5ac5*dEz=qWO<<3NSlGw ziH1>~2qCU^)-?*}!D5&n-X*1UUtu$up~MxP{^zQb7Jvg<0^! z>IHiE8=953U|4ZfKE!U;f($~U$S6Py@`yNngq(F>vxq2s;CwRu3<`|k>;n84Hd9XF zMzeem#o+8hi6Ax`Apjitn%ees&6>$GT-c^s9qe>zuPoHSJm_)GV=yfU?(o`{3m@v1WnG2nbwwtbWLjK$^wsP_e)y z!f8bKbqR(<_&2epz!-P7fC$g9=+}^FekKl9@M+RSSeBNT9>LN%{tgSsO{;KbagHV1X15trM3!i&_+MQGQZR7hle5DHggj$ zSQO7?e8(ygl#nE<5+UHuJHvPdC(V4!Izw^q=QO;rJ3sm87GDDjceM$(#+$8#GYFyO z*zag=xH5HCAiXwaaAhj5T_HEVuLY*$Ia=Vp%fG5?mZQy;%dAFNAXPNhbXy$tG0Vmp zYnN$Fz`%=-YeA3jW|LXYfz`{*vNxG{T6;beW;9D{r@BQ_%!pZIiB|#HH5ODa@q*v5 zGx7v2%b<7s+q{1nJ|mmR14 zTNb$*rA&Y-tjSZ@&=um(j>G1~8pJ1{CE_!kh891EgOk}r->1bVpe5onojP%HfQwBy z%!w1A3UTrjx=K3ML|tz_7R5-L9BUFl76`|qU(m|(03r@^<^u?zROrGZ$QNET=L1Mw zRvO=c=Id$(FPdvO70!eVv@*QW&ua^bsn7)t-so3gDx4D)pbVk!ou}P-I}Ovq>%0b` zuK-{)i(k`05jfTX}w2?G_Ntoeg5ggW?xkiz7mviwEhOS1((|0O6|1CvK^JcZjah^#SZ8N%i# ztV>hU-+lAsyaH8YE}n3QnRZ@hcFf&ird=Xb$&zFXl9#fE>v8}#NM1CY1->&G=ylE>bc5(G%=-YOj$=5o^1%>ZD0w;!x05PP`3I&xEWv5?rDw4#!eo<4 zIUH}p+4Rv*xCn!(j|!yIXLP_-gzRF>h7Y&dJkvJ2Kn#s8K7dUuMCFWa%0;b@H6L&#bf zi{pdE&4IRKF+kL~vdu7wrgZhbF-__2eKNG2fdcd^*dF_8IPh}&h5P%f@qTmWrv}?& zymr=x{3o<>!D|~&nYi&9YnORVz|dZ>$NBHZuMmaXx$lkx|E!(C9w)1uv0}eqW5M>t z{OkU}Kf!LWeUWOG=tMwhAei{iCE$8cW;uh2e^$N33Za1-bji7F=+fyUGc>I?=#m12 zM3GSdnvlj%by>NrvOax(k#V4@K!)d#B$GcgtuCK>^tZV+N zp}}dpynaS8{}I{2fP@dkOD{8W1_M%7z07Tf1}nq3J(t})&N48x8?EQVBx(05L@Z?7T_xcPfvHg1SbHE;0zB0bI-cJ zX93vInjvM3pNxh3ETBaLAaKcsht2){akzK*&QF4#>Q{Kp;J^+J%s}bg_MU$(!Qj9Q zty^R@f&!!5cG-oDhPK=BkH#U*^tr{HOLixtA(!k@M&Kgc$_PI_KJNJK6NZ+Gb&Hl7 zLBUcm830D*wTuRn0am%liC@epkjmakvn7?imqzH47h+*Lmwt`Mso9uhFwNw(D{VCb zYZffiY{SMHD;HT!us{kpQwTrZ7V6a`5ZEl{P14CzW)STUHp3;XI4oi`e+7zhv*hLg90WwRXSSz%VY$T-$5 z5*tB*Q8t9d>sFXG?S`;ewa6zz0-Y?43HPcnHg;)Ds97Qt0f7tbY|RFbB{pG(5&k`1 zIFs!X8SHGSKnl~G4iJYm30hycp(F0eWiN9YtVxI^h# z@hlkL?6&;lc6PxqRxOf?kTA|<$=1!`;n{Z27nSXjt+{rQ)C>%~U{3*@bo%-FZhJiO zaBZ-sAYoKE&Ln_o*@EFKOO7oVYggEfz`!ey(9<{6uW#ebi7zc1MrZ~ivm8I=4m5yl z-YfDO_6>VQe#JgoKV0gs(#a-mmUNE%g>Ix1Ac0Pn(wDpPb}9W>w`{oZsdHqM=g@}_ zymIKn2Qr%vkW02Car5+$e-FiONn)y8WHiBo$plhv3vZE>yzn;tf-RK~RZkD`P%*Qd z;b1@2uC&z%tT)!_>4DKQwP2`RVHIJ4RJM2%PVC(rx6k;%Znr`L)l08%0mhol> z)>?MMQ>opjJnq@NTU=T`#JC0f7*tybFxxy&ILIY)kK`8f-bvsj1 zp>l;(gauN$)ebzbvRekZJ&4O7;m^n=cj)lZ4Q4Y#hYnSXjT0fEY2a0bITpuvap(t9 z=whG2s}(YeMv@W%zS*W~dUuF2wL5cx^=llb!~4K4_x{kD*%hdU-al5Z@gf(Y!gW2+ z_}uw7W)t39+4qy{XU7}D^P5xr_1!F*ZL5X#>STfTs6mo&_^E7V3{ z-~}h+(1KUDo7dxAZEWZ;I2l(WDEyEBaLjXv^HsPZJNy2KVGc1@udth-fm${_3=O|M z9l{0Y;RCfBzC&d(z?O-cjEW~%|Ao`-Oy!}HSGcB=slL!nAY0Ml%fDAW>GnIAU0 z{M$x$n?w{s;h87^&C)T$mo)4@O`LkpSiM4Tf(B}3zs6&nG@P0CYd}y4!q1o>lvWN0 zHy_7S;B4?QwK75|Eb(`wneBT7Pl?aGz730{@vt+aYPau^!&K-dDqwv$p_@Esq#Wsn zuMVC!jI+TBT@9y3I*|d^QbV6NyKs$HxO(Q6ueKRCG=Wh$lV{L3$|3dq;dNjeF7)B4 zhv|@-Ff_7>1T=0LsX{H`&W>_WHH}mRMCXb$fNY-5rEl@k!OJk6LjaK^{)%?b65s57 z6}!ZDcwZtE;Gm_lX@T%jLc3{!@KwUO<7b~G%qGRdOTG+cHz^J^i|rEtp@Fhl-S8@I zsOH~xv76Ol{UR>}2X@)CAe7#Pw_4foY&R{KYgd?!z`!eOwe)#M+W+iY4eOV<;g4w3 zY$ZRO63@62nbxVk^X-E<{}+W?MC{! zc9GKz47_q<@g_1fmfS+AfwI->=fj5YsoAYw$Eu~K86lxvayt3F%Z7A9)gqk;33Rft ze0%%KZ+mvCT%t6?R!F&R&qio@dv^K-TPmB9u`gq??r%3GV;Ew)iJ#xhTrAXbUcmh4hWDNFvz%6Y7$->l61yZD5joqxxwCC3>d!A3>X@Vg5v zn}&Zx6PqS|MKf=j{HxoBO%tjXn-LdXOk4#(HmPp6H(NDx2&NgK}4t>ozo{oZKq;@SB&LoV{+HhQuxckz5(+R(*A z)uOo~BzRNaG*A5SjA7F}i7!7s1VG@Dcu7kXrPuw)a)e`yNJ3M zEf(N_NY+OC-R5{dWC@a88$tC_8^Lc#Et>*N-`J&n-fjvo)-94coXNy3TO5Q>>{3p4 zi-U9R8Y?8DU_S!`uWYD# z%oZ~3hN@7r)KU=;xMVx&k2m3y7SD?t&+K;66M)Dp!2`i8%sg%%`6R$D%*3iiQV~+4 zv&#;28`23?i*zC+(8)Sr*c}c>OT(9eSc+oT0kM9K*aQyjvN3)v{VY58Xg9_~^(war z4b-HD3%@`2Y`9o|jofo&CpO%H&u6R~?jTNTrbZ3W&~RDSKK_0?>`&V>zZuFdYo`!u z^8p2*DcSdVzDHx+F=G8H!4VwTN%nn_o$D~RZ>V177NLQf)Ns4}Wo6@ri}kDIMsQ#! zHQeKtM+D=B3)QRKA~aCTqk8sojbT)m->rEhuhtY?%x@>2Q=7*F|F~lMGqy_}!1H$@ z4I^f#S~OLJ1T$qxA$;$}CzYOS*GR>0-T<%6v)_N(?9bb5!PCyOp?ZlK{D#yr3m(JW zIV?=tSuj>DQ5qqkr3yOx7jAU+;<97768HtSPBvRSZo-#q7$3XY;#jxbJ`q%Fp#0d6 zp}j)YA|HC(C+l(XC{X@lrrk7bu3aNV7qD_(!*uPu&q#2bY8QFUz+k>C! zan3Hoq7W5^69u4|ttlUecoPnDe7iN}sdAax2n(dLGYV6=>&>fdL(uMw0zuH}O$2~r zcGCVhOxN%Dd<13=$Q(pw%4h)D!pe_BxLA$$5lbt_%4KpRERZUC?&EHA!+pb1~ z6}g<=kFXgFnd7EbM@kH_S6PEXIg=!B}p=82Hd zI{6S9zMd2|tG$k`ALr^tS^y2yvQQ|D?RKGXs$8O#jq6#mcp5gxo9FSq?d*O~yJV3< zhy*DGXuE7d;xu@@@fB*8Nu@WwG8cwrgG!= zp>7WRRKDF^MHz}t^9qRo-|Quaxu)=vf6mtKB?pF4;X0E5rdi^6djDw{KIHbcOC0Cg zMRqeV@X90BnXh@;E$5%kV$vA?jN?kdg}X9_?w?*n5UJhU42fvI+#T-uY!<5?^@ z#Mge<48bs-A%Mzmf`^8a>>I8u+HChcWiqz!455+)3P3YY>!QpsS>zTrOzWV2oglqs zR;D+IXuhYxznV%=IbwhyANzN32 zW}f{8HyK`?kDIUyNf&etv%iF(lAH+uM%M$XOcngU073P zG!18xbM+d*5gMoowvNB&jc9A@8KFjyHea5kMt$LQ>BHuH!~2b4l1edDo=5^(QwY%c zWdXJUTDdSFCPMVmfP7jq{TwbY4OdlXb2`Im2}jXdG4Mnp(2hbNEcYO61L0V|#&H4% zc0!-oo;JIEc1yNxpP3OU|sB+vLUS?UiwZ%sSo#R9RIEoez{U+Sic;jmE8AIm@ zB!H=C@vwA}Z68~==7^xPoCs7op10?0C)t|gh@f+v2vj*fJ%-yknZ2z!jtDx(i2!gE z(z9^<~dE};d(K1CR}w+BA7*tQ^IXf22jU<+nfQA8or zCk`Kv!`+s@=VEsiMGm9!WmLdDRm!KQa0jG6ZVm`LSgl$;9Q1+StU^DfN-hsio#~PAHDC zezo~nLLsa+9@A(=gO2TLV**imCK|Qwe0tnvb5&zoj{qvk3BF3uIROe6wT28!Cpf|b zLBSbMyKOf0v+c`c{TjUq9N1;|%*JRnK5#9KiFWtQ7C2S5NCsF-ZCW^`aht~aRhA<- zuoF7?=^S#Ra&N}AgC`J`XQBaQrKT*pk8xAhde7LkFlQ4sxlS)Pk2jm_bdK#N7eJ`Z z2ox%fST3E|Hez+*WCH)uXFu`DPsD$KrjVcw^fXtkN#4lc`|ORan>H4crNSJ^h7VKdFui_HYk&`i0nhu^2q z6FT`i)UT1_-$u-i35WARd>_j0m5W%l#A$?t#wzG!FLqkec_Ch2aNYz+ppymmcs?_H zyZ+f>bL1x(>;gN55L=5<0Gipk;8@3rzZYV6E_kY3qZVL+RJIft%H3|W<1}_lfphH& ztq~Y_Wm_Mi0;kLW$U@7E*5K7XpO+Yt8}rLyYhulQ#+2;E6gTnpjI~7F2DN6w8>)a8nFlr zyt4Jq&}|+z#}~JUmwb8NZoQKrDEyEBa4gLlw$LB>-A<-v9jjN^P0&CsOEQ8u;bV|? z2{qQQkek6P?6x;AvORlSc4Pe-y9pfFl|$RO=PwMK4C)t~41QD%8XtH(WUFk(>|*^YyAd4PE|0Ck``L!E zb*f!vHoX`Qyz;npeA?gSpQbU4TXXdavk4lgWt(*A>#WS*>^5!^fJm?W_G_M(C?9?` z%u5o2Lb3SdYc`Mwclp{4B>Gjp*-gG#XL#C&=y1btBeUxabL~=t0Wf%6-dK#~#Tx2!D0;w#Xj<5ZO_ff;ENM0{%Q3#13{T+wjY+>|+?7mvNh0##6Oe(!>nXMFk zuyuRCJytEUiI8BypNQYa-JGuGOQl{uACBCs>@ENp>y`*jpui}*&i)nmB)jYEUy0vE z3UELK#`yQ(6Y5u+({&gv_(5`mF}?s`ja2-K1YxL3PuvXIGN{2&#cNlnjlj@w5Vupw z@#ZBqSQ*6ata^pn1P#<+z)EGer$fvWvm4M1CIAA2LNQSQnq>=yPk7qDg_bCe)hqNS zXrKm(MJgL6)#ZAEL1IxNCj~nJrn{)xj|()IB}R-!y*-E+@GHl z^30RMb2MhqJ^1fGKc62@pa0aS=8})E!_;tdbvWM7fBB``!_DbaVIKQzH+(9b#t$j} z{$}`8xZ(whRKXVLQ(7RR2*B7Nr||w@cD}(f0B1N0)MqllnkM|?ny@(Z8YTP;py0`V z#aK%_9z1alNzI3c?4w^s9WTdFX(9<|N*ZFPT8gM(6k=2D3Og1HN)z849-igj!Z0=Q z44|=_;i2JZ=08h|jmy#~qq!5QUL!X`1GUno#S)aMO=Il}u@M+}(HY64>2~w_y12UB zXhy;jRDLr7;0UXC?*&`VHDqsK8m!*2$~9(W@4EE0GAAP3(WU7!JE<@P;8w_@X@dHW(vg)lyYQM+tk&5upnmw+gA$rDJH&gmw{3Qq~X zYcvJPAatUc&z6}`p!sqbUWB2a`G9FAlrVInKmr`LWcm>9l6zjpCsU>gLt&a8sF*&z zCr#%Yrlv;-g(v=wG|N!B&#qfH4W*%Sm0H?HDf3F{4KLHYQhMn%jjjL>Zdk_pa=LCB z>*bmH)Zh6ez0BXjk)FFajpVp{kaolfNV=+1FO&^b;7z{F*KUhp%`&tvTh zw-Fe4l_4emJbD5%u<5vh5EX_Kg*wgiQ~tFVbDASWh2}&7Xu?6K_n-~0qSW(;tSJqS z66N*R2!4qDq)gAk!d0BDMUvSThG}}nU^K3b3N$EPtD1(VP}jGgcH7NAaXst@Z z(MeM>z`7ie0&BNzIOJQN>?M8z1c0N^@x}AKwmk|U^!Ch7`HDU}E~1WJ%j|FMvk9g` zH?HSSRG?+cXnsEAnXhRyAFEd>MrfcW8675ZZdv5{Fhi&mfdbGh)ADr0j#=C^El(I4 z(efl;IeiSZ;8{A_q^8qH0-|$88qlmlbo#JZiL;GPWBn>c_9?-iDOQ!9&Np$fBSxnw z8=&p^9m{2<97$oEKZgCPY}xQ=KJzhc*{Ob=X9Nekm%ToeKHS}f&(W~nWIEI%gwAoM z05s_i`xMhc9ntt@nrF1bUZUt^6A|EBPAg$~f%>WGv~mVeSOPo{{N=evg}uah@p$}b z{9%8(dK>=p3-PsutLx3p%~SZaTz+EpkKeq5H3Kt2&85)6KieiWoOuaH)UU%Ay@u=a z>qkC={R?-wIed@kyevwGP2z<{n^x%ZFG>87yJp1g5sQUTV%^MY)JpJbyNd(w`M4aivQIGimwlM*VBt; z{6yP-UROM!adA74Izj7B^66g_KmPYG-zPkZ%h+$3eH)}QlQn;`Yusk+Ho0ChncX#p`v_mS;1SkI& zO*Y<~ilpTCy^T6y_DGvZg0g?sr0nL9z0m%9-nt@UhpLevXlk?8?eXxq=O2M^x7LK& zp=&1Dr!3?Vn;nm&?#d?24rMb*P!{fG9^aIzr@?91p)<7q;O&eE+o2E3;0W2~mhr-~ zwcT>U>=8GS1mm?S3*VR`@g7_G-$!a0N|! z{>7a7Sg<_>f}rW2Hw_=h%?H_)PCxP?&C;A>@XR- z+OMs{oe#yOEbbj{!tBvCkpyeCDHCpqa91W=9#MD0>`sX`KP+BCboayJ#l*TQ_Ojxy zFAR@giZjjdP26yQ#_{Rq9M)9APC&UP{?~rPq|TtpNA==3Y%VRVnQZ-S6W|bi?>r((9Mum&42JXYu+0K4CXXaN3Xyoo&TX>;FP*iABG> zeKp*E`EYz0uEqW4sPijRGsF+FR+RrgHrBm_hu#i7V!*?{AhpW>zBz8=o1$MEckg@J z<^MBomo6rH%XC$P9s}>;j&bXB^_6|t*$iv!(}s2kYvmW|4c^18f^mg0oT{|I!2c8s zEImCA! z3%>Q+PD&7MSqMIgIv@$VIUI+p`|#q(*p1?~Ct&0o--Z?G;13iLn_%t#kXJU;HYB!d}g17wf$ zjTHN2JuALQg4yT*r_8C6_?>>|OYKJ-~f*r0c4Y}Rk@sDGW zS06o|(+};njUC(DSF7j36K034W|Cm7c4cel!jWiKE<6?J>|49=h6o!u-2E^jcGznq z2-a$wMCVTEK8X&19g65wtZlF;?jUzJQgJ1DeXw9Rl(%)Mhv7C{^21!uJ<*sjdrUQv z>~z0ur0{pYu3;h!DmX^8nQC9=7w)E-Fgr{&lLS+>tpx0a1Fh~W0W)ZiHswfby;B~Z z?`~NCavwD!Vu!4eAQ%iTI;d-U42M~7o^ST|d=7{8~wOn*nN%HXsW6+Ctj#u-oOIe0C3MGiZ;xnI?#9%R~gzxo091 zW{0$yBq(c}vz!LLX78Rf2EZOofgT8ITW)iCU#%Xb%lFk9o<~`2L*gl1JhX076%l(Z z6$yf=8a2JhK7;B$%%1{ckETcvG&T08GhZ_F?@#BRWaAX*bqdNh_51~O?dZ|%yf&{3 zXZZOUJ$J8*h#g)x5(Fc)YI?Eq=uo`PS|9S*+pKLH4Cjz!o#K^kY}j+(U_jU&iy>7o z8@y&!ZQXG?g^9>xxmH>fF3k^8DyI6}@X z!_SYyYg?7J3P16fWANJ60$i(QMrsg18w^vPW%V`8!kJ@kn28*yY3TgQFY;nFc-tm2RC#e;c&2T2U==>X?D$wti95e^HWof?L?;^43E z5LZ9-%dNzY{I*ER&-*${sUG&tq|lST4a32Ff|fd)?{F{ywtCu34~BzAL93>v(@EVP zLFCL{gR>QfdVQU(exjE<8#~V1Fh$MJ^7>9us|R_x5IXf~FiCNQ*ViQV^ShanA)LeQ z=q|#^UElt{bZj@5Gaf7kK`lO(b$(|bYoCzPqq+^_m~c+l*Dy&uy99;VKG zFgr=zFme~isC`H7`Wb4jh8>_5j|cMS$$?~=y;&a*)IeKZkI)3)Yp_#sXxi6K^%K)s z6VT(*EmHEc(#}$<2c(EGa(<-4KeTbI`t_Xz>sgIoQ8bEbu!Zf=p1 zA8mG)Qa#t4Nuh_DTlz|NqS?8x)Q&S}LdaR>79H6^W@jC>Q_Pu;Knw=s2G=UiFZ;Sy z{qQnZ!cHzXNy&~adrQf_z*9NQ!wxJr%&qa*FiU5A=hleXn$KVX^tXoKFTASk8~i80 zR!!N&T0C3My_6kdrn$8B*>WAWRUD%VV?@JPmmjwF9qXzmt@B1uHcT-!|HhniALaYK zt@4`+UTK`l!*Wj&3WO8P!jWXFo>T*D(v#?co5AJ&;~**3Uz~h3xZJ-A)+U6Vd1ZY? z5^=ga4)3!u+p4dqXl*hkVy(s~5AHe|Lpil822!pJCM%AS z0|A>xDtsD4AzSUJCQ+0kjKM!gzuF;S6sI4)XY|1i1*=I2 zJNNLj3kvc>58w3@Af9*-gwo>Tk#+Msyr#8ZK|JuE4pd&6wkM0gl?U1>7q zxT*knO}!f)##Cx)pv^b390yu)7fWd1NU7DGiX9(EcapbzBms1T&0!NMn%n)IfZo_h^kOu1Gxusj885Im9wm+m!iyg`c&HY*x9Kwsq0^wO_x zxmkc%Q?3*+8q7;y)9sa;kH0I*702TSxpaK~Wofi}75^B<`Tw;HU--BvJIJ!caJaF(mF+tF*SQGVmY>Za{Q)Gl|N*ZaF2GFx6>!y%<* z_F7|*<#zUog-RJ*{h~>U)h8AjaJx*0WWji?-L80rV}))fzsFH&68&Y4N}+r)as{^( z7bO=c_8Kf+8qKDBD;P|^sJbSMp6YH5Z24Sv4TII@u)_FH=dR7NvN`J-vTAcxNfue; zY?YPIO;?aros$Z(=v-9F_2E^eZ%kidxRU3g#<{)lGo}7wzG<~>R>5nQ!{(VS<|*fx&gQAlFLUpi=s~Pv+x%*C@p+}yHop$n zVVpFdZ1J>WF6r!P)p=xY88(M(F-$&xbT&+F?wD(#^Trm#6mv#r!&K*sg&2C&ioL3< zxUg{C%Ia0!Dq?fL$>xVm&X&y$y`8NxFD&ds=7iF0DSsZPSad#UoP2AT%_c&UFjTj6 zqhb!|+>NU9zq|?9+^@yu@_C=L%hl$5xt2(+$1ufQ&)G25d0rug&heTIlkHV{8>TY1 zE3}Y9Dos+dIi0tZ%6zVnLgsQUQu2A6vy|E#E|)^*Z#603-0p7=FRzMhz)1>$TO60k zv)J?5vFj`{&(G&eAy&t(RkT(ibOEGAN7hfAbu@GnXkgMy8g%5H#8*d4ADMN~E&{I~ zZ4X!RLsgse>FRWTy&JCHjsJhV+7v4Q2CpAg!I)Q7pTy1q%TLv(uS16)Ua?hBgXO0N z$aX<9#XQ{XtRXX;!8x4{=q9BSVb404!O_rW;6`mZT@VWUj>~xYy1c=@V-sknK)OcXAud}7UPoNE8r;wvWKDP} z$$cK&b8^xBQ}!85$0V1dcG_+v3Z4lc1zv6yTvVnj-v%EAZb$CaiG)Gx(tzplDy*ii zconwxAWpfKy4rErZJrG~A$~h{H3r&bBUS>%Elv7Q!}nUt`bbrz&SF`S33wdquNTutPDYH%L56}MCAOcqqO z^u_b-^-Z{;=9F2~xi2Qvc7=&3=v$iJjlOd@?9SUqZb8TC9mQ|odYSoxnaNuYvz-yBP zUu@c-W!Hn(Bdak?~k zoSg8$V`GmxU@oQpGzucYR4Q@YjtQWk$tIXCVz$WQB*9c6bx73 z;W+R-&0rt&0055W_kUk`h()L^}=9l1|xA`Dt#7Tky!`gXRJXD|!y z!M;TAL>d$~TlcWPp1Lg?VAilMBKN7qV%TMytsB-+UyvE=Rz?}6%ShBRP!HJy?=nKSh zyTWQ#9W$P%jpu&YNM*2^)rQ(35{bfS+~&8jSU9%ua&zRN*4=LjaHmS33qoOHt~Ke~ z``a=fG?UMtK|z=DW#$s4OYuraeG82 zvY>J)8;X_>tuqxYM^ndas6_5p%E!`1i>5ScU5g@ak4`Lv0kYAekpB$p&0c1U667AG zq!?;l%5O8o(tjQETM7FTz1)Wz2VP8@s0;fKya3yy6Uv}bmr{bcVU_&OF(oK~yJd1) z!s26Xq{oDb8q#3#u?4eP9+HHp(&D8gwPI@6IGC?j+p{h83jGY zObxhOCLc4~Y?-p6Rc(o|9U`&Ja{OaWO4A`K(%qH>xI-o>1wx;G@gsFHN0eGRuE%1I z4t;@K?!0XS?Q3a;&V8T-)DDqQ1PuC-I>BOXIuUa76!-Vnn0VimFZbEYnjcaEwOoJpe1alKt3wA z*e~TebX;_{AA&Z^!x9+STI@$N94gP*egw8zASr_qt22n%SD;)OyuGqc3AkG(chr_4 zbWBl(Y@Bf(LIJZ`9uzi7cp8_r@f&a+LJg?NpKbmGaTD(V{8YS=XY7 z+oKZ;Vb^T5C}b{qO!v1aLGDpXilJ6@x0Cx26fOPNW4E({eTiP~!;J$kWKk(5PzO%^Oz9+dT4a4Y*q-x22kQ6Fkh2s3AR)9Ragh9+HHp(&D8gt74g)vzHRs zE`51Er>5R>L;jn?)3HqGJW}r*ut`>;2R2)Zj$;X$C{d4e%y)9!c6pR6s9YLc04-%o zRHozLQUG`9Omso0x{*ZPCA82~vW$!#8%a9!1!DPF+G^L7FRg4>1n!cGr7$|S+7)u1 zJilAPt^~SEEGdU_e@%OPA@e0DTRQT8ba;8827Zxb?#!)2F{Vz`msc2y0k=yk6hhN3 zO;lh+R1!VMiAsswuasL<-3y?eglQBtr^jA^1lq0;X+o%Ja#xafv2@SdT?uZV#600! z%4y$;uRbcr+#GY-47N#QRt9^d`l{IMFr*yKt*EW7O$avpvFJARfzNcki=3WLSAZ zxti?>feYl5(%1l>?{a>qp>+ShS(b0) zZ0mR^p*Za4IP+kj?JAKb7ojmTOKf%}8+Dj^Ex=zW zoZDMFk5FP`hDVLuB{je?p0YH zbyzW4Byh2OK5qBfK4p3zi|rBq0`XWDqjjI{Ay3P*)YWWH2wWhal*R_ocJO82gBr?2 z)nNy}fx;U!0`CHS!#*Z`v;w7*;-M&-zipBRg6ClZ zNKNjrgI|H})r^!O&~-RD$s1YHx{i|*^h-qNX=_`q{!Zoise7)Tfp@6RN@CCcADb2+ zNNJiCQYZgU-b)ZNhs&CPiU7C&pDt*L2XW{B|5~>xki^Apfi<98{Hu!_qm23g`QvDg zk;WS~2#*4n_(#elX;)d@wOA>F?6g(pI`$Wo3X~$UACy>I04T0q`QRw#xNZ^L-WW=gIK}cNK6r=`hjE=eJ z?3++a*+tfwYe+QSut9h?=?@>6i_%`QYWM&K7d8YGN4Mz6oo0KaB=%#-oeBdIVTy^cT_T-pG6>a2Ya=u4aP@U`*l-(|Y| z1N-S?23J*=J&S!>JI_p>rU}<17xccr9WQIZ*S@D(-}}ml5mt zob`-|?TYxwwqT)@sH|fl#B0%m595HgU?IpV^7P5iLIklz5qTUnX;*5`eF%z_e&=wd zwuITEi~HWfK!>>obv?g<4&Yk!z_Vy1?dt5g!Ib>xcil#Y1lTNx+vevgV;$xZ)G*)k z(E?bDGT=cpNzJ=Re!;RDC+{L~O*-;C=4TaSyuCS{2jNQg@7mjfKvgA>=g<<`s60PQ z69?*14x@63*dm4!gj_(I5hR3^KTuH)GXep!QB|S{vb3wUa*Q(C{DGU#@zknI8Xwb^ zZI&{M)og~4jl%GG>|V<@gB&5xdt7ZsKpUlz5-3hv`b!Q8rAn7{SjJUgI|XvLTpk`V z-Jo9SIy?emqcC_J&88)-sr^!h!XmIk(kfy0=;GGW(ux@c(-3MZhqNMtYte($V6b0s zJd(9A6ZttFL2MP&nks$yTc7#W&wRSvopVT)2vk)Cc@F!HwmLpPdq147k59Yd`sQ#u zT%Vrq?zXR(Z5&p|E6^?SM9ScST0|z8IJD3X<&Z@Qkgf8NBFNG@){H^(Nvg`BW0i<4 zq9{Sov|uVs(()X`&r}q$QB`}wn;LE^Q)U+q$&(1$C5^|bWt*jJk~*TR%@DFt7(S1K zq?Yie=7XFtcScv65zt0yqy&o765di=>5>i!uL9dCkh|sb@Q5QS^-9;_5fB@N!Q*H) zE#Xb=Hx?;v=8*78m_53RGeo1PXL5F5h0QhP>4$wAuISemO z%wgT)KmpsScA^RrwKGq=k!dnYt?O{+Nd@kZN$G-6?HaZMFXg9HslzpFI&z=XL>RPc zHv=n(Wk7Ve8MuahiC!Kco2{EN*|n{U$bD+D7>>-%)_s2pJlA;!zJ_%PcAs8S5EW}z zv=lxCg-efixT2+wewk|S)y;!5roz;z*BG1uxKAyVLIc;A+`c|1P+?eC5_q>IHxc>* zvD~iOnLqAPm^xFVI-L2FQ9DE;QHVcneoGQ>mN~imEdlOSnJ50*8~waVN2h(hIb9F0 z&d1GlOu(36hd25c33LdT=!2zyS~(Rl-c44#wf>&!KG^A2~USp zkvZP73@N$Qjy^%{DMh4XiNn#S0q6dDZt(x-s%P{Y-YAQf>h~fkPlAThrx00O@ zut^d=jooO;PLPo0DX62J2xOBe@;u7YR=2?ypiJq24y)TDXqPnZgiAvoW@pp~9fv-^ zYmx*Hqp7sDH)yr7Kxrq3wYL(nT@km?&)1?VW?R%e-*<|v0Jf|IohLBy?Z9dnex3QXXz_*jtb=tE!{|XeVv%l^3FU2X#G%xmN|c zODClanT57`B4DPpgz9xzJ*i>$3QnX!v9@}mqL!nj!|F*L{W8^j6z#BdN^I7*G-CH^ z#)8UU);y>D870ksXM1xzl$qpr><6fXR27pR!(OPZWK56J#EW{O!-`V@*r0^c1K-o; zkyw99tf(S~d1Q&$CMgjFP1>X-LnvdR!=y#R?9s)?!$oVQp&fqO~A* z$#XVOYZ1&gU8Ddi)Aqa2C!kR2i4OZ+GHRbX?v0CsAto`@89fI>0BlnQPou%KWnFAK zC9`r^))gQ-L~%R)lWM@lbc7n|x4nWcpf!krN6|cWePY0rdqyX{Ju z5Fjl`fX5n)5g(mf1$`RWnC4!(ykF5-$j6W{1 zwZ!bv#mBToYo$bEEo&iSn<{)9yVRn!AYWJ|6Pm3>FxzyI0;o*Sgff)U6J0VP3AIlh z_eMQ3%}AJPP-pZU3<0oB6+Ddw(=#C|sI-<#CR9Lnh~jqAGogrq2?sTjOD06o8pI$m z7}x9mMiLYMObDdRxlN;*JQLEcnR#cse>x9kD)e2C{1l-UMBsDSUG!))K1

+
  • Examples using piml.Experiment
  • @@ -264,7 +265,7 @@

    -data_loader(data: Optional[Union[str, DataFrame]] = None, silent: bool = False)
    +data_loader(data: Optional[Union[str, DataFrame]] = None, silent: bool = False)

    Rhls+y3}( zKK;^9d*zsrX5+J zFpFO(S>w`ok<}8K&=dLlwysh4uUZLBRIS-7x^FvvPjxIxa%j%Y`r+kzn-*AD@;y~S zw$PVMHF?=T8rFNbXE&2@>F=4NEh%v;30L`0c^Qy@EXf#o!Qb!0XhW1ww0%2Od|4H(iooSW=lft3kIT zVURy&f_A&>H_RPP2Mh>TDN#8Aj&=HHKNp@6EV`sle_llib_5~hoQEDNj-P`*en2(R zG--X2^->f%-f^d}(l@|dk?#tTO{k;wt?aOkG2{LLsW>8Ur zO#*1nF+m=$T4Cy#D7^$a6(Rjqc|VR_a~ACSqtEeW4fv#d+r#IqH}4m96nPWNW`|QU z;!VS7X~1K+DGjIob-gr43&K@HqVf{pu;wSirWOR@Dj+H^0&XhqIfjkCqJ#DTmhzoiYbLB)5UvA83!^;XzTVOjzAsw< z+y@Khh7HK59Vml}66}rZ3pjGm(5-G5ZR#H7la(B3-@g>$X+1uh1Om zG6QCN7}{!`i^5gwp>i@`X276~$^&LnQG!hdOvWEC6;~D@TZ2T^WYA2H!z1-(K@?u# zE6#$Knv)C)R{>FZ$$~WlA^@rp2ipsPySujD;?W6LEa;W%7Q|<&`JfYC04(|7uI90= z6RrU|7;-Gx0gA#;!#qd;T(oi5xW)(SZ zqqJ%}LMOaHS=tdg8G=O(a{!Tw670=3bH8R2h~KE3-#OTp`JA8h9nH)&31RqP`_1^f4dgigF*9v7039tFvg)h0OrOxJX3p& z2Ni`rClKoN+z_g_YuvT!t`VDqL32ZBAm5EIY@4o@NP}uldMNPbJhb927wx6bLa3a& zJLjSBOl=PhDhehg5JJw`^iuEU+YYk7+L?rFFWMAj)V66*q1rS&6_E2bt#&qwHq(+F zt~~(e{1jx=x9O;&U{eAiKg~qa`{XXE;mO_(WNVP9n&{*nKQyOpwT!D1uJC!~1Sp&D z&_D((4)TWPL)j``G5LlPcu_^erLYrT;G1eu=K8l!%4FICiZ8O#o)UflD5w6-0S<5Y zMI2K=5UyGfm6rgo$>$DD0YSJ5h{_329wFz7Zxx|z1<$D_I=O$(cbLMC2e6^}oN$$| zoIghy)eaP$@B&~de}2BNX+adO0XpS{E{12S9dqNa*N(Yedl(@Z9|Rfox)_BQELiN~ zuHt)HXB4ghI_1>GnHba6+YX*Vwu%>R2Q&Q(5~?Kt5Kr4)x%QF+b~T4E3Rew?%Bg>I z7OXjh0Z<*n*nR_Gy&(($>JY~E65zS!5Jurz7dz$D#hD?T))6&aNT1~oUC}xan~UbF zIYQ2b5rXYE0M?u206-lf*nR_Gy%7Qc>IlL165w#TuXeBbjKZ}M;*`?}$pk?tN?LEJ zio$ikvJYP1m4Iq%X%wyjI^|@+OpL(`Kk-`MGRA;x6|Wp)YTh+E7w#Il_RK{ZKKD4LQ0DPZbvkPPl^Sl@p+R ziN`&|hp*u~QC@lpaatzi7;Bba7@knN%6P*?qv5Gu5JcH3Ulau8qcfBsB+w0y&L#~7 z(h-BaGB<20?(Gm&+uOPJFs|hz3HOX(QNxQyk&1#zZ#z00o+_@yoNyHrm6tlb;z|qv z)s>iQ4}iH&2N|_HJ*d#F89;QKUTWq!op1%yDOVfmHy3v7L=B_^D3 z6%dt|EC}I&ZM;k^ScpBiF)RW0HDeD7*DUCi7cAJ1NvhsdXP@ePp? zWYk+WqVNJ>aoPCXKi8XEP`C!@l+z%|EPC*n%7JH6QG&fG@LW&pdL{3ia0SyV*KO*a zscX|nMG5vsn{Id2mKfI)2v;#tdC8{mOl_M66(!hPZCdX<32dsKC%N`uQ+Wo5XZqK* zCP*h-w<9R0PR{|t_NE>n2v-47c@eOGt_ava>wut~0Ojz0Jstb!+QTNOD8VMfMod&~ zDwc6~vh$E$H5pWNNqD4Q?$irc`A~Tou-2l|0V<11-(CW&SjK&`)yug1_99@tqeK8u z?;82`A|RZTRf;+Q0KzpN#P$Fvrlq`$T4mfv=_SNM8F!SzhlyQ2+{xDYrjzze5QKM| zSr6ONDW{wWKb;ecr=0E)VN$U><%~4wcBI4BLQJe!#vM@AGVZ=T3>a~m_Rk0wwL9gE zRj4MN>dBXE`YJhyx67^oEC^RIQ8@wThETOS^T4OonRm^BE;ocif%iB=WjcgNgK9{6 zDDY<1J@AWbRU~otQr-vk?Ex@1ghCN`7C23ZP*71YDZQ9V9-6l)pMy+?5Y&h-U{148 z-lkOEJ@!&#n-=TLI|m?;vQ2B%nRggUoq6AWgP&4)_lh!WKU$eZ7*zz zq8(9gP}i$7k4Dl;P5Jf^D|1s2$f(}qq(XO3dMY62ZCdN)SZ6ck0<~{10@kZD4*+VN zdEZ_Jthq3PjJev;H)PbIvQDjgBxoV+-9+CWESMWMAfxuM2`UQKBoGRexnYBE8^!w{ z)AfaV^~KqA+WKZ9ITm}5`79$j$kwcgs>ys=x_aqhwa)xzTdXq=kJPI(?}e+@E7qC! zGAa+4Tk6a+kV22wd-rp*Rp0$|&A}ft!@1(SpH9Cz3p(Xwz8ql9V_Uc(t4=c5UbJA% zfCvC;#KHCg;GsFLcPt_rMre*c>6P6Y8wU~ zCtSrWUOk0=3HL%7rePi`Qc;4v)uz=hPNF@ui<7>+IFRaHJw<^2wQk4K)l-mxw?C_S zB?wmmQF&?Dz_rVYfZEklv`*>jseh(+D7xY5DFY#!$}6;rwLUj`txwln=<%AhK0&{} zhw;kEd~zgr%p#`Ji6wbK{j$7iVHjy;`53Up*qi=2DEoa-8+dr`CgU_|vBpGBE~< zMb;a_C|n!DPC4~&9l5_rL%3M$6C~6eAt+oMAx?Q=gupZPMhFTo02W6G$f!5Tq3{A=afDQ?^|>k3`tTp!=XxUhu(+wLUjzz1F914;IYCn2P5;SS(ZXKvZ2aU(IC#p63+!ipvCd zhm$sg`r#zkTo@k1rM;_`-EzV;^Eu@O2fVcVTGh-p0Jv8w z3ioq@h51(_tP;tGCuc;RVWRt&@r5D5G*DpH!4! zZ?wOF!V!8S;c;6oUG#BcteGDG;>!H5%F?c6I2u!A-zWg!x7^5_V@O$jB zZyFx2p*i(XU;G%n`y~~}xcV{pQ8`&KH^#%4+L;|q<7QByj`8qRaR}9WX$-$@ph8Be zKDkf@N~k@ANJD}2#)w%lHR(PTQJ^f(LI5aO)YL0IO{)3ttIw zfYY`zW5J4F3E33B65`uS7OeP{5CBjs_51b!C`X;>6CP~BF^uGq3MJ}9PX%N-Wmxqq zA)C@yLdFLIW5zKnekBA5^a?|+y$D$EDu;Ohr_Z1M;j^+EB{zDzryb^3!04&``1Hfuu34tywL`J8ahE2`~>wP7}0V-b! z@$DrabRX)d)x{`W>td&zESL#A(;BL@wzZ~1FFcPqDkqzYTdkpD zoqH!ckLOhroj7LT5!`^+aY-*+<%@U!dB9qibRD1)7Ja)us0UYyzM2K~I`^aULKkBx z`g(wBoqGU8g;hKX3if1405h1~7cYGLW(CtV^Fr@(l)!XY07`4tl{1jA9fZ{sBKO!fa?>G18VaPhEF0Y~ zt~i9CfP8_nJcL3KdN$Hchfq*ag1yC3vQGSPCi%HYE@m zSDEE6{H$7a?ww7QI`_Uk4E(%J>(;sV7{1#IHYE_UshB4Rd9KiW9H;EA){fFuP^X?4 zbNybg&OIQib?$w8==UsO#f>ADWLHfH?Ex_7nD9*P!5&nUV3Povb4-v|tIj?4s#@oM zd?1)rtaCp;B-qui&OOsnGVD!t?w!P1b?&|J0_P=|H8-5<)wu^i5Uv6i>)eBkdUfu- za22pv=N@HLt8?##>wu*?_g;oDa7ufr0eKV09 zi_OP79?SGF$kwcgs>ys=x>`jD1}tQ+(-q!l1qt=)+&#r5jkBY;-t-nSP4>(#jj0JYA&Z!ZA) zQuCF3&fHPGA|RHUuQt*_xZ2UEyfkd;)wu@?fp8tL zROjBys6A|MsB_Oi$fokPx?-LCL9cV~nhQPdOU+kuNhe(Caj%@rCr5H$YQ7?%wukY` z3xE~t+z*91_rAT<#Q<2V1h4~8N&x%z8vuD;%y6=Hb?h}CEZ4aoYSy{;!ZkpwgC8uI zi81x++ykF_L{zSG?<7=9GdUftWzdnSEb?!kz%@KmawFu~x7iM92rrroa z;RV3r2mu-OMhFTo02W6`#X9#xq0YT;44-#u_iqm$%b2Y`1M-B zd;9^QoB-uB3-?UjL}8>tx8`jH@9}5V+l4yeI%ag8ATy}z6}-nEuSRcFO+B7*Nmp~e z((GI)ct5!I04Tp$P_^K_Cs0j@_L+>BV{~sh$5u3aD+h{J!#mWP7v50t9)4-XMFhy! z`6dg>?_eUG5O)mU!JIS{NN+mTLuvIEJt(|DIW2lJksM_R7BxJ5b~f-TO0YNEwBGCp z_R!Ax@W&KqM|`HfO^XHZ-B>1&Qh2Yq_62)rNo2I?bQ>`5r*%sWJ8KmS-p5ac87Vhq z)+=}q7;3?L-yQ%nD-Nil&Q_V0`$e_jJ>r!^J(Z(pjHaQUG^lZj9tzgXc6ZHCuNJ&_ z_MAd}9c6$o%wi;WI7iG6@@;hU_)^;H-zfFJ*F4Dhc1tDe!0~W zm7}jWgh+#GPI@RfK+Z!e<|qpV@0~r%9twc9XZE0?U{V4h56#)MUcq~?nOgAPw--Ad zYtF~x-7?t$#n<&EGAbtv=E72_M$a%!!%|S8c6xX!AZI(hVzNUoc#oYPB|Gvqtz5al zVcf9o0N9(h9W@Ky4~2sFzCCohJQr0gcn^n{!%^`}r`y<$1svdDzx!} zKPHJfa>}r3!TX_9@P2$Cm^I^=6${=2fm-n1w-*8Hm30OHwXCymzX7mb?9mI}JHTS> zsaWtH?tZjy*V<@t$_vrk)trw9wdM4J!d1Xx!F%|T(~yrbEo0B5q6C}7p3JzeSnwY0 zp%uLM?WJMUSG<;1D0mNm<%^s6OtmW`PPp39sJt|6YDUJs5E-%k20&ge%ye9<-$}wQ zE-xEh&G~plTLPkRt&5#<>f+3zXR1cemfx0vXHrpuO#+X&lXKjq*fPWy?7NcekCQ- z#jd1#H9)vXpaMdBu%NhafnKP1)nSxgLM+siM=5-m*qwhl**f1eHD`igy?XLUr(DEv z&7ptAqXqZK7|UZXv^$-PH0XAu`yhp&?Mk}GsCLsdpsMxceS0vdI8FO!1dG~D)3FNG zr1N_6IS;K?t{qqp>MVnm;;F}T9!ka3Ss*v{P|~29lO77ZxsVQ}${DJuhpOe;ow*C= zApV)!9(qH$b_PN|khduh@y0eS`RL@Nxltc#sk5#(9rZy)!A)-}*Y2!et6aMmUch_` z11WD)s*)ZDd}EuADoU`)h9|dLa`n<X<0K1UenuiRIeSH$aMDSG#iU zOh=J7v25O3Yn5wvxcY#HfDpVj2UxFMI{>QX+I@QwuwJ=#007}?PZ!Izql{|h+P!cc zuvD(y%Mb>R=}dV;xpoFZF*LX5sCMBFDfC@&bm1;HX6lt|cX-NOCf^>$Ol}IQU9R0@ zc&F0cGrV^|J)XB|t!t|eR=Kw7+k;JWfc46?1Atnt-M5zkYc7l+A+2`w4GHUt<=W9g zT6qcI9xRv}HXx&RpbRPs)+CV9u&HG6)oGW!a$H7lZOGGCUi z*1HkUdbxJj9OyD3r((Hw&=2Lf~xMaoh9ROIEWXk0`oD3dtEYkye`HoS!Zoyr}0vXRvxH71{@-kqxl^6nO zKIqyDgJf6nGvLooxMo528E`qzx2t+8>ZPlQ?ogI`S)TboO0}5}W$S!}w*sLTD!%|8 zX(*76(;Hb+4vWZJ?NrAJFHn|Fb)1a4Gj*h*1beehYu%Q0-LJd=?%P8glD7-^gXz8N zc!g`2SBX>dI8)?5CW6o0X{N%4QhYWL&2K4P!I2DvmLGB0uxcS71A~v$9zvu+H77k3cymLj-V5O1 zfgrpSMO7G?x$}He1%Wdp^R#us`J8iKu}(?V7)KF0igON zINx3btoJ2208qaK=i39I9AGMbD(G4NRFG>9baH_4U+bw9V4QHp0ljkF0sYr{DgtUJ zc3yb_u;QnJo(rD}^6jNAuK1}S2cUdK!MEQ4SnY_U@TnjNIGxI728sJxPc0ur;o2Z6 ze=6wNeXl3xGn|D{wu%>R2Xp4DxVqEHssUVP0bA+I9 zt$&^Jf&;=cwLTT(e!V(EobobYy%7Qc>IlL1;DDJCQt?wk&xKC~`Svnk#V8F`7gQg_ z_7dO)UJ0l+ji7LCkT~V!gP9mp@vf2nsi5cbr-Ixg)y@grr+`%R;Tna^ml+{7?;2sX zB-H_LxNC$m>ctoou39jTF~2md_vfdVhyAHJY+oLlbF+SU`P_H>-IIqMR5}@c`~CMf z-FkTG{{+6tjQ{g}_rKon+xxa}PwV#mZF_3_=F)C_iy&HoL&bXM`j0(ST4EKxH1T}H zmnQr({ECd>J5l~S7K#P^1Hp*$MI$Jw4&Q=cA<&c&rK^lLTr_e8jN^Vb+$-s|lc5Wv zy^?%%hL4PS>zL8-^m)>tS~6gihE2u29inPSXRbZCq{I(C>CxmbviDFV*j)SR3}1LU^f8fIvoIOcY08vc6xX!Aj_Rzv(E2x zq0X;w4}kLGv0|OyXT8p^YYuc7^SM&Hm0Yq==NI^j1>4*+)iwu(I=`cGeNeknytM{( zq0aBKS6%|da+kHbSg-R7fW=yy{+YT_=cYQp41{bdFW9Qq`F$?c`5hl94eg3`et|%* zQQ_K)fc2_b0-##W(zo9LSTFYIb$%USq0aBKE5%!FXzO);N98n5GSf@NI==t_u|-)# zxc1P+@`}ejQ#tnBQs>wIm=UCC)2BndPFL&vA|@y=0anZ@yE?vVr=#*RV6}Wtq0TQ@ z5Nucmgi^b;rfevat7XivjBY7qi_h>nGln}ECtUC1Qk~!Diz~HT%YrCe19ZyC2Qz_Z zD#FV;+HimEY~Vvm3HGMIb3Lu=mArGp6-=*Ox2b!kZZMBjlwfbP>2_CbiE%xFa1|4k zmuw2p)V66*QG&hIruEK~z^3YXl4}n(l~+aZO#hmVdc)}HgzI($<<#jpK&UWR4-kZ_ zfT+9(*gsbU?4NZ&P)>kyc)y;G{d4VM6I7I7lVS4<Uz-h_pzYVpLd`-81*s`b zXpmU0C&@NTS%TD*B{T$ z7$xZ-{40Ln$)bat)EvvS8~u6iweGJTn76DA{ML)j(oC<;NH{!EY=*s+iCeVGe=*;9DT+d zpp5!uyciRFryYj&aPAH~?k~9*GZ!uQQBX{1GaFqRHmGe}=F-SGpo~DqRn+uDF3tYL zBkz(`R3bNrgDQz=)@zPvf8zIXYex zGU+drD&jbG#FF+GHuA~Sq`#clEX_29reVna9S?~nVaUtP1LXsw`%8Y`&W?!Pva~Yzy@ryrHgamoo02)hQzuc;V$LAJ zd8#NjCNaSMZIW@eSQ(9Svq+$l%p?-=vR-yXtfCk5r>K~hNW_;$c0}xQ3@4hFMIsTO z>+OidSnBpcl(@3B~9qd}&K z0jh{1HAjEX7tto>0HGO<{P>2yNt2o;p5o=^aN=}kvQ`CSuK7ydVom0x=4hrh{Jfj^ zw%Mqg#7#3GPMN55QirxA^=z`naAGrNiTh}LK_~>o$L6qF@7lX3?!`-9tQ2I6V3BGX zTv3H7EmQGBcwZV4NyU|&?D_hap(y@=e&uuq-^Zh^Ni4pe$ zwk^CEe%D;#tS?SOTn*AAiTtepMF`}Bzao;J4$T%od%lZ$V}}|PD6HX`FdL0`=a}Vp zZGYTfIOvkgeUk7jBq`UdIX-jhdVaiQX3a=J3DiLltTcpPHS6w<&mCq%$ji+C zXls}}q?=>rqdH+ufjxsM3>!<#!pH&4WbjB)9iBRnbHo#nSsaQKXdNFQ$V1b`>)SKW z`I;wU*j#P0qDQGYl&=Mrxlul3C`Ly4Fhla80>Y;UBM^CO@%B7z zE#|$m=kd#^clPoc6i}ws=bR-Jj%t*J%t|)73pMH9@9nv7 z`5kwYy`K}Caa&YKqdBq5eR@)AVHXrCp*Up(k~j;t@$ILDvpA_alqroOu<+q*#UhSp zgq#L+lG%2Rn|q$Kwa9Ff;GA{fjVd$lGe2#!=rSi& zqVej8CFwHPn4XbXbQuZG62<3Q$;l1{espDxH!Y zBN-{5#Rf2vt>MLV$w+h(lKY|-BXN|QrHXEhO5Q(g`D|mQhy}_eQf4AMvH+?f)%FeWi!!C zd{by=CUIZrai^`JXr>Qqndw9J&2{pnk!dnh5{7oyyCmUm5r&*pvDchB@}p$j@1D+I zyXTH=G0?nNk;W^`<9tvD2gGJ@P+=bD!#X%1HiLr-^EhqKGml1{1!6NesE}}ehUabf zJQMZD2D#e3n1%vHgpgc8*nf==ZHp@iAXBmhsv?Ti5PSfc7(#T9{p1>{AwH;Jh!12# zfGRRX@@f~Xl~;HEy`4CnYw>E=BwFm8Nim@%Tb=3elb41pwmPwJ9WQ!$D49I>mk;+} zd*DOLV)7j2iddscGTEHy)z_Y?5TV=*kyA-TsefHQgii@vA6pJ(;$J~@hKm#vS~8LD z;myOO{(wbn_F`our!b2%b0!-c6f5I6g;|`LC)wcS9f|o-8VoMSZbKa!M=FzG5DAwp z6)7isB?+VbMWVAv7zN2P8mT3&bf)948kx*=>;qY}hK^n^N@u#q3NziKJkx=yj3Hj} z2xMW1SK_z=ML7ifRmUrF)$wXtbtLZa%HADbiS7W3$O?%&ysF?1AX6G0sEQ~OLnQOI zg*(V$78DUeVu*(dOJR^H83I)iMQR9pr+g5d@?mny)DRVx!VmIN82&jJBBiKMx#U5v zTmt_bD3a7GG@Z@Q=uxQX7O0H;B3T|m`s@+Pyu@>@#R9;Km0_Gh!kP6Bzwv0XZ+vLQ zgf#qfFv_fVDil%yeVN{g3aO;Mb69O)#x?I9CsynouaJ5t4IT!AB%>sIAODwK-|>F3*!xVP^IT3bp{4!BkxcqaTn0R3mjMqI zmH{ABv`4fINHV*JZkuEmEHb-Jszl<|QKuwZ2xwfvU6|xTlEoGxNX{^gYKbdJ$>U$U zH}>ObV{vjpf^$@?Ou!t<9lEj*Xawa1XP~@Nveew0lHN1&CiyxU*e|+HmP}QL^N|m7 zi>pc~R5T1KBcmj4eQYkfeS2N;qf-mF4w5CL&{*Q)XQ-B3;xQ_5O(&_z6?%GL-SVsc z7B?s&*_zEzHT7ol779s#j0il%_YM|sp(OG(Np zE~ppxJTRt5!%Q2~bUvX(FzZ*7xJ{BXcJry$V6|lOKVbz|#$+-1JE;m*x6-^$B`SZozXxmo+{ry{;05#L1H5s5o# z4?AtAQx96>jc4Z0CSB&liWc$;b6w_IxeJ*X$ji+GO^Lc>cYpGKncg+G*xgT}6|VTc zc@B*`lqs6*Q)H9Lt&-q9{FQjnY&}9#|rL_Vr3$yklcM{CRcc}LJ_>v zdX$`pQi|Y>e_f^f9G6_sXi`h|O0ogt1N>Dki);W1R;)F>(3R}KUHT%QLL#N5g1f}Lsrm&fMHvSdno7h;hSiPZToa8K%Q%g2VJ*dY&Kk|ra;z6Te zk&2Y6P|4T3?4Sm*1l7qwfzk|AcXwDdr!C+5TR@Ru$x_r7ppp$0wXfDZ>1DBHiDYYN zsG3Zc%q}P)0kc?4d9gXB2q*D%{JXx{)agMKoI`R-$wopCVtZ;Rs~#L>YiMx~$|mC( z4=bk!G%?jN_ER>;LG2Yy_94htOoq+D>61N8_oh7!D?TM#EZIl7BGsspTr8Q8&vzRh z9V{kf6e_VeWm%BN8X%7u5Kxu{dBfB4HWqm!e)Qse2g-6FF#ECnw&qI6NbgTJWjTV>bW8tE=#mWgVx$Jiy__Swn*$-sO zI8&-3i4D+!`-Ue3ET%j!R$>_yl2H;zhq5%QStVhM*g%3sBvMLHsg35Ba7=8Jy@J!L z7jXLSdg8TTEM{XTRkV&%mod$-+pl-rk1b5&#Y!}zLc&Q_Ov8T7VJueIC{#p2WdxF} zYKQ%)!Z$FSR2c=;5lga19gh3{l-$p>*rSeeMV?V55hbI1{7c?d7NeX5D@;?DC8HeP z@j0#eOFSm7?8J&dUSZBg=iO@8B$ZH2Y%~g%kw&EimAbV%&xzM<7NKWAsUnV3M=Yrm zxwDky^vJ|Oqu?x2e0G$MHTSpn`5u-wXI&l+$GZ*B4Os-nQLe}{swASMcJE`i-(FU*y1m~Ycqp={i_4@- zbnJm2|INSurJwi`{)b?b$@Wcm|IGZ#VzNb{5}H#+Ac@u9^m`cht2_7IT}EVKH6~p| zW9o@9*(`Y}-Lc(rf3w(MMzZsKUNzArBjGLFvi{)AzgKKA5=OZa6{#emBu-#6=dqY+ zoYWl6Q;1o~izG?00gD$&ttM#nRJy4gN~@1#m3ULCQJMJ~-{c-b7zJ08&% z4PKtJz~l|;ls?B>v% z4~=Cq*aMAX1s+l;nSJ9M+BX>BF#WGPrLpd-z`9VSmpT+RG<{Nb=ks zQDf*MHeuiI2Y&Bu`Gk!k1rk(5okAx%-eTQhBP^g6o#-Tj1)NDKL9wB95ACzDy?iK< zSQ&_oY!>n6Q}*(RH@}78tj4b(u%6mB*I|HK+DW$=;?z( z{N)o$Bv~X2YI9s-znXB7WRZ&+LzrL*TKHA7c)mPAJ4zLKSTtuVNBFCA)3=w7_1yA> zQIIS0j4G+u*fL<-cDz={@?`*ulsG^UA+X)Wc7NA5d@Hzocj1K!7+x8Ha8KDEW+Vol z;-yL`ULCRUz}+1o0$uoVyFuU{#R@c}P{z3)@8Hg)^@emiiWP83p@zfLkOtQAN`+M9 z2s))B+0>7dN|lA|BzSJ2sVxjEHcw!?6#JIP<4CfMMQW+SDa}Id2e|3Vy~qa23znfqr3A%1`&G9)4c%$5PFV%HbEMD|`c5R`-&tBd)<`Y? z(2|Rvp(zlth1x@NJ~zL~TzmOK%?q7dXH-U=H3#{64Un&AK)xO&%J zWC|Eg6`3QUxV+&z3JVI5DN&#*qG0~|FhJAYKKbV7a(@kSGc-;m5wZ0=9kIlrZ~1yY zd!$3^h~-z}1oYUrYKEudv4vNadGh1U;*9iM!Q5W+XF^x9P2r(^#+MT+lAtm&O4?J`(;luj@idf4PmO{_AW}+DY(_nF$A*9PclnI!WJ)NgiYQnf z8tN?f`?o9X#D-^Hmgk|F>^T){4s^_$0sBpxTv1r=&7)L_$g3kuF>gNZ+rtB2h%NVK zFH|7$$_Rux&arz+x@x)OIGF;5Q$-YP&N^NX7rfxOPgs`ES&?LcC{jyYzZNfo++RO7 z@V)U%y9!wdwvPYP#S0->NrrX~L*V};3oeYuCtGT-p@2MM5HA%&a2q*h1HR2(R1857 zUZ9-HNV3(-sd;E%`NFS=FJCT@*f|ungjmMn$7z1`czOKrLIo6lDVts6gmSNJI4r-$ z2@(YaP(zNxwkapL%{pcPS8$zUmn;#MZ&T(9B)S;{!TxGIDq~r1;Ibtgj3%!?{AlsG z6m{sx6ADo$UCalhMHgQrqG{-{&E0AJ*7~L{ij)XI5t)Fk`A(sKnX@ln^G$*UoJlD` zal52T(B+$64ABAzDk21SG=k5&{BoK>UVbzZi=8BNpCAP-GLXGFxAhg?q40tVA;^Bpf!}{oe^m zf#t(J7M;Ty6%!gu=DNSfn8EsOc``T1%|JPoM8y24hcXiTz0OtwJ9R1+OrCBeZ3 z&$BFFC80=x1r-qjb7=Sg71ZJC*VjYCF90of=ved|DQ*pDEJzLT9pFR5gXZ!eHA)qL zMs;K+w#bIRdQ;_6(j-_UBBcbyMm+xQY+6}9;z_Iw#3mJ%*MSOPYez$;+E%i z1PubDfI;S?kLtO#@^HCspjhJmx!pkB)6K&$T^EsLPD99yMJ(g`t9ZdE7ZH|rTy`be*Bep<23+C;I&(L*{gl|jZeP$@(17j z?&|yB`RLo1k45yM@Qd6NnEmi6lCjgzgedH zEoM1ey5G|2ek;)Bx|Po*ros6$mF=^D_RsvreP()P&iji6JNSYg6*@tpi2ctqzo6~= zu3xoKzX2|Z!heIpgvl+T|Hbl$i0aheBmPC`m@)r5GuUYbx9zvdPI5{9H>*K~4;a)9 zV+Lp@ZEp4@86a7_O6ma!^FK?y<=fx??k68m6>E6)HKEZ({#+b_GC7Tlf8dt zGF$~M$`D9!XgvIe$S%)Z@lW_`yPqH`Q+|o~e26+@b~_0UVK$3@!;4god6DsvjH620+bNIp*@M1apbTH;4>}C5J+%nJO}|Cq{=Ze z{s~qAJf}?gB{CfSAR&N*ju1WL-(VHMBl!w;Kp;{ffPHIvuE&8+YD{t&A z{(5%J-g^6ae$n(Qca*pxU--sn-Qj6IaF!-+=Hhe25de+$DF4jm@ZqpD!<)#~0VkJ_ zmIz!z>^bq=v~-D()uI!}I7Q2H*R{25)>(bmPwx5tJeYg~?)j|oTip9Ki}afdyc5bo z$-grSC91}(#Z^qQ{#WO}@8j#;e*L>GykmE1zkkLnI`gskZ;gIgMpy1PWgZVf@z-zq zHGIhaWxb!W{v5w!8q8n2=|{vvDIVGXTfLtXsr(#2Ec&a@*-tzGRP3j0G!Xo43JuX^ z4GM?u`P`UUdRZf$>GP z#Ar8KpF4dG>+9Y={?N(I1?&G_-)(n=xzEb_8C^N+XC4ocM_6utR(H8MiO(@lPXtV1 zx#^$cgVSnJG|JWirvWJ}H@$?|-{YZZwcMO((TQUm8h%;J@_}b-+3b+>KWG|k(E%$3 z&d=ZjZ)Y~xW+{cG2duiPtc_(bGIVscBQKx3^U|vwik{nl#N_6}+JD{|v5&!JJ*nYr0CTwctV%6pf5`(X2Oz8(7$qopxdk?RBgREX?!SFwBf zO?aIW-cJ1VyWjj2?+Rg7{KV_iF8S8Wey(75IUXo<&s)8E@{O^AkRauL4;6%(4NKcko3AC0Sjc z>nBX^UhIY7bMgH7ci0PohkAhy{koS;e}Dh-Bl!PvzQ5=?#7sW7xTu^MX)2t_2tE~C zw_oPt35kjs^b_e6{t_|tB=_Y-Y5$ouZbF@WH*3}4BY#I$4f@Hd(;Vom`WckjYClpO zbx~$vG;5+nux;`LUt>&Di-b(xz+&_NWZ<_6Q<*xDkgX}rESrHI=We{D#v-i3Bn#b6 zJ~^~*^WasnSO1;ZJdlvh$Meqa3>WI5u*b`9-`#JAZ=D{0w;hJh`fhVwUtU7#D_&G) z$$4i{Q@rpmJ{;En^nUvp2k6VYpY;UK`E|025J3|JGH4P*gQS@~O+1t!P`XOVteJXfU)w_y1sT%Y zJT%CfS=7WsnRp$P*_31v1|FJ-*Fl+06A$ek>UwA*Ujj`Y$$4maY-Udj4`tF-N@mT(LqQ66 z4r>oh6=X;`M8-oWSu=}TcqkXIgEE_P4?XM;RXsG7FMy_xWIS|wY-Udb59QKTN@h*& zp(uqrhp~sw6l6#_gzTY_teHg(JTwungEE_rS+g-G0C#zt!}jI3;Yx4Qe-}PrgOw?4 zvt~t2B77E$%$<%j_XppNc(jNv=D)H>o zQOR#Uot_!%lH&sI6J#>bP^Lu;@`3S$LzV`f0ACtl$V-l)H6>;05$1Mqe&AmTyuT5= z4;H7-NQoW-pC(UUcUW@7AsgK3C}VpRGB$Lv9 zKvngZzxT-x`WB7?y0-%yY%mvIIClu*6G-8SfH~fjgr6EewP`L5V_b4mQjo0xI@Q$6 zvJv;t%j={%k)aVs@d_gW5au);#6~={&Hb#i7asRW@)gj4K%`@pfTTy$JK1Ej;b3Sol&zS|sV0*p19q)MXNv)w$d@RSM?&W&V}l->1!#-05ewHCS%}V< zl0sy>pR+Wj5~S&85CV1jwDok6fF27mGDcl^NGB@LOd22vmMU_ODHqo)TodJXk)qF{935dcq-*d`o*iNY!=fHUNf51yWFTdA8k$db72nm#e-V;QRBd^`RNygCH-z=f2GN*nV$6 zJbceJyksbocM3m3{L$bGx#6yMZE#P zgEhc+)c%gVfvNvOW?&M&us4vDzawv8>KB<|nK$?kxjwe59^%E{{-9v$zmOT2gy0R7 zOmY$C^>O|3``ul4cnMS3C*S%G`G5e zznp9T0zaP%2sZeyZn6Q^F*tQc%qh!#|9{o9fTa6#{C?@r3%~vcw193mpR}i8e|h>| z`^tYM?&Yqzz)^h56V-;l{ubTJufOHb!>|8u#J<-=46mDJpcU9p zpz!yNFKh|)2RQ8B^Vh5YzrS5`1c-$;33A9quJ8W-aM}F!p}A`h?lV$9)okD+@Z0y+ zPnTWt$*=#m_?tKF}L4qFTM#MG{yZi{8#t@{fm$N zP6wg>UUS?sntxfOxu6XoqP`#A@NsWlp&)Y0pKQ+i_rPlJT{?aM{jH*OwDtJc^nX#x z_(LPH?|#`?_Qgk^ee1<1?PGiB&POOg_u_Z1`%Q~K?dO`|0lOSB3h%*kUemFxlgcSOdn+&+_`WEf~K4f*am<-MTg-B-U6Y4-!h+ojp}@EL5d654$Y z^BLOa7w*7)-#avC_zCX~?Lqhq>i_V$S&!||omS1}v4QU#j~}L#^}PG)_npoc&5OAvypkG}r``uW=*efH7EzxU#>zw4paAkzNq-F1K1yax$Q*fSsAyKi1ItN!3~ zlRA0e7Ap`nT6L!3-Oqjl|Ly&6d95$L`O$xeEPvm#bOWzo^6}?p012^b6!`9!ok{?E zao=~x7Xx_wx_!}|UVNunqw=5f%HM!Xc5nCs{PRb^QA!L!g5Uj<9LOJxssZLdbTH}Q z`kl{h2oe*4pwM@}ATbPRhQGJo@-Li!;ed;RDB%A5x?4jYYm69hOYn3}GBh_wJA7^Q zeJ^SS0c(RBs!^c-m7waqpz6I*)w{3zX#8=vflj}F@o{%TK`-8W@w?p{jCl9m0ixxL z>lt05ae=PCph14xqYvHT>ZT|*JZ=s;H&Rbp-u)!x_JU6I&vkb^Lm`*Vdu#X&jN<#B z+b^Qk!Ya&OT*14a`gm0M!YKrVpM*c#H1BQQ3>F`-edmh+Y?_smM7=hNe)rGf39~&t z?tAzeGR86Y2QR+jIKJveE&SK}{q_p;$#%~j_ckc_t2fQC!}XJwvx0vKNRjAwKl?lT z3z)(`=F+oK4IPdrd=D#l*CahLmvezx+ytI{*7D%{`cR%+L>U#0X z9^Sgf=?oT6Nb|EX4IE7*CMmnCg5$)^dAyc)U;fDbml@H|#YFuY4otZ3mZw4m$;+EF zje6ew{73%3&8T2dhhDpDlj~9CIWLcd!e%^91I&5QHY0(^$VkrpJ}K1nKQ8bg)a)dR zOkUT!f9SwIL&Y<^FUNR&vw_7T|I+rqT0%DpoWqeOn5f48IwNCUc0;-5ose0WTx5WYBqWA`NJH_hsby;6s&2_^|a7A}?-6G-`SG<&T@|diOLV z`i~<&g6eQ=`ug4i7Xn#x7Lfn$XFlHTXB4r|z+duyTH-S(OyYn(`XvB)50WF0+}g~5 zV%J%Bv*5U>qnx-ol-B|s<^GFGwAnVtBcITg5P5MkqEXAc|KyYIdUt4F{0=Ieam9gX zGk#s3dC`(UL;~k*r0Lx+k92>~!gPB$%=qG-Z2JT3q#4~3yLoXlwo%KwFMsOP&4}Wa z2_8oA3n@!hCQjO%$LV)y2U zXdX|&qn*a*!xPI$iI6ZKAwD(8#&mKZs)LJtO@61rharMt1+>cmL>{E*Jaa zE09C@=2vIk`in6MERDC<_OQSI|CxKYCP|L#OpqK&s~ahR00@wT2-Z*>36f1U<9-=i z*)9PHAVmO#(2zLNJmkj3qbj@d){$A&DA?LwY+q*0@)3HNpRm7U|Ha5m5Bp2@^N8?> zb38KY(jE~IWdhKhReruae*F0HbLEC!YJ#a-vyZO(?CazChxMP%J_h--ci&r4vz zpFd5m;b|)OedzQ`DD()a$(0}%>w}dPj%Od@UuW-ryuCQX|HFh|W_@7ar##)R@)P&? z|6;<@cF8`-_9MCR_yc5c;995W887I3gX}0Ki6-Y+EqD@OMX81Nscgm6S2t7z_U|$i z6GzIOTwqdR($T<`anm_EYoR+Am=mOO#0rFQ)HA4$?@zm&8u#C9#@RFvL{ zrW<=9HkH~MZDZAfeVmHY@n;|5Kg(o=H1PbaQ-}R6W=xg8jtoBS0cFJ0cFEIVYih?o z=WwgPJ^P1bb$$1X3XJHBrOA;|3!Vbo2S;m!5m7x@@iJK_XYnrq>0If~p78!a!!Jc0$stP~>nRM;x2vAS-hTS^@y{s7t8-U@>A|MADA=>y z+*C)JvE1YqC2O97+|oP#B?a81sK6|T+E^x=`(U4x6hqi*%~P<|XJ13J5uGt89MmBN zj`VIU6Ngl@-YJ;%ef1Lxap2OT1}GLpO{6&RD7c9M+OBvCWJBx7V18Bs=xsZF@Lb4v z68FBEJb3Em`T%Px$Jalq{-cM8-C6Kmi}JuLqK!0bvtS>UqI7)sqvk))-uu!Z zbA)@>i1GK$I|jD;nFUW-H3Hi#*ausEaK8Hb_}4YCvyVk_INx817r^?i3kI-WD+d*m!drXV!7Li!vXmO zUqBI`{R$=oxs&_5L9GaR?Tl<}cT4tmr2FXW<6H7t8?dzBB6phnomTD9I81JErO`!C zqHHN1eET_g-YlhAS=;<=U>;N7vFizC%oa zrxpF4CZm>s%nQ7zUf*Jg6x8aGiUlAmTHPLOZYzN&} zXtK>}!4v3U6-i3Rw=2t}(y{k?46Ef}zc5?M7#|iqjZacKKB@5S#aSbY@2Wp5OX_Yl z1jy1G1YaWqZSt7umOKSpQ9J&)0(zI{iJBzzVfo8W&TAuGG*{cW0_13&n;KM{e^n0&oi;u*@L2!>2< zmOKSlQ9J$sh|mANrrp!~^u}Io(H?<`fXN+Mt#$&Kq;dR<#`OXrMdIDruaO@rHyxkd zz1{eM7ecceO}4vPuLo1nIll2pO|i!~sv*})vAW{-rHO{Dm+NDysT_a$N%bH9-~aL7 z_GdD`>HOEpZg+QD!6vy%peA{8iis*x3-&;&50HraX+yNfI+`)F$#{I%Bx43^_3>c+ z;}1XGBDWmr@vtF2yax_{GMmBavMp7PBZ@&doI?)|wE{NTm*Zvf$i+_Z2NaHfMi_*I zA9ZcqjZIf&CKig+t$l2g!twP++3MC3bsNcF#}lw0R4{QH(M3;UYbhRo)?lojmv|Se zcW{q^RBN1Yf17BHdbu9ZhRX5vM&s&iq!tSjNo4BHczG*o!9FTQ>G*b)t8!j6by7W! z(QU4mJ8|QiY%^VS0B1w-_~Qzz%xq8=fX+?&$g38XLd33AlSf{=;%S@}t>X`Ckc~v@ z0N*CBB-E_t+x7WPf|@dX|9y0nN%!Q`}Ko2Q(sLNp2`H28e^73bSA=j*z?87AF zjz4-@N7@F0Jby~`&i-(n%PdMHz@QKsg_-Q+Y)ruFEB7&XKXG2uKECs``@6HxC7vFW zX+9!9=bsv&?VE=%4&Q9hob@e3dbz-s-HETZOJ1^Ia=ElC_ITEQf|Tzs6kSbO>m@o+ zP-7+v*UOziR#7>=^+iQap3vUj(MR|}2Cw@WUnY<6ZpjnqT589ic5!p!-0XqnTZ~^H z)qbe3$`wyTt?h>&cSr|p2&!_bB~MtgCTTHb&C@`YO-rB-Shv*Nsg`X*K?^(=nATaD zoMS0fWZ~1Gn;$rrl#gD=nm})O4ezvDjELy&%gEUZ^{2X z`O*l3KO7osv_~ZQvP$52_z`JoXvcjN+{>n2DKTvtdi5dia6jm1(~If_ zuGtfYoXJJiE!pRGNA39bZ}ErSa9(`n!Khy!=5j^|Rx^oH=-rDvo zzndKbpWS}py{u>hqD7(1R=J4kg7AYJ&%CP5&vtW;ZaC+KNDe4n=fd%K_mZiFqyG&D zmp}gCgNCx~ZUD+>EoHF#$GOXt+c ztXGTd-6W6ie9%EUtCvtMi_lM}@_BrxT>{A`4CLQD5acNaHjI!<9>3FqkbeZDejkiK zM>_&W?O|;Oh@AhN{C9Ui)Y8Yd8dySd~}#XEw@n1X+YIqe|`MP2aW7C zSu&@}GQO*pJC{{nOw>NRS3$NHS>2UHEwzwKX{f5zk8gf7SW4FIDAHr=nlpyx<#)7Q zPlMF{J(5JLWLt^xbe-EP>Z_fvwikP?8t>5$3ANawUQC14P&mrWX+#qam++X@NgPjM z+6g49*Z=NIT8DDeKcFv*-$vX^QpLiNpK^OS~j3I-d5lD9L?F(-kziI6)E^^ ziy!SbPzx`}!i#!g9d4iU(XOiis@Ok?+1?`x?$*5C8RUhlqGyGv|)9{rA23obV8g8ElzKlmDPUnNQR0PVya ziHT6T4CKp;dA*nhu%U4Lt6ICCy{o>{S>^ex`xo?2;;ZV%&e5}YkK|p3@zL=twc4Ut zO$XV~IKJ^&{a-z+;yY@E^WBc;h}_>cbU?}L7_jc~XP*gl%R>V$;J`mszs|EZr~Um8 zKCJq2b^MXxO#JLf{ApIxuqhhHzxY61h{~DuZu41x3xC+MO#aAVX!o}-d&Ey*WJHcX zZNc6d)a~xg+iS#~mupSfUjE)}*VCZ3e~c=1a6Fxb6_n(l%)!)lb+~g0#3>rz?n$=DKk~EHQNKB`UuJ0?^k_UQo*e~i1ztk*z z?77r1)axR5TXqgU{?*eR9`*(7i2CoVX08eY`hRvI@ah5kX7@LE>L+NEh*4F09$Ea& zy>gES8Q!obUe7H#wm9C=m_u0dw{xtMgzS9|}lY;Ms!l@lhH3}g6!+d*i;2=D>OmZLQ!ce^n;;p5LfNhF23we;RT6tfk;Qawg(yKnu3=CE~ z?DqfZ=RcR{=}9G%PqyWS{9`@N>gVd$D!N}EfA3eam$Y2)^$V2#g7l(tlF9T5!A+z4 zyL@Xa)L*Un%kySgXir#1uY6P!laSHUB6X_cKq&(mbD^_{r?j+An&*jz6I zCvn%8w72^44}OE3p_?W8tAqM0@^i8~jIH;7bxOPe(R_VvSy_jFs4txEoJjzGC;{O1 zD|so|<8&IQ$W@&dHiG5H5z{>$$eLT1}A#e(3wBe9_E|H?^i8g@ozb6t6r!3 z&h1|zu|qbmmvI;5b$o;`|GE0<_G?#Cz&QRm3}oLHAhs?FVQziPp^Ia{>RdM-dC2< zCml^l*_#M{VKj}9>U)nt4Rzr?hx5w^!C^u-uquk=YI3q4IVA@qufs-^@{Vxn`SlKl zyhykg_x=ZJb>14~hW~DDA);7L5jpjQNc&Ewmj)aFb=!>4Br zB5c>I?QfrYR6Xq4J@u&SEqi>kMN+FvMGqi;uNo7<81##KcS2`SwMN4c+;4d9{(-)R~ zudM8D&(&{MfDk1AWShfPgtYa>`u?5umUpapgw+9quj+Nuq@l}|lt%a=you}N0#V)N z2BS*=qugC?5mMn#)%%U>R`E0o){Grq9ZkP0if4o(IQW|SjSNZqD>=M|@9_O6{%#;- z+2fxgl?(Ylas%s!P(xcj<=>av`L+Th{X5byJ4ZHhJ*$|bdPFd{S(3Bo)cVKQrGH0K zJtI_s>IVu{v0R}wL0i4VA>Hq9x|>nG#gDIkSkXIE)l!wj|8xk<`F_3K9xlOLb{78e z-m~yHScJ^+druX~vl@Mc@J)pf4_i4MQhh{E=>3n0yHRONAAj&sO{>AdS@u>7s6^^2 z5r2y4Q$s#oXloz8|B?KgJxPIZSI^7MU$N2-Z(w}q!ej=i90J~l+dS3bV=D@uuT zr#*A*ccgmMtXI=BcWV9PPdKu4i~hz?i)U&gj?@Zo5Pp@=($$DH#;*H4K6i@~pmhr$ zzXMF&9|54%kz^m~Zkg&xvh4AXK4G%b?#?!qZ%GVTOZIT0$fPQ+eoS}g)cVKQe^XJ# z3^hU(4EZayBdGO~?FkX|Ki^-<$pGi+Eyl-S{uYwtYx{vR>Jg<$4F#^YA3*N-Q#`vH zOlLKwvlLbhTHSY;@D+Z#LGEIcJ1%R3WB_d=d-9d%YEmo{u}3H4s#ThAa6h%9kC>mV znS)aXLGiYU!{-&aGtAlrxU;9t>|J?hR(5mcBH5Hy$l$(Aj%T%qvQypwGhii2JWx(` z^%R%5`*nD2k@sJ-Czn3{{2yvsXV?unzE3uB#Fs{DtF#Ppwc*<%S5hVrZ!$=n{Nn#^ z!^@Xn`XP^X)Hi>#ed6O$35mNnzeE`-|L*t4THsWbBkMBJjc;Vj)ncJYowLti2sM9x z7wJA2E&10-l&C=9-&J_}hw2xfuwOjSIn4We>)i(vE8c}v5$02UuAygwSiyWDYK zfVlVGyB9E)yc4k`dHl%`WPGYH|D=bxy1|x6F0X==?7VGFfb(?+(DNTcDntJ(@E=j% zEgs6P`$^4^CZJyraC zqvfai!Sn2~?}rn-B#RB<1DWFw)z1-h?|-DQb$hLT49?6HC2;KE-EUIdiLY945Mxd5 z_+tft;{45f|M>AQ?!cO(&z9i4G{agiIE1w!cM@y;*&SF{QZTv0-3)8J;1Je^-0>$T z`1?>u+16^Yh|%S=A%1&07PJ(#~+#YA7u3Cz=N+>M#l`*2x`?qyxotWSJesJ)f!b` z>rkpMa6(N~KPJ9R(1eQ`2WD!bTl7x&HQAGDqDEi+fC4|n{j2hJwdGY>BXGZ7^-lN= z;XAlr|AhJiC-hwPHOJL+YRNmHOOhw`T+MfUtUz~mv68Wc^wuTidF6#d3JevSm$Hio z79RQn8u{aY(0-q2mj1|Tc_8(=UX(yk3Z9Xn|zJ>N7VQDUb`31lij(4KQZ>-A4WW(=haFY zR`u6tv5CQ)xeW4W=vBN&&u8f&BoHMG1@Kh{P>(F$U$#4d4-1`uCzn6|`90|HLke8? zYAO-Vkl7UQ3TfW)mwGj^j7@H20N}kRuJ~l|uXj12+`b1&uUZ2%3=EXkIn#kWDy*eR`WU*5`Y{(pcr0sHE z!1KEi3S8%6tJhm57Y%;K!R2%^QZqKrVF(XGP-pmWEFLt-_=U=LuWv z<%RR4308e|WqJKjLpEe@RlfvRlt|DMwYSqR^{(tKd5V9GOz2+Ub8=^zF>yPioT`qGNf#c$?*SrIFLv#pt{qfzn zp-uFmT*h)zuXzXVhUgIP`eTKg+YCx)9k%Oz=tYd-FKshui{61;k*#fp=J$vyY(7`m zU#TL(C3$5rlsWa-(W8D<_LgF0ViNPKBf%8)Z5aQyCj;#LkY`0N%z*^P`p z|ItqDA|(0fm1d7m&y)+*WXY1pKl$u$K8vdOcN^>f0g@Z!U>05;ad$XWk#2 zZ!=<$^LA*0ykzO~dTD(9szCEEKkKNT)gM)`(6+3qBSFdzvQm-~*@H4HzvG2wFCCW0 zIw~yxon3jJU5e~#g)BWLn-5DMr@64hxzmiu@$7v?@GKQzI?4>M)Ah2hTS?A7`&@q6 z@7>*M>V7Lx7sY{AQ++bW*FLMdT>)Q3o?s_k?7G-_FI?+1!-Jb_1(V-ZnDtx-$i{g6K6`1KO zAJ0CkX`N-rFOxYYO+z_Jw=DwrW0D-q9)qX#hi7?mNKj-|B5zLiXseEGvbxw-om=*2@7Aff%~Dl% z$)8Af4O&Z|$_M`FUM95YWIBSJ_}HjZZPBCuVX{a5BNCa~!H{Rym7J`$FU~PIO03Ql z2A;e1JuJ0fB1I9u37F-I7wCQXaEL_r_18Rp@9!!)pGZ1q?^kr>dGA_@$&QFunrZU* z^WLo|n<8SpW>M!J=;cr>-Bno8#0dp z{85Fh0{m9Tk@M^HdULowugW6WF}c5Ogs!;ir4|?0sE6tyW^|5!^4|4wRVAvo_wFmD zWm&N;>^utM@SJ=5?(aO)IVh^!W!aFcuK#^f%itQFoi!}i?F@uM(ybB!5~F>+5cqd*&}Tv|An%RSCz*=(0i zl%R3KD99~gdvT+(|woemYEiF!oLP*0n&4nAKo(ADD0cf2e?at&&^tNmT z#9_n+P;hVW#3-EBQiE`~cIG;9l4h3BcyWKz`e7-RJs#wCq&ZqxG(BT=T7(r81ZTyx zAUG%dGzsn84HHY_#A7ljbg8H^{i@0V@nnx2z8iI3T}F;FgM7f5F*%Mwez;7bPmaTF zCG?%r@;oQ7^4Rr7hRX$xfA|=#aAVqW$h+lk?zJX{1-3oBY2^-6n{+2_vS*$jSWfJC zX_#uVW1{Od*+E%si;K}40K$c5dLT@CC`Y*TOb?_JA1F8q#A9MSJrJ*zV+kbi13&Wo zEQ>W6xqo2Iu;A7$*mK)lUryBz%@*xBJxc@M0Gle_5M1rZ>6i$z@gMPr-F+Gq$j*NG7 zAI1@ObbTidQ`h$MWP+_hJ4U$Wa5Ia>HBwrf9^0A@$mm;h4-mdJVG$Jp?6tzx4(?+D zh`NoUthJl%^5Otr(H4cEoxC!Vlqpe=x>jlhLO0~cFxud0!keN!G>p~&2);AZg5bMC z(D4H^EeL*CgpHkW<2=>P*D*j`NJBnpw}a85+d)1Ue>;Xj@a-r(-}P}ua{Wp3n9N=M zkRVbHU)+;!OcV44BShE`*imAIcAQ4~i`(d!R_=dPDSugA_jOYwwI!S+#gYek=ogXW zC7Q~3OyZNyjoR!$)#h%g8fKMNz(@^X;9@Z;1|}6096zL!Vqj;KV&Jyuq!^eP8svp# z6`qyZfhG?or=ymK9ZEgg*FGo2q@hE=rC~w@nk;k(xGYSFfJs7VIRbBiB8qei{F%Wk zw%!F9KSP)XC9StlvU0n}-=<1UaJpnu!YCHL?Tb|CfJ}^WWm%vUWV2tiJ~2*Ap@7pg z%!42ed?(HA^JLFnYev3GI zWK!abzzSn0(S7Yk@7nqSC1u$`514AcO3N5VaR3U}EOS6%Du!}}tC%^UFkM5T@LOjN zDD3iyQag5I7$k|VWge5As~aPo;{ivi9>3a(3L{8Gg?zw8Wd0brt+Ez{1Sd`2CmEsR4PWVGV;QW~xRmUr6zSs|?X>W%`p=-WNBaPfdkL3Mu zA;8Ntf%a>e#Hms)`PjQ6u~J)qYTVz2=x;w0 zyR!9(%R1kd7mO6akk~?4sb`1i1;#_JkI6{W#aK0$se74L=`9;q0F_4Ok}y6!lvOj)BWjLoy@kv0giO7SCo`!M25)o+h`*4-36q7dmcWT zhdi{YPG*oe2|3q+zP}uhV75%~(!Ui2@8q`T@UUWJrJw`z};!hzk%eFUq7 zpIC{n$%>H=3p2v^LiR$E&a?|WPY>(X7~v!buy9G41xqI<8eh2joCOQB?DHgyQY*59 zLcjON3ems!*>-iSv^pn8_lMx%`!hKXzBdF1-%l5ZMV{Kb6G9_E63gjCbfx zFr!4bgnYoaWJ(BpHwXm28&g7H8vz3_%c3H5ZAVjLM)rB*DA}d?1~U_yBBl~aZIl|> z43S16^6dl;KMjV7zY%@RcjyBAB=3^VIH3UqTpT7uz@!0pYm(Sb>ScN`*W_&0&)jW^ zGLOYYxm7b^N_e;_Il_s;&-2{NtSr&PmSZ?N^CdIJIk5p0d_N{e(e24=r7iPhV=GR= zu;|+wV*tTqLlqC`6YJPvTgXmLe2GL4N*JN2eTcHHvHbt$8qUV-RD9bB&5XGTT!JwwGGmoua49-SJm z_?vTPRNY%tL&cw>GozwURJMcMSu!)KkUX4i#DVhEPeLoy?T9g6hMTNFdPS=U7%i#@ z$Ol{zObddYd)sl7EcHXT&^cigOlT~s{SJkkOVkoAuG)KpQzZPLA8>xm0j1;0tEEk$ zXmLxkS7Gg!zK<;+N%`X9;U0UrZ)cjdd4DBN=it*lvFi14r83xUo6#8nz&B<(0Nr*# zwNYgJa+(eRyNB#h6v#lzl0c7%KBhaFz6I3LhABN_(GHSWptPWi9NU~c-5G+5@67DD z_=XW&e8XnPHMo!5o|qjMvnXug1WAGPOILT!nYd0>k!qKi@N|W-7wTf-M2S>6xs|%E zV>^NVw0r*%LAh<-UV(f;Mk&s--1h8TS8ba|P`c|}RSxW5qG|2&AebN9c5+IafO1`A ztmK)E3J^`-8YONwS0dcTyTw-mc|2+#I6Vr)b7S9g5ZTc~a7I#5MI+ze-XzEXMJt0R zFD}8G_Ih?1(E&7E*UW^5X&5)R0w+v;Ki6NFV|aql=ytigTHEawF=~V z8~{a@`)-hW0x6W*#{E|lWR;eY({Qg>heftRZ%hRFzqq~nLNTOELY7!f>OsE-<#2g8%buY3I zf6{Jc^T^~{$S;oaIKd5Xpd4@LC-QD<9SfkUZ@@| zHeO_e7GXvdXJO&lX(4p`cZ~O1vgA){PL0Ayyd3o*Nsi_d+%z$j(t4bzc!IvMq%8;v z2Pwe;BwRXXK*HpMLLB$jdjL<^trul*1mz-u!&loKqp)%H6iLw=7`@n%)|TeP=*|!n zd}k&`!FPqA;JY$0if%`cQ4keQ>NvLV=HWCM1y^F(?TAiHZ3+z5*p4$NKyrhRgUk8x zm>57Cyk}|7?X1NfogoC=CYugHXNu`O;I`Ow2s#r?N5E~c=@2l}D|SQ?*)kTU$16=r zBUCU<#%oWlLO9C_95wRdD2{h$ORY z3*I+NFQOT*d{7qAWnwK<^y1YAldM8JeIv)vp_h}}RBVwmVuq_aMO{@E7AUbOqb zNf9n&UJ={29c8f|>oRidvhsxeuJU3kg~~||VBtG53l_dNgfCoi%z~xU98m3)VcY$Zn|z_({=7<6YGD~sbSa6L=tR;-DuxpkJP5r-{1 z7&*!gA@Gso1)2Ub{?a6uV6ef?lVpX!{o)4wxwmR0M(J1##Q;3MTi+BszKaAmKVRPz zyza=o3bvv`BrgIFEi%s2goSuaQhZt|TM3M%Sk!IjRYHwURBh&K8l2mbk5(}0QSk^s zlB|OC28Wbgmxtw^ap^H5r1dB5!$CEK2VgyWw#GD_Zva+9Si#cdX;U&t^T-p3DmdEa zZLZf~ID<6L<~4*BEKSV!hb8CJJYrsvRgg4J-E1!~7U~<|R6|(7dZmOZ5N09nz%0~5 zj3$?0ZD`{-E;lz9$#t9Rr;!`L!Ec$#aj@&e7I7X2ah9ff(SphGYJ6)dQ!Yi@#Q zN1QMzU^^yRG-_a{dR*Z2l0Lr}F ziDZ;9Qs>xKx%F)r-fl+HFiGsA1zO@py1T|C*S}`YL1ua_kQKhD^6BfpygaN|e^#OaH>EoOh)eE#fS44c z?-K@wp}l#i_Y603A~jCo7v&O{<{}kH@mKl#4kt;N<6F6v;Sp)~^t@5Tuffv#rX5a) z0T7NGLbelKT#Nuz7tQ`kyik@90^o!W1&}6~RF ziKsJ4^fR=zL|G2T=4gQdlhlc({aAt7btrH|*2Egl)vip);Z!LzipUGmC_C&O4AUgM zdi-WxHIa4(7&?R#f&)nSw#I`$LL|B3#Peg9zk)xj?Bh#o-VVmSCLC+(Vx8QJE z10cA>P78twYiQYNnr1~1=^3LYBBJcGXPajmUaX7ppOm0t2mCbXxda2mE^x8*GbN24 z{>{~Pd5a<8s>ywyoPvVqWS9yEJ&(`~O26*MFj~=fdVztds<>ODHUNVQ$kZ@85rLaA ziv3)8ab^{{o*p+w?v;=|rdblaPLZ%AcAVTsTW5rnqcBqSm877+{E(EltmUASGJ*;TG)iWrv5k3)E(&V23`(Qtc%$em zje@BrE1q+!lU0Clh%y^Y3H>N7bkQ+6&9ptu9zDUg?H+M@13<=8D-Q$0)Cxt&jo9fq z!feh+tir%aQ4Fz- zW*v#+^wirJ$yk@k=1QzozYer^p~M&pl(OV*g4V9u1#Dys@a_Qz+2x>RNK7dXK;dU) z4k+xjh_J}~+zs4Nj}(m|AFFkmt8oSnCq>vnKj7?`6a(V}oUAVDoiH_A*P}*TQe82- zEz}r_1JMsJS+&M9r%2dAKj7?`1Ii#*xGtRo3e%=VRv;@6!+mpIk&W@f5@o?%&YWDg zJFaErL70buMiNwm5~i-NGxvjsZ6=tT`j1EFf6T#L~nAZ!~gcH=mQ#?=(6 ziECLk+If+nE6n~<*GVv%(axeo=pj9$`%YOR zV$;sM(nt|GbwqCag&!f1ryX7sb=oD-q6Jkd$_sUHIXQ*n)zWqGlJXs-7h*Pv_MjTW zIDD35+f-S}Ixz*~6~I8@grE7A8|j(nCc3QAAN9X>0xsX}M&17!$pI`}h0KD5X%Wg7 zu0>|S!W4;%7&ycv_B`E0GY(&MHw-62cZE>ryD|}Vz7H5F=vXeM9q1~tnGyoq5Z|@K#Kkx=M|T1lg%7KD zWqGq-l<@j*7fqK;l{)Wos)Qr-1J04T;0$tyi|br)n8;$x6Y^%ALim%sF=c02vD~yT zD^8B?62ZZD$;3EQq0K4_ZwLq99)g2!&*V7xz68iQ!%QZ(H|XBTU~Zh4vhzo4BKnLJ z-ID-;W;Yc{FAvYiPOT1dn`)*sn$L(0px}}*F$yjh1Rj@*iBV`$(d`I-SWb+By(;Ne z@mJ-IB0tNeGUHQQml z^Y)^e0fRKBe2LVNmOqR(dhk@r;>)q3ME8jC3KPqZg6B$=rK;C)1$Hz$|CzxogPk#Vn_m{H|Jo29w0Hl z5UaEvlGWpejMxAQerhI0!A?t(y$JE|Kedz?_u@+WTdf zvSmvX&Ejy#j?oYJj(y`e*``vQd{e)1oZY^^Ub<20#zlq<6yH8aGuZus6)l??UiDbF zYE&$F+V?4{?R|~I>CLA%%4lm8^<8Kxf(i^G9}%vLtjN4596xfpUm}lfwO?&_on_4F z4FKUnZ{k_5V=wmsVN#8^i*I{@?+1FEVT^11>ZZNMIU&Ld`T=Lfga|kf&_q2!*Kn)% zHdvWx%E|<0Rfkn-`-Nz;$lRDwrc5CpaHh-&iF2taJU5MOk?4|Q)1@t)|Dm{Fo! zAs=wAObLN;A+eky5_Vzr%-%5|T);c0E=*2|Z~@Jr{Ll*AJk_JwMs{!eYDA4}i-D1% z7$U21q9Bcho=Im^T-XT1Qe~0538OOrfQ!O(0JtC&QG{rR@7d$WIyPCWDHg>Nc|qNV zFshUv7aA5 z#-}kNQ@1uR{c|}v#T%IN0yQfx=4R&TUEDL}jXVvF-p32SO+e@oQ$S$G!?~Ts1u70u z>c*#=m?;0ox1D$SF`NzoP=rqEd0rrT?}!@%$!*Mc)$8=r>vcU;{8yVBWQU4ox~mdl zj$r^C7vXOP9Ft`vt$LXYCy~&-5+;qunystL&@pZCu-sg4ulI|j?c|S&W=fc{i+sS@ zH6x-y9&t~@jEFj)0uEeJ$Q~#%16secOkVKKu8A*qYqT8^C@yWUaZa$?Ezfe0#hKY6 zwe@ht7_Y@{1f@o300Ebm2@z2F@T@S;9Qw;>s8}#19Xs2D545ksJydX$8FJ?e8 z$P<2MWa6~rl4I>0~dey%sZJpF5be+OUo*{)` zbFpe&fgYzx!Gw|TA$J|8OfzOoifpsh^&V#L6O7m?lM?UACxC~J7s?;!IgIQ89xg7k z;bGF^`oaw{EDgQoHU1a{Q>v%RZkJ_H<4`cv|k{mx<;Csx{NfM3e8_~G>7dA1RFQ`6F6Wl z^6loyb_LJ;Ihqi1f&Sl3f&h&{buUZ>=DY!OPQW}GKR*QDFn)GC(jf2agn%zZn&EFc)WtzNmi>v zqB^5`8KX7;gG=euFqnW+d|W`MhQVc%u!(EwsbMgSgK~o_+o@qNZJLJ|X^w)4#M5*1 zALE|Vd$Oym6_LEw`OYa3@yuhZa8caqTY3c8C_FtpJFjZJS!;TA-E#~B;P~13X27u% zg~Iy6iM<4^)ivwP{Q~*sY(DQ>DBja5%5#g2T8|pl1jgr{*!b zmGY#JG4wxrrYYg!ga||E2b>`jA{gWW*SQlSpz7AQG6!zg)U{pRi)2!yreqW)QL=q) zzCQb&p)R+J%+T9Z(dro+_d_})`FCRseGRNij;0z)Fw zWWQ9Ex*7t?sKUY+B223Y^oO5OURU)9z1kmMpfA;h>elUBj2Js3;IR4(%q?l+$U7(m7a=^H@Cgo;AuNB$c?)~SM5OW$$O^8+3FbEnYX@g}FQ zH8x~JdbE#bUC(r)WD6b7@sX~Ad0%=ClhGrkE>A3$B_;(r%@u*z7o{}-g3HmgAehLY zZdSM+nj~YuEx#!r<6s{$0VUq1v2MB5A{tG-GG2QdJ zy$oDNcmNR>(isskiN&ShMq@aGA9taPs8Z^RPyoyO(W2UO9=)iMRtUK zz;|R)3~W1cOfAKY>Ds;eCzBUrBb>7AzqK7WCCUZ@fwN&s2pt!o$#PLdmLJ+q-Wv^K zQl+OfS)EM=<+4gHu0`3FMeB4GQ-Dageu^;=NI32xGReGBh^nd@o`t8ARA8W71+oQl zPoVLR9#%B*ut?*k9$h<92}Apy3(grE=9841&=a0KiZBbO5?@4nZy~3`cN_IQMmLzlk8LLxlz!n=Se< zst)fOIl>5vgEL}s934OKh{mhY%0=Y(7)U(HBYL;(o=iPrlp$zl@yZ-RQFB(mz(dszDKHwag z76j)+;Ux*0t0z4_hY^Uz(IT6_Ez_10j27ht`Cvp&+zWzn!VX28+PNJ^`o;1OFLe)Q zUmebi>rF&TDz>VwAdmR5ve0e4j0MRegN2x_DCekjZhyl>%*SSGURT zdb3qNuz=GZ0L8auUQm3Sq9V#L4L<8V{EQ-GwL|Kn++Ob%xmYEtrUTre^aytx+YMp8 zp{7qS2{tLIYs;ji?Iwo9WSAw9 z6lt&7m62DodZ?xXRn%mzwnmKZR*WgI!m-0#Pp&u8y%mb9>+*nf5oNyy4x>duWC8M4 z!aT@yF*b1>NQs3ppKb9RlJ>p20vtwd00x)bsbMf-#W+h5S(cqxdK!<>mNYjJT3|Yb z$|VXoEy4@>0q4cEAO<H|nJ;u{ZbMWZo2xojdhHZdr zxmWCI(lV<~;7OAbncDe6e3@j*4H2mhzlb?#RA> zR41z#^I92%XabI2;Hixkx;@W@k$J72Vn`QBR?4TC$$Y(q>8bdVnz2l{i&Xp<_f z`z$G+UyB7?ODg+IBS&%gLMEW4j;qH6O$?LP%rE4)kxV7f1RGxN$rw24)+_BElOw3cOU82O|T$en=zSyAp@i z*5b5?K+q4kKuimQNdyJKC1P3-Oe81>E)vs%U^0Oz9~mZxTS0G(g!#>VDB)4XJT7tA zDl?ChBVv(QK>{B?`WEU}=HETy%4~1y=gIEe!Jj(1bol|gTpUNI%Oo&ClU}c|(Qixt zzW@1UzAw@ZaPeQ9@0aV{N~nIK2oz8%^lOt3_}89_{NT6e=WiF|_q)pla<)`EZ2u{awg6{KH z|J;tTFBsFXM=N4=R(kXZN6?NLC9O_~3`gzQ8dZPS4y>I>t`@j);Si7!llCpfi7GU3 z9~FpG1bOUPMXI}x#>i%?^XphCx=xaULGh+5(4Ic-HLNyrN;k^227}W06(&+{@;2EI z-G3Qfh3J(M8PtASV1yWI3$@KM5#QzZ$&2I$4Q0fWvg=%}5gR};-XVGbitZ3eUU)H5 zxseOx=uRx7lJGi&vAu26_B2A24+H_{!-NP1dB6?C2@!NQqTB^P3Ef0QL8N>o-eR?9*?20~7b?48WSK$5pp^hPC{+@3{osM^=(`}Tg|geU@3#ubr`8ArOS z*{B$;Honp6sH$hbN|vbmLS#_B)sT`=qC`|hBtn-V7=XqF`qoFrir{eZJ+7A%}Ev5i>>0Rr$kUrf@`m6NP#>c=}ag&w0x8ACqc zjF|@v=S*Q?8WYOzdp;o}E49`*i|t0dXp?J0%uOM*C`ZT#oFmhM7~}-M6{ZEjEY zcMi?hM65fdjGUI$cBF`=Y-IbF%~!1h1badWvOVcO;CnIyl5S&OD*+Kv#{>~#ObwZtD5DEiC=AHbPKIZBkye9p6yJLkTGa*b^jI z(8jwSDtQ&6xS@VsOWnv0{4FE`Zx9IBBJaOuiXt4gtjj4EXi`G7NME;x)kvF%$fl6%oMQ9DH& z1IJY(Iz@@3UOZ+|{o4%Cs9Fsx9&y@)N9f&SVR$nPY+bC4R7`cWv+@=@w!$P26`a5T z8A^`g@a!V7F~7Yx-^--jzt#B9*R9Hr86^rK4MdcCj_c_4?B>=IoDNrVI&Zrlj1~cr zV9Ht?I)&fs18ew@mue>4qq2T?iK-S@P1!-@i)_2z!J^$@h;ic_;s6*j^rwyUsOZ^o z=Gj`ZZheb-zZL@}HGqMi=t(iKW1K|j4V$_VpyOJH!ZH9yIB z!(bAdfOBF>2!mYU=XOd6-En=j4AF+f z7oL<#d%CoUs)Jglc0?mdwj>WMO!7|Mz|-x+DTnWr+ry3M&@l`Y92$e*Rf^;QJyK+} zSm$O7}&WfVh05tc9BMU zLZFE|tEs|P!3{YP@T<1SBjhw0Lpm^=A@hJ4lQm>$A({9?2VRx>d+&QkfxOMwFQcgW)nmz>Fv}4+g_!rtqCK3H>T6ou}rHhPpQrO$PK#HlG5V2O(=dMAsmIEwYRkkOe@A+T!hxYnLS zC#vAQ0yvQ$#&`^+LJx45$Vu1o^y8<$`QR6gy{{1)Kr!B#c>oG_X3#GMywj!p_1X^mSv&D2Py}D`DIK9QLXmVdOGe zgda$sl${|H9AWKIYGhdRoGIx+fU%-BhtnJY!#8IhFl>7$O0MYV0n_PwXcIp!a@X-w z^dr!=$t0*vV##W6I3cn(^aH*(6Cz+6f_~N+ChY~N_tbb`WYpK9DsMgnmJsw(C43R5 zM_3WqK^CJKVrJ_Xo{4I&Gq7)xl6A(4I5CRC4a3YrcgSAu+87=!3`|z-PojWPq7b|| zN#erldvc80F;{QTi~T``?a^|9(xCt{46%p{-;MR;pWhn9$&so1Byam(MW`AjLNCNZ*vOA%B@>Sd18^MD%F57s^#nG>|nl9gCg z5&Udhwum_00YH4)<^$Ai8SXoZlwZE{0b&<01;pJ0^8sQWf+!BGz!Q1k>Nd5}B~;&r zm&+B5>4T$0nG+*|6Q@amEH2Nn^g=e1w_jtIU^ETd6Qhl@g2AZ`z~J&bH4G-T6d#w` zsbMf#jk7}7sj!^h1hElJHMIF|EhJ8e?nmwdL58=M9v~j!X@eT}Wq#cW1*1hkU}UuI z=T2CRo3GaR1Kq(R$|5JQbWea$%uV@6WZQXlKoXmhq8NNkmGw{`-kWY^ zA`;47bakT!9b(WkB{YD5AJGXBbf*($KoTQ$5#1(`5vn_gOcF{I6KXSnjT_TRQg)u!G--2p&+f93{BzI+lPIM{Jua>Qe zeaiw{NNGgCZ&7z9-Y?cFwNWEZ*py=AiCu*7X6deQ6BSQ-9K0x(-G#@gQ5dmf6-kmK z)n0oGn^?5Xy<0bzy{?*I))~S|zod*T!Gpd!4r-E<$ky?gI7_q=Gv0|Q;xq@qa8aHI zOee;#m6+d5NGlq-%vMJtlG9X%9jgrYi6(1GZElx*6U z25LYEu>ll(Zze|3Z3=Wt7Pub%;kcgeN;0xfDqcud?6-s!j22}D`GB)xS`dSr;3n&| zAeh0LC5Y7fR*no0O`DmkdU^RluU$O(pqUBti`6pO|9#ndqd9T9KLi!upP5my4MTZ+ zgb{Ya#iT*r)5PQgs-2JfEAb*ruCq&(UXPK{lp0|UTq-DAEyB2$VPWL@tDm3m|I-)h z#^H1Z0Px+J4glK-VcU^wp?KKQh1STRt#ru6TC~Z02oh03gav4uCLN=B-b;!ya)?(5 z)JzqUmKz zW+~R5ExOoqwNkgdL1v=2b>qv z0~zE9zv!k1LN7bU5$;Kx9!Tdw{CE=4NZ5vdB-!olIOdr~CdP7Gm2=px_n{Xx zXXYeLDlJeWMIPH>q90y!YeZgdM4QDHqeVf4P^liK5A>?GjFK2DwR*S|%hi6h-L*Xr zV~dd+z`>8s_=# zWV7Aw4|v0`8M-k#@jV0`rLQ2q0*K&Rim7m+&|k%0Ji^P=sypcfJkN`L(v~o36b4B1 z^F0M=cBJXI=0|!8((DvF;B+KBFX(x$jQU62*|Lo}v0{#ZY>0zAZnVrsnSt)xGkQ`q zM$@eth8J@>6hMZ_YiPdW=6Xih7^cDU;P77AvBT(5ATXgZo(EGubxxSv!(H0o=f8Gb zrPmxri-17ia0`8JlBgF%GUGH2{FPBKSpw1SYZ08zAs}P7tdG6h0_`U!S`fZ5Ntn!C_?+jJWQ=o_oIIL)}0Cy zGy(+&cW>e|9ci&yVU`CwRXZZ4AReS5D3jNSkceoUqZ!cIzv@rUTs?fIep z>^F%$YtchF*)O@M+xXVq1&}#O=@QP+4>)J$1H?Jxd8lQ~BEQ$d)5xXRn5LI@o4^r= zj1uJu`GE6eN(h__q2ovBNuBljxvw7aSnKt3uTBnv-Uoz=~V>nkVRgha~n!&2dVU83Y1n#*`2k7h)@SoH+LUKu;VQ zBXV>lRyUYAOXq#YoTB2!YbD&@d19pnMl+n~qB%whVbw%)xydrz&}wgbL=_+yO>y8k z=p&!SV)Cr0Ogrc^J;ITDEsw%t#Gj;74{+4D7_FvE?|vo4U4c z(vK02K;y##p@~fVYJ-TvUJiNdR2e6&`0{!g(+{3sUawZ{3HaQ^glyc;55`rKSJWl-7R2whR5S9XG$NadLjqe#Ni8Qv zB_#}EzsNCSG}jJ}c~tm?SiLF?3(QX|($q$W7~N(yy6~&p z7GulMMnG){r$jkHAaG7h31N^6{B%qSfgKJ}AOkK=kaVWk0vO3dbB*oN{ARHi&)dyl z)W~L_WoLq!exBbOTWZ9K21c?hRZe%zDGfjvQ6BDrK;;2xOiqERnYk$R>~@o9r4|W5 z_T8py60Xtg_`yEl{Fn!f#u+b5tS}as1H@gZCih5}lJVXLA2u>7bIAxP#*pp<&X7ql z4Dx|%j7c$2mBARqt?)@PQ0qI9X19k5>!?>iYGmit?qej|XIG2&fAg{GFs6|sGC^^0 znV1|0lM6d@ZQlt~-`C#(Mh=IXAF9)49XeWJ76!^|l_Lg4*OWBn4f%lcW>!ocpI$9x zg?Mhe819a#A(va`0WpvIqIvu60>0f8Bg5+_zD`eZM?r}akY}vNpH-Lj5<;ih$$5(C&dN^Qcp&j&`bVl*ZW>Zjn4u{8fEiTmfA&ns6h-=|F=SObh z=?2Ld2J5BMrX(bs(f|a$DN{mV`{AMxAohJL$aFuqxi+l=+vw`QxXN2~%IQ&F5Fnfv z(*qgg2shBC2g0m0$|`Q9O%H^bY7_{M*-a0mi`zkYxOw5B=NJq}J;-1LgbgMnB`X>| zDy+iBR8zOGJiT|FksG@<)(XtGUZ4v9YQM-{D1T6bhD3xU!6G}urKt@3>xSb$nnZ*u zM@+G7>2orKK6>(CP@03$So)LK0@K-=E)YlhJ2a8iof27;9lU zp`I;eq$?_2wNAc#0i#@5{Yb|S_x4)0|2-XOb38T zK@?&ffuYmhG82? zXe}Le0f>^&h>@ZkDe?j-g&ulSif1(ndwil}IIpKr|zv%~@-xDHWtfvS#>nB9OcOi&jSPI({ zx*=`i4v|aPkTFucP!+h@ z7qTw@^DQ*C%sWfaIk4@)hKA^rJmF9ZH&);V@G$97_%XZ{yKV$w!YNS*ZeiPKRBH9g zNQ_DYn(VhWyX)$Dm3?))*G&!L(8}i;w_HY5)U2Ka*l$Cnw8NwCpVe z)H-5}|NK9E>)YRw|9kh@fB)BSf9u)5;2*~^L{)sbYhPlVq~Zr2g{Z@~fh4trr9TSC zNLpciT6JOy2Ht}?M&8E}JQ+P(&j>|j>m9DI#O>m;GkH0&0Tf&~CPu-;gTmw2-NY!^ zl}Ax;2M63tDkT1o{}up1FFnF{4I_&8?FC`hzb@ zA)aL0>&;=Yktvz!wp7)v8gX`JI#m43%#2DqLmeu9hGs^kov98LKT|WK(#}|iil4EW zQSmb;-NlGkqO-h~h+|^(H{****e{(OL#x~G7+i8UV}YHgvjjwK>YY=q^boid}eoZ7>R zv5_)z+Gt;mR(G;e3yuto(=}afN@;(*Rcy*^a7Pe=~@k#XB$5MJ>}#Sjvtn( z;}xE;Fya*fyKElga#1sJ(&;z-;W}3V)PG+NA3h#x0_4_n%UD9F<=FyM_A#Zp+O)=-uim3 z))?2yt$wX=aui3D#-a#f%hH9yNI)y0*rw%DKCo1ntIj`25ltr~6_!`a)DxkNG8BxL z>$Sr+%Ta2Yfuf@_rkPzXSO%9)RpG(K=DWz>@_mdh(bLvVVq8sNdRrbYw-?(D9-+Mk zvKnOy$#((|;}|^5$KbVFH;+h2(Bn%qO8fq5dwp^F#TH?W()pn3ic!UHw<`FBx)_Q< zfy4gM53&QZOkR8==m0{&dyB){EMWm|Hxa+5|F>@hWrsz9{XPc^XT?<#@$3A5{YIcF zBnqfJB)*3nCfn|Jn!YlCs11)sM%i+Gyn=Yd-CtcqxPkKR8nt$1DUgcNb@;*9b4ry8Q52$qjVPQz z_syFmp)_LMTmc9`?Jrw#W&{V2aB-di2^V9`@Pc!|j(WM>CbmNR(0i}k-sWQS;j(Nq zy;C%RCL{@0f-v^b@eWB4`rSN6t^F!l%c<3^uHn=MVDQbE8V1{$AV)_` zcYY4V^L1+wsNnjtg)2Sp_`In z)*O6|qBr`^M5)!GCUl7wivx_NoQA#9kdYj~!Ubd&EL=ngNG>9?VBtbSuyAW-7A(w8 zp_|9UO0!_05v4T3h_fhl(8@!Pos8$>QdJZhF(S1T1(({1Q80Opazu=C3sD^13vCq4 zqF%=~n8j&PRuB-J71M&?oG3!ichL*EH``^59;SOWziV-;rn{i(kW!@lARlmk%mHPP zD_oz=0i{!C@RLw>C41&4G14K8tlqanAW60;j=V5)y(IJWjAbJ%br4u}JGn}hd(j$5 zoa6u&E-tfRVe&#ja(S5rOD8b!u}~}{-hU6>BX2fFAT!eOACD#jM2U{Ou4;j_a$M3D1roRNaEP_^#&^@+tRuR@@wo%vcWSH z?vo4UHc1%K0W@5f%!Gz%6AF`SlbO&keL~T2eKHdorco#wZc)#KhS}5<4bRe=2@Olp zO6>p%L7|NlUQOGYplPx)n}0pOPLK?Vj_~SCaiZi*(GSKuQ;$Hy&J#yS5&^?E zX&x|an=)kLWifhJ#onR2>htLO)OtL6j5wu=Jd z+ch5`zGa^9?XZYbG5(glNcMQ&LN8-PR9m~;q`PE{F5NQn!Pr~&P(Xak;yghbG+J2e zA=vR8dF{QBF=CW0;sE!!rzWY&}#j2Iz=Aa9gm_tNRgkw@hEnOP5+Mk zvKWtIcNypu`4f0Nirp($r^uhV<5BEhvN}cnlpT*^_gd8{h7+BRa8OpGi6};c6nXi@ zcwCKJicq#x=kVh=nvNShjm|_m4(kqRRc9g{hjoW2a;A>9i_S1tC(?1wppJ7U(s5XK zh^rInIA>7DITPtPtUL4_C(?0Fr{lEq&jn|+^WVvhMvsflX!JU%(dcoZ8I4{iGa5ZE zGNaM!Bu1mh1!gpQgYv?!#L?(=H=_3a_=Pwcz3x7gRz{H|fs0N{o}>43diDq#TrYx9 zb+TnuCW7jRHN3r~2enRD>4ewH%tkA&)IvV0AN8l$ju8c{9%qevzE4ddc?C%FxJWGD zD@H9LZrz6knxeHZ7^wja{AwMg25|^OciVywj_2jJhfdgt5p#pW1cMThY_(greBh)A zALs|;@!?(!oDUJYm!fpp?+v{$O7yHA>Nr4`w>wd$+tpINoHK_Jq}(7MaBj?iWRNHP zKAiyxy=fV<_)R+l5_$(`P8x+S2Km^SSkKSP7*4nSwm6`KM`;dDjL3-VT6UUZcyVvK z?~NQb;|^aTeq`dp_VVh!Y$ufuu!X*Vc}Ns zELf<;3@jq|ZFw{6ftHPd0oz(>$d5v;&SH;(NyMd)<+nx^wo<;FHd8bmD6VMc1;sT^ z7|NbxK@#XW9{;xir)q!y0*zpk`Fi&|IOeX3jWA><(r;#?z!RH0gr>r(Wqjr`dUT_+ zqHrv9E9gy68^d6#o1CbbcA3kF4WQuSHZck=LTf_|gH4dIZp-;?Ljv@K^1Ch_=B9G88G{ z0YrS$W<p}EI)SfPra3biE9)JAX#0&NL%lcP1n%@ z!b7Q1;fc|d%z2yP0DTB)=1vVhT|8$>?f8#FBlzApp>-`Y)vlSuULsO2L}Iz9TO)afcIWfk7y#de#Q z*F}N$1-yM*#_5w2LqFgrW`1Do6h#r5K?aeZxq43hc#p>YZgs763a3Xn6x&$={vowg z&sH>Qc2Oxd+3a2c;B*E6@GY7S0NVibjo2ROnb3e z>_vi8BnwGb+g<17=hW%O2(<5sP)M5Uwzf%buWGw|QDQm}aBRA=r7UI?36vzm1YxIe zFqT5&kkQMdDI`tBK@Eh@I3)rB?wtb7z+zkI2iC+_%eav*StBq^nWQ8Ku<#=@3l?^I zQYV&;xkFq4+SZJx$YfJ8rAIhD$`k^GGi7=poFf4WaT0-EV0v?>5#AQd&CM>^!@bb* zgHfaWARlmkObvr^BeNsSQAyk^(WAIyWIbG@F#e}EeZr)>Zu=hpI4v&r@C*J@?DwCQ+x$9fLtuhYR*>E*v%5a^1~#BxyiU$r7+O-gi<3d}12g8|D{R!`jd4LG%kow!;vB8f2q}WW39KAlU(+np%ksx)l(Mv11e_2> zfWhBc;-s0-{aYqCq%v=lqLBGT`nx@M7*z@fV}{Y@7IuR!8%uMC!hXBD5wa#WD+QV- zBxT1QMs@%X*KxDqp;lGy5TN`vm<1aqf!ri2uWg~6NyFqQP54dHN#?@%j z%_3mQ(0NV2Gsi%YT}oc4b|g6`MtBkUo|B>BHy(7FOc*&2 z+ZJbPGdLXr0Bw^C49r7Qc>Sg{Dm>wu7wJdnf>({FRDd{L1?aUBgGmD0%iO@tf_~x2 z7+dpI=dSA$Q$S!}hFKOxo|W5qp>2)H%eH%AlNY5%YXAg4E7O8tM1F2q(P$mN{c01UnvQ^R1}0q>73t$nx9 zkE{`lMrT|mn=7$$TAP+rBiz6=Gz`eIi!{}xVhocXRay0Tl;sMo!EEJw$vM>lIDB*F zg2Of`O$6oyq<-P(7VXC11)}^1cTRoJIc>rt`T^(Byr2d-#qG6uK`~p6a*8Ji%nOPp z46uFW2?O(jq6q|fX2GCE-`f7vk}<5>E4x)hoDh*}_{IdDj);KjifD}M>6vmr=bR1& zAkeZ0Q=<^1(5@$wOS(y4D3&5$wT-4xz(r{h5SUh)M41;9y$mB0{nz>kD}B8DN-SjX zC{bbgoKqcu!&S{(aF~*zIJuIU3l38+ISl^D_d};Q^Ufq-(c7#i%_E+ZQ@aF*F8hG@ zMKOtbJ`4!$m%@?oEQaZk&^{_02^Zbzk#s_5+8usw3g|;q*wlJ5Wc$FTv@N zbQhnFgs09;kEBbV(~wUg03pIOP1E4G=i3|xQn5yQ$HL2P7CfSU#k{Rg$ z%Gt5IO!n=2hf^GY!j4s*t9j-Kr15id( zDh*fegVHILS4)ObOSc>&%jiBVY?c_}a;dO$k8AshQBXzCP;f;*F$${V849lBCq~h!cex{|Xh3K#&Uy)_kI||F zg;USV#q|z__R1pBs8R7GFt~V54TH-kfx+c-Y8XsF9Xs;_KMCQD)l5Z`j6hY*wnh6J zRq81?DY7H*1v{DT#zCs*6&yw|q`O4C&$rNIvQ#xr8t8PO_2Cj-g?DIgijr9`QQod}N+ z9YDj6&`fC9N%B26$GDy>wDjZ{qo7W8>s{>+FShE&ONo(Qc?s%;Af8IVmM%`A7m4^n!@mGbIWs#1*b=W1eTknNoL#nkueD{HIL8h9eQWv ztx5?PEeaw^0t}^ad`}-XGX^(g5#4f=p*~58M!@J%AXyOI42yLW4wo0S=vm10(AG9t6csd5i^je4}HUjO0JiN&i2 z1b1G8?2|SR{UDgnveEI?KQD-8?f+U?JbZK)cDi@rJ?A^!{bdRqC&khjXNQ+HBF7Kl zOM%Jc-Z4BV&A0tSLLuY2^c|u4Xujaw42HTa=sqwqoDY z{2zG&61bcXq3c*NG#cxJV-Q0`4WBdLdo+14y?3v@B_C4ZuzTMc-sjs)mpXRRr?f5B zJ(&3Px=~DQw%K~(v+YJPHIuJ3c6?`eqnOw}(bf~+C*CL~wrhL@U!flzPw&hhw69YR zdZU@&`JHVm^U-y|8QPX@A>o#N14y_%TS&M)-vAPB#gB?&HihR@@3ub^7@k>B7qP7Z z05CE(Gkaua@No9Y!;_-=nmTXYmmTndlx2fZY$43vQci`R6RvKW098$pC;%0C_BxwJ_OuJGBUw!pCaT{&cBgJj^ z=PR5f^Sjgg$4AExAGK4gDPF~Ty_wg69p_}U01&1Rrtm=6131KL??i@wt6M**{6gJP zP|x81e!ZM;%CmZ7!uj_A!f6!*qK05vF7zGuv9I2W4gTkwLky zUe<3`6`YklY8D1QYFRNf1N3b$=?%QwjZ+(!&4V*|+vZ@uW%K*OFckfPbcOELa3IZyNc>#|HO^aI{$EOCUU3cPnfltw$7tfc~%V6n= zf+MrW)Bb^v=l`D|H^UDe4IZp19^AV-ozB_^11X%URiv%OiD|8Yz_peWLZby(-QXMA z0^aArcX2X56jZzN7E4PX#qH^2cJKJ^od@m1%pog&J2*6}FXv`pfKJ#CJT@M3@EwK2 z{?vv8;fDj+f!JT#a3I`Lvjbt~%7%uos@Z`wi)hVDM4N4WoBZ_*p`380`4K9u&T<%?*R?Yi$_(8;;yC>`yqDiSq4rZWwHT zZEJ(?uXDp_HrO~*X7CCfJmh}VId>j(qge%+({ci}an3jEGq`$Qult;%S#MiVxC^@p zD9nw`AKt!ye=<3O8*#0@(U8G0r}5j9^K*Ee+q}M6aBh}H=Erl0{~z6cc)NY3Gbn|r z2B#{{meXZ9-8UbH!xcZ9pAF>X!5t_KdVex&0~vB^p%2-2<$gVVT`W)Fam_KD5SX}Z z&UhLyuwldM8Mt4YZKhCrX${iAeMYun3*S1&gbY5O2G3vZcboE7O?Awu8Z2&>SHE~} zz>HY8(P{%9-LEc2ua~>i(TnZra{UH3bw8-taPSAy)n-3qB7~n(O(6m?zWVXw(_;D( zlsbB1D;4ukyVGLySiu7U-hroIsqobSR53X?0~JDbuSvPu96-ufKXKb0jqrWQ9gYD! zvwBNe1Pq2@V)SqR>}PuQBiOnUyb-_~eTwi#j}hMJ(_(kJnW???m+@nm;x*dPwyc=i ze;3?Ychyd`#z4#9waH(7`?+B^dImN=dS1MOqPsf<)-!+*Jl*e*5;F+eZ&3@I6KQWP6B5t~WsQuR~XcwYPoK0ItnJGF51 z0OYIJe?Nfsn#Pdx(EPt2Ks#ukVysKL?BzzmuAdc8l{ zRMXSdW-~6{OzQX0=bWRh3=0ZZ#!W!!)e4_MHvxssm80ps`CWKc4(_hD0#wQATqie7 zMoLf0nW@5=Sz~kesF)UaXD7w|_7TFM8LQ&c1$^mUonCC~mz3t5n+@aMgS*E^w;$e{ zw!fVj9-a0)vpc`bc=mwd_Ifj5n8n&Cxy9ZLn8s$mTF&8`?(uE-;_LQ9_%1^o0Jj*6A7+s{+=-SzQ>Q&D5x;1!utvjob_zU~1sN zOnz`Qg;FvP9^E@hX})yrcQrF#y0`e)03JR%dNiBezuS3_I)y8#AUjmQlRkgIc-bJP zP^P+=+=ENzgGcOamj-D#h{4|(s>tOC4ZnYnn@=4#vU z>}Y;GxeImFl74HgBKtGF4}1v@7m}pAi7B9la4e=4nuqYZ{GCVlZ_n?iyrWSEk}sa$ zFdU0-j` znf0LH9xgKq=Gq?3Z^KJTcknywmeU_JWt5HLOD~_m!NU4CxC5Q;PinW%xmrrGf8a{F zDLB2_;g0{N;4s&3Ylpl3n}WlfzYT{w|C@r-xPMp}Z8-dd{-)sAC-n>tKdHYdIQEG> zgTqhkZwiimazCHI{bzXU;{NPW`(1^EUmijV&YXm{7+NmJM#5dr4Ip9O#zw-u%?%)7 zj>bm99nB3OVLs*r&hDotP}I3-pPmicNUQbf@#cI2C#JX^nQm5aczRhcP@Ju0E%p!G zT5b#vvl*z6dHnF+hv&dVs}Yb8{{Esp1td-sp;II0&7 z!a<=Oyl-TJ%MLGt16BaIgL5=}G@s0Fw*&4W_Xth=uL3(b-#1^nwAl6F;6{=i2Qv;^ zAKam2$HCmm3_gX27;|!O+8&o7S8(dB#~d!aoNV@MQ!Z!D`B?*F|G)<(KM*!DvpG1D z$aI07~n#RhqvKDs`=eVllFI}DFz0P;%?9DeKO}| zgE*O;+&MXZ@ZdpvQp{UMOJ)>orp%#g>w~*cbgNSxKZQ>!Y#uB!Yv~|5N;lL zPwV)>?fac8zk|L7(}~w*v3gnW6XuMQJt)=>d{A;i;KN}-;KPvW=2S zfBL`vpD%vlPyaXk-_=LKn}(gsp+trjEJO6_d(ZdlHD0%UFq0Z`0FA3yy=QC4s#bhMd|9zXeT^zLuquUaU#=};o67D`3^ z>cKO3yMDbngPYTlK%aGiR`9@IB6T9E7End~>WBJ^{*n5m|6nseFrW30-hJ`>v$m=2 zW+emk^xESKlv;R@_SKKAd%h#O=nJ>9>89`K-OryqSEKo*YP#HB989)LhUZ^{c$!-W zOZaktuH!VsuD+zF{d>;{snwTvD$3$iw4H-y&yaEIvqwfxvOtK(Zq|AU+_ov zU(xJW%PC%YUN0E)-$XH=Zpz}oiK3x;^`%d04#4%>nyc9e!mc_YDr(gK zeD(Eb7jWr+4c`IG;5D4l$2b@$@|ShDaxdP;bPk&Ct zf!((lJ5Ut7oVzOc_a1Q{9uSk7gabhR8}NNXoM@S`ApK8OF)62~OxwQ{ zHv4j<_yPa_xq7+W9!&XMjeEMm{t^iPd%50k_SM*2C9ALh8xB{0^#XW-6JDU;--Rc{ zODF?Gmu9N-S#>Zex05MXgCzajOOXa#F+9)=4{U}22H3w_ZB}qy<=6l3|Neh!An+f` zqq(52HYeLDpY;QwYKpy3iD3t-{(A%UZHEq^l1)dg;cvYfZ`@C^7p!4<^>$0K^n-!> zcj{6DusWNp_Y;0E>`8C}SP)gDuHMUPQM~%`3-}Gb4qC#uWurNKG>6}%RHJv5cR5t8 z)gXVb+Hbd;63S&A!0NT$pTYlwHDJV2v56TwIULU2!vS!bUq|GB@ms8?`!k4iYaB3d z{Ms&|}!M_GG_Y!2&|B3o^o2-+f{68O@3v zZn$=#u2i%)pG*seCLCY3(ZEA4P+>t0qLcd7H$I22>Y&%*_CiN)iYe&itGmtg-~`Z} zo=r;pAdeyWgIF(?j^Oo9O8<9wT>bU?hNaTUUt^1@T00qkxh8t~6ZNYvKi-^eaW#Z5 z&}M2Kd26@Xtfr^%$ku^bQ|(RI2T?kxY0xNiNdD!UU-;q|@Sm%yid&2zez$`)#3)H`I<&Z6{on%|#b~$OR_dEfEV1!YS=o==T_J^jakkxUz|V1a z6)uEg2o40#5M2G}Q{~a&YhLv%8OG=8qgWdz%-ruA=3Eg6)7^N@zfNAq8`7{r0Nw|{ z`|6t?ylLzK{LSde=wC*6Fm(BOAL#uFXdmACT^A@0I80_n|J%(;&;@e!kB{*$Unq1V zjZO`SI!Bw77vM?OGx(+!mphR0A9`e574zLe3Ez(J?N+#MrJ*;}$}9j^|Ex#)&TRCn zQHhT%PvI^6ky^VC^-m*gu4a(JJen`zQ{wZ<3O*%9DgWM}(uet<_%kx&gJ0~r4J-3hQd+ic)#hxLMJwmp`iVioWP^tYAZrWPVh$GN62A4fERu0&BOd-U9+H4a<->emuNsi~sU1xU_zL{gN@Zk{5 z1jF{~trw=3JqLbZ7%)v6cg0j3{)EoZVqm>~rDk+>=aXVFnOgBO?)*m`Uo(2wbWxk3 z9~+ho{(81wv@-SNv&qX0A17Q!km_vhr3u3u4mEO`3{)Q*qFLJv|@~Fy7TlfIR)hD0s zSMU%iUT%Z{2o1kAAt0SQfe=Z#K~ph;gkB;@Ltx)3ITzlzvh0gwyTIh z3Sc2u$hDUnSmX93*y_9Rmk`A&{WsfEvnz&2o>qKo{WMoMme0n ztB10BwW_#UJ{+tTP4nu>W7rEpP5^|PjX?b6+454KXu=656n1GQTm`vB&{X4Q-lgV+ z8qB}lpTHUR{$PPev~14ACHbv%&@D}BtVrq6WW=w2_M|xp7!~XDWeE?-;pSWQ7`^*@ z1x3O7>-`#DPU;@mC(2h@)UW;;f;!m$oA;Z(wO@n9!<+E>b*Tfma}0?)zQl#oti}fD z{VQ|SOaRXRi6MW3lLpyADBKzU@VQwn zq;*t@#K@T7P)D7c{T}{m^pTEATCN<1WZ_4SWH&A6%qbaMiROy8oM zIcD63M_;++6%zd2)LP1&x6Jxe9P{>o~$uvvYc{<8@47l5rXj3 z_kcAn+wgK@F6%{bm(60c#n%Gx5Ix6&X;~d1nTGS&G38+4$!9f zR^lZr6h zL=hW+@go}s1cY!X31z_6Gl;SlkbLSKl*ZmR(Q>&75~zDlP@{vOfXh%o*mjp@_kwRxWMm!l8O!R{|r)c<$|g-7+4 z`un6!*y!s=OMA}=-;c648=FnaSX_N3h<2ydsopc4EK9I;FhHE1Q+Om1)%KkZI69GK z=JqdgVD`Z-9A&&uf7TTUe$dte_*8Ye36rlCFvkTA_82i*1mnx^7Z)(!=%5`Tn5kb|36Pjg91&ae)OS%L z_K>h`e6%A*SG-k-{CJ6YMHZsx#c*Gk6Y%tL}={3Mc(JJz9R=dQQ<-E zKWVE2{%k_hI=WywiH$-Vow!I6vTr7?-D#!}ost#7G_Adyk02A^|8y8XSC>h6m&T>FaGOn~Gf1}NOTWt9^`o9u$M-s&T@1A||>{u;?wQ>GKhvWVPLcp<} zA>;OK-MD?QJxjK2dW7X`&(seinlKQeD)o2pyxQXphaDUT;bY=23%=En)}(6gXcl;E)*WbutKXCgG$*NZtZBhj*0} z1C?UH1y%VE(+wo3<1Td>oQqqPXa*LxYg~?DN+fwbt)Wp)d`U)PRrTAiFVJ&Z(Fo95WX>=20HS(9wH&+@!;? zE@b8zq&Sb#M~aaBJ?Ka|eU%J`L4$j{aCCypfVsBHv;*Yuc(vRxC^GHTGzi1rn7t1>p$9UvT<;@yMM zM-6cp+P^`5r|LLTZUhH+e}chIVt7j$*xK^9n5)1Ns1=&>e;8x*`n2q#MB z%b=CSJ6wEAL+U?4#HWQqRf5FRMk2o%I`bP1pH z1a5c^xkwPGU;h>k>nHHtl!XU9i9T3?h;RZaM7kZ(!g>Bm0kka$?^Qqt?$<;XWGE24 z?}3-rBx^01zfjD-)`*6eqaY~cyu&ehmjJQ;?h_(tI2#6vF%-=*C8gm^m(BaIgJFG% z-8=OM{~tm)0VXhl8!GDxPQcIVkJ^BfVs1?v_^Zw>S;@4a{siKPE|t#ABM4qB$XMZl z3us0eO%0XlP$>OXKP{$pAx6a$jr?|UWCFvRHLl3HH$ia`*)h5_hr z3v@q)_x-rT{6k93EAoW=`#pNs5QNr0FE?kDRnKSr7L$PWTP@N0?+Ql1>6QOe%0Vz3 zNQNKwjDu;00!U1#8w@8kAvx(w5H{d&<< zP=qq53y&BI<&&Xi5s;y7hxYTZe;hi2_2FZ^2YA}Pg%JKm^|=hGj%{G?c%Ll~O?*YP8)ikMkO>;wLp)4H88C*Xs`HvKp_73IBX5e7kiZ zHxly~F#~D<4jIoaoDXeEC`--^H{W>H{3PR9cM>liuu=ch297h})g>li+Qq}-LSpqU z9#&Hn=CQNWvK67p7`k@f+V&PGnByA4b`8y(z2v(eE7NA;hst7EvZ z%SLmOG#Iea0w)sgotRNXU{W_@vxBqZH5?YTZkeTZGfsXaWN)nF?1ZBJ`nqFyhQ;>S zC{DADqT)p&{yb(JH8>DY6w293s`e+4xn=UD4duGbNWk7uuG<3#P_*uMN$}isK2M|d zsXw*-^HuM_Xv}GBnH*_H!>|aAhG~Z~981C()3K8}98!&?Yx6c6lI16TL5$rNHKe0kX#OA*#k_oAqY5S+^ugJVX|o;1F4DQ65oJ z9<%`u_$_DSWTW9&eiDy{ z<`5hW0s;bvc3@|dH_zdY7vKMH(NM)FTHSsx-Tn5D=LIw>*Ix9eU zy~MV}NINSmE}>arHN^q(T=40}foBCg6UQGK9&*8_j{%857kv6!A$n2%7T%i~Z%)ud zbwkUv`P&vJlBYL++iH%2iO#Ck!(@|{It0^aMD08MY4f*Eek5dX{?^$EMSWiq0YFAm zjUSxHLq+28b^;liR*EM49^G(;BC^&%roit9`;D9)gAibfQ0RjSeZhCbc=<7+zlW9Y4db!CHbh_!~ zZi9*!1q81Pd`i7_HkCFYFf0gvZ%|{}p$xwWJCyTRhcDG90c;Z%F32RHOo(;St3#vl zhA{yBrGVTKL;5_y=BkErL{PuO-DmSVD)pTxtgWv$!XM>FQYD06?;r$*(Ifu)6z+BN za4FGTkK@7gt z3IjxUmctZ5U{@3xWF4Wi+$_eZ)D(`g#GHSIpQb%SWQaD!^P#4=hL;MTPJ z;MNVIjTN7*Wk{bUu>&MaAUnpYSc0+sJjPg6@e&3w{D^QgT|)THwvlS4eu(C~x5G(= zhvms2w&-$*tsile5BsI9TTdaAR*t8W=_x;t2|qe4BTiu7*7|g^2gJ7`h{97Q>lGBo z9K*L@OtrrsV4gJ~n>u0sUJJ9`1l8;bb8E6tS7i#fCZNX0Y^fd*XUKFzPY6kYZZd`oW5+jN`Ty156?mQ|%Hf1_(M7gKWYU13F~$Z>VB$ zOz_oyQyKUW{{oqW6$7pKZfvNN@}7NgZ+fyJnMe;{}`@vmJ4&*&bNkuw6F>7`nRE zRB4`Bt6Tk3#L}^BhXI4<8W422B4iUWc4~>SpD-Khsh3F6;ffR^0Q3|8%A>mT#Vq{# zcnnE`M33wsMq(9-iCcIQOvc39n3Ro&oMZ_iun=VMz#&D)z$r!%O2T%D2TqZ644h^a zi7D~GA#c~fslUe==Q)!^1+Sr|H59F=;5J3V6RHkn(i)vfc78^no&+SehboMCU%G^1 z$nd;)>ttj|0@6jC;8Ft8)gr>R;t;SYG1RppK|*GQF^Uc7FEB%~8J`bBXQ-k`c&v3= zGXg+?oiVoS5zLRZt?_}?v=RPAnpj&=Gfh%K8UVcwT3A`^t@%K zI+Z%)ExR^h0!eS#wSNsO5??DkoKDC1el~M@18vl%+fk(bBSQ3CasY{RYq%k> zS)CV$cvS%ZgMl4#$)T46!KO!2l(P0PBwq2RO@#3ZQ!AWp-Ir1Lksf*+KE3HGA()3F)$dai4w3T7^;7XMb>ueNss~29%RTa zawuDw!X!gkCkxv{sq=*~L)lIlCQ(?EHEa(hvWrs~%yzb1q)-^pblW~Mi?e-b$u}n{ z6oy3I7N*z%vIu_$O*^}k6fq6aC44P^W|&4RFTLXc2xiC9vNrq$ht(gpDjx$)yP3~{ zVJjm{>TAMQ_A8={7~<3A3Tj>Rd68m>iLQHy4b!+GR!2E@UNpu0K%(yXq1XX3e`Z_h zS|94z&<19<8>)n@$!s@2MY zzkD_%Q5z8Lu{LBEX>HJyFBD1ChE#j3O)-oI#~pDhaK;n2#}vRRSL{#n>S+UQyS{kH zX9z%$Qzi{INnZYQtsyo{L5rR&FuW^VEa1Da;_$ucbYD)U7pXsW>*YX0Pg&sJW`X6W z>G%GV50foFj4HQL_7j5hJlV(E9)AAWXX6*2zW2!|;}@TQ@Qh&{@<^PI2|=eP`+O}? z63?d?yeqsdSHYXx``vcWm;520V)U~hDdXk*YQ58q=r(-?yx-DeEucf{&>Zl*2T;d|o`{^RG*IpQJDU-U5`-1OW`Un{Am z-_NJ%_XC=KUyAi{KCF)eSRYHR;&E=PAO-=eFfd}BF-?Le`853`py?-4tN0)v)(-+$ zKR~RWuhBb`^aJjIhkV}cpiOA$Yjj5gG2Hu1w`t+t55c`JwFDls~o3BH@J1|3T^SQ|rbh^#wZi9;Vq!l}zI$NG0X+LQQE!XA=Y+wb7(OLeSm4 zPnwNpn+3t|Y&6^L;uVh@<ZsP`(qX@a0VPpDgi)%1ZHO;}02Rs40xgU^08 zBnCa9?r)3oMCD#SrW_YsFmolh(&S#cOh}ea?xoujCGlj68#R3L;{ajq$kH^cjz3vT zFZzdBkudb4f4Du$_N$m&b|YJ_L;bHwwm5D^B-hW{*==`glqxDI+jQ?Z*EC64&VZ!o zBxQLkL?5-2=H0rHcAA~EgA2*g*-1N^qA;EpA{z^R{@Wv-?s}TUoRBQRrAPN#ECFBC ziHIV^Be*mtBAPH^?3{=YTMRjxQ5CC_ChL}@aaZj>sI8Re>!8GEvrXHuC1vdJj27&6TPJflx?bPnKI zBZMBc|Et z;|vIRC-md35Pf8{bdR65JxvrX-7^Pmj%W#30=~#q2?*thmXI)M)3GWkwjz{yq9wrL ziI(tJnJ)80OMt@@E#a>+lzE~hz~PCO@K+hiJkb*1@I*`aE24~ymZ13!L`xkmG_N`v zyXU{{G(}+|qb2B@Jz8qyGZMr$zu8KF~&5U20PjmQYQ77P?!#Ar5g8tW-6B4VBdS|;Vpk&h;-pFYQQ6$-^ zdAN~Kzi6M8c)FmFQTGvT8g;6MWmeMMM|AQb!8-R5osChXs8c(;H@hXS1CqSS-Wlpp&{>5Me-vl>0PSGPAFcqkw5Y22p1+iqL8_WjlvH(VlqzbsXe;G{tpI6q>x@3h(Ah1r zMhHDB)}HRq_N&Qmd0s%t+sU@L+$?!xs+ovdE%CtQRf zk70Bu6KZ-4qw_NYjoPNqmv4&MxPvuKDBTbzxSdeCX@Q8Nu8psY*E@LJaJt#GF1@F@ zHg1zA)SYYNb{oVUwc}lPl$>VAtLPHa&W=|z1&E$EgBs&$$HhY)CSX(v9z9IJenS04 zWnclEH;7MjUhUvQ;5!*uM^h9g%2i|ES`8UoHKR`gbX+xSgwUhDB*0$1L3x@l3EC`3 zfX<_-v?3tW=NSe-`$=Mi1ipuUZy`4dJn(R)O2?^85?sQvl_(k~B<0k~A$*lBg7|QGz3APII8m8IS~>6fJKhL*GQ9_825YUo-HcuUjGdsO1)g z=0R|pe;i+X+p8;{S6Dbr(`Z-)(O!r6I##Qcs%85M0~2S?rbG|_fLobYy{?WP4HjvD=P zb9TZsn`ZQpY~ScBmVhs6qlJx&a={>`*=P}ELfP498OE_dtL53YYL#101C%KD0X2*P zXw)$%ELN}!KRM^``J}ltR?{Z1onz3t0UD?P?lL1>pzVi?%wx@9x6PFpAj*AaU>L{h z)t!b(V+J+tKE2irP_KcAzT9pga|BPWy@W6Q?>zY!zE9PE)k-rDjp#jmNDM2Y_cTV4 zJY^klSLo^O{)lWyS%+ALBqWt}i0y^a{>Fb+=aY7_-YsWExja|7LFVPx1H+Jbwj}wz z=JYPUFUlV{Eb$V1v*f2GqsB&+qxOt=rq`N8$a7UYCe8nx~+!+x1@a4nuB@twHQwK}5MPp>cb9D@EaY&T$H z!_FOwrd2KPyvr!Ri#aLcS8WE@LzP=$~^rIg7 zW!AsUIQlh55?NO!Q)dXi*`7?1?k0i~-Iq7U2%>2!1MMuy%9>E%Ll zST{m?o1!p*JI}nY3Q`-(;z8HYJI{VrB$jpO+28(pvTZl7i_)=o${?G?DoQr1J<1mN zmXa%{iL`BBF!be#9v&o(^(|#jLlEOH55MrmFW^726^6%&X;&B%8TPI)Di(}g5MOk+ zpUL2A+N5q5Tw)H^61#K|N#|Rj$(D{56B59+bhKJZ<}`KnM25-cw3C%*PCMJ9Y>_*s z_lbZ?@r;XAaaOc$YNXmZIXRJJj-8XU`85Wu75dmdEA^mpR^dV8?NPSC74q8m(V#V} zC)?`|y+Yp4hGep?koUK}h7m#y`{iOihIh=%C3nlIjgWB)8zF0sf<>Nm86#G)j=kvG zW|-=vtB)Cp=Q!!=>wyx+2Bu_+?x-MHVA|$FGPwfNc2g84a8kM0g9v)TB~l9_3$6GuNwlG<_N=(GPPUumJV+|n zZjv{|p^IJOdCz8wXIbKVn2}(vCBCNzN*Eh$wn!A`Y^;(+n;kYJl`Gopv_*L$?=!sL z>b!tSHr*8SIZr{Qy3f$hj^uOPXXx*Paz-9+x`@17=Q`f(wu$2HeiZ0U@FQmw09HYA{9UG26- zc>>S9n2l? zDzaGK6@`z?CpdK16HlbdCwMuM(2jh9w;Ku^8TvcuIBq_qy7bq}jRbXs{=HpL$jGFL zn}+j(M5@e~pCyUw$c*{>q0FCNd*M-M3%JJ zFbTW&volI)U(b${u)dvr{fLU6?q-ar%nh8lh)P|@i99S+L+{94r#dXO=#%|94hyYD zXmXMPp>tAmn8k9sNe86Gh=l1IkXCDyDmHb3dmQTS*^MPjo%FIJ30hBwL7u5Q#nkI zvx_r1-UsE3ys>MKanH^v)nzI-E0WJ~W7pjtWs{`g$Os*qq@-y$#)f3-OT)3YD32sP z({y(3hmxjey1YoTzVuAD1Bw@U6T}{G=kCFtc&ToJgqV`Rj+-E%p4S{$d+T5eoMT`u zUU36!bwKeVZ=%|oa&Kr-T>^A+BGDW-QJu|Eu*fTNcK`0)CDj$V4i^&0aYe4v^qRtS zw<$S5$vqSRLuXOjP6H}MtK9ToAr1d8x%eO}*$Iyiq)%CCh=;Y3h1 zkqJ_-s(V7$R0+~Z-lP&of;5r~2J%8)L)raLMk@@AUX7j@(M^-Y+CVoNG;+)Rsr4D$am!R)}> z-_;qsopZWeFUIr9bl3X!L1E zIrR5IIU_fkT_QcPbgGS}k0HtG*l7BCp|p|rg?waqsGRD)ke4IL>$orE?S=wJ=8PS5 zI-gplN-g&AA|V|)c;RMR_7`+IBm;-A<~T zwjO>Yq2s2lrxS`AnH6?WX?=f`Dl6>dMB+KJ!p`O>Sfr0}^tU!}c1}N)kMVLOK^;EE z+YJSdTta&2boZC3mJlC964$YW_B)(%~9Mv5a5qU)q=)Ks&=Sqcd zjZJldt&bUr>$t$y*8?St{M@6DgnQLZb$LF>m1K5&?h))No6^qVJ#4MR38!=)Kkt<8 z>x804ew5a$ww{$a)kkR&d`Wc2M`;nAQ3a7%E-$t2TD?w`)(NvE1vs)?;l3z;yjOP{ z5}JT>^-k#3!<u*jv#UQXCm90TEP9WC0$a>OE{vRe;CA zheUN0;BhoYk>Z2%wn*;9En#rp%aDY02j{)LP}+DW*CEq7akhiibvh>(U`vv_om`+V z${+dVl*3jId-8dyKAZ8gB)J`5PWk(x%<&ttjshE*c~&pshRny4q;_w}d>sc4bx$;t zbEq4ZvY~GJq0I5Am5%n1P&a%@m|E%QND{kKEB)P2;K)0%u1SIdJL8p9cVa_KNo>cR z*icWDe89R@@8xYDo^#zY3`ye1b<6ZZX(K=Dbt$fU@|^0k-d=7br{lBU-YzI)6*#Ue#Zo|x3q#-Mv|<83WMB z;&GasbD>RDJdU#<=#JuXyq&-w=#HKxHkChcF(P>!{=n55rHU*bN8Q`cyQL}~*N`U( z9L3|BHi$bi*3_N&n*ym~O`=VR9kHfi4satE6Y9}lNIR|Z@Q5U2JiIjyLSzK3rRs@Z zQbo{hCM1m`f^N4&Ng|8K>8_5~0a6u@vl);Cj^c54D?}d|ch%jTZvmu=yEL1^xbE*G9yI$?dV5ckcF-&?p+U2nqA-zf{cDZ5hTi>RKP`0oTm4?>^;i0$wVZ#S zpLQ)bU*`9&h<+P zX(KOHcgZ+*AE_=?_c0?W9ha*6dZ2`n=U+||&K*js^Di$)lGSnk)J6B-+ASWnanOMDrQnU zvdHYi^Y=gO-H)ZpKD2m{0Xnh|t%hiLks(2=r+X)sDkSJ*MuIs)g1#Oo;m_j^te&6D z*%9hziH@s)F5&)W_pl0?0>sEOH6-;O1DWbfO;IM8jx#mQ7=T8mtg*fGL@iay+Gaqo z9Vu(O6{Tx907J0!L;9`{-o7Qy*eVVmmT|p`IxD07pfe75>m$PDf=JlEjgY%Jf2MBX{L4 z#RWcbOtmYIV@(=x?8@W%qb?%9FF=CMk4Ra-lj{3|UT!3@F2|&NfAAMKHML5 z@qFl{2&{Z>vQLgK0Mg69NG3^_3Th`ZfBC#v>{pZWqjEXxO&g_3@b&N_nH>qfo(?Ep zbYSZguU>}OTA%6!u?Kd|lmvDLwgI>xdF18x7wUmpUs@s6<#s10lF@Ow-Ps(6G;%}g z>|g7a4QQ$jsh=f@>e!I_`=QK{*-$s3R*E52Hnfi!$?3?3_Vo}@XPqurS4hcZWg?d}HPh+k~!Q+@3o%bfJ!_}V>|0%|1kq+FA9#=Fep zr8+71@FTe$C*___C~D;9)I-I+dZ*f)#xN$~9h=jb-r{NR9PoBZB5m~2$1*hS`}(2G zky%Hd3VT-gRJ+kQ)}#Z+ZZxhx>LT*Vy%53fnxE>)y(rG43CELrQQc7yqP4(nUA;+) zv}-|_IjN&}EeKOUjeH)LsPJhxutr`cjgH(>bs>;;{;iv=5Q+jiiu}s1{el!*BvXB5 z*JeU;I=-@Nx5UwoJbq|*b+3V`jvsotk!+6Rhu$tIWaQqaL&Ni-L8`q?fF}v;*xLj; zqS%p9U58T7xk++olw-s^HUEM{>)&i0~Q}c64r6R;_EeJV0*%sYy;cy z6AWzA2}O)|BgOhKf&obBaE(mL*Xc)Ov% z*Ijt(jl8|<&bIIvZX{^T!ehFikdZgCI?C$a%1(77%gu_!bKJ;sw@29`w-6ly!3P6V zZ6TsKljM#qL{xWF#C4;K)}wp2J!gw9I8PEjCc5AqQS3;MHQ8><&70*J7S-ELE>@dz zyxpuW)|<2Cgx^_8<*~dRNo0q|@^(XkBhM&LCgsJnSntZ^6sidBiW0;H;aTjT>Ws37 z7YXS&qwMK`;zfS)eX^{!tJYags!zU&HoEO+AU4GN5t|l>_?K}yUaqU6+%de*6KPnJCbZw_>X%r@Ygf<6 z)_ZWN?7kVb2dl8 z{xL4R+fHWO!k#4x?vOCS{#G}%Q)~fcWSF$Yw}!Gir4ARu?+BARO;P2M5p}hltXfJ> z6;W%_1lti&6KlX4`3@-2!>weL7aGLC2Aw zHiLkzEqAIiD!-GnN=GtVemaf&c|bdzFf;0c&K`1q8S4%s{HBi)a&CN7QAQ zi&Wc2o6uf?v{$vrT7nfb*qP=QlJ;R$tOHm#haYar9Rz+KeD>i7W!ZWOaFAX*q+3`! zzoTB?^(@78hYy!4z7RhhvJf+}gz+1+471-5pKl+@8Xrzqn~I|x6ihpa6IPRLbF@Ij zzPA{7m$I15FmT`}z=Pgm=wU#}&07pTtq}d)SbKnh0rc>HD-QoZr8A9&1L6On%Svn@ zAb>9)4hO-vf8iZpmrFR_a0oGI|I*Kcq%ixJ{)X|k zv?<|;X181~y6!NMEpZOLw#1vE0KOn;b2usI@a_xzUl;hGAgN860GlAG{WAjfZK$aI zr^Rmaq@CR#w4rJdCYWYJ)%q1t`Yx}vnnQLCE>eJPpN+?CH6L_&&BKJyo6BpSmMDpD zhtlr4o}3ljMGo4bILQ-wvqN#Vk>bWYc}Codd;qtG5U1~Fld>w@voVFfIe9m3-X?Nh zt~QeydJ<;kDdwdiOjuj<()@}jf8t&9Pfu`_=S$?j4_oAkBq951y{a2lfa#|pOlsw0 zO8f0#P>Lp@ddo(onFUpaN`=LYp&FH-bhq5_6QX2_w-|U7Z?!`7{nP+9n9*Kcj;EsRC*b{~A}ja^EtG zfvJKHae~{V3OX$iv46AObb<5!VtihdReL55+#tC*5cX!X?QVtwMA=3)IWK?&n}%s@ zgDCgehG85F^!4ec$^(=r_W?DG0qBptanIS=ay{QLO@2Hq>d_Pl*jMV9hZscw>cobF z0U<>PAjJp(`J>gdvuLjN$?~jNcl_g^D+yjUB!#(>;BAZY_zsg@ zo&PW?my?s0!3?_L;^RWnn8RdWQ<*u_`nt!t%R~mAAdz|vX##6b>$|LDXKGEbFRzzorn=aW44s+k zY8&l&>dup@S}xXq=-kCjERV$|D38?^U6T@G9(@Z#UMBc z8isf#VDfpoX(^j1tN@dLcl~;Djsf}MA1CK{y}^}W9Jsr7b094?yK8qd9B5yKjLo6xhoitodr*Z8 zPM5%%3K{%Igy=tbG!VO6vVjL2j4*+04mjAa;TdCg-wCag@An()G^{{#o)8bNn@v`W z!%vp$_g0Qm@gX5zmo#aQLcH$ps6S6;jdgHMq9O6Vi#Xw>?W3zjz%HrF$z(lyy`1g% z?qrBvwh42)Z2yWVJ?S&kd^M>Kr;|6^3pT}vq|Z8(2`8miJ3mW+PB*!LB4rOy#aN)x z*=EPX!(jeGfgHy;+stPvjpgAw#kH)JvOQs3vBc>+hjt@ zKA^(M1mrSJCZy~KswR^sQf5o;Y3tLF6cLFEB7iW#q)55LRy6MAQ647>Fps?I1jYa~ z96p~IsgGVVqzS@ji!?#y;j{I-Xx0}chnj2&1*N|9EA^!a=r-GA0?Iz1$QVXHdNOVK zcUI{p)7CqgfURUQZL>`#pzKwro=ma(kaDx*SFn;9C{p$SRg481t){Ifev$!2${wJK zu>>ec#=KKHpg`FN6d421SU*~IRGQ3>D$)eicejC+{ z<25?VcG#dO`+(vphX81{!-iRN*zlJxe&LH>z<;hBYpH67h$F+O8Km4iiAnA zjxb8G73eivCV%G7dcjNMwmV)ia(2h=E~;HDsMJV{VW2SE1Ng-XYY>Vp1)OMt9z9-VA>h0nL@ooB6YO>SrO) zTpIOe^AM;|qnWaKfW(*0Q$Nczn$1SN**pZQG#cwlFFWbHWUf?^_PA2bTHy9CJNxBy zSgj4S%k68{fYnpsz`lkwU#@54lcL&<@e0itzj|RVYegZIXtDp-_siM&|p6c5`-Qa>~DuMM4J0@IysxXVIz^sgf!`Xb0^jUth0Pr6=@Gv z&02u9%7;~v_F&bl1z0chVO69(ST$?F8X1yT9q*hfdQ_ANspCXIGnN3&^<_te$2dNq zbl4K<0U$-vKEF!k0W|6U(I?jNmRe1-EqI!=535NL$69K(L#(Pf#B!Zosh@EPh}?@; zxz4VTFe%iL)lzH)^C{ceRpmdsQa=kK-74GJm7?sK_=>Saqq#25BT!GWNc}7^&|GI% z0K}6l!e1rh-f>OIRwgSHcdbmuF~!bzIKyB8U#i?&1%y5G9oY)36PojbmSpNg%ARSY z7|Vd>IlDrAdd{xYMZg&xUql_p#06=~9`W4EZFE+nI$?d+=ZpIxb+ML=_%UD+GuXpIxb+g+TMdwK$(AK` zHsx8C)bBDI&2)B!TJYTMS3gUDW;?s8{AX9{XA#g`XIGW~>`MJC0-EdW3f?UC-9%SE z3xQ_xqyC%d2vl-*1?@APT`9^Q52Y9j)_Qe>lqD!Z%6^~{jb3KE;H@b41J#VN0ifGWlUppe4K^8m&rQuY8^kjn6ukG(sWt;)0cQOH6$z;m) zwFJWSPA1vc5|sY#HZEf5ut;ECZV9CORPTW%Ja}BB0q8djD%Om%`U%E-``4rhPI$ z>Q9Yp#)8SDGSpdCCZz0HnG|CY&`hauP?_(u4)wFhM)B*4Od9o1Ci<)+X06{$Uyf(X zNrvdjQ0^Ie^D}DHQ%H_(@wh*U_9{}wmm)6>m(KAG+|e2q^q z*&E7EMK(Vp&~Pk*?W@h|oPS}GAQq_!6HFe9)W0H1PZ43GdxLU}1q%vZ>0?L{;U4;g znTiPaG(zZ};v`M4RZ+d*`R0?jjb}4sA#a%af0!)Rm-EAUm zcUeyNtI3+5k)*I)L)dM*=2t}d&;6B3jcBV$`Lf!q$FDb=S-GFj$GdW}uI8JP2LdMv z+*dy+{WOj}^SfP}#Oz z@{hQN6gcYTK)9*EQExL8;AdeI+El09SUyQ$EJ&1KevO-jVh6~68iR}j`)v|n2G?6{ zT+=!~VFUHY*nTZRpxLHR zaCxBFZWK3Npx60i#lNk7I()hiSpv$Zi(v_>y%qGy)YxU7zfT5}s1w@nF(2Im0HDLs zJN4nFnjm^NbO|Vr-p!9V?w-1}-xac;XZ)K5=ic<3`@Z0si8~~QDYc)*Y;*e`QAPTgqdn6_q9Uph9BGr zJs*}*?0%%Z>=O(g21MS4N1rYo1V5fs?v$7NsVU(M$RmEl6;~vRuL1G zwMW^)=LTFc;CuMGo#5P{%Yh`}=LX$oD8O%oQx3L=n>Bpzx1a9Dqz%Vu$U60e>t#!# z-t$bi-o7aR#{=Zog2R@1b2eV`Vcq0Z0Ov~@xF4wj-WgT!;Q$p>5azj#!&W)vx0sUf zN0Gu?J+Cu+tD<#lAo=V?4kVLr_9`GSbm1%npY`oUB0(0S!+_xPEJUXjsy}?nwOsSd zP6e!}I261RBmdLi_Ecb2mIe*0Cl`FnQLo z{uNP%ZwN0d_*~;`xm!;7QEP&4KP}RPl;04xevie9*S8Be+TmXSCc#>h?!j9B9%rU6 zPw|ohY<4y*gi2th4P~d9Ha{cKa8~POx#1(9;1CaK5;&gKQp^BWI2*2$LxLPNPlzc zgqf$mc@qRJ@NPxH=Uz(h2DAxqk9R}nQn)-IObgdUhP`lAh#21UTO)ElUcKJ5z9>qt zYv^(yP4ittx0!Snp0>^zlFmXP9+-v59xNn$UfDId$x*lkU;Hq@JU=}V`6@S7crEf;!etS^tWh)|f$vg`i z7KFZM7B=mKMzYHoHUVwFksx!~;sQPLE#OGpZzPJn5OK~c0lVOGh%KZ#2H%-&IRre$ z(e>kkhFuT*f1OPzCZ)2fPwnZCh6JU3Yp_l{Q_|r%1;aC9^o<24l2)g@>y=f+N9Uwrq zWDSDy@55CKL>!;2QC%E5PZ;}KEJ*3@sKaU}*E)YzFQvlR?0kz35+~gKT33sXOzUs*Yn@mGwQisYwZ5pb9TJ=tKs=yzWDkfX zYtSO&8ng(lLBJf~O4gu7_BF_GAXWFRL8h718!mFLK|nlYAvzZ<@g$3!o&<;o5sN(u z5Y6pLY8HgPZ`G{ZN#|w0y*hk-9-5bWuP&LFRrYylI0WXUX(pYQ8IujD@Q{@wdvJx4 z^%A<|w(^=qz{=}(Qmyau-Fk(`l>)b3RST)sfoN{6*DL~BuiMGBp6y})>ePQ~qgu$d zp84{QLZt^bsC5HH7HQ2}m(vp-TAu=KLfy05N9F)Ge%XhInittp^olqEc5fgwdy#_S zHDzwq2^EaAy$V*$g$gd`{N0&^`(lJ+-X`r+FtV2-Zq;c@i?}Y;)QcF{3lUeZ`F**h zh=F*(h>^Vz@qW*r9!rWChzAfOdq5n&gWP8PY!hjFr=4OhQtN4VlY~7cdJ68Ad_#a`wpwiz7-(DpkDWG-_Q+nm!5i3b!cpLRer-?T&G zLB!H&2SoEtJ0u=NES+}MZl3Myi!BoOBUbEXb_~zs@hyMC%@QCE*|B0TL%f4;+j8Bv z+9Gkkjum^EYr}hcb{WKkS(Po&CcN&n6*dsMHg#*y#+%Y4ka$4B7=j5+BBv1tFAZ+x zmj_NNn zm+w>;?j#a^ma3@}X7}Yg0w4sP^AVxy0;vZ;D*ymGKG#-VwyU(LEdy)U% z&0EFK69&^roAA2*w_*-(=(oAY5KO`VXt zgKPpIGnH-oF{YHpjl}(?qSy-&?{?WzN;}v&`%|N;h0uZEc0Aj3MB)J*BYT;S%bYF` ziTe>N_CmxtU0xY}0>5=6fAi5%+3cvlnSyb;+xBi-lL~Ry(QI7pK|c zr~Mj;2egjtg<6L$xwT%i2xz@-C)RqtgHX_V;2>1B5F;*M<%+WbPx&fjC%|5`?m)re zoH_>L0mR5&inzSYr{lBoGK3h|3+Eyb%{>=u7J<1~w?i4CPnBjF3-2h}gxZ;v)XXJD z0zDvKoXJQuai5V8doki%LAJu<4YG9$(L|grG8W#^#Qi!J7v2G)`Hsys@c?3EFS81K zvnHDzBk=%YWDkg=bC940b!2Vdu1R;$Pt*ysGY4q^0BC`C%U5^@@tCRC6%mcMjI{1yj-?mXhRnn`D2zQQ{IDo}Vww?M?vTV377q4RV{ z{5A_xx-+$Bx07o9Ppz9Q=~8=u3WyVK=h3Zhfruq;BwMKpa z&P!7RC@?QgGpU7OtsZ-+NopZLJYXTnUN|qC`aCx7r1P?75tx^CJGs{LMXFc`D5!On z4wiVs+@*rlT#6_aWVe%RJy)q9h00qhNVkyNx~b2T(bgkM1!?r;>R`S~qS=fm>HrI= zlePCnvkCx!j=quuWb>5@(!>K3R9Y$siDulche`zzd!Zu-#E!)?sUxph1RQzY4kxI@ zxS=DzyOngShSUSbtpEV%=u$y?tn!u$VmwFyXQ?38Q0mTM=I0At8n@CH+#-9SSIJi@ z2oxD86{K585$7uv1b70af^-Wp;%udY5Rbo9kZys9C81SQpC{WQU$Y4K!MYvFAlbIH z_L)i3DfKq9FP$R%d<{n_+w+i`IH|eMbs&4Gk<|5h@)?O?5i%0fPCPZUJ)EGl?)}U| zw~!*vS1Jhb1WEvH2+YO0 zom}e~GZ29bX-exV10h&quv(Ap`cf`2K%4a3v&0~C*@~F2RM2b@C>5j{2<<`D>ao?E zG7pHv{eDBSm(4<}K97w%<@T{*;h%*~JJ9<6T}j}CpWfT>Q(869_FFYFmpN29^>kIf>UfEL%f=tO;2-Kg(B{?3e8?* z6*-?>odus=)h$rR@ylPvXIBAEZN={8PyFnvBAM&iRZTo#64GZ^k!ZGOS2ghvV&Su^ zK(w0O%Qx+ScmOf77f!o;55=N7{13(I7E;9d9*PA#frnys3mM`~neTf0OcD25g=P;{ z5x<{OUGnayEEa^`ebd5fC)GOMFSi4^gn`kf1mXd$BYUCNn>*z;?u7BP!mS53p!Eid z$e#d%Y*(+r)&tkubqmn?U%v8%FMa|45u7jr^=$Xt5t#p;yKW&halB}5n@Um>2jT$} zNA^PVfUDXW5&Q4CgN~8Ca8fpx%WX|3os>0;z@)6(p$zenYQ~q!XQ7wMRRfuk=%>PM zWhXRiMcixFn!U)Z^;6*)5&JiYn!OA$JY${hTLSeAx?jhNy%=$>mr!THm&$bup&hHI z!gE;#5)bNFm^M(4iRW_9!I#Qsn!U`m;bY;piW6q*LNApAUTL;YKNW7{P3hV~FO@66 zvR68xOHN0D#QjFB*vlLRbjjx^ka!TW?8#)MV}6p7)GC6G0%Vdpii|In&$gkL%5@82 z43zJsa)1*^>th4q+5rz;=UbnVxZj8sd)c&uF8QV%5)UGlPCFo)Z`vX8AY$pX%lK0H zEcjBnZXvYej4zcVo{$}jUn-xe$HZAkkk;Gge22woN28;-G6YCzkO!is~fa=buR1Ys8AV zNWs`6+gDnOxYr~!doki{7X=WH|Du3uAq&~6e1$`2NZW4`(!!y$YFC_O%WW#+ev?q_ zWhSvJmbo4@MRhE_51Q&0GQS2y&$4B_74eXcfj#Ir{wPfm&3lw)u^{yBqcp3XSnK)L zKR^{&|5OX1>)2&nO@OxFbs%%uM9f(FVy22j_|00e2gLE8S!FGKp&=V3yT2j4M(GP6 zoAViuaOn#J05mNKj4m>oGSK#$GBO9a@!#Kr7V?(9KqV3fg6@77qiH6ci#a1Z!0!M4 z9$^c=L{VKbFENNJ;@*G_Md$&G^Lz_Cp!XkTBW~%!j$QI=omh~m_blud6tULx?Fj%? zU{8Q8aCQp9DeRJ8>%=0cbpu7H^+lEKGui3_h!bx2bz;>5wJuqM7TGdP04KBt0ds&W zS%VhY*C4|oum+iC(luz2F}nZ?53NDSUTV|%K0`ng33(D|frurZ1iIw*BsGhGC#l<^ z43c@7FY}94tO&I`^NS4-u4G8B!1P*Sd4BKDn_Ro$jmxtF*<+~ zsG^};$Ps7T%m<6nDa68i>AQ@@=w^zzcVXA;Wz#NWF*-mTsLZ5WpjE^>JG%m$eKMW! zCcVYN>+Gy{C_{YOJ8LnzS-2P-H4#q7jK$~xQ0Q4M)k2CmU#TNN94K|9TgVaTb9td+ zbPBQ5>}5+M){A2o;*#1)=q9SX7#*kqw44*M|0b$tFV%6jVsxkue=$1ULh3#8 z)pS;P%(I~G+zrYkD@HfVS&U8-_s=|WF*;2&v%hPK%=!IY(+=(AxGd&HS*)kUtwpge z%E_*n-KwU`?Zx40xt^>RhpWkUGJSan?~{%7e~#x^T8+)h|8fe0SpDkOt=VQ;9qR7z zWiS3w6N`={+iXadpF}~D%+%#-a$e+$Of+$y6%l(t9KAoUGL~ghvtF4(!6bwBu z?~^Ai(ZqcUCiY^)+_2LvkP44?xzQ~|&b!K4mPr%$>sVZt35ez^%cO}15KGH40a2`r zl*^7oWtoUQ*m1NE)m=^)vBthd0DrUYn_{U%1AX-mPx5leWEMzhPlf! zX;gY(gIcHZO>(X0D$AtMd&@HE7Km7;^}J=7G^$9g8z>-yB$`!Kk!%-}G@3=~WG{Wu ztO5X_qfh@qEBVSYY2pF5C@sr`L^E#JLuHwWz0kM;ac)Omvk179x*bkXiE%^6TxFTG zQceD~&$tx;03BVHiO4!M|Gy^712P_@dS_WC)==usu`ZJBSCTHGja%spU68%dtK=)o z1d0rlWzsFAi1U?Y0z84TOuB^_akjEdh{s=+Nw+}6l109$g=AZE(tx&R5%7a`JCs4P zZOe9J8&&GPv8@`2jU?NL2ntSU*CQ>q#g-tu5k>q>gtXc$~I8zOTMw0P~GX*EGfQz3v1EM)E zF@&BtBlfb8BjXci3XgGgJ-b@-#990Tp0g-Z6)ei6TgdDE`p=U)88MVS=ITt%5Qaqnt^fEQAe$XApJ5$_fu#KNLXKr~-bCQUqmSXz_`iN5B! z(u6TauqYF;7dc~9H;DzENf8H%G67<&2_-_Tt0LL)P(s9txYsH)dq5n&o3bk**|-zN zaTW_g@4jbYwUcTct0LLxlWHA^2egjtg<5YaA=$W-YQ1I=(0biYto3Ylf~sIqCf!1e zI9n|y#N)5Uq+3W4V=*M#LXuiG5D!>3vKM+lEQXX1vA-4*=or}x=VDU;$;O>@F4imp zbFprRGQ?+RGS*_MLbaGw1DTQNVo0{K6PmRm?lo)8US!s~7*a;W{(YflFGHNM7E=|h z#iUyZtpX6|`od1(@z#3KE#!!KRy3s@hiWk?#IjlsRnA&Wnz(=FZRi66foscGiwOV+ z&Njuhm=wuur);XwQ$WGuQ?{J7m_Qw&Gb_zr=GrpWVp50$jzX~)BhKe2u+mb%D)38S z8RCq!n5tkcCfx!N3miqhT1)^Z zc!LCKdyQBz7bzHfWcxHr5%-#eW-msZZR>$}{PzP?3p8SZN#v`=RE26WsRpt+2PI>& z)ncj?alc83YcV0wY_*s)@epEQFEiqdwU`j`nLp#LS|H;16ExK&?|npz1?k&;f@ZZ7 zYdzn+RX`O8;#3PnEN~t9YB8ai1XdGiEv8Bp7GkSk!c1YX789`t1;>9|m9-X=24s}% z{vcXW?6YH;Soe{_#M9PTdRNB0c} zg6@6{qiH5|b|65$$PS4UZ1;{8VGBRHS6v)BPk2OWu^{w4OAMkXC}1}6_Y{#qwq3U( z9@M(f!L+N#~_0vJ{w? zrkQkJV(!?smZbYMARe%CN?l9VOX%Xzc~UE{Sp=-SZYR}xzFJIRlYv@Hx`h~VwpvVx z$6t#{w?M=aJ823a+4h~(PHGkbJE_~rwVv%!++ZyxrFC^oBhz~3S9TO`?Er#WH&8^; zY|dItRj?M5Zh>|ZpB&6siwVx>t25HGJENkQ%M^^|l5#CN!CFipk@OLH)g{|zK3I#1 z*voXBu@+Mmti_~T$ef)jCzQ=9LbaFxv9vIW?vghYv1%-Not@PVwH}}L&RUD93fE$y zCPGumSc?e&h2G+l*J1*q`D!s~;$$A~9IR$9b0ByrBHMIC;z7j1PjPk`YcavStm4ho zk65vn={RF8CO{mh#iU!{%!`lj6w%Bsuc@)*cX>@aq4&sGiwSjlu?pA;mVy%6NyeL~ zShvW36IHd4BhGdK9P#+CYpE7u#Mx>wfmH-*G3gd^#QDN#th5xcV|f^@iXqv%@r2nX zRp`l&SX_&#QbaTRyQapH-`_Ru&`zRvhnE>E0V&#q+POQ_%q7kadgS|1Koj>F39%O= z&gJYB9b^>{aFB_Jf3>)=_@CjIupl^r}Ql8)ss-2s=yfuK7N zo~>q5PnWL}5P%9)0@5uIar72TcX8-E-NA*;f|TyO{A9O783Z9mzPdU9%3oJUH9)x0 zSNv2DhsKjyxha?vuyWH(YUTOr>L~4auUF_6QY&wY+1ML`q*h+D2v~XDPOkNQabKve zj?%jN+*0COa@W<-sPtqCYW+HObrgeKb#*jx!tG3@5__RXUsa}VQ&_Iw9|i4HWj+!Y)zx7Tua< zjl_Jg6fzRiPOkM_SB8~>yjO;G3n}7!b#(wwpstQ?Ax4}t3=BLngNSt)C<(Rm9Z@Sh z-Xm(=0(C5L*nl|qT&!6H=3?DWZYLQt5P@TMrFE5o5G*lR+QwcV(|!DV3599`>3U=? zTM_fs)j_y{6%m;OT)`|7v0rVOT$IN5PeFs<0jW}#Kg#>Sm;MQm93XJOM$Xe9Zb ztGW!;)lm(EMxqMa*vd|6BuLzEB#OPvtl_p`uJ0f~fx+cau@@ueelDqwgN_*x%UabXl(%on5Ry(=Yb6wC^I`v-A*Dd5)r`JE&79g?KBOVyh=*a-U za^fRw9Ikwe4iYD8aYxviz1Y_CelV@H8S%h~-A-!j`5qVnRDlOZbPGf*S%b1YFoJMG zYmo4P5k=DB50kDz=H-yU8f2P@EhOg}1kZ;A=B4z35vB5so&+A?2qKm}FrpDVtR$)b zt{)B|^nI&l-A+0$^Br-VhK@L}0m7BUhV{E1_J%#_yfhpF^U^ev&P&J#u+=`{Mi})O zvT|fETrZ(ZZY!@@1gyMnC)GNvnRjXG>F^ z;+afP>$2xMz@r1v+_qk`2x{Fxkwseh9@V})1=@tVXSa{c0dD*TB4;(|%V0HV-2xHE zhq9_5vppvh9@!vmuYwhGp@Oj-vyC_5ii2>xwUt4^(rVDy1yS36?>r(=bUzcCot`>g;2-ve&Z3d;*>f@;(phr z*voVb&ksE*Ed4qb*SG}48C@IDCcN&nmAJ;Gf}1Y}3SJu2 zB{pS7ob%EkzF%k(S3TQ1`K3W5nlGY2;sGNj*Y?Y@m=|TSo))(j#kwdbyJB{$nl85& zhpXj!vRWLjCfmvM<>6(y;h*k3KZQ5Js$bo@HQP+9L)~RlF7S_W=!AWdk$)5}_9 z4>?PcT?R{%=@z(f#H%1{Niq${xC!^=yK9sr1F|`93~K6R7=54>0MK-Nu1!^bu%n=a zab~FO1ZYfpDvUiGr#1;sg&Pi}Yxj-8rkN}x!hYFS6GhzX=`?$=koX&es*6MC3C|}j z7KGk?_rYo>)q2K2G+1^5>>Sw(eRjq`G*|!u5$g?=#7>|~Zab-21ni`4C)0Y)0tlDE z0tmVVB98ap84Dm>h6*6420{gAEPw!T0x!4f7IMVdE*l36ASlGL*T64Tje=Y|!e9Xe zVlQ%bISU{Fp1^D1x&>NAytA{b4%pFC!bQyh2_H0ffY?T1LeFq@KJI0wT^<2|*JN%td4`bbMHfAfJx?l@OFnTOs0% zl@Kn2l@N3bL@bE)tnvf4rc?U6hK1kXHSJ_t->;`twrlZvm%Ql&i-lL~ zRy(QI7pK_*sr?#=2egjtg<6L$xwT%i2xz@-C)WC_oLUc@h{Cu4dyyB1F6FCSUR)6m z*$J>0B8E3<^C1S}0mR5&inzSYh`78AAqMusxp-Dy=AMf+i@;p0+o23U2_KWrR!rCb zp5Sngw^{H@`oB#84QLXu zw>U6l2C#k>hE?q2AZ_;ED1_jZrfNh_{0f&nCOG{c611 z6x-Eu$9?u6h9hl}C&1rlfLm?Q0K$1y=u|G>j87);E!vbTIKi9RoI0WA_W*bk1ReG} z>rI*5?;uSA$o-CD2C#k+w1M@0wHjA&)rRZwcf*Ijp-d3J%|^cYInF_D%GoP!q6r+N zB1-VMgVgMzMs`!~PMM2Lu%aMM=g2B%0P8_;WU=LDv4P7}<88T_miubgdKdFQ4Jkrrys&J(9svOUX zRk7o~IYFdT6DF1MNT>c4r)Lz(<+>_bB^J`4)P(y`5?eqSzE285L9nx1ZdbgrPlEfT z7HLAt?~_`;M{9Jyoxz=0HcirKR1@ygD6x&3E_^voFZTdAD{fJ(D_ z;(&A#=iT5ETvqd=X~jQtcshL1C9*Vz-(btEVF@D`UL>mN={~tDRzwLKUnDfUIAqJk znup5?7KsXpx{)b%k;vAk8IS?d9%RT4kcD>`)v~3s1d#~RBwT!lp_s)ftg{PFF_cKu ztuVz7kcF@IsjV_>BiFNnAK4_hnr+i2ocuc(y8(`Gc)PB9Oqb)mp_-|VaLq~r@*f@)GO9wY&;Cgo~~V*D!T%sV|-7nALNz2VXS ze;w}Ldl`{HKVuHRw>3%?eg#f32(nqS0Y zEf8@;vUZVtoU`brwL|~CQI1(p2x6^vclaYL;S9Y5;ksynjIhu z$M4XTPmcugJJKXvJbqWq09N=Q%jwb+9Ap`~1dktNnIGfk0r<|;^8iQ^Fg_2ERorNn zOP;b$F`7WrJ(|cY78XCxO#{oE=(dckT&go&kL{m9fK?=abzs;VE>BE`g=V z+xih9dKO>R8q(X-9UMSy?4R!#5J%MZ2f{b#;P!sr`koE4L)P>mo=6s`%IGY|e9f z*&P=guf)FTJOP5q_K*|tvVJUwtfTES5l!1?bZGm=-amHQ0p7-e#I2X7H9rTwW$#~O zPPl3BU!xfG7L28K=hf+9^}H6|?lIMH_H}RJG>E%#w;fc4r%68)7Z|tP#7f45m2TkW zuZXg7w=Kzk$j<|Ax!W#T6H>a{E`LX?jfAt*;C$Y}TFJwwTN2I+&V-Z_&WfKAXybOM zpchuX<#wpTo50fTP=x^D{$W4*gY#zC)Niu*Z*|YFp8tzO2w0UuD*RtO4y=-*GL1w1 zpnj$8X3M9#TMqTxVn`i2)Nj+iU7y`=MjsF}tPeth{%LG0gE4mBK(Y4onw`4bawa7B z5@Om`iXRc;z#0jAq3!B)|0V1%d35EmM&`^3tXLy+3Pd~*);^qG&wE%TcZb9N<#O8d z$=oBXEhG?j5!M!DsKCGmG_-qMzg{kIr^4LBV*@G$5PY!#l~jnnae)=wD>S=2?H~A5 zbIS!*l{?|43#=*$f*#m?2GFm^eX-^D*nJBA1YGPs1<@e%;3X^A$H|*c59oq_9l9Vw z=mR5Fv=RY=$4D(C5PUIG3o=yT&-=kbYzIef+dahQ5SBk4_t)1g56d0T$zvjt0!R@t5lJdU|EB|;LocGP=tvBnN`Bp3Uq#l;+M{bU zNuT$hCoX5Bm zW)bHx5{sF`DS4jr;bvxjOkXo|5N~jda5TFJVtzJULmb2d;(?Q?CpbYV?;t%+rXpu@ z2yrqMe@15*2tW4_F2e!Zsva14gr9{30xrVOf(#Y-PJc-{tnYU`JK~mtzA%YRTnQ)@ z^s%21+`vKF#Adf$ZBEZG=iSrpSX_>I9HdpH5O{HrRwYGc1`cX!3!}$D4POw&K}`?} z5C_)q=k*KN8VYXV0$7%)daU7sKiOEU;eu$;y3gxx_Rr#@j~><~z64cRHwXpm4#eC< zy;RK2*%M$9b8{Lr?Z6g}H(DU(mI4U7*uqIFBYODs+P=sN@Ypc~TtPq^eV{`0jYQor zTR!i^+1)J_J2_KANhy-~FNmy>T$)I?@?7zq!@lKthinNQC6@}3fNvnSoEg;yn@4QP zxD#3tTQU+f>cATDygx28i_LrqsGP+}C_o&U#b)Z7VLeU`$O6Qk0Lxj7Ljc?(vlwf% z#4IKR5Oz6>398XqjGD#iBM;+UW-%e4jXuHv+Yj6!KA+AnkR5b-+{5b;@$`e;NqF2L z*2Rz};tsJ+i@h-rm-5CT#>%_IBQC8<_!znD*Gh6cR`Y zv4ttf1}9C}8hpLK@_QnW(2w{MSTSh^p5}o1lsWhKv9$I7|$mw1td%cs=IB zewh@m1G5U08NTjTkma-Ah?-50S%q;Y++tQ?BnWyS zpY+2Ti;cyNv`0Q^U`$X&K56)M(6nE}LVUhF!6E1psW6Ot-L#AZK@Z$SeGTdKko~w! zQgqIoAd3r!oB|OKoU?p;I`MiZk8>7eN(jX{%Onnv{d@g@{u5P+pR?(6*L8Mi*{2j6WySC5$^2fhoru&;4T@LsWs{b*090~y_ zjT14%j!n<-_QqN~Xm`uzPVgmYw7C;MBE&|)Y@~kW>6Nz>%w{|Z8rAV;KMXh=S`J6* z{^h(E<-E5#9A{lR9RGc=ml5lir+emj9=%L_>%AO=LN7N~h{^EV^H0ua@yzutD@4we zz|jhk|1#o#+w%PZqd2(#st{ft06qv2P( z^`VGNZXFGQDZ$G|L-+-eHTEKC>p)sxYH!(#RJjvY+KW_45Oimi+kNwLI^qGWcv$(? z`7h&3K(kdY`*8r`^js?*9Eo?CZiSffEg@zA%n)$4i-nL_&wo2qX)wq#rh9UWV;p9a9ew!hN5w}OjYOK|b09=Mn5{(1lH z?(RoF{hQDIESGZ?;PRgkTx-(KY45ftzMkAPX-m!oGECa?X9U_fWI8eWN8G_p-)&$9 zz2%Te6F{)(kV&I5p@(ZqoGHO47DAr{w9qFiMBg|P;YwHDlD;Ktw8orJ(~(Gx0ui^? zr06ZD*W;F-`Q9|)bH0Q#tV#UGVV9U7;wEvweHH7ck3(|-noDphMBj>3qORxD$L;R; z)BX9v=Z>2ql^S=#9U_$)34;Es#?e5n4LlbG_n=UiznxO6#2c9px2(NG;z+IU)4{?} z8`QJ$$&NH&vd+1K`SQb#FWt9%vZE!0bfQmov?x)NMzTV^>A9lHEy)T^DWnS}D>O;p z)Gg=f?Mt>0_;<@JWTaaN4s=VS=%j81IE#4YyZBp*P8u>u4=Oro5Mqbe)hHh5SU`>J z!SS{l;r(&*Ai2T;^6|nW4F5qwQbqLQm#Id#*>KIBKYt!OrX%qmq8y9kKmvuku?2*h!1+rZc{kh8sr&)3o4u>niNjWP~pFPa}QT0nB8){%VwJI z4fSlAaz-}Ee|!7@H}1RtwBDTVWrn-Uo)R083}Mj<8s5{65!UPkT!A` zSR;L_GR3xI5oNNCM^Bls^%$A5g&``-=@OpC)=@cS*CBzYjhvkP;{M_B0+T+5S$}^% zZQ;cf|1Ek&2>F@ZeN-q%=YUGnyPq*#TzaM|MwtVuw72N<#cxKRFAVy8f%=TZqcvl! zR#0PfSgn{^F7aqf8fhov(N+^w@-GIK-8v7r9ThrmJ(k>tFjDdN#B$qcaf^oQ?UyH+ zy0n;vB+Q^;fCqip_+D8IxN1g{7lyZdudFACG^6j8^{BDm8ZVbMn?sxg|FFS#%gbd0 zvPd_2xon`pjq1sZfF;!fSvK_$9Q0n}X|tw*u+p0K-7Qa>btRE%^t4%*{FdniuRWw+ zE;gNzFj8-1!VK_kSQ2U%JBwNDT3ZsP z=f|M7njhG>+@m(dk*CUg)MgtTjg9K!G@7ThvCmFNcp_;nSM*z|i&Y7v4OJJbWT?Q% zk^L`(0`+VImm_;s6saVS>{WWyZDgzV?sS|Jzm)!QxhSd#A${altwM>KjGU|ek}m&$ zwY$K#<=GnMa<0bt6MlKF#)%O6NEpRi-K|z|Wdik6&mz8ei8FLrq>>Dy^aiNj9}nzb z3J!G}QcBhO%S*<~q$NF%w+Qm9d@kpv6T93}@gySXG- zlrl&cnP5>8zH!Xp1jl=3i7_)t85=V*ptp^g!poKzGbm(i%uI0J=3OtMmS_p@0vTi8 zgZWSCj42@u)pXe} zh^+BQ#wjB$($j8vBttSLg!D*;{1s7-?Eb)hTB4cD?vL{)%yRd~i7e2wOsxEH%ME(s z-+-Qo5PIWLGuBC!sr!~k%__VJGCgWmAwakzWm@nO6C`$tudBM0X$8&%RhDUmpAl%| z4Wp>q8ft(~->e>>68M=P1>W+8QJpChop5=ZG-wS>^y}Zb;kh;{fAmtn!!~)7z z@oiWs?$1!f%R;WuuZYC%kf_l2IVyk#m;q{^4PVa~jlOuXgY~=GWp)eV22Vx*XC&p0m`6 zQKgXpV7rGBR_-k>>%z>JAj<%NgaX8o?G4s8uhvI+e*=8JBf-JW;oCvKu z0)6+*25N(kkI(yW7J<(BE6_R7=;(ade*@1hz7%O_E~7JJPN3!J%qS3X>wS?h0X@L$ z`OG_Rdcq^;N*KfYBKc1UZe(IcaPS@MM}8*bGBHQi1XE7T@pr^J5^+xrHhiSHMBK!f zaLR}~hy|1*%g0Q9y8n3KuSEJdD0UZ=Kml{jK@$bqb!2BdAwEoAu;Q=1x$JBidqORD zwu}aGj~pFLjgG=0T!P8Knb69pH~fr1hh5_3^fi3AnoR_LE-^E2xde#^#3SM5q~Yao z`HGjnyM&jCH{q4xWg;+n!u81Cg7EVM;N0>A6byD9oo?^(T@vO8Zqx0=nxNLE+gUVV z9SOl6%6A-GLa>=Hp_CyQ2_1y^csjtF0L+#y5NEy$L=p-RMN5jx4rQqYFRwa9M1LF=3U9Z4e76M`l*clUrRN(PzWYkX&Zgj5(o| z(O^b_b{)B7#U|_X3g6IQ!z&7p$7gv!=W;1o6+>FcOV%na>N9e@JU6avBwUV{bMAy* z9xvx4!_K`w!eRabktBdY#+q}JSTOBKEdViFLFM~Bq#sWuRQGV`%w`dnS^!NF=^<+Y zG;%cmNOS>l#R_=H{5+TFBJn2hGP+0v2zO)y_q;#wFvw*Chg=Dw+`vr&0o+Is4B`It z7$b8Em(VA0CXg}+4nLz6N3s_J{ptdxfa1wgm+S>0fMCn)1wn=AM}nc_?(3_#q;!ci zX1;_~216tiAdW;DGxh5I^p*j02bV~Lu_wSX(qJ^B!|QlF@W9Arcp+CpDTmi25R5vK zR2*N3)mCel1j(8d0xy$_Yow!2eBN*2vYokxixba$6(=U4VDFK+_6%7<44{iMAXmj1 zCV>EMB-%vU+VtfTZDz~~s*E->3heQbYpgTG4Sav}&f^+uVoNCHHP$Q=@Qv(;Ct~;v z7k5gR{cvPWIOTpg{*JaBiCX3cPw;*Mb5NJ4CGjS-GHOW#2zO+?O)XXslJWxwm-SW% zAmDPn6;z0RWFELYJ)W4EUFHGgN;u`BFbM>3BYU39)9LFKX5~Qr90TdH=gGMfSh?rP zNzkGr8~W?%`SOQ<@J9@<%Z8p96I8jO4`KmjBZ$F`@cMA~qxJT))9&G6zuCjCnA`T2 zAg0cq5K|CSr$OsBK3hSJKKth{m|buAY(-*8_~^40>F*I!W5P;=P_%TA`?Oi*bjQ~W#z^mF_Q>*p_P@r^nMpow!8X!?1~0TTV) zUo-D?aDbe5)d6w>Gu$672=_-lxIZ$({cJ(FpY`B=W`_IY1>yd<2lvMaw^5-^gEDiU z)vA0|=avd}RRTe$3U!qX6=-Z0%6416p}A$VP-9N8X|qtHK*Wu#kg^GULq*(G+>+3u z@F(1q(4r8Tpg%bVS=EeWNn-N|KkKEuqXLWlWhF(A#zm%>ix#09Z&B1e|^ zXI#Ml9)s4ufyb=aN`A|UT$MX@1)a!MNw5d{;S&c9Pr@_Y4&hTFfS~j6sh~pi{S{C& zdz5x}SOF^{NCUnCR_IWNelQ{$mJ5f&3RsgtTJT_`M))Q*<{3I)GW^w;WQ?dWgLzAD zKufV$ETTqSDw@49g8?-fPd8Pkf;(s_mx)`Rp=k-B{-CFuT9j|{t8a^4l7ELxGDiGr z1_K?^xC9LrIGvt<`cr;B|L*qq{GVsG1ePvAg-F2HKX(a?s%P~MyE)095c6{vNrWCU zun`I?u*JH|NX9^~?>F1k@dPik7T+s%0L{5qL30uW-9JuTpC8Y=!|t2w zdH3vBRzmK|m=k1voX98;apS^~F@0Wt!@`df|5j6Ut+#g#gLF`cP z-@{uKtIPHDvO3*=$?WNHn9P`0d!JDt;>HC&b;CVmN$hyB%Pkl9j4NTJ3w-tyf@@^+ zG1@iH>AWQoO7JCsl+7o89E4c=^tT5@;#-Fpgn||O_sjQ0UBovI*NZuCg39lga{{#J zZ|hH<2K&R;BiYdT`Ry^lJ@6!W|7w29G#3W2`q9b#9P3$7L5IKhLX?Ooa;d&nUX0~;FBogrTR}pvwQ{gbo{V--d&$Wy0JsLPAP#f^K_k(Y|sauUk=}_ zE~hg;h4*mQ$hqzV@n;0u-&SudXk&51AJ6svg<3J?b-RHFWr$CMsE8adZ}H2ys5 zqh~m*f-G6Kt8wvBVyyUR5DVsP6rY6Y?L_3lp0^aAl&lFU6`z#9qec5?#2dm21qZ9c zT0GX{a7HZo6KZ}&EQt_$KQ(@H;qK~?8V@W9AWw})QGjV+5}kL)Kjg?f95gVlJ81Y7 zQT9*QH-Q|UbX)VYG>3y~&V9!FFQ0t!Tc6;cU-M&jPHVEU7+iif{xtZ2Sg2;BfmpEd zKuGm^zvr*Uc!X5QlsrI$RFk-|aq~3~MLfpM*P#efj2jRImO{$byC{mLJ*ayaZmo&=5`_D#ZuylsmIhHO!E@V1F*)!SxqfUF<>YBI|9?`}WRCAI{S zAL#~>fUm#$Z6D6Nui!BvzLj*CnImJu$Ys2pS&He z3Ul6smtPg;1PHgkGn`tSUav2&JOp#t8D^{rEZ-Ssza!RuNH#SnGZ#HpMRc=?Ga=<6 zStb~O4y-!J?sDDvuR4J-!4#`b_|;&}GSkh=oOym*#hfv#ZD8#wOzE-qAX74zZzaq;1 zeEG0Hi}%kQ=F5pGq2n|8EDn(M@4kWbYmpi0aJ@WpC2ah9nFIp3{$xJW^2_gcw@2y3 zmf-QpJctB*1G7(UlkGA45MM&bCv)`nX=gv?dBxc9@H}Kn;DqN*;sDve$VJj3vCw1W z2F8R?jNI_+;K&8?Z`tbNWWR4!`+Yk&^C7aO>^Cu1?Kg`Z>gC7vGn_e|ME0XYFGt2z zl<`-zWquiV3YtEan^37{bfN=X8!l^}ha^|puNt_8P4=K{mgFtuJ z6)Z2?)7Q+Z9zY}KI?(tt0_`6MJf2UlFYrd;Vf~RIb%=R0)&!NuyxH%FwZAGp?GN`m zk;L-u_EnMC5=Oo%29bcTzbXMbXIA+5A{=7Lo^XnrA6B66134=&5 zVSjA|;_VI-379iF%$kugVdQIL{1vS@gc7$xB0Jj$<;++^Nn(fG5tKTfuHxGP4(=HE z5=QQh;m2Wj#0?_r?02`1XaIq12_PTQ^xGi5$~BD#zL{+uABi06;+fce#-ZcvkS8m; zI0yxZ{e9N{_(6Uf#9^N`b0q`veHIA>aQzi!rsZL-NB>Sbhd@{O-~1c;Uw`|&zg!>q z5syO%npHL&YN)Zz%eI4L-xZQYH`22@&Z$b zFehV8V0oC6{f=1stIOO#9+f(*E|D?ej2sZ}u~h#VR^2Z$G;nCkp^;0ZJiLnmWRrsP8> z`yH|N=gY&(r}ysHGZRz7$LGsg+|Zz&NS8RYh>Qs#AJp;Jar^NDWry_!G1L#ure6?Q ze^Q)Cm$Kh<8mHQCKC2t`zo#Yq@2P%q2}S{NqxO4xS;&4fW6gdfcGQ02YeYW&7e7W+ zj9(BpYQMu$_L~`N_9L-?vY#4N^~Lun9^Hye$!MZmCvkwR zpTG|Z6m0Y9kcf;q8Bf>e!+-xZPeevhfT@3sgba#2GKYP8;7jQErY`)55c``tq!vkJ z4x74}E5YNNIuZ!r`dbsEjdw-P30XOB0?M~0IRVqP^>d2Xpil93Fj6es%1)whz#~k)h*jsttm6IdSFzcNj& zzTR)IPaL(w%9ODtz&t9=ejmkp-k-Lo$Mc%M@$Z5)vR1Ih-v_ZC;M-bIXDYuzA(|0>jtvpB?ILXC_GAD>X;uZXgrQ5?w^ zscz@o2`|qm<|HQ5`Ug-1Mk#8KzYd~&U2o6ptGF=naDc$L?f~IeMA^THfR}7{{94)J z#A{+o==h1(EDn(M_ndGUzlLXd_+5^}o-^Q#>AJM4&x%0AnfielPKzcwVzIBK}=+H2_oGzb=PfIuqqnRtg z{yrU)LE;5+S`ueM z$@l5$XB;T~-6PQ##&p=_WUL7)-#uo(4-RTDYEkRrF{p_zq2vJ(qMU?|ne%10xtAoxx+?cVoK2XMq(B>X0~!J_b}VUwQjaqAb{&9LKL@Z4v7%ijT%pc2)Ahiy$Mec z@WX14-bAML-kih@8cZY_yBO>tEPB#lAPis)taxAVb}!{V(BWkI5;>FU#EKVxMxgzZ z>C4Aws4SR{i1~xs4kyz&Zvx9trgH)_T<(v)aD!W_aHr?C`&0Dw;Zs;KSzP8Y*UVh2 za}5cEuI~?Oq~+Kg2KB_WI;dxHfNaQYGTint8*tUkh60C1%LaQj=WSKO&?c^Tci+qYW8mO%2YRuBpJ`X}TcAfi2; zFZh_?quBF1yt%=-6Iy;k&PmXy{gM9l?jXwP97g)Ylpyk8Y!(N|`Xl}8{qE?0dNy+< zY&?b~fdH<54LTP>U+(VL=j+q@$eq&R8dUNp!2B9i5@Cv2S5dGh*gRKJ(AbQ< zIbGz}(j1LFb8i}(0D!Uk8=j!)_C*B04)IXVn*j42L{5M*ZO2kP~nLqA+B{Dc(Xd6wD7fGyc-y~>qNTJ_mUz5~` zQKdgJtMmk~F71zxY-s#fe~m~CDfAzj3I#}@Pybs}$r{!7gB-p!RZ1W&__wA?GTR&# zw9Z}2aSi4jP+x-s1Tg&ga#rk59G5fXO~$S-XOnP%J04WdMf=R%9YcnhJ3+1ol>`7l z|HbfNo!hMD&nUy&Q|JAM9sgR*)^EsGg^^0XR~@+37B=rctdE;-#et=x_Y-^4qVD|x z0`$yyWO0OVtga9Ib3Bf?iG34yfM6O1FYEKS;vEvlVK8%V4g&&U0)1V7Je(HWTg}{? zpb3Bt^cey;zP>tI`Z{rMgPs8Z=zbz$Sj4Wc?|1Hrgp4^s=6BJI0w<7uhS9gD)AI@* zgJv_jLo!0(OE`HlLiiCO_D`1KfWNqmd3XDKO>7AuKUoeU0blFShHM*x z=_W1e(;EJHsZKv=En5Td-mlVs(2WVfx)8#t9>4s_GiRGmLz52tE%BCFfX(0R_ctJ{!(j^P6g zyWy{%$C(wI0{_0@5rom>L1SpOtl?2W-|!O*v*91%{emSu9{G0-KY@4y^koO@Bb%p6xZ~yFbe0SMO-GWN1cD!qBsH=(DDZOq_`-92y%m@w^c9$aSe@rm!1tZ$ zC;mO>nLz;b*0r1LvnjN_?7!v4zvvKf;;Kbz?t#qikC*N=2|!@uwoG-t!VeC!$?0D$59#~Alv6L_~dy&kWts}k2}nFNpy+9oT&0Q8pd0gp9KN0E2oy7~qQgkK9E z0vWnf{}d_p-S))KJRDAu7;}QnPmve}B5vL0NYC6B;lfR~IaT(AI^054X%P3H7)}#* zhdl(bFk`ODH{AZ4=c$4aM7sQra=IX>t-S%cN6)-C#I-jj_MP6CAsD^r;cyc7RIa!u z_8r_a1i)=M7pcTNuF>+$pO9Im&XJfnPrBOQu0{(qRLJ;;ba26k~^M(%m`_K^tK>tfa z-~g{`t~P6k`1c#g)~pPNooDn=lSXQNPYEGvO;E`{H!68Kov*v?3O+Homk$eWyjA3~ zNWtH2D99V2dX}K|aC-cqV{)?$NGJBBgch{U5CFGjdmvAwUAG76I9l5tpm;!R*-t`~ z{qrk-G|_cGNdm~)+I}*?0Q8m^>3JvaUR+}&UsSPBIJVISIi4ds_}2;6nAfe-Y2fxgI(M34~uebO>ZPMlD_r6FeWFu3nDZJ6=8k zFnYO+d|bUeg*}>=Q_N%W^4cMx>r_YrI$j=NfW0kC=F918QT^+>L!a0aa&5_+Ay{#r zU&RNqeQ_iE9_|SO;I?=R9KwDIr=VWhpyMq8h86v;+@<@Xp9S>L6AVCa*`edZ zm*N)Db$2rJC+ym(4uJsZmbtvx*1FE+$emzo5z7PsKwD0AF3X?lL=gmEJ64Ev)<72; z7D<(^9!~-~9v@&p4_IdRaJcjVr2_Xz-iw(R0$CY@{O z0?Y}r7P_E#vzbL6m$R8;5|=is0OltIZOKZ&BZBJbg=v_9lPQz!*}eyhMkf+c0s(=bKp}z z+gEtAas!v0ylBPObC{f-=P+VxCtxyaJ_1}j0hkkbtrJi@bb=);n=(*y$gaMQ+&jKL z0RYgJEy(p$7CN|wG$eqaYiD->2B5cuG}ja4H83}E4QVF!gj@@0W(a27n-k9@a>fnp zySNd89rtCkq`fznO&>QvcmwW5{bX|q?+@vI0yK!*HafSvqxis^^XQxebVuh5!)$ff zEiLISz`pA(2*Hl~^nOv?r||Bj?k!t@V8(qAiN(&d3b60m8zES6pW$Ox3)&mm_i#@T z0Jr5x<9c2nFE1xCK3y{w=3_q=Gw zqp&q{CQFOL*7!359owPKK-J<*ryXi3g%l`vs3j>XGju0x3~mgK@Gq zC@|MX=5e~W0+WQk0y7Zkfw72y6rXDh*=*?)5ikJ+zl_%zmD&8ELUK9tlZ2l61CTeE zAGd}%es}YOfC2L(4D0X(t*1?54&T@NNy32nCm?q77Zsb{=Fdtt8{SVfo3G!sj$SOQ zT-1HCy3Hp3`Gj~Z-U)-gR=MdE?+6j(KxMom=x_*FbtsEB-F3*TH(NTy@=e1o2`sJfiE|S z84cndD`pFgv_ej&Vz!DH(xWV9tI*o}LDq6Q_d_b?)cb*|IZeYL)llZEvF|X5GJ3-x z628IwqN3B={IR67Vg9+MbL_4y_*`CX$rfa%8W1>JtwxMpVcML9g38>Ve4{&F z*r{&L0ubxkjL8*6X{Ybn97Ir0sB3ee!%i5x1fnjK)tye4K#4mcFK^Kk34$KWg$iwo z0#B!0sGL6mFLR-CB82{@mS{p2Q|8XUc8w{7BvR))T4W)}&3#gqdHVKAUgxRyNi6g< zxl>u`=?gtC^;Dt9T2E7GU8(i)4Xs(>n;KfDvNuyq3Wa98-qUw6M)u_P>S8=WfI)1E zg`iQT3?HTD?JW3WpxO-G8glKt`sThJ*bkJN@fV!hkC7>?LVe??tSD5Cqe4}v&0ECXg0r{8v~%5C=351uw^S-aoxO#XhU(suYC}y|3b7_L zUmSdoErJMgc=gyK(BY6Zd3;eH>g(}YfvD>7p+eN;@iIE{_4pJTsUA;pk;&sjd1me} zz8=rZL{*OuK)_o}8~n0R)OSJ6D@D}>HI|CnpihOGx#gXqBYzsEI`j#Iby*E{nmKr1 zx8e1os@nu0W(6u0qs|Jjl2KiOR5NPY;8%)9eK$0$YE<3Oq_R=d9ADIp`p)rL;ix*t zhssgY=}@ZI%st=tU?R$(p{pKDL_%{^9LhFxC49Y~B=n-<0K_`$mj$H0Q)ga5s!pA; zgw*8vMGdL1>t{uzs_Ta;Qd4*%%Se60n^Z@thBs75YBaW}B=t6Stb}S9d#)ulWk#^t z&3u&lW=7;yA#`cR(hN^LI0YdG^k;p{?8P}hYRHM)?gD=>97SH-t0fIHz=y8;0K zXw$4Z<;&)%ef=KU6KvJ*CkTMswAl@%ojG*hu!onJszHAM0t%RRjAfCjZ`hMpnW|w= zEHgDimvyGz&{Lsl13FcjTA_E&|}?c3;JAmYP7nnJoUDEDm`sL zr`l5+^rHCG8G2TIszVRur>1j}RP>oUjqkZgltDhPo{L06yWdaspScR&J&=nPxYAtJH5P5i{eao=rM(&1${J$B7u*ABk zWOO(W}^+DF8Se+cM4+MKc&94sx4dU+KK&3{q ziZ1sUhZ`tW5b44%F;!}7Z7R2KHR;?C>(G~BVQ&k~$f>Y7|5 zdsfq=MfRzl$r9&44Gk~pb6swcJGr{H+)e;s)LP;kXj7@@b4ZC!BQS~}_*$G3>2Qo% zd=G9%=+8K+xELIP7NsC#X*GFkq4={}DC{*{N%8o7{De7e$cOwLM;> zvqp}g5GmKd)#FJ($KwMG<1AT@R@YfFuZGfQ$yf|!2?2^)C|7sSN})7&50y}s5I`0} zxrP9#4oV9Fs0_+xW>E#@Z04A*ubX+Ufii)X#WlX5Q*Dh3no4U-z9A}We0?Jp)~LQQ z`n|SvnsnjyEBXBA@cO7Gho(XP`lv>XbGfAxFwrU3!?hEDIf2(Y0mU1a{VBUChwSR> z$el22zCHl}(3TK46tU#EU6)K=OrwRk0fuqOEK6xzm(0A9Mq4stA&q52bUnc^VeajW z8`zVx=(rJr+1~I$wMB8q8kz>~(eJgTsR-=t|6M=9zHjf*@3rNO%kmlL(V17z=%X_h z&)B>i%U1H4#o5b&eb?#;!R+O-aK;;VteerjeE559xwpuw8E4$7Xhz3PH8UnZDN1I1 zac31XD(+A)W7#sN5|!M?UAN3p1o^qPWsY=aUoVPfoNb?KWpvvQf3FRFeXjav(~86Q z+7f57H2+>(`WX#8cGOSL6V%FOoKE<;1Oi^3@N=>^C@`0*U@XKX z#pjX_<}pr-C=)>N%SDt?nav*xR+ckAN$8nB0C|J?aW|FYcQ-!>7%)G=unu3)dfHdz z@O{0XBn+5;0%A9RQ9$Eu{;Yzg;r*e6#yED18XAA}@q)UEe!iq03lPGPua(g_1qea} zxlb7&2s#`9RvpSp8h0J?Qks?yv6jZ>MT>mkECmI3YyAUf1r_$dSa?ibSJcxug=iUj z@}4q8%V_MlWl4=Q?o?BwU?EykvOYTp;K?JX_QTG4=h;z_`iPYg=($dMzeNtB2`1VO&Zlm@|thX__Q(1813q7y6QK83@8&eEd zsX*}E39$MDbtjOj4@@x}6khPM8{fqk*^}F=i}3^j2C*p?f<~3f8{b$c${-EYSSS+W zkTp3Ew3Nj+zRoiXAO%$CAsBDygo^jOcLEy#txiZ|p#LSUY~BU!A*sGB!EyMKR$U5p z2mg{*o%AgpCDVxAJu0OVw>-*}PE0F0bcHO$aYvsjaa!o96vwoRm9;p&t5{x)qpo7H z8pjlb!T?|=p}s*Va3`NvgHQwj^N(r!0&R+l9N+B=Ng(j*_9XxT1x%}NQIzAm`es!* z>gpTHa%|or>T;aDC7yfg-ZCG0+PtMwn&a#(tTspYmQ+xA(j_UEDGRNfca!vL1__Uy^9#5;O$>T#=Oztnf9?#2jRF4lpz*|fU zYFVJ;yP)P3I_iQNOLR=O55+Od*`62asJ0J4tcz=?k6BQG#z%~@XgB}?1x$M@Dw4_Z z`^J*90GcY*Sdw5^C(5E&$9JO4s&&+fGL-9>Hs+~FCO5qAo-oQF+pBxRNN5f%L#<4% zgzwZz5_+L!0Aigw%c>pUsWUIzQK!yWw_}PCiozXV*Uu_ZoQ%$YxFDJv%g4#8)HuhRx&qU#^7-AjD}X!USGxiMSmS~z*D6Qt>-Wf>V5@#V zK>*yQcsNwj{;vxq`f=0Ue0Y z-L23?Wsf`bSlZKqKKgl_Y|<=?d;Fo-KaW#@un*RU@k=mxVsw&{L&P13H!Z*q|4+KF-jyVjmrPsP-}K zxKoWy?(e=k?kIzNUfpp=Lc8A=6+hlRkV<|UJuv=xoXcjR&*KEfWNYzxobW3ec;KPQ zKn|bBfy>qXb@#klv5C>+p~;#MLN6YgtWlyS11Eb~(`7#NBL$EK;$%-!+0oC{Liu3z zIG4Vy_EJPGI+KESXW9=D4*cyGf4 z|Gwc7gmJur#?zKD$L{L!B%p8j35MD5MV*qf;j=O&-Qz=*(m+&`jgz8C$sKyUt8YOc zzO7HtYZXc!TaZEmd5zeD6lCc10|y>?yRtmVTYO3HWvUbKBtnB;M?$GDTzh?6}=f(|o~hM3ws?KbaMm3&H%G{mYDQbMF5R!LDAQxC`z zE8iYS6;^5wP=VDzf=yBw+AQy+nfBsKwG&28IFO0C)#4)$$~16C)#r61Y11OmQx_&f!oZ~q^PFy zxYgn83AMP@;WUVQ;HyQkQLB{7<6=+~M7oHJL54jp zvSiBjFgX)K9ibg2XOwSnB$?ao?MNxRyWvQb-)$TNvRKL+da9LbK&MivzdY|AcIVx3 zv-`p0?zlUzue8uT1Wq)|b_04Qb)~&H7N=^zJ+Z|C%)NsPD~t ziZOsN(Er@1Oe(A0T*HmL*i8#JVy&BH zdjJy`>j&5E0Wc@SYuf`94~}HnPePNT&dv1zodghaZ9f@c0D4P|R1~?n#zn-(L5 z5;v2Rhzd7fCy9sVs*}to<|Zepl(+dh39D{Xog@{vSq>dyLD^!54nYDrxpwFf$Z(8W zyu2uEbM^A9u1)juP}XMgavAx!dU*M z=DK9&R*b@_ zvaYl26P0yiMRjkv>0NgxGk?Oa?M?`UaV{@v?_B5dtn^Ns%R}Xzx}n%D*T8jlCjlLg4={|gds%YlI!opiciJo&3+^nTOHps<>h4*&o#yVL z+RhTX$YML!&?VK{X`u_1+S$x3D(#%j91C}JGtYH)maGIkBB-8TxMn5fQfO>ySqV8Q zPA`9KIFJ$N9r-Nd@q}kwSGgQgNIc=G5L>q$7g+}B>r|-g&jzFl)X( z0RYgJ4QnVj%yGMhG`#Fl+kylbfZnq4D~ldoLz=wiQ448e$)gQ778~X^cg79u$ys#V z2*GS`xFcBvS)8}ZT1RhtUqY#43-=lAZ5y3sp`-KY%~LNI%|EOB)97GU4UeR^-lE$bVdai{V|-OH)E(c~vZaicHpthQ0b9ZDN5 zM;fV^F!yoSBaJA6{6#y`h;(M3Dasn1ZJ(+db=!}B$P8xm`Ed<4t$2LMEOI7Giw~K_ zpV7c$J5+iFL@R7`+M$+GNP%*PT9TqNW7lA@ZCTsslzYo1kP_uJ7$QTL))`#2Ws zQ`Z&6k52Js#-6;Vj5jkH^qfB$I-3uTwE9P<8nB8O(xa>atI(o8wtkQ$kk0*(Y9RG~ zpd!eD=VW5|eYf0K<|;C%2gGwS6~Z@|Ulc-mn?F`UHq1Z#mAPEwtVofCK~7gx!MFQg znbSbQNHFbbLLK6AK@qQqRQEIih;>nmg^0NZzKdEA(OZ}U9gc^w%V+9uSrqAXcapdh z^78H^ks#=?0*BD1sEc$;AlBSrnQZeQmld^g-H6~5fVy0LK>a%#6r0-&k z?8)ub#dv}MgV+=cL8D5gq{q{GX*@<5q=6a>MM501Cg*{cvRKmBd1e8mfa*L1;|-lq z@qYJCU<07l326+Nj;TR=D4;1zCVh{oGbz*^>M?aj`WBCpwFB-RmFfpt9%ZT_pcNf7 zmxYt==u_on3q6%i{*`5;T&ree8-)j-!a_1uO&qz__lw%XMjQ08zp(1bGwGO?TX!wF zFw*h&S~~I;=1{7vp!AJL@)All9*H%SrtJhwWvn-Rw-dmf%&%@I5CC|TX(I}4iaJW) z(|M9W;MI+200Ih_;;5pO(l?IEYAMw?Dil-NyhT(~I(thzk=MOtK909}OQoRF*;`me zrS2`Mq|$U2A4?gRJGKZS$l=wq_&|q4*5vU;S*5SXXLXgT$A`j7lgG>G$k*djXry{P z#YHBM4^@r1zxaAQudY-*J^%r4F>Ub6`bysgH7~GK7t~l`X@g#rSUN+`YAki=p~%wY zHle(6Ik(|uma5wXAlA4bR5&iEKDOd@6Iy@%wIQW&t$Is~Z}EVV&cP za!cPiKC8D>=lD=?X*wNBWsbSweGew046?m?FcAsOQE{kt%$4w+^+`f6Dh@!bvwm53 z={t4ig_r8o87nVM;Z0F`>FfGg?WOAaq4?4i-pJ}p-|!}tU#j5^)n6KoEebHbjU5Y! z8pfVWFin{ec*;<%!Sv0H$i>i5RWl=UTAXmk9u1|_A#rMw&pS?!hE@fUPUWMaRciB2 zrKrSo_O4Wlse2dIV%mnXD8_Ui%CQ<#AIifYq)dSl|4t-3iE?%!R%6+9Ax4cZWac_2+cbocf->Ev(Zc4L zo6E#%^>98tugYN3(KAa)P0uXJQL*vqgtdQOU*7Nd$Jty@6$f>x{;A6$-Q)vxbz-%WX19}a9OcF7p8Ng*|4#(0es zl^MBwo7;YQdOBWC{BYaln3%CA`0|*T(ID=T)QY*$Vf}JgZ}#F?-X*m{2q5e-wL(xK z`p@*h^WkI&ua*q`IO z65xmV+A9dRjz@6YRk18N?nC9A9(KJJ?v#&g*4;ePUkgxaLYZq*p!U zlf<@8JMTX1;A3B_&Fl4P58nH{c`r@@96PNltl4SR7O3IK=kMl`eR;xGkk;Xygt5X-sh5BQWZnm$mEhLE$Z`o12gA&{;(X= z;O{*qMq*5u|93I(1+jzv6PRgF*17mkMTp`*6-u=CNPLu()l`1 z{ve&|Jn=ock)+08`{Fq|m!!s=J2{O^YRpN{VMdPLVjJx(I+vrjniNt(9=+8_Q5jPY z$cN~Bdmz0-r}h9nLpM^q8Wn~%uaL*U?~h&H+$uzn?Pc+5L1#C-c!JK^@bLvY-SG1R zbR!$Wq^W@u(u`7fi{&F=3L{PD1zW?aZaSe zF>3J{XeghTbM={-KcUxrhCtZOU-5Wv^E0P!m_Pab$Yn&BVL@}alq?^Xb3IJXgiuGw z%ZM5ryCcbWQ@kB1y`0i;Bzil=I0odCa^BF>i*gO<^q|~dj$fJF)gE|bXPZ0MdzAHM zwOPXhFZ&JLIYNcL{s8@cf9ddk;|eXBeQoK;6Ob~xKX|&=NfM0 z56Nj^QhZ0wvOR!_i@BQX_5hfZ;kE4niU&(u_LI=0ctg(h0G$L7a&12uU;uhcj8r@z z=Ncnr@5gB|Qg}Yjd1g)Xku|lM?2D;%jwp;_(*_{M*0^I<^IJ=i`!nw|p`IB(kEE!*f zv$%WlAe^haXYavj?jD|lvxF}4H8|JMB|QeGg)a0KoXyPQDL7{{$2W^~GtUpfS+Ww? zqigxFbj?c0rO?>avJ!GqoL)xq-ou#(KOkX;04{m&bvdMv%zLjBTels>3vj+pl^%do zor>OnGmTyG{G0FC4X?lb%O8C5Tc6;cU#o+7eg)3tLj1M0d_?%V5R=n$Ax4ZYWa$me z=*;zS?G0c~;I&Rb@qpMelTK-zIb>I-NA84KbNUGYfVS*K!jo$`Zr9j`KmDdf^8p5+ zx9kARhu>UdoBZ83Ew+izzS(fgSKpj*r$^s(-1O#~5x02q%^P=o@vVV-e(=qTn?Eh% zjypW}*1|o#_GTNM<@+4YqceZ&O&^`{sW+R|@sYKBW^uMUu%{_ew>m;F&nohnH*ehW zmA3}&`H?r9z2zHk&bZSPZ#r&z;mw4*c;L+!clN%UiaR{-W;xqP531!p?s~QnMUbCs zXB&~u?CZtTZqBw(FT3fsr-$9XH*{5Bd6DTq``lU6>(@`$=fi*h_5V>^!INN^OvbjV z#7?VlblR$xQpi=xt!hb%-ZFL{7TcCZj!ySsTmmUk-iL9rHz+U{80I6^TY*VJUx672 z^uSm|K#I?WdTdp7iU^nhf?q}ijLK~OP-eKC`AI_0`~k=t%#T~c9KXByLBN3d5r%d6 zg4WX}F^BK#{Ul+){1Xtn`HQkgZ}Vq$j}7k+g^$LuTU0*!qmNk}P4sgn$5^xzhJ3B~ z(J9&yBFKHpXh+cD0I=#%)<3%IkQYFBAE#ro8BMHQq| zyqU2l?HU7(&bsJQU>*aeAcQYe1rK#MWna+V@YJg{Bup@*hNF|xsz5D>2%RhlSAE5 z-c{9zu`5h_noy9qTu{UdBh@`k0AgL#Vnt%Ef$yRgL{Lwti&~(=P8hp8p)Qowkxq9f zi8~=L?@kg4f*z}M2yKc2NvB+*oIe3CbBS^ygg){%d7QagHIgnbKx>jn9r-T4MsDtt zvP{yqPx3lRwNGN9q{*GiN=aYnd8wodJ=RK^V$w?Km~TwV%45`+G?k5+Vj(E$;`Nfg zi!rh%w^tYA2?7jaQ!E6HDkYP?u~3vj8mO^QB*YRT)N}95E()XA;lS1909#dzeZ}BKuMBwgGsgR)MQKn)7TG2ss zSwZQJK9x|m&{GZNUl}fD>NSdaWcuKHTccM|eqXu5sY8TuKk^=L3{*OGlrB%ZHiXge zk?-*~T9`wrvXs&{9?5Gd)p#TpQ<}CDFqN@0df)8?a3}Mt+X(~!9%b5yLYtzX()V

    Load data for experimentation.

    If no parameter is passed into the method, the program will run in low code mode, otherwise high code mode.

    @@ -295,7 +296,7 @@

    -data_prepare(target: unicode = None, sample_weight: unicode = None, test_ratio: Union[float, list] = None, random_state: int = None, task_type: unicode = None, silent: bool = None, split_method: unicode = None, train_idx=None, test_idx=None)
    +data_prepare(target: unicode = None, sample_weight: unicode = None, test_ratio: Union[float, list] = None, random_state: int = None, task_type: unicode = None, silent: bool = None, split_method: unicode = None, train_idx=None, test_idx=None)

    Prepare data for model fitting.

    This step will set the target response, task type (classification or regression), and train / test split. If no parameter is passed into the method, the program will run in low code mode, otherwise high code mode.

    @@ -334,13 +335,12 @@

    -data_quality_check(method: object = None, show: unicode = None, threshold: float = None, return_data: bool = None, figsize: tuple = None)
    +data_quality_check(method: object = None, show: unicode = None, threshold: float = None, return_data: bool = None, figsize: tuple = None)

    Check the data quality

    Parameters
    -
    methodobject, optional

    The outlier detection method to use, by default None -Four types of outlier detection method object is supported.

    +
    methodobject, optional

    Four types of outlier detection method object is supported, by default None.

    • ‘IsolationForest’: piml.data.outlier_detection.IsolationForest

    • @@ -372,7 +372,7 @@

      -data_summary(feature_type: Optional[Dict] = None, feature_exclude: Optional[List] = None, silent: Optional[bool] = None)
      +data_summary(feature_type: Optional[Dict] = None, feature_exclude: Optional[List] = None, silent: Optional[bool] = None)

      Summarize basic data statistics.

      If no parameter is passed into the method, the program will run in low code mode, otherwise high code mode.

      @@ -393,7 +393,7 @@

      -eda(show: unicode = None, uni_feature: unicode = None, bi_features: List = None, multi_type: unicode = None, return_data: bool = None, figsize: Tuple = None)
      +eda(show: unicode = None, uni_feature: unicode = None, bi_features: List = None, multi_type: unicode = None, return_data: bool = None, figsize: Tuple = None)

      Run exploratory data analysis.

      If no parameter is passed into the method, the program will run in low code mode, otherwise high code mode.

      @@ -421,7 +421,7 @@

      -feature_select(method: unicode = None, threshold: float = None, corr_algorithm: unicode = None, preset: list = None, kernel_size: int = None, n_forward_phase: int = None, return_data: bool = None, figsize: Tuple = None)
      +feature_select(method: unicode = None, threshold: float = None, corr_algorithm: unicode = None, preset: list = None, kernel_size: int = None, n_forward_phase: int = None, return_data: bool = None, figsize: Tuple = None)

      Select features that are important for modeling.

      If no parameter is passed into the method, the program will run in low code mode, otherwise high code mode.

      @@ -655,7 +655,7 @@

      -model_compare(models: List[str] = None, show: unicode = None, metric: unicode = None, immu_feature: unicode = None, perturb_features: Union[str, List[str]] = None, perturb_method: unicode = None, resilience_method: unicode = None, perturb_size: float = None, psi_buckets: unicode = None, distance_metric: unicode = None, min_samples: int = None, alpha: float = None, n_clusters: int = None, bins: int = None, slice_feature: unicode = None, slice_method: unicode = None, threshold: int = None, original_scale: bool = None, return_data: bool = None, figsize: Tuple[int, int] = None)
      +model_compare(models: List[str] = None, show: unicode = None, metric: unicode = None, immu_feature: unicode = None, perturb_features: Union[str, List[str]] = None, perturb_method: unicode = None, resilience_method: unicode = None, perturb_size: float = None, psi_buckets: unicode = None, distance_metric: unicode = None, min_samples: int = None, alpha: float = None, n_clusters: int = None, bins: int = None, slice_feature: unicode = None, slice_method: unicode = None, threshold: int = None, original_scale: bool = None, return_data: bool = None, figsize: Tuple[int, int] = None)

      Compare the diagnostic results of multiple models.

      If no parameter is passed into the method, the program will run in low code mode, otherwise high code mode.

      @@ -803,7 +803,7 @@

      -model_diagnose(model: unicode = None, show: unicode = None, metric: unicode = None, perturb_size: float = None, perturb_features: Union[str, List[str]] = None, perturb_method: unicode = None, bins: int = None, resilience_method: unicode = None, alpha: float = None, n_clusters: int = None, slice_features: Union[str, List[str]] = None, slice_method: unicode = None, threshold: float = None, min_samples: int = None, use_test: bool = None, psi_buckets: unicode = None, immu_feature: unicode = None, target_feature: unicode = None, distance_metric: unicode = None, original_scale: bool = None, return_data: bool = None, figsize: Tuple[int, int] = None)
      +model_diagnose(model: unicode = None, show: unicode = None, metric: unicode = None, perturb_size: float = None, perturb_features: Union[str, List[str]] = None, perturb_method: unicode = None, bins: int = None, resilience_method: unicode = None, alpha: float = None, n_clusters: int = None, slice_features: Union[str, List[str]] = None, slice_method: unicode = None, threshold: float = None, min_samples: int = None, use_test: bool = None, psi_buckets: unicode = None, immu_feature: unicode = None, target_feature: unicode = None, distance_metric: unicode = None, original_scale: bool = None, return_data: bool = None, figsize: Tuple[int, int] = None)

      Test model performance using various diagnostic tools.

      If no parameter is passed into the method, the program will run in low code mode, otherwise high code mode.

      @@ -985,7 +985,7 @@

      -model_explain(model: unicode = None, show: unicode = None, uni_feature: unicode = None, bi_features: List[str] = None, sample_id: int = None, sample_size: int = None, n_repeats: int = None, return_data: bool = None, pdp_size: int = None, centered: bool = None, original_scale: bool = None, figsize: Tuple[int, int] = None)
      +model_explain(model: unicode = None, show: unicode = None, uni_feature: unicode = None, bi_features: List[str] = None, sample_id: int = None, sample_size: int = None, n_repeats: int = None, return_data: bool = None, pdp_size: int = None, centered: bool = None, original_scale: bool = None, figsize: Tuple[int, int] = None)

      Explain an arbitrary fitted model using post-hoc explanation tools.

      If no parameter is passed into the method, the program will run in low code mode, otherwise high code mode.

      @@ -1049,7 +1049,7 @@

      -model_fairness(model: unicode = None, show: unicode = None, metric: unicode = None, metric_threshold: float = None, favorable_class: int = None, favorable_threshold: float = None, group_category: List = None, reference_group: List = None, protected_group: List = None, thresholding_bins: int = None, segmented_feature: unicode = None, segmented_bins: int = None, performance_metric: unicode = None, distance_metric: unicode = None, binning_dict: Dict = None, by_weights: List = None, return_data: bool = None, figsize: Tuple[int, int] = None)
      +model_fairness(model: unicode = None, show: unicode = None, metric: unicode = None, metric_threshold: float = None, favorable_class: int = None, favorable_threshold: float = None, group_category: List = None, reference_group: List = None, protected_group: List = None, thresholding_bins: int = None, segmented_feature: unicode = None, segmented_bins: int = None, performance_metric: unicode = None, distance_metric: unicode = None, binning_dict: Dict = None, by_weights: List = None, return_data: bool = None, figsize: Tuple[int, int] = None)

      Test model fairness.

      Parameters
      @@ -1122,7 +1122,7 @@

      -model_fairness_compare(models: list = None, show: unicode = None, metric: unicode = None, favorable_class: int = None, favorable_threshold: float = None, group_category: List = None, reference_group: List = None, protected_group: List = None, metric_threshold: float = None, segmented_feature: unicode = None, segmented_bins: int = None, by_weights: List = None, return_data: bool = None, figsize: Tuple[int, int] = None)
      +model_fairness_compare(models: list = None, show: unicode = None, metric: unicode = None, favorable_class: int = None, favorable_threshold: float = None, group_category: List = None, reference_group: List = None, protected_group: List = None, metric_threshold: float = None, segmented_feature: unicode = None, segmented_bins: int = None, by_weights: List = None, return_data: bool = None, figsize: Tuple[int, int] = None)

      Compare the fairness results of multiple models.

      Parameters
      @@ -1174,7 +1174,7 @@

      -model_fairness_solas(model: unicode = None, show: unicode = None, metric: unicode = None, favorable_class: int = None, favorable_threshold: float = None, group_category: List = None, reference_group: List = None, protected_group: List = None, metric_threshold: float = None, segmented_feature: unicode = None, segmented_bins: int = None, by_weights: List = None, return_data: bool = None, figsize: tuple = None)
      +model_fairness_solas(model: unicode = None, show: unicode = None, metric: unicode = None, favorable_class: int = None, favorable_threshold: float = None, group_category: List = None, reference_group: List = None, protected_group: List = None, metric_threshold: float = None, segmented_feature: unicode = None, segmented_bins: int = None, by_weights: List = None, return_data: bool = None, figsize: tuple = None)

      Test model fairness based on solas-ai.

      Parameters
      @@ -1225,7 +1225,7 @@

      -model_interpret(model: unicode = None, show: unicode = None, uni_feature: unicode = None, bi_features: List[str] = None, sample_id: int = None, tree_idx: int = None, return_data: bool = None, root: int = None, depth: int = None, centered: bool = None, original_scale: bool = None, figsize: Tuple[int, int] = None)
      +model_interpret(model: unicode = None, show: unicode = None, uni_feature: unicode = None, bi_features: List[str] = None, sample_id: int = None, tree_idx: int = None, return_data: bool = None, root: int = None, depth: int = None, centered: bool = None, original_scale: bool = None, figsize: Tuple[int, int] = None)

      Interpret inherently interpretable models.

      If no parameter is passed into the method, the program will run in low code mode, otherwise high code mode.

      @@ -1315,7 +1315,7 @@

      -model_train(model=None, name: unicode = None, train_x: ndarray = None, train_y: ndarray = None, test_x: ndarray = None, test_y: ndarray = None, train_sample_weight: ndarray = None, test_sample_weight: ndarray = None)
      +model_train(model=None, name: unicode = None, train_x: ndarray = None, train_y: ndarray = None, test_x: ndarray = None, test_y: ndarray = None, train_sample_weight: ndarray = None, test_sample_weight: ndarray = None)

      Fit interpretable models.

      If no parameter is passed into the method, the program will run in low code mode, otherwise high code mode.

      @@ -1386,7 +1386,7 @@

      -twosample_test(metric: unicode = None, psi_buckets: unicode = None, feature: Union[str, int] = None, return_data: bool = None, figsize: Tuple = None)
      +twosample_test(metric: unicode = None, psi_buckets: unicode = None, feature: Union[str, int] = None, return_data: bool = None, figsize: Tuple = None)

      Test the distributional difference of train_x and test_x.

      Parameters
      @@ -1425,7 +1425,13 @@

      -
      +
      +

      Examples using piml.Experiment

      +
      +

      EDA

      +
      EDA
      +
      +

    diff --git a/docs/_build/html/modules/generated/piml.models.GAMClassifier.html b/docs/_build/html/modules/generated/piml.models.GAMClassifier.html index 88fd597f..d9caaff8 100644 --- a/docs/_build/html/modules/generated/piml.models.GAMClassifier.html +++ b/docs/_build/html/modules/generated/piml.models.GAMClassifier.html @@ -325,7 +325,7 @@

    -global_interpret(x, truncate_dict: Optional[dict] = None)
    +global_interpret(x, truncate_dict: Optional[dict] = None)

    Global interpretation.

    Parameters
    @@ -355,7 +355,7 @@

    -interpret_local_fi(x_: array, y_: array, centered: Optional[bool] = None)
    +interpret_local_fi(x_: array, y_: array, centered: Optional[bool] = None)

    Interpret local feature importance

    Parameters
    @@ -421,7 +421,7 @@

    -plot_local_fi(interpret_result: TestDataResult, max_show: int = 10, return_fig: bool = False, figsize: tuple = (8, 6))
    +plot_local_fi(interpret_result: TestDataResult, max_show: int = 10, return_fig: bool = False, figsize: tuple = (8, 6))

    The plot function for display local feature importance result.

    Parameters
    diff --git a/docs/_build/html/modules/generated/piml.models.GAMINetClassifier.html b/docs/_build/html/modules/generated/piml.models.GAMINetClassifier.html index e07db2e0..eda180ec 100644 --- a/docs/_build/html/modules/generated/piml.models.GAMINetClassifier.html +++ b/docs/_build/html/modules/generated/piml.models.GAMINetClassifier.html @@ -773,7 +773,7 @@

    -interpret_local_fi(x_: array, y_: array, centered: Optional[bool] = None)
    +interpret_local_fi(x_: array, y_: array, centered: Optional[bool] = None)

    Interpret local feature importance

    Parameters
    @@ -887,7 +887,7 @@

    -plot_local_fi(interpret_result: TestDataResult, max_show: int = 10, return_fig: bool = False, figsize: tuple = (8, 6))
    +plot_local_fi(interpret_result: TestDataResult, max_show: int = 10, return_fig: bool = False, figsize: tuple = (8, 6))

    The plot function for display local feature importance result.

    Parameters
    diff --git a/docs/_build/html/modules/generated/piml.models.GAMINetRegressor.html b/docs/_build/html/modules/generated/piml.models.GAMINetRegressor.html index 26dbea4c..45765013 100644 --- a/docs/_build/html/modules/generated/piml.models.GAMINetRegressor.html +++ b/docs/_build/html/modules/generated/piml.models.GAMINetRegressor.html @@ -743,7 +743,7 @@

    -interpret_local_fi(x_: array, y_: array, centered: Optional[bool] = None)
    +interpret_local_fi(x_: array, y_: array, centered: Optional[bool] = None)

    Interpret local feature importance

    Parameters
    @@ -857,7 +857,7 @@

    -plot_local_fi(interpret_result: TestDataResult, max_show: int = 10, return_fig: bool = False, figsize: tuple = (8, 6))
    +plot_local_fi(interpret_result: TestDataResult, max_show: int = 10, return_fig: bool = False, figsize: tuple = (8, 6))

    The plot function for display local feature importance result.

    Parameters
    diff --git a/docs/_build/html/modules/generated/piml.models.GAMRegressor.html b/docs/_build/html/modules/generated/piml.models.GAMRegressor.html index 9f368f4e..3804b20f 100644 --- a/docs/_build/html/modules/generated/piml.models.GAMRegressor.html +++ b/docs/_build/html/modules/generated/piml.models.GAMRegressor.html @@ -316,7 +316,7 @@

    -global_interpret(x, truncate_dict: Optional[dict] = None)
    +global_interpret(x, truncate_dict: Optional[dict] = None)

    Global interpretation.

    Parameters
    @@ -346,7 +346,7 @@

    -interpret_local_fi(x_: array, y_: array, centered: Optional[bool] = None)
    +interpret_local_fi(x_: array, y_: array, centered: Optional[bool] = None)

    Interpret local feature importance

    Parameters
    @@ -412,7 +412,7 @@

    -plot_local_fi(interpret_result: TestDataResult, max_show: int = 10, return_fig: bool = False, figsize: tuple = (8, 6))
    +plot_local_fi(interpret_result: TestDataResult, max_show: int = 10, return_fig: bool = False, figsize: tuple = (8, 6))

    The plot function for display local feature importance result.

    Parameters
    diff --git a/docs/_build/html/modules/generated/piml.models.TreeClassifier.html b/docs/_build/html/modules/generated/piml.models.TreeClassifier.html index f4ea6494..53e637af 100644 --- a/docs/_build/html/modules/generated/piml.models.TreeClassifier.html +++ b/docs/_build/html/modules/generated/piml.models.TreeClassifier.html @@ -554,7 +554,7 @@

    -get_tree_diag(depth: int, root: int, tree_idx: int, truncate_dict: Optional[dict] = None)
    +get_tree_diag(depth: int, root: int, tree_idx: int, truncate_dict: Optional[dict] = None)

    Get tree diagram data.

    Parameters
    @@ -580,7 +580,7 @@

    -global_interpret(x: Optional[ndarray] = None, truncate_dict: Optional[dict] = None)
    +global_interpret(x: Optional[ndarray] = None, truncate_dict: Optional[dict] = None)

    Global interpret calculating.

    Parameters
    @@ -598,7 +598,7 @@

    -interpret_local_tree(x: array, tree_idx: Optional[int] = None, truncate_dict: Optional[dict] = None)
    +interpret_local_tree(x: array, tree_idx: Optional[int] = None, truncate_dict: Optional[dict] = None)

    Interpret local tree for specific sample.

    Parameters
    @@ -628,7 +628,7 @@

    -plot_local_tree(interpret_result: TestDataResult, pipeline=None, original_scale: bool = False, return_fig: bool = False, figsize: tuple = (20, 10))
    +plot_local_tree(interpret_result: TestDataResult, pipeline=None, original_scale: bool = False, return_fig: bool = False, figsize: tuple = (20, 10))

    The plot function for local tree diagram

    Parameters
    @@ -648,7 +648,7 @@

    -plot_tree_diag(interpret_result: TestDataResult, pipeline=None, return_fig=False, original_scale: bool = False, figsize: tuple = (20, 10))
    +plot_tree_diag(interpret_result: TestDataResult, pipeline=None, return_fig=False, original_scale: bool = False, figsize: tuple = (20, 10))

    The plot function for global tree diagram

    Parameters
    diff --git a/docs/_build/html/modules/generated/piml.models.TreeRegressor.html b/docs/_build/html/modules/generated/piml.models.TreeRegressor.html index 094216e8..f7e89da7 100644 --- a/docs/_build/html/modules/generated/piml.models.TreeRegressor.html +++ b/docs/_build/html/modules/generated/piml.models.TreeRegressor.html @@ -524,7 +524,7 @@

    -get_tree_diag(depth: int, root: int, tree_idx: int, truncate_dict: Optional[dict] = None)
    +get_tree_diag(depth: int, root: int, tree_idx: int, truncate_dict: Optional[dict] = None)

    Get tree diagram data.

    Parameters
    @@ -550,7 +550,7 @@

    -global_interpret(x: Optional[ndarray] = None, truncate_dict: Optional[dict] = None)
    +global_interpret(x: Optional[ndarray] = None, truncate_dict: Optional[dict] = None)

    Global interpret calculating.

    Parameters
    @@ -568,7 +568,7 @@

    -interpret_local_tree(x: array, tree_idx: Optional[int] = None, truncate_dict: Optional[dict] = None)
    +interpret_local_tree(x: array, tree_idx: Optional[int] = None, truncate_dict: Optional[dict] = None)

    Interpret local tree for specific sample.

    Parameters
    @@ -598,7 +598,7 @@

    -plot_local_tree(interpret_result: TestDataResult, pipeline=None, original_scale: bool = False, return_fig: bool = False, figsize: tuple = (20, 10))
    +plot_local_tree(interpret_result: TestDataResult, pipeline=None, original_scale: bool = False, return_fig: bool = False, figsize: tuple = (20, 10))

    The plot function for local tree diagram

    Parameters
    @@ -618,7 +618,7 @@

    -plot_tree_diag(interpret_result: TestDataResult, pipeline=None, return_fig=False, original_scale: bool = False, figsize: tuple = (20, 10))
    +plot_tree_diag(interpret_result: TestDataResult, pipeline=None, return_fig=False, original_scale: bool = False, figsize: tuple = (20, 10))

    The plot function for global tree diagram

    Parameters
    diff --git a/docs/_build/html/modules/generated/piml.models.XGB1Classifier.html b/docs/_build/html/modules/generated/piml.models.XGB1Classifier.html index e426e719..d24e9175 100644 --- a/docs/_build/html/modules/generated/piml.models.XGB1Classifier.html +++ b/docs/_build/html/modules/generated/piml.models.XGB1Classifier.html @@ -444,7 +444,7 @@

    -interpret_local_fi(x_: array, y_: array, centered: Optional[bool] = None)
    +interpret_local_fi(x_: array, y_: array, centered: Optional[bool] = None)

    Interpret local feature importance

    Parameters
    @@ -538,7 +538,7 @@

    -plot_local_fi(interpret_result: TestDataResult, max_show: int = 10, return_fig: bool = False, figsize: tuple = (8, 6))
    +plot_local_fi(interpret_result: TestDataResult, max_show: int = 10, return_fig: bool = False, figsize: tuple = (8, 6))

    The plot function for display local feature importance result.

    Parameters
    diff --git a/docs/_build/html/modules/generated/piml.models.XGB1Regressor.html b/docs/_build/html/modules/generated/piml.models.XGB1Regressor.html index ec27be42..0ff0bded 100644 --- a/docs/_build/html/modules/generated/piml.models.XGB1Regressor.html +++ b/docs/_build/html/modules/generated/piml.models.XGB1Regressor.html @@ -418,7 +418,7 @@

    -interpret_local_fi(x_: array, y_: array, centered: Optional[bool] = None)
    +interpret_local_fi(x_: array, y_: array, centered: Optional[bool] = None)

    Interpret local feature importance

    Parameters
    @@ -512,7 +512,7 @@

    -plot_local_fi(interpret_result: TestDataResult, max_show: int = 10, return_fig: bool = False, figsize: tuple = (8, 6))
    +plot_local_fi(interpret_result: TestDataResult, max_show: int = 10, return_fig: bool = False, figsize: tuple = (8, 6))

    The plot function for display local feature importance result.

    Parameters
    diff --git a/docs/_build/html/objects.inv b/docs/_build/html/objects.inv index 52282898693abbbfff52e5d5fdcdf127cd8b2176..da4df0ccc9bf9e1c2272825062101766ef014194 100644 GIT binary patch literal 18837 zcmZ6yV~{3I7p~hq?P=S#ZQHhO+cu|d+qV6*ZBN@a_k8a@Kh8NnDk^hjtgMWxh^#yA zbtN%@vV(=CodNjTbqATGFePT*x@ zX+-ziV`JJ^+kI24@!H!DZ1vbr0?$C)C2>60bwzVBm3|&;{7z#g*YhAqB7P7Nk^#s< z^Wj2%*WpH5)iroR*a)$_@}^2?w@ZYvQO%ONSP2dsT#6K08rpJ)X) z^t8xWZCILXG5}l4F4`;oLU@&WXM77#1(5!P^VcYt!QTlt@|6Neq#qo_RAt}^vyd%a zvPM6;%YSLh_Tn~iOb=mgk631qtFr!C_8i>Qs{6enAKH?0?5gxH4bHkXst+7aNEe(Q z`iWBKiYm!hYx(c{_j^P6{t%;ajjPfdZ}w}tRX8`|+R~|!ae7-ZeUx%eiDbtP8S91m zB9Xu2+wuF$OMqgEtnXovs!Nv5Le!Veja)}NTx2T$D{5WrXWffv1s>w`-vmM=uQ>ux z!r^aect_pj>UAWr4lQRXK%>D(xt|xFQdhIzbvwgvADKQ`_F1`5cx?@PRQ$>lvqW~| z#Xcdzw`iUmE9Kj>sA}$6x#RVy34Xgoj=J7tNg;bfZfuRIT3z1Jr=IW|Jd{r?TKGMJ zt6*}!@%&tfuXI!!r?QD{=Ke`FiyYEByBxc`aFHh*(!IqaYcEyv34`SPU^0|?{Sx5Hgr{PncqBqq22O}T zsvn&P4!j;ZG{#cWl)p7b0mL>PCUjI0j^9%#Ya#XR(RoP`={7vnfhW{Cc}ct%K$U}a z1y(hCj>7E9d@9}8l=!y_vdQq_`LN0G2?Wzg@PR2A z2iVPA5FRa}fI@AtDG|)QSjvdAj!BJ5taI? zS<`xf=14HCP_`O@q3niO81@nZqC9gE;Vfx_%YE@Ri~~JlBpQU0(*lO>=LklLM_?e> z(3N_l`d=ir!Hp?<2@0o7Dk2ZS#`ds}LBI&u^zogb}9tt!GjE#)X;ijR%d1#2@z(Ds&?m58M#!#WnYN zlsGpN$7=X&>52)xubf1w!S{p_eWDxP5OBy914g7q!7}9&8r&Bze-;<+g|JD#HZ+@y z0Ea-pCaN0!7^-<6YoCZSshoT4?XZK*#l$rNhilat10>6F6c}j*0tIw6iSjUX$b$=O zSCbSGQrjegbN3BAtIx%Z;>#Kwz@}#%V8&QTT!`F0U*HuD{P3|%7RV)xIpE&of`Hb~ z>vekx><&(G84&b~(R@e*BL#j5C{^+R5=Ee25%l+}IZWWM-%LUMgoOZjiif3n5Udam zH-UqADhjO74f4H!Pcc}EY9M29l-$_}V6a1Wy?)`G5|g>n-xQEi{!t+56^-8?Ls`%h z-9F_I4OcA!asflGV4y(na7>6WU!PDM!(Y1e#g7*q@sOK^pgg;{roTx1)H8lFy$luF z=_?oDMVpwRxZDUs2+HF^DXi7T{c>Pq~D#!+d16cVJ-jG1H zrxUMW!Rs;-3QA2}J^{rD8U(|lu;ew|m483Hx(G1S{7_$7U}05-Z-RfSjl;wz;i_(D zo!-`ns*y|;u43c3*1hZIEoH&HNeatJ18&gGK``ZkiO3k8xtvKwXbA_mulvBO&=M%~ zbdr{j)>7gV9Z{)QJ^8Y;5@DFoLtHxR?r?;-8$-_-BBI_OhCYG9P|^+`Ti^H9(K3Cq zb<3=itG-lqWTO3X(~m580(XRKhewmM?KT>OxEW2d8ddaFi<>yzsO|Nw09JPvx!8ALKyV3IJ+%IlT(%;Nn zRGOe;67#T>E9rhZ4}GgV&O%DHH*%JvVY~z{H0L?9t31R*FZQob6w@QDY#U#J{oWt+fmD0 z9f{_17mnd0WS(;39=g=F``_S-UL|z#f5X)bbkr7P8e{+FzPN;}-t6>-{i0d#BS9#z z0P`Y6T|>#8_CriDE?%`Z96`N1gM_KH;^a1Eimf2!sLLzv;FotyU5QZQUAQQ`llL@r z^vtutV`yK1b|u_!aAiWxp@r$n+f;SWz=gw0i!6e;uUT4@kRIBB>Mo%!EjYq=am+nx!Mj zN|K0ED+@3F6)IdrX5^@e6G#38i{*$3+_~j4k!^Vl ziPg2I%`>9xsPS~*-N<(fPjNmGi%E+~dTrmM92T*2F@5a9Ve0ceQwo6%N3Co-NRZ}Oh97x=l_0e&Nnp$Uh6WAmD3C4^xGA+Kb7A-icmmrG8 z7t>@hB&OtMv12$Q5XO`b998VOTjX|~wt(pE71!Rl2*{Kch*8_R3Mz#YR&1`!l(G{{ zvjz80b<9wE9xV^&QAFk_1RaAm8{Su8=H z*xqB#%CS4dDX|*b(tF@OrJ*8e%#w*P)SIhQ{leIp?Iy*PS!a(nt+pxV=D(|tmS)*u z80GLt`oX;cb6Jn(Mm#-NzApQIFP1tWR}riAlb}1Q*-1UY6N}!5TK4;SZ-Z#;^Aa^d z);gMXXAmuxq`$TdoBHjTz7goT`Ot~jU)1xH!ZhiZg<=>^>L;LmZcGhkRUl5H^9ua# zmnMa`mM+Oxp1Cqz=&a!H;|Pl3#ya}Cl}{6#R-1q6WCP3L+C$2rF7Coe(%-`R5%JqE z5oG-i7~=6qO=ZiXi$57`N6H?!#XfNnLNp)m_lueM2Lq|Ixv3GSef-^q_sxC|V+P}X zBIrB1uMzo^RzTllOzVs1qH{ljY@teAIK?V)Q|t6Gc6kjR?7Q zLCx93g$R>@K7y%>xoY%<#g>Ed0Z!}Ajm(874CjL1X|7J;xd$#%PL$Wvv496`293tP zV3c7((YAF2K7we2vL&(k14OowKi=n>uVKU0Xye5{t!jYF22=a;wJEf^!atH%cR=JW zua|VOYoP=sj#5|_{N>hT_nay?VjB+`FQvy!kh!F8Qp>g*vuXOP=SM&`Z@5%Z<$iLt zKN{U%uk#0l@~1R!Hxas!N`7UONgOrm8L z?9%&xcCA^c2V1df`rC8FxKSs>iZ)1tY`bAXLto;yOCmj|N>@*S}>!?G92>d&m*vnt_^!2WDy-Y>t4Q|M#K zX?a`ZR=M7>Qo2+2dcd-pcG1%3<1K~sD}9xs)lkwWiSl=@8L=+mj6#3aXEH5&h*2mh z^Kn^gMAf}IP^+FW&Y47mQ6chpx2w)Rr1D?pA9^Voz?(C zn95Jg8>I@q7CULKPJNRqvZR#w-Z%isGjKOBAG)jNT@AY%u+o7FSGk@=f@7g>|gAZ;3+aX#+#8agF% z1|_yElY$Am}CX60VOF-WTelQPnyeTEqOPJz5|8uXUD7|^=ZtoNk@ zpT%HfayiW< zNc4eTmSN~0T;1xWrCTOwt!tyw(hBuB&YLv-t1{e4f$&L%&Z!>HTKUj5aWyld+5Hex z=`L>ghWop+terxU9*F6*wO8umE-!hy1%Ik-oK-hKtqWN2GB%5A)%e9(x!crLgWj zshqs-$cV>+qSJ@FO|Gkd#ANt*Em2Il&-jaz#iQ)*X*)a`+#_i`-0h$AarG!_V6$zk z5so`I6OF4xF{?Bc&V?kTT$yL3z?mgdYW;mM>x)Sj28dorV|8ESd(_U*_NLQaOa0nK zq^p^#%7ehnd<_#fw66!So3owNg+b(! z4#V_iIc-itp})2{8TG|HVN%P<$2kOkVI%mq&ZO5+?0BZLbB{%B08}lH)zpNlv6==J z6Cs51TJo7=Cql%2%OO0K*JcxGuKCTc%$yFsI-iKliw7zThv20X)zfzyBXb?h2jUHE zbQunKG(i005UV(~uygY=o4B@&bMx;FoEo33qHpTmJ-6~7G>@jS72O8bS><*C<^ZUY z42T~r@$wOSsqH@Or8#KEjXb3s`+R$s0sk0#C*zsFJ)=3_q+W(+`UzkoMNIE9Y%EJY z$C$Q(jPx?@L}9vSHMD@-#vKk52+zVdq)uI!6`L136ezZiESqE_i$}RT;UUAKQr1-* zCvre#6IGu&T2Nl|l2X?Ze?zrg7Ep*5aotZl$$Y!9?VNFE%?${zP)!f}wCKC=%ja40Szpg zcX<3z{ZUa?;t3S=jFxf7>~~G~)q$w{ATxqz&cIF}072zXbusFZVP;GAREvFs__MM* zC*)>Ci~Aq2uDV_dh0rqo(7BJMy*eyM&L>6?o2(W7T)fgl3s^Tm3$K)%Ij73_y!K_n z69uQ%rlB+(g3t|o5RVz0nGB%L0p9(Wx#B)VI*#1=V6i|zglcc z>OyQc(6KV=W%F|--J%hsO`$lvGZLOiUpbAgIrp* zcZ)RM-~jWdM8TdMrmVENSkqZMq~?s7T}pfc|cro|+OPBLv%*Na=F z*b$BUXW>*J^Baz_znvYc{J0dZ@j0FxCbKQiLIic~~tM7)muq?e?N zmoI(;WZf+tC+Rsc>h;q7gOFl*=eiL21w6pA(o?4ap^<*rwx4_*!22qrZ>=1Ao-mJm z(f9;Bo?fDd0SKMtL~N?x3wjBsokHfHr5%b+_o&WY%chH*(a4fo)NqXfWAgfqi9=?Trp?jpth>Q|lTo-~gloqoNIt~B3qIqIZl7}`IR#&FO?nj9`tk^^`-|i{AU&vNXxC1`Is3YMEYCYCC9O z+Hht7rfK#w#?+IWsBCq*Js}Dkz?lblxTo&_D#}r*5%V8;<#{`KP6qOzSGYjJ(ouWxU6pf z9{eN19Rynl2#tjB8o(lGP|WwN!LtK2ux!~r$ZN6dbT1(f4yvcvvYDSPEx)8%25w|E z1e9Oxi^fklaCuj8WHEY7c^lFuwv|dZdh>Z9K5)OIHj!q1=^5OFgc_c)9N5^pYNC2he?DhMD_tk)QeXe9l2NhxXL? z+k$w$5oz*H>%5iQvfHf+9{-jh)4b$Zq)?}3foRX)&lCW6O`e9}iL+!5L&7(b9QLdBdc zx!+fe*jT#^zI}-vH2HUuY>+70o zPPQ>6lZL+*A`TI$=;-Y<>^8+-^v3S?#Ao%Y(R)g<4?O|L$5JrCw6cu_N)$J> z3!^3V4ZqS??qeW<9!z}Nd+y%#YfHDB3khX1FfXO6-_^yI^tzpw3mPX4@#t!CQ$G5J zf5bE=3Rs$3dT(eHU#2u+q!O4or4k%TrCf`|J;Umf%@_3pwwZU%qLUp>oEiLsoofO^ zyoWN&ahN}_88e@EpcEps>)$Y!Zq?@XuWhWh)Dzuvx>*^q)RPx=8Z1dqi^d1JGGG35 zg!&OJ!-c4pAQdoF@FmD9AzPM-?<4caObmgO6=a?O+&T}C-x9(jY66uXYuo!!go+|| z{@&A8Q&;wk(1h4*c5n52){PRqzE)V4)AhXr0;vgTDJl}B`6(WeMMgvD-y2!9=wYFO zI}*}mNOi$1ZRp{Kcrj4yY833QBs(Gwu5Gw!2@Bl+?Z;XTTRHteBlFPBsrZRZ=5~#F z0-L;{{t^714NRLS{`niOUnj+091M?RZ*+> zN~#!QZo+;oI={+$P%fLWPNDFo(Wd6#lh3{RQVkBqbhAw{RATqjK1}ZFjuSyvw_)5B zQr$Fq$oH)xu^HEOn}D5M^lfA$YfDShKC0W3oO#v7=wR~&KZ4t%2ntprEO449tTdsf z_R5LGNevg=`4hCBAyZGbB*t)FG`l?`uA}S^Vx&N%C%eR^b}F7^o;A1iyU|~+hP8|xJ=0c5?L`iCflXz`S@*%~7aF~`BPfi59tgx& z;|)(E`u-~-I2c7Z-@d7d}CksZ@_MNrV-Abe_3Qo5B@6AjIGEg z;8L9yk~I~zr|(zfMos_Ys%X-UYRtaKi(+2$QnfFcV_$tF-ajuAOF)AYqJq(aO?H;{Q{o3UC?ITp4KTwQig zh&{DTJ_h8K@ml1pvWp>mEq3mmJ7phQVFjeoSfk0!KU&#G+{%egO}g0AMubeuRkFnM z-GMFyP^XGhcfA=8?^9i{59RlYT!PI(jwV2+mPT(}Y}I5H*GIF8YOYaJkS^ zwHwbwm87WpXX63hG|?uH$WbguHh>x#s9ew{VT;zt+8w|V>*oB7OU@??AtVIz25PXe zBl>c=Fi?-ddSt$m*P0c*dq_)+?ELp;Z(YU&$r(!eZ`18zipAj+U*Xm31urx=~crJ&hKt-O61fJ#)HwO`;uq ziHDHPdiNr$>eN_C+vaa6x$i|XBb0Q_-Ww*%Cn6n+zkq8YQU##6E(E6?0Y4T{B z@CZvkuZ#+Dc1Jj0hS{m}^zHsa{jZW3I(8li^4TploSa#iKp7Xh<(rWk@hjztJ!uiz zu&(WCiG%7X>+BR+fM!NSqxVRCFq?Hz9$v5J%rBTmrhNkH2RswgQ$u;T{MB|-#nSuG z2&@EQ=Msk}Q|^zb+u%k}uBuidOEvG6gb?i)^#H zHFCscTDi01Px#S)#v@bopXI+alHt*s@<;RScmFvJHP$O|I=+KIQ^j?f9&=9!zEr1F zTm<`yvL7Ukmk78A%|0^JCM2bqtE=qM#}l_OVNmTfZkA#LSJb~XJb^_5D49{oq`&EJ^dkK$2q+@=nMUJeA@P_XnuW{f6)wp6Vl zVO&XjTcWRrCTGIUW1CI!=K|$fO=q8ayY|7uT#~U=49wR72jk<7GCqS<6m8X2RSC;G z7JEsZ15$d_S>TQ%JCb@|wNl`N%@h4^`RvoHJ z35+>2Yqt_$;2>uS+@R*}TN|S80k{$3H>-oj*m-a{TldXtx96(`h37l}t6)^MLt!dz zeSZmFIzAw`KKb5ouM->RC(dcPriHA~*;TF(#vfbJQgwd1_TwGZg~~f8&}z68>mOVm z+97cJ1YfJVd*1bZHnx)5U>aBpgv-|g)3TYVmJW&1kGpv6VXX=mEwvvRCtlxJ=jIT; zWpc&!$rH#<{2;A*8il)`cW&!GL)6WG68QS!>-P5pq^`{j!7Pl`I@!!jnZh=KEvA)I zf4C(ynp%U{t*Nz|TJNn_)DF#TQ42M-3s(2JO&*1OqQ$jBZvsGQ2L6;AtnLDIc+hvn zZ74?i%UtypwO&wrT=oBIzo6E*>RV#1pu$*Hn^-|Fvp2`aS~=^_Aj+5*c&iye)P0yC zn%AamOddC>(rx7APX!kGX;1>fJA-rAD;WEgNTX>(BX|yZPzNSsPAJl5s`;? znLMhUT(o=jgIX4DXwUzXx9#zyk~X9m=j*zzegaNJ9IsZz%Xrl~g8aWLL@oRX5VTO! z;jaJ~nzqc(#%{%GEnjg5*q*=}L|0@H?EF zRluogU6NJ{J`D1k93g}dSr@no-doPO!Wy2TQ*sJO=}fM zX_E5arzGL@P+2;_tbWL)*WeB@2Uz=Z1noi`?7GGVu%DHa$Q!Bf$_m{Y{I*F<16aVUGbButtM1r7LQvr|}?8*S>yk4pi z={$}e$jV!mls;=Zq6yZ&L>SL22BJ-GK)PkcWkIhVz40$>-?>0xSIg{xWf1fQ*lr!+ zy8*W=4elSdTJ9i=krUvhUsv@}wgzDw&ERGdKr8(*4#2Qe2%)^2?XyfmBva2`yK!cWMoiFzP4OMK;q(bX7L)SIF9cNZGg!vLgF^Z8E0`t% z4{U`d);oAfuLWFa*H2Aq3M{riMtydFGEw7uc}<$w1PEBIKpYg3*oIx$EkHud2&+3z z^~|sa&z`bUn#qRWQ%Zpo%m$*QMCx{{JqRP(Cyx;@w3z<+wjoz)CDc`xGh!^7Y_u2C zuqjItp9&8}xie14C!X`!etwv;m%(DN3uE)erv88R(*svmIAnM;GQ^qQc6=k@ms(`vc&kve$0XjNXXnV-^6v z?)QevsM&fD^c#+tf5#@6`p9UmD-+oz5qkm!eE#=_=hBcXn_BUQPmUU%6MJsJ%VYt;c21|c z?6SFc+Dl$Y1URi)QRX+Tu&Etp4ZAk_j(g{zcR%+id{=Ax>qXdmWntr{Bi?n`uQPCt zjDe;Zof2XtoEgviTxXyE0x~xvuTcWdX^!HpN}|tnPhOF=_NHrN9RtO+vDl!moP@9Z zSOGkHU*0=kUT1PDK?>|@MT^}R=!zQh3u^@2H-&(e-=f1wueA=aD~vr4R`^~U+$Ss& z)cfhVNoF@RyU^Gm?3P(LaIHVfxcNY z+oM*7RS(Io|Hcn{mdqjrH9h{pwmXx~k_IKa0IYIdoQr^Tf{F5Ez1Ypq?R1&`NbR^U z<{0zvjd{mu#N1L!okS*`pafyyt_~Ygc;!ljU|u7E{K7f3Vx2+Hy-y~cMZp1%P3D(3 zctwnVdT4IvwW%J=Fd_zwT+l?iU$}hWAYw7*SLBduEjzagpmu^4!t?*hT65oeJG*c3 z?jH|{SgHo$BSQ}AL^c*%rC}P-X@cZUvNlA2ESMoeziz>D1{-#Mg@6mR?k_Wmv2!c4 z?S~b2$17V^a6u1LxKdm_Rk^c&j^x^mR7h`^VKcWv-)Bp4hb%P4##7M)&0pxkh=`(y zvv!QHgAuegn01s4zfJ#QL%%qk3%ml_%ce*Wd&a^`_G#UMI7k^G>N5g_Nv ziu>?es(Q5^3nH1yuzzzzjZ6kfOnIhx;W^8_k1s$yo@y)CnKa2$bInhQUr9d$Pci)m zEi4LMa8(SdG$s6dD6#$9&Sv!URRs;=O?2s7uXGcHUXRM?j_c?Sg|V(v?@lL~$W~Un z4t(-Lf+|;aG~^aD1PBSQFoVFp|F{7{n}HeRA4~19QtufAA$HqiNUg2}kQ6?1gLrX| za`6g9lb+WIU5;XK;9DCEvJwSh)&gmRv%K3uDc#ky%`-k)U$- znfgfLyIC~4$hc&FYmeN%lsbwUpQFWzD$sh-2+ZM=6*QAy^HLv;ZmAk)e!K}K0l0pM--;9uKN(EqHeRA^`IrZ}g<&etf zh2#)pqE4c<)8Bwu_4?NbME?5RK{1Y&h(WLn;zs5%GR91*&OEZ&dT>{; z`Qj6HjWqH1J7xN&Pd8DZiFvYiO$R%-sK#COrE({K5XnR-eRzh|qpC7M@&yExoIBdD zeO*6!zTpt>sQwZM;;$lPug2)cC>iRKz`Q4XpMgJnC1~;t)g3N=E>P^jqiikZM3vRat60sH-6wv!VfuXth3f{CJ zO5%jIJoA#8H)3b-yxImjY-yVn%4Jdw;L6XT$X9bbL7Sfka!+(0R@xP|$Ig zfd}F$5EjhB&i7%Tf^iXg@Hktr z++EWV-FO$3w5;_zS?yRM;BGKGn2e^!* zR$O=@+(o~5G5b!E{W%9|ASbiuUtu`FiEz96_{NAz0$tg#Go3}=s&4*f8BpvN6A(^B zqI7_Gp)i=&IP@(8he`U2(*%XHOPHQbQnRe9?5SWZx}yg>Xh8JjcJsmqaoqERk~rWK z$8fD-mnbDbDm&H2{7*1AQWb+d$vJbo9=C7Ji9_71-99hB_r$7Ul(H|+^i2&KN*$9r z&)RIFdCXK)C6_b}cmT&;hY`Wa!!WC`6G3S?XikUFf(+3N4l*o_sAX+=xhTjRN z1MD~kat)(8gV&}Bk>MWZrZNbNs$(tWd>Xx_VFQivM#(HffHOMc|Dvss4S`>8?>lg? zgxqNt#UqfJyYHe%Qm&b_t%J zo6SXV`wJW+`mhvwroA4oSEvdg`)kYrr&EYXE8Q!U!5d_z@2s_pb>p8`eQ^KQB+Vd^ zMHvEg%C7pT)Wqr4y0Y6jZ;PJVis7YtN-5SVp{Dy@=?FcK1o0CuWej5!2uqMykNfqzI3J zcYmQ46?GI_)c_irVE2*r_?(zpyZuhnn+`hoYV;4xrtkGWhXiDEpL>np(m||?k8;3m zinfl=B8GUm)mf)yxq9^dy23NY3BAVMWIcuoJsD+WgQ>MOZhGXo4#(g$GzP+A;Z!+} z6pL>_V#BF7Oq4dy4S2mlF)jjLBX6aeLJl{`8eVhgZ;K%GdH@C3`(t1u0qz63E|ce({VB|3LrHXsT( zZ?&QuB*Ei@?!z&R+AeX)52HAY?>x9~VZLl8y4*lt+=R*t7)eo0?wFp_i9~u7D z{?}SHoe=JDTQB+MxMwGFPKGbH!q?sI0ZYXEHnSTLeZSg06g?9V^pemHh;*E59^y<+ zA7I^oCYxYiJSJmWg&yc~j;*5JYwyf-)WLO7Mn2#&lU}T0)z+Bl6${^(1}z6BI%rC; z+#MdaN!DbiugLO!mX$sTE5Wzlmi6E1?0R@0vylPrxL_-;&r%e?|4fA~_~uB3_D%hb z=$H6T8x#Hh9n}sF>N-V_4!6cDPKMKD!lBNa+L3R!k=iyUt!?oVp^Vp^RQeWo!h|;W z7XcbuAx{t*>pL1#VAe9py}T|=lG}7J?#}#J$vP*0k^DpezN+Kn&+j>Zf@7`>`9y%V z_rFV~a$qX+kg@1kvb&Ysb1Fs>?`z!p2ArU-#~1B>X&!M9{^0dAGo23MuP$q!JL)jE z%2UZKPhAc3to5)AMbk77^FGY=2G_%s470rcPG{D4x2yZfiELe+06I-e3QHC+x7zfT z2ABhkp8O;Ux9vmr&a$5w_>SMF#f2UDzr7+@i!I@{?6RIeNmwjW01i`h<~m;Aj5R7c zZpsSijdL(S$C;RuPtSKzYU(dejVAeo6Z9Z7z zK1A72n=Ho|>NoK=P!dbR;zEmd-Uxb<0EWH{(#caOhmP>8F;;a!tMr|pXY3Ng^*X>Z zd7NWfvrZ6e#qa}Rngn~t@#hY6)Vcq3iUMcH{e2GRpvlxAj4w3eC4q}&z{3J3o#4+o zVmG%swkq%@#cO7=`_(Wij>7ACm6VD`SXN!U~%2VV~Vt!f&cxDS(z4Q z){_fI>N#K)+u4cwLoY)g_S<4oipv+Z$v9sP5zthF+Ac!(J8W0~2ebz#U zo~CC4K5JIf4I8BWuQ8*bJ^eOn6U6-bu0i75HBJb`6qqw4-`mh@S-Sh5=E_^ke=Fl` zFhqvAp!RA3K09#f5hO=gD|3c1rJhr0&9tPzCJAR>FxL3CD@P*1J4B|*4mkpy{GXaJ z$q8|RH2MEYt;SCvSAnkAfQ^q)j{S~%Ah(H@YXQ0QSl84QrJ_%k=EdY3qZoI-3s{4n z>MGdg>{S;0yC&42KbcU`dNz3Y6%S}ZWuq0*@=o?KtAc14{c%I7=se6m##`jIv;nwm zH8lB)K1Dg14TYI#sAT^M8nca6YNCAhJ4U&L z(q)6R$0VymGQNqNH-IIoNw(TFlN>Z#1~@l#o)p9@9GbJ+k!!Bu5yx!3&{av@NXtBk$dd_CTxm>h;YtZ^BtB?R~lrX@t!UY;L>*--;X@NEi{ z%J6GBE=?^YHv>lA%>0&0{xLYKiO$<4NA)E)9Q9P^%S7iveIeaO-T%4=al!QeFI_9} zPuJq&8Mx#0$ISu24g6_{LH3Dw*0^U4f!9P=^8>O!P!DJvMS$EESn%?zO9FC;T;u<} zifv*)TCnSx&*hpRl{P=XSndYh4#}ciT?Zjovp?y2DF;b(r-n+_BVkPuP2{9cey>lm zkfN@LFJY5rQ5fR23h9xTzf>F6V2^ju1ODa9KFAO6igxKHbX6_F=@|gvGVO7Zmx=L7 zlA>agh?wT{b!K(PxlU?2m}a?eoXS(<*Zpd0Aqb>Kzt~NeLCctwqW0~L=!>3rZj|E_ z?dcV8e#BO5Ox7;j3x&LCGz6P&VgmFZu7AcjzQ8lTj%?k@U;DOuQ614n1MXhNQnhUM z2XnZ3O}N*L9c{Po?<%obg1#}>4Fmz=_e&h=Jg9t$YEJwc%E@LslKPG_Fmnd9Wdj#3 zoZ}nlUxuYq!QBaJvGNoZnN~*7(xg;`f9yS*mLI99W{PnOF3MPeSRY0tb%TZtBjpcC z$`8+ordF^K+tTU4m-2dhw>%rXSbyFo={(hVCNeVISVJ7BFMS=Y-3V(|QeX82pb#l- z)m15w0ld296b@z(4e-9~p zRoJPO9+=+zSz*A~Za#Q(*z-zvBtK)Izr0ekQPULU()gQ_5wrC(B+5kt-SAs=@&yXMg_MwE0t{3?4j!=>`w*m8QZ_~8e= z<2%Mlv@~CAIt+3t_mQ&3)^k<6Q3BzZWQ(HzjBgU zs1>pF;7i(wsg_-OAvW5jGxg5Eb54&*&qXc81B>3LS~gYqB=y^G{EwnePuZ&gaOOB!gC^!`{Ub4bxr&=CSP`FV( z5v9-n163#BMa@ufpn#+x{_&&ONwaL^9qs_eW8Pw}>=*O)AsWjKw{B)bNJ{nRUp8{R zjP5qAuNviJ#6C*9J0Aa*pq1J-3Dkf4IIZ|KP%}GU$O3+YR|5NL^p!pgzuZucs0W{t zX*&D*H&u7QW4j6D#jBhJJlwNK3td0SDa|Mw@3ee@l-@w+y1Jhi?=&Xf@Vj?kl~45o z7BY|AOV)W_Z}^q38T`e+u*?uRdPx4Fv7KAhbw&iy5TlCn^BIc_5=8qJBWAf2C4lfX z!&05b!Y39SF{nZ70W#AX1|KgtkkJEX)XEqx8WJP;{{qQt0b@BqnKUft-TH6b_(HWX z9_e}u)xqavqPd6dG6CC13OYoQuCRdsaG?~+^qSK1*rnMgGmdm%*`Wvw1(uTFCeXHVY_doaq+&Y8f)ZFXLqs4b_CS3NsoG&DQ~$PvtlAePCfmS;(0eG z>;f%j)iVagGH=n1iOm$uM!WIO#+&T{noE~mkCmhNFlKMk7>M+Oj;`>C3ha9%q<=R5 zAw4L!*6Xl%{I~>xXvYnav;16Yn9PvieTIi5;M(~ud}lmjvh|i_d&Z^Q*4%Nza&Zno zLGY{z@0k~_Q(sI!PIEQaeD^K5z74tdYjPe1M={kwC$*M*;P9?ou(FE7Cu!I?_*Jw> zs!W~fj829*BpDsqeryveY37w_WF_a^Jwj5%IcJ2IkPb5#r}xM@6;3;)^nQR^B}WdsnlbvKo`lszwH4r3bk|9g9dD$p><^9uTB`y`7*!xNyxq0+ecbT<3jcFwAV+?#Zi*<9)ebZK2kI92tY1ch?NzTr+rEx*i z5+cirtF9scnu33!-4e%M-ZCdQJ-jPUm4;wQ1LgVI>;+!my*5)Yw(2 z_S5-_(3opCuTjk;ST(=S82nQ=B`uglm^UZ&P#M=$eUsI>)O@}lj$>NdgOB*5D1}ti z64(n2&crnTe*)(S824*~*N1G~>s!XOd%eqYpcl1or0IK|2iAX7335&Cp?J8@(ub!w zM?S5L#r?v%uF{NFq#u;)B6#>LYSo|ruZwiJY@w_yTGj8 zWv6_5my~>U>Tfi)U#-D!hjT*hz}i?=7WelT|MTnrSV~>nok}fn4YU+CIW)Oc?@qSL z+9Jz@G>c=$r>MEnE;^i;l3XSmy;st&!@5^aMz5L}-X-F*ijqwa@>*xlDBOFUwYzA- z5VQ5-RI}#0TyK+FPUl`+zPbMWJpk3F-s52tLo&On3fX?WFUryE(#w#W?MMO1`yV$+ zoL65)12d`(H``7YN%Yg@YdS-w?54(qzO%nR*PC}V(~iqwmKHlZh?(hI-&S!vTT3Z>ig)9d!92Q%XdKdQ(cn`v4MzAPv;?6rf>XlRHWj25M6VgWGNfS8NVPWHD6L zG8u}%*bpAdSkuS_@n~o?>=eN8*R+yxZ7&(uh>~$l3c$5B0N3CEusP!C?Z=OlAWT%J zL?$9IHiUqTHH}=Lf#F>$B`QO`DUIR%?+_o{!*Q@gV)(&&Og4Hr1>^_!5Lx_i9KiYJ zF-dSx6fk-E5ZMNB9KcC%4n>y7C32#i7iEf^gC3J@ne2-yW_p-41C^to?>#6Rf)ZM@ zNz%!Z^+5fIgcw8XW`mAt;-{zjzQ~8O#WKB1(y~A%7bs86F7nh*#eCe1zRNDJscjW` z|5LnAm~8n~97XyS191OzqAYe*$NO*VeO9gqQ}%Vcrwlwc#LYy^OvJ_7d3_|z47Z;x zfNM)?gyWNwjw7*xjbp@hqaWqpQa4h%5kt17WI#I9C0L-jG)&Ndb*j}KxiwAh;B;%0 zvjOUjCe?%6i3|C+Qfj$3o9Rxjy~Gbto}*k5ZjLMYH&fvJcxnkJtx?7ZC^b!@2{*l0 z>TjvkhOmEP!pV1(astX%lc~bZ_b2(cQfm1QlUq0$Pcl|OIcrm0xLN-kDYZzdao*EI z8cy1iq!&=y+H4ta+P_4tTEx{j?eQ598)?JIU>jY-fnY1wY9F;ak%XC^A2#sReu=?( zX4Sx^F=jf!YUi--W#_OzSVKAw2d$>zXX5-pI&yzNxXQ#H2(Dcw5D?dkh=~iXhO{9N zk}@Xy{3kZ}aUSEds|@a^)CfcUgR^HEEqhn~76A1wGYg#hFq;d6 z`bESv+Q8ehzko^O;yug-11H_Y8<0B&z`U0f22OpHNe04wC64|z5eKB6fpf=&eUyj> z!CeI&l(`1LzL$~)&VH1~2EzVT#8sNeLlWP>$>TylN`r$SuR;&Xn*(6qONaw!Kgyy5 zVgHl(XlN69XWAV&b6ng3HDuM>%{T^nVt))BAy61t|2rY(8lA znBXh+z2L9>`qVBP5S;fggAj!FFA>vdVh+eS1SXCP_%QzvoVW_NJzo)k^Dqk$ocA<) z5rq5SBBj+E%z!c;p*+Dofoc9DoG0A~$CWb);KVQ!65NSt1|^6SzeY-{c^uHJODIop zk7JsH3FnD=9FDwAb_Z}XP*f=kg9lJ?u0N|j>rs3cc zHO42e)51ut?P)XYWfGr)1L#dN8*P3LE%CDJOyxmyzxO_^m+PbVa*1wtR`f3SUhl=Y zt4Z=faMqA21m)^Q`?IkjCIy;Trh)$9S|woK5vWT6+NrfJFC6IM7&FSb*sC(v=r!G( zF%KQm0e8>l%1VcIK=p3gTy_xhqx^IT@|w(cAo3Scqt`^=m=6!>05bZT?08rQRP?nu z^&sSjiSiKKry2G@)K`&GYeH{I%ZDS64E!`nACkNZyDqaIg!nX7AA-C-&mYKvS5Z&3 z8)2Ih1mc}RJ_&ugK!P*vAX}ej5aP%rb0ESGZPr1M8$U&zX8TCY*$UB)ARmY}cOl-9 z=5ZKu9zwjBWHCf|q0N8@^5W;H)9h-9IddY~6Xf&I=266Z(pC?B{zZrvzaYo2+H8y< z=D+C2r@j1*4!)#uDRn%G8;5R-$DAMdd&V=C4F&vR%ZTj9Tt_RBz6{P-V!WB-M5UAa z^k^l9a>#>~PO8HbmKd6I9JF-Oou0VFP@dzgrIYgX&?ScQT!$^4v~{O0F~sLOZs{bh zJ9p_O9{w1ifvEmGA(CK_vx5+V?IA)W!64@bAq3k4gh+xx4hljDwkHOW1Opurgi!3x z3L-fMItK{h*c}LTbDZlqn}MhCTpNXHn4@c8rfPbDV;b_L8i48G$Qp%dnB!?+rlgpL zJ&p$8Iy{#~A{*%Z8JsLBvSE*#0mu%|osq}}I$j1RONwmR(_{d$!((M6vVjhe!O4;$ z8}_&ufb8(x7>R74(_wJ3q{xOm5eA?-I2uM_8s-QXm?{6=;fJC_+UKLAN7Iz zH|N0^haZL$GIZ`C&%_|PquYx)kHkQ@PtV5CxraOrgXB(&`z(iHAj~JHV#ve;9)!UW zr$v0$gD?;Wv?pS`oCtgX2JZyzNz8co1>%D46pW7tVNboFJ)k{<8Be@GJkT9|@$n$+ zNf)#Sv}X|blnaFQFXJ&<%}P>6`%+?c+Wx;Z&TDKA|Gpk3rCcrY&tvkuk4MmuEajH> zHO8ag*4*R`jm8K9PzThik6%lvPkFMgi%mbhUUN-mlKVe-v8dBJOaAY7rz$DeB2Inr z?y6MygZ*B7;J?QTE$@-alK+mRTu=Kc<{!gcUBrk7)#%(|bWX-{XDzn>xffs;E4=Fe I2iA+^^&Zj@_y7O^ literal 18557 zcmZ6SV~{36)2_$nj;$Trvt!$~ZQHhO+upHl8_(FbzJ1^CM4S`nM@MI6MMX6#Gw#a1 znuJiv-rU00ozTM8)x_4>&e4O=)x^=s!p@eE35JAF-qFs|#K@VG(B8tv`d?f1fBQHI z|JlmsCWMYAHU<{9#wL!0cBX{R<`zzbrWV#Fg#XS)b~g5oCQeQ!#)K|T7Pe-Dp4JwI zbTIB4)7@H0o1%$q-Zy&v>OC0G;J?{@*488Fcc3a<(qk>gvD>xWs6i%pq%f1!3-#u?qR^1D^TBDbh_1Z-?*J7we3H{~4 z(D-u9!)v0lX}p?DqWc6C{6U@kX%g?j*7bi%&QjR|5Lw|**nlOKQE`>1pf4Zi zoivYSl|3C3ZE}mYXy+k@HG4*yFmIMNNMAKJ|501-n2EGr9BS;C&17}sF6~Y|W8^V@ z!VS$TQ_>!k=Akac(YBj7pxYg7)+*5};;SXAdFA`G7-sSkCun-2r<>0)zt2Ut{v?kNFQcHX9S-0In>n~PxBMZ9^S-_G6U(65`C`YGHTAr3BK zt_Xq%hUi((S3IlHa5|M@>?u=;Q-zdTbb9e2e&cA`X*5J(&*QSDL zJ;{iR?TZ>Uv3G2-f}J$4cC6#!(m1!K{PRI575`#ZC3RkFZ3hCq$xcnq;sI&T3n-*s zlp2Ub@&hSckFoqjfDer{YpcTX1@5*HO%p?-L+fPogh+u;4EojiD^hnkg9(%LJRcey zSGA;HKI@}!D`xaSqAz`o@6rurViRA#J4wgi1t~}POq=1rjs0O1lzyn|55u##gn0>& zYk+NHnM~zsZm@QO#vJ{RbnqrGn*P?21Ht4VmRg2nsmmNW==6Wk?{%8^MIHlc=F?>^CI?*kLEMvY}1oNlB=A2*%Or#aan)7NurxrSp7`|v%;7N zHUJ9!fg4;b6csHbg~81(=HiMjf(3IMe^9|n&iaA1e=90v;voV))CeeqxMbkpXhqwWEE`FogNA);au`j928?=C|n1R zpCtITiQS*PLq3mbY5qZ-(vF_Nt#E{)N>SQU(*U(JLpAz-={0M+qu^u2M zn3_>ZH)*t5hsaW>V<-0Mto;}@63M*Lp`rxBA%OW2P!{Fy=M@usHXSQ|oX(Iv2zYFZ zzUq9oKS4XDD&M3w_w?%`lC&06*g!7hjgflhP$7c!Rf)g_^l@MZgldYX{1`UX%M%k# z(M_n&;9;7W7RFnXL5_`e5_A4o@S=LjY6q)(tMq*StSq zu=Jq+nTvM9PQa%qxgd-dj?}y^2QloDV2r7#03}E=y*eKL_@X`*|LWjPf$Aw22p5jG zv>0$qpBC)uS`FPKS2d{~AD=1R4^uI!-nFM04gP!8fCi~Su)yG$8uv5AThguiLcqFL zAFJ=JLi%Gp2Fb6$&2wf|??O%Yd>=zV>lLCeO znp;P9n5!X24qNjtoHKNGqTtsg4+~3wAqsJ}cPI3I2^}PKv88~L^a}!Q7uQ0ms=EuS z4S)EHmXD(~oHc8(KbM1p?!R%O?{GSb3Z-8RBMDXz&D$U!yaEKzX!a)`9#qX=lYjwk zD1&?z1yxd=RzP6>9112-(b@rsnJ4-3d+rPJ(_Z8k5emNA}cuvi#d?FP-b9K=S(mGk}ZQ=c* zqMq42X!uyYvlJBM{(I^B04yB#>(@iS+zGN}PSh)Z@|C{1;2$aghl6E6DTnQvYEz!v zyhHERO`Y&n(^V&F@{{OjXf9|jpu+&dQtvcdzwY(Nz0N$Rlq}hy)#&@8fFG`Z0xxix z0gQgpNvXEU?tZbD{!MK__juIi`AS5EJ*s2 z<@M=MH$$p*L7PG)?F>`*w%5(tJx}3a0|!&=S;=#&w59z%7IuyU9>o3^MAEe@hfbP9 zCb`onVC9n-L&QIkSS;s;q>t*r>F8A!uG-AXBm?Q_U@ zMogi(50`Ck+9S2aRrnty8V)8D8RU#vy~*L6_V(8)I)H!Lr6O@1>8B=8LIfpLgXb)r zaaNOf?8;$SHAKi@KAE9|4!*3}6Fjy97I4Sb<3vQeWQjrjA!%u=qrsrEj=KAI1biI^ z;*se*ZRk-~rl&zFd1*Ss@b5)bhg(%@aZO8k$Bm;oBsdmh+{W`ch>n_M_U#@5I5&^; znBO)!1lITfi#HmG`X0@^R&wR$;?U^Ssb8(`NjXf<4B%*FAfVcnxJKixi?Z!t0pZK2 zA$yiNc1+5`#i8M2(+*jF<89SRMlPve(*)2TS!jAIwK!rRrk5r=SdwhrM7n&MLSUXq zRRQ>)&9boCkN*bkR81dyb6|LX&y+&qAW$pW3=pPS)a8XAU`I$UOAsC~h!(v)bc`Xk z&rzTu<3Kwv;$r|h(V`H&zlc3r`0jOJm&NhFX3NbQlVgvBsv^|UBos|l*v7@Q6L645 z1%)3U(pS#FBwL`eW5|aZ1U{NZuR}!Emj<$o!%t;67}^NZ?8i;0umO z0#dwWRN=io10vVJu4JTml(YCa96SlAv$;ze|`7%e)VzI`p|Wdx1{uKrrz+C zy{$gBw;zwHlv0nXVoN=<<2Z{4Ni1VYV;j(~LwT_@@^8*-8$!K~IhOD?R(DHL#|&M3 zGHPw{)MI;Z4gL{d4QVMjc$rdHlrmz;L>er})vkG=?8ttWWXi1LrP-)yjk)~p>7}cC zupC6)Kb3lRYn;EVM|UNeo-6+=6M8S2+OJy?wQ-xEQzp_wU1gL@_pOj?wH9;{N%-I- zFU*!hyW$S3#gYir8DLv|nAJN5!ZDXP8S{yDbXSxt1CuW@|A*!+&Y>Wo2D3H*H{o$J z1_0hDkI?)s9?Cb{stuD@ggS++5Pl@D=d1aU6 zsPhI{#($q9mT>Zfzbel3mDy&p?3PpV4Hr2?9pUNdgq3e3h&B(D7J2^1<0o@`@m(ON zKk-YvHn8&+Ss-s2>NCN_F`qSD|24=Ow#1o3vI18DJOjb?1OuUCAayc86=PY2->awz zDYve$Ih&*qX)?iEAayZdg|M*LB2bq9FD}PA*8Bq|JmJp;XQ$Y#gD2@<)R%XmzK2Cj zn)O`;m_pfkJGM~7G2%697X>)?V4J&xTnKdDob*NFj7PuPWkxUS^+mMJb%4x0qZJ7L zUNA!5_7QX^QVEN!1n8BR3%mxeiwMs`z^pd|YnlKQO@mUU@1jA^r%jD6LSL$$j)L&h z%jI+2a8?`vDE@u$OyZC1S_s9Fnw2i(`xgZpQAhPw3{e>|DE6vp`5Aw<(Gt!`Ej^or*KR+bCZvIJbHwQf z%P&?bf(xbf{K-{um7%lU%L%;BKu=XAgvn=+7H_O}4VzHMk<_|`a|+wnladeyM5K#8KeBkC1tG`%Fd|rFq7X+xY|XjjLdRrM;vtelUvGO*m4U&c+qoQ zanL4nQ?sTif*&U?Dm!@>$79Cx!w!WsMXNeOJQ65LCVml`s4=*Bu158v=z|gWzhjF> z*U<)cGz76&5}VeF<-bF)YBUOtAfM(*?F*~V?Yv^<`MHHrQvNd#Eao?!Yth_jYJbE% zMPgL&BmYNe{X?oeM9d)#8)dSe&dov>;0PV9DIjy}OSN}s>h;E3&N#$hrW09=^lZP(W<|ThgNUUm?Rm-vOF>^{tejYinAUT$_Z~p>C219-&9=m zd~&K`H&`2MkHI2=xXju2CMW7=e}VGrGEexr!Wru`V`eb+pxa@?7;(TRQXU09yb*?e zzN!ood8XH8_Vf#?ZZ*~PDHE{L(N>OWg?=38Nty(y47-;ndQ#?ftjD)f!q2)~!z5nV zPB0T6=K9rp^;(q+Xsqo>rdLhwEbcyMFhycZ-!1WzmAH#)L{(eQGb2;~mtdFU)?M%F zm=UAgU1Tii+;XH79WxGRRY$CsO7;de^B!ou=(3vGQfRJfX;?33hjpBGjxz+j#(yL& zJvNOb(^@utDqvx8vXg+kCw6xH?A<~7bP3Nmm_M;^ngaP&7 zYKsqf*&4G2xdk3pihFKx?v@84cQIxx>s4q*o1jaZ-fy7I!6$G;7?pD~ACB#`hVoJh z`P`Gr%IORbyDum>e!N)cKG};`jgHq6N0)n#zi6_*dzw3MLBc|Y{t}0L6`MMw9&Q10 zvW+p!c4ua)c9lSBk*dVS5{H%}^Qz!C%ZyB+zYA=6FyTxG%?oMBDqwtr*%sW=fV**~ zU&V@eK2ceAP_bWJA}~}jQ{RMebzWC7r#+nFwKhus6dL)ZAErak?DO1A)~ zFKBVx-`kIDd6%V#cmo0dXc+xmrhI~Ps-*)(aIm?R?&NM~Z{{AMs~)OmEC5{|O_T%= z+7j;}s-}MlyVxCWlD2L>*;HoDhOjP>Yu*!VixI@y*^MI-D05AQQ-X;dr1Uvw-(HS2 z-4eDn-f&(sag#ERvAVcpe9jP~~$$R`=ZtiCihV-YsX^^p@s zDr&f&=#azu?X(o&F;LjVrjFm}M`9P|KA(3RExcoFZ@W? zwWJq2z-Dl@y_&eKriWU7u$U*9{-trN7So>no(|k9gM%*@r{ow7@o}&LOj_24TXmRD zi!cU}j9YZoP6`QS@C>Qqco{YU#QBV3%)sw_QbzzK zVpUS~D4+}UP|@^7#C0G1^qaW*UFRbWcEe==wb&$c0)AFYut2EP{$Q~Hxzvutk*Fz& zv6F&13AuOvu;29a)XOlfK{9l1vj|Q?dyR!LIgjS?&SqiD5Gg8%@&f zBe5aUtz@=C8RqMhBNRjpWa@;ecame$DAYak#(0g9S*16eamhM)o>*CqegG4~uZ8a? zwW8#As_6=fs%FZnvf(NtP3~n6o3@Uw+1~p0vY1bIO?csq@@`wdD7%`!KsiCgpou<6 z#*N!=xy2K19I*lzSW|<4&CTyv%zZJn??s=yi}z(8zd1Y^-+FlSg<%-KNLCPxq+Zf` zu2#w-58~W9r@tR+D(&< zC!o`^6l3HWIct4kB?f}It4Kk^E1pz?AoG=5<9<9q_hW(XcYax`F)qdWz|0ksPOzWc zqkxzWQ$mBU>=qTrdtj@!Ws^<1s6mR{{!FZC%R-y&VQBP0!f9!9rTPLOx0?9+=m(uQfcXB%SdV;q~;c32rKmk1SFQw0MzIcED zr}4DV-{E|U7(@U;+>=rY0s9+e%Bc5*k*jt7AQk+g#fg%a(h{e`BI{D+Y?zRy0Ct9I zqn+{fAzGV?M&&X%Sa5AvALt6izgclYG0$&`kL#i*lRTkVf?6GI99DG}u*wlt>yA#Y zx81Om$IcH?Ar zh~?0(Ayw0MvTx(%Xg;)5FRvSlZf?WH8XsAK=}EQdn%sI>cG<}u9yg>f79mZecR)zk z3Phy<)1+~Ri}4)Gd)?oD|2$K_)jBIH&4z%y4c-`?lj3Nz=5rk zws4$R_>d_YnOH|~uX=x=f>Ww|@BQ3NwdH-t!hXCD%8Q!v^!jwZ=Gv`BtuA%^S=ii; zUB2zd;U_tedbUe^wzNb@m0(3`9tF!;>#0^(bJQ0pmUsY>Hm!cH>>ij%YBvmVUMYl5 z?0$~EY7FqbXZ4X>vr9iK7_hsy!xy6lqHm}0FBmX;YeVVNZ6q(%A?4hCm10Rt*xl+e z1rK}bdQ0>6LRTv75%T@G8j_5|r1{nt5=hNQPg4%m6qkoSkN+esZ<+i)Dndhpu|Z0D zD)27=u>lX;)idRktYuO$J2o}ldnDJ+qbdCv@W`IT+z?vIGB0t9DUzU85?`}x(ya4sD!Z{ z0Gu~og5ZI*s?o@5)TzZ)Zz7gi!SwiuM1;IW5BRiuLP&o{4?; z?xnsy+roUsF!Jv6Ga$crlY4&z=BQL+=uA=1ZPN*hvipb+!|l8bWpWqVoFZ2@zv(kw zMeLaD1GLww&vJfdw(+iQa5e*ZW!5kLB#%H!{($WDaL9(LI!WrkA=S@IEhBep-li`*Q?|r?+W>|mcD+#8myeCg$7dYn*OtcJ z{%zVG=GZ)Vepy#XYCCM~HVrX0F7&s7lrAGv_d4occjn1kLlw>+{ptlk6&S2ZQs}@y zRb@iT5R?>&n-VOu`y-6KPQsDvL{0R7j&XL(_?NynrpeemHT9(?y;BJ%Gxr>*p~IS8 zrFC}rZ?w+NZ3!Po^Q>^%?XjDS-<|B18_Gp=$+FLmau;%f8+bD7^h7vLpXBJd3Uy&P z^o-^XT8=?ZV<SASae`r7u)*F5#v*J6A-#u8!rCHdKMO7Gl3o}y?474xt zU}U%-`nlH3`d9y;Zn*QwnMm4jbvK<<$}812_u=T2sXHaRr*{zmIaxsJ8Y-hTZPdS3 zVhU`OGbBU(%G(St|B>ep#cqH+9c=L$NExmX83gO-^%s;<%4FJI7hixpxU$8ej#2A3`Il@SROW2F?; z)nb?v5w~v6cFpt7#@8B1j*Xm#z4vL|_5mym!|ALA!di(7838q=v zjn7wTvcfv$x#?1FZ(XDHM{>AQqcw>3CJ;ZoVc4M^GFK8U)B?zSVA}$*J=`=F=$l(6^}_SR=y$=B(^9Dnq;v_ zo6|pb?tFn2#{BE?&R^pTskP;TbayrFtz9na$6IPdMx4{|s5&|?=lWDSM+cUyONT`V z;Pa2688tq1ecB~>O=AYpZ9SQqWitxR`}}n^Mju?Jgf31wcMs$*e8Q%GWMi>j|2)CO zLyA^RgO=xGZzuFk39)!TY8!`3X2zM{A|L-&5?u3$2vFGDGMA$b`~$BKp3Z-uB!8hi5^mZczzx%>@LjfuLo8;qNAs17ZL%cruUcMe4uh%h5@az za@=|@j(TlwMtqghZB)g(xss0y`fhu@qSbpYz)cJsjrGw!^}`*D9q5ai(~!pU@3aI3 z)=>j+b)FJ+U3$Bd)jI_|_*PPS)w+G5@i7z^vE+krO%mbDIVqt6nrKW~OmuXDs-IOs z^OoRM?>BIED*Jy-nYDLF?;_}K68nUuJN)Tl>&)IeWQa(T1dX$_okuiFV-hNkR3%7P zg7J+8NzgFiip8#xyS5$7Ft&l834y!yAmePjJ)IpV7Yzoh^x`5by>_2p)OrA9#=;IC zc`t@>S$Xv~_z=6icvzq*!84V;znxtjlv?luSkx}$=a1?j5h(odynRuz2t~x+Noi-k zAsR;8PIn&DFn*@#akK_vfmVX6b{k6Suf5GT_ z;@0FN1;j6U3Y)K~Jui9&+ODZJFM60*s;M!T)W=uQD{l%lah9KZvPsrv1QDzI5Ofiz ziD$H_Thgw|#J!un1TsKHz8p6$dYnMmx2pD#F2R@KNuE0F>dcRp;LY^{?g=G_5ft@& zm<)HCA{?H;-ja*3HmZL#wOf2D=EaBBS2G)~@M@9!U1@f$v!#qcGVIhSE~xKxfD)1h z^_U>49%MB63m~rtg0j>DaoPwRDe8mFT%KnM>1)~EyjMnS!FOnE zQ`bUW^op%Q;sg1&(LsrWe4xF036O`Y4FEYa=wF8q^qRm2^@6DUqSivq-rj}8jw5ff ziq_~hc;5bz&+uY=l$;nagsKrm(7Tndh_BZK69cA_xtQ1#QWo{mONw7I>%KvQ!?upD z_DkAV^alOtotxlC+&wbjpn1tBI<{AT!|xaoy@f8%^sm%mw_ss*+?Umqjmq*!ziU zJ^F#7Qh39D&2GrQKk_IJfv_r{>|{@h<^q z!;d%*2(Ok$IL@fnZf17`S2aKGj03c@!)*Jeu5S)m#p7w!i4QGd z$!!)gx;OXL=rK+yUmi16(Knb->^e(=Q@Tz^;BNlZ^a~-1y7osRWi*^Y0gX^~*E(s$ ztORW+*jh4|(|cjIv;?TQVXQJ!x@$uqq**IXew#&zE|h{JDA2KO?kr$+=QXJMaotJo z3TZz?hEyWXbTpw^qs6o|uKGIHdY@_+1-A7S6U;bH%ZMg_zO*Y%9ckV)e!lSdC>-ft z*+(FBYLu2`r|^&h*#9I#0&(zC*@D^os&9ey@!2XI z6#~L1fubWOHm?JsS|^&Vdu1m_49-bB?x~Ad;pPfA zeJ7q}yu^H(mjKihZZ!!YoK`kgB0UmY#+zwfs~-JUyRb*I9Sj+_3{bN!*EAEiy7 z#ZKlvmpxFld{9?)86+W4k2x*ozX>)~P@kED!72Ep)cs-n_Ungia0Ed^tm(Tp(h$f9 z{@^W?R-dr{`rXg(W6_hGko-r@WJNP@>YLMn+vz)hhseK&|`0U^h&)U8BhQJy zO@f6I0Bi8cMRE0wP-#=JIcj&&H9EJ=w9O(HAcJOZm=vn;nZYU-X%W8PJ~T@RjppRl z>b*f`ONWb3|JgHQVl4M!GbC*0W&e2M00A%JhYUqZZQ&OK!qb4ve_F9zNQE4hg8lY-aI_^%8K_Aeil_ zqru-@$-gi~I^dh7a^{XM{~;FzZDdQThEl zR$O(%X$!X4i+2RB=ATpKNYmt_%a*t%*!kammD6O^m2kT>**0>@vf^Yo@3!8j-o$mE z?g&yb-R+q8ZoQnH_f`2%tZnYBS(#MJIkKx01cyVSq+J9kaym$kx*!L5?d$s&n?XT{ zf6`;Y0aQoe_8V;M=A7xV1W%7gaRn~eg!32D;Nb2lrf~1D2*L%ZbeJ?9`|NprYZeyI z-ZCqo5gU(5gTnsY@rcbeFYaK*m_aSPE2q4iIfY3!5T5HWSp&@9nnI)sNsj2Tb5HD! ztR$)R!kX`?5-hQdAnv@(V3`6=i-j~kLho|ym0$MCF=9Z4Iec*m7yP<8g!7n@NP_Yh zIh5%!x^K@wSato!1IfJqrVD3L$_s(!k*7P;VU)Kgfmt@kD}hx3jsWOpzWgy5_O1*H z?b_ak(GC^!z%lk>0F3AwTP7l8mO`z4AgTLlQB44hAGHFMr z_~~||w|(9}iul1XU=F+z}nuD@QBq^N+*(e?JKf6q5m?Lf%(xxqpCQz<#r)MP2l-cG4fz#fGaz5I}#nhwgP5 zTpFfCUJx71#XZil)U!uT0kC{Y^N#ZjYIaC5SJfVuz|Ibw-wl3+UoMhT>A_ceKS`(D zcyBPl0!Z&#q}%c|7d^!sRzbp7{DT9!K4-BwRz6xb&54u#z+0SoO3oXwGkF|rLmkGn z(F^7>srYm1XH(>>+B3$2&Hn1MeLI0dSkKT#$Rd>2evw85;%pES$im6@ZkvLW7JP8W zV4)>!KhH&VXElTjV51Otv%yM~e^z1GK_&;)U$s^Oek|l2pv-eenSbGI}#g-Y)X1#nJs^Gj9BfaC!4&rfe z6%{{<5XOig9XgoQ$%uz+Cs+37kaOj_ZpvFW!l6IDHUq#hZO#h~T_;0b?kwz*Yq)_) z^u`747cqL@#L~IBU-w?-*Ef84RZqr2AB%F|5HJWf@~pA0Jj6!Xa#nvcI{+{Un= zH1l4l@u?GbE;FSc;)Ic>E6sZP)RBfiGqjY(NFrz=Gk^4YV6@^U(bowUw&XTkCLN&k zx|}_XS0PRmQcZ~Bdi*cg=%q<8Vf3fXjT2Mb8KF051|uQcEsqIgY!*2b?}Jtmx_roD z-SwFRldu8iLAda*|3%E|swu+B>m}LtLsOYIUMV+w*~8}!w!j^g({RvNwfo4}KkhMV zNDy==VipbbPab(KRw5{)2G`OZ@0l3%v`d=W1H|F^Y&P83CduhjitmsNBsciFX?Nojd%SEhj-dnI&Uz(d^q+b& zLJI`h89_~BQ-?dp#RP0lyb80N*z%_EG`+WGki{j_=xJt}fQ^I*&%WDuy*5Q-`-`IIPiVE4N3;N9KxHwM?yh+MBwJL$TF`^w-+fb}ivloy2V}LRbYP*5bygvz% z-254BH=q4nBK~McHNHhTp|w6;tfW(;?tk>Wssp+D@KD_qA)8HNpup~h)+rf;a>ToN zDfDc+lI>cj zWsGYv0^QQE)mHl)TzC%JIRT|)BQ8^^rFvGa_1fMs2rXIA@}R>pcMsVnf43_GP+`&}|_Cnqv%=^&2mHsS{CMgF|Ov^auacQhEGG-$-1zn`=)F{Z!J z9N?kO)z#^6>%DTNIb6rxYawWy1h$=N?Gn;j=dO{>}DIK2?C=Kt_dxkSeQj%&OAccd!^g)omB z2}~!sU&!98t0!@XCb93t@b9>P5Fb_)kpvU0+|AQ6>JScedivg2hP#!YOXYd&aGK?| zg=fg`XL_IyVQtko9c!$a<`#6xun&4FNd0aadAYuz|W(=WaG&?_qZ3s%kjw z;Kx1IKD(LjO^?RaUb_+t5|=DDMhJ75#C>JpHcARRj!`)}gbgrNDQG_$tAhT^3lN8y zIOBJB=UEDd2q)&#oa16rpf|s=Cyh2Ncp6tznLT;;|8ya~a&V0MteW+8FF1ku*DuRB zZZ)slq-4%3d|pfuU1RH-J&(=ob9(Y+AKp8QZ4om^MWtD_S($gn;14B|XTxkVp5aQ# zV`f047e{0#)Na1h^sIpaUJaAltLcaKu?Gk?_2FA|B44P@i$fh|d1Q;EM=WL_;1}u< zI>XG_)?Z`8;$|6gK}F3}_g{M!!%Q*r@IaX#DTTY@mI|Opgf9BPJe1@1wo5k3vDZZV z!+w7znLdiN%t~*z6qfFeI?Y4CzF+ZY(oN3uFzm+e2fTfkaJ%w(5D8E(7aRXvT3xOjTcCGFc zNYm7&1sxy^BUm=J6$nIX(b_CEmS#7qZV2cG zuc`k#T=bsH{_xjQU0cXz!3dYAt~y}5p{@$c*sxPnM_I_jOh=J9YWO*U%}~(89E)B7 zK}EltWL8W8VS~H~{cpJ~L~UU|&r?mo{I1OCD~=H`{3Wyb+Y~MS;){O^bNys(3UiUN zG$d%+bf4@y`gC>Td`?bp$bEI%I#`jXq!vw3r@01|P@c^Ihlr*SaHp}ZfB?R!;9uq+ z{rpfkh&?Ov|5WoH7o~n4zMoPq9us{DW<|74=IkIBoHb&v1KwQW5T{<~j|A4Dd^z&C z>t5f258h+4y@`473)OoAF`?M453Tl~%kv%LT+V8lN@4EC&r5+hB+7-H76 zri(UE@1H>@uXXh{q8-Tm`ra~i{IBQ&WK7HzmgjBc!z|r9P2A)j%GV(9Fl%o(_+QCo z3A!+P<{2bG*eI8VIkA#oV9m2A&nAgrS3Fw(xh+pB&OJu1&H+6Njs8!}j2Y(yJ3|@& ze@d(I6Ue2n{ndZtV}#>Z`#q5BMB6pL?0Jk!>WX5~XLIvna*koN8_@;4{!exld~^0H z3&C9zT3}o#bd-iQK0(C;dSKZ~g_O9XUG%B~I%Z$&U@8U(v$xR}c`dC!UTY0a{-SqL zPG&>l209wqulbzJZqtrclyK;&dD~y;DE9c7slQ5z6}}2bZaWP=#(amoyRZqm1-|#eKOi55=&JTmG*p6g(Q|r zhYGqjslrol{hg_N`p&k44~BdJJKAYe}7X(;_T$o%R4_gCAbp}pTsl&H<~ zn!sfw=%JRY(cPDoFOLEG8>{NAFVL@jzZ-Sr>04#aW#|mKGl#4dzyueaKDiSq?aIj@ zQB5u(u5%3VV@{W0h^EA_b(WyMrv>!g^E7qUQC=}km1A{l5J-g;TvS4PV&pJ-*8QyF z+kc623e%1epliK}ktd;6k7khX1=@%ejrrX4TmD#=-=|z2HV)*qf3rXTgN<7`cx)T9 zLOE5FF!K4)Vz>bS0On3}!RnVw!PY-cq8DU*&+ZjK~-Z|KYs}6XR3F*+*@@Np~9sXLC_MvOdPXO^HlO=9SM_ zg!pO}L13tiNl*U|+uhZlISN0DQs!-mu`+u>%*WqfTrZpi#eVfS@*Ccu9bU0uTkXrN(t8730n#DinCtww8A?`@eZ%jvMp*!|7#rnv#~ zu@&($hZ^>i#GX>kXTB$EMWqAlmE=8z-SN_`U=PNUf{Z9h@!hJLM;sU?sFZ-}J8S!+ z-u3pHfFHR-!GW4N5kAU*dQ-{0iN8<;j?cW+RM{u$Jo7n%I3qay025 zd`xu3Q)Z{U|6Qg6aY^Um5b=A36$~E-YPnV4HM5dkk#7~phXIsqkLBM-?kW$q;7Wok zd5LE-YcL-X#WwF{4G0W{ya0s+a6T2md6(0T$Xg%JsitY8o_7bAkhS|x`l^rnE*XLc z&!>ZBKP=W^rd|VBAAsvW@t&1Z)~G%n zra%<`FMCUG;tkxPa<FK)BYIQz2klW+gWs)q*q}KLUKz_TVP%d>@fw=$3&EX4%*8g zY``XqS$>sx%LRd~YFlQK!hrZ?f$z8f`Quj@U^H^P{h@7>$)(iS!fV!Il{Jo%@Lm)V zvM5ZT&Xi%AK5M2C?n7{KAA0f2^&}deqOzHidLH82swD-J4ZeApWve0VIaR& z!QyzeW-hy}M3O?h%}w@l)aI(T!(hm!o&i_xL3CQ%EL#0L6fW8fl;v;QKSskcc=u9E z7a7*{*hM3C;a-G;%dfUFWOD ztHBq0?x-WfjJfNqw34SciNt$JfbU_qYU{so-AwH=zEv&uIEAd}-kPv5F=veWAw&}IyGu-AZm%ft}puCZ1UWY(*FU&9)aPkgqc!Y+YZW|5nT_~stFvZOi-Jv07B}63Lx*5g6W&8G2#*GSku|X#S4Dsf zi;Y;_GQoWKJ_V}udPn}DIA=UY-h6MgT`a=*D5GPk<#Hz!%kcBWTB@;*4|~$KqJ`B;kp`B~)9VzqN9PQuadP8&W?uD}86TcCVZ)eFf9xsg@nL`B4q1Qu>il z`p9B_-L{u4$5Y3doB(|9pZ9)0>%}Urx|AtOX@k;+$RNnjEq5m6G&YPe5e)*?&L}PH zoTCuTN`I$~i{7NbUDThYB+XZmrMgADRu>vB1{oPOnxWx$&1~p38-%ZWdf2Kz=+v}n zkd!&m*Xr$lKO^{`D-zt=M-XLfFO^vL?xZZ6yJ8uS&AJx*AAZduYIs)j#X*=VTS; zZ>hVaJ#_gYQ%Xd2y(uOAK7a%vNSd0N0yGS4az}}RrZ#1u-S#uMVRJYl3tiR7L>Gav zAv~0^rj-lg(a>nPDS+W`X(i*URCK*54gLOih!5`JI5;Aqf3O~tjUG+``N2Iz7C#&ZaK3p=5*!o- zOrAbOwgDUma1xwDSsc>}IZ-~ARgRp4p0aI~?aMl4dYCl>m7`$jJt!N35?ZrK(%F&q zK>bLB7(?r4gPv*Pr>EwjJnFN>D!wF1(iK2ZYAB|Xss)~QZ=~b z)Dcj=hKv(_zCX*ql~Tu7Pg3D!Jjpx(c zY5$sZY6(~4w8v*TT%;{0d|h-c2Ya1d>wVJcBobzN4%oue_(cWp*;5Of)|l-is++@l zkY&UDU@d7mJha+|pNaDa>B->%;VKh!Ah`A!JwRNq5+*LVTGD?&NXpzE2$Fp=5D>{# z!o)dAK;{q#UzrvJ!MD#N0^<8q!o)dWd(sgIO_fjt!E=y;1Vr@bgv)cL$b=;j`YIU- zg8m?V35fnL376;e-N{ZoY;kRrs{y_v5u^MsX8s z8&al`Z1~S7a3&Qnd;aQ@QV=mPJ~;sPd( zi?^QB1x~t+Hy{TLfcYS~3!M5WBMgN5N*v*9BMwL*1Luwl`zWCdg1ZVlC<6_E{UEgr zoc$;t4TSwq30G+&4@qDHCyxvLD4h+0yb3)i{|$isAh8Xc{U{p_g#FLrr?xz zK5*W8CLjpyUlXR$#vG722uvIoa6OL@oVW_NJMR#Hvz|=|&U>1L2*Uk86Qwm6%z!c% zp*+DofoUEioG1MV$CvvE;Dnyh2=2r*6B5LUza>hmeH_s2NhnWnk7Jrk3FnD=9G?73 zZU=BPP{Xd-_1bREnokbtfWK$+WtYP` zpn5lBPC5wrQJy&jc|(Re5c#X5)oY_~&1;8r02zHlmOHEiD*DFUco6b>!aD@_X{J07 z^;M$O+R)q5>*2^F13yi+ha|7UZpzRHAwEsHhahjx*9UUor(~eokFf2D{_xHqpM*K> zAHkV!kZsNv2ytYR0TAJbF?%4$jh~ZVvwI}=tb=GrkPpO|gAngX`#3DQ3n5-ivJoP@ zFlI6YdGSlqYxXt7o&gc<3G#Uu^C99r>8gi0k0Qj2Uy8jYGHP*CRjh_l##OTMGEYmI>L9xsFyMebLTXV!WB-M5UMe^k^l9a?FF3UaI;D zOAO694qAHYPETB7D9>@$(o1=I=n_MDuEUmI+NM*N7~*psxAYP>oxAiCkAIBNLezYo z5J@n~*+B@w?hql8V3c!%5Q5zSLL|W`2L&MnyAy**f{~60LMZlU1(6&hodbk$><gUo(WFwtF zgOepiHtumV09pOq8HsG9<7IHNq{zlSO$H#VA1fn~jdXwvPL>qexW~l+Wc71nB(jlC zhr!8`A{+BW7=WsFG>pPD&Ji#$Q&LRlIQRu%JUIbIWgYL37m770)^nWd0V}l;$eN>{=YmuHrQPJLp@AtxJKlW$K-1tkDwvh#vSi#j7Ptnxyc(Etq}yE z38+&azn0RRkJ-8@H^Ve}?KPPZ?*BWMizaW1?EijuuCr<_;xrWRuS$hK*zd)A{(G#@ w@gAux`R_!^4YZ$9{!z=-Rf>2}t8. Case Studies", "8.1. BikeSharing Data", "8.2. CaliforniaHousing Data", "8.4. Fairness Simulation Study 1", "8.5. Fairness Simulation Study 2", "8.3. TaiwanCredit Data", "7. Model Comparison", "7.2. Comparison for Classification", "7.3. Fairness Comparison", "7.1. Comparison for Regression", "2. Data Pipeline", "2.4. Exploratory Analysis", "2.1. Data Load", "2.3. Data Preparation", "2.5. Data Quality", "2.2. Data Summary", "2.6. Feature Selection", "2.7. Two Sample Test", "4.1.4. ALE (Accumulated Local Effects)", "4.1.3. ICE (Individual Conditional Expectation)", "4.2.1. LIME (Local Interpretable Model-Agnostic Explanation)", "4.1.2. PDP (Partial Dependence Plot)", "4.1.1. PFI (Permutation Feature Importance)", "4.2.2. SHAP (SHapley Additive exPlanations)", "4. Post-hoc Explainability", "3. Black-box Models", "1. Introduction", "5. Interpretable Models", "5.7. Explainable Boosting Machines", "5.4. Fast Interpretable Greedy-tree Sums", "5.2. Generalized Additive Model", "5.8. GAMI-Net", "5.1. Generalized Linear Models", "5.9. ReLU Neural Network", "5.3. Decision Tree", "5.5. XGBoost Depth 1", "5.6. XGBoost Depth 2", "6. Diagnostic Suite", "6.1. Accuracy", "6.7. Fairness", "6.3. Overfit", "6.4. Reliability", "6.6. Resilience", "6.5. Robustness", "6.2. WeakSpot", "Installation", "API Reference", "piml.Experiment", "piml.data.outlier_detection.CBLOF", "piml.data.outlier_detection.IsolationForest", "piml.data.outlier_detection.KMeansTree", "piml.data.outlier_detection.PCA", "piml.models.ExplainableBoostingClassifier", "piml.models.ExplainableBoostingRegressor", "piml.models.FIGSClassifier", "piml.models.FIGSRegressor", "piml.models.GAMClassifier", "piml.models.GAMINetClassifier", "piml.models.GAMINetRegressor", "piml.models.GAMRegressor", "piml.models.GLMClassifier", "piml.models.GLMRegressor", "piml.models.ReluDNNClassifier", "piml.models.ReluDNNRegressor", "piml.models.TreeClassifier", "piml.models.TreeRegressor", "piml.models.XGB1Classifier", "piml.models.XGB1Regressor", "piml.models.XGB2Classifier", "piml.models.XGB2Regressor", "Welcome to scikit-learn", "<no title>", "User guide: contents"], "terms": {"load": [0, 9, 18, 44, 61, 68, 71, 87, 89, 93, 97, 99, 101, 102, 104, 105, 108, 118, 119, 133], "summari": [0, 9, 16, 18, 36, 37, 71, 90, 99, 104, 105, 108, 133], "eda": [0, 9, 18, 62, 63, 64, 65, 66, 72, 87, 108], "prepar": [0, 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 61, 71, 83, 86, 91, 94, 95, 108, 133], "qualiti": [0, 9, 18, 71, 87, 100, 102, 108, 125, 126, 133], "check": [0, 9, 18, 62, 63, 65, 75, 103, 108, 125, 126], "featur": [0, 6, 8, 9, 10, 16, 17, 18, 20, 21, 22, 23, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 55, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 87, 95, 99, 100, 101, 102, 103, 105, 108, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 133], "select": [0, 6, 9, 18, 64, 65, 68, 70, 71, 75, 79, 92, 94, 95, 96, 101, 103, 104, 108, 112, 118, 119, 125, 126, 133], "two": [0, 9, 18, 36, 37, 42, 43, 44, 45, 65, 69, 71, 72, 73, 74, 75, 77, 80, 81, 84, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 102, 104, 108, 111, 133], "sampl": [0, 5, 9, 18, 48, 49, 50, 51, 55, 56, 62, 63, 65, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 105, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130, 133], "test": [0, 5, 7, 9, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 48, 49, 53, 59, 60, 61, 68, 69, 70, 71, 73, 83, 87, 93, 99, 100, 101, 102, 103, 105, 108, 113, 114, 115, 116, 118, 119, 123, 124, 125, 126, 127, 128, 129, 130, 133], "go": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57], "end": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 77, 78, 79, 80, 82, 84, 87, 89, 90, 91, 92, 93, 94, 96, 97, 99, 100, 102, 125, 126], "download": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57], "full": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 69, 72, 73, 74, 75, 76, 77, 78, 79, 81, 87, 89, 91, 92, 93, 94, 96, 97, 100, 102, 103, 104, 107, 108, 112], "exampl": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 61, 62, 63, 64, 65, 66, 67, 71, 85, 87, 88, 98, 108, 125], "code": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 108], "run": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 62, 63, 64, 65, 66, 77, 87, 100, 103, 104, 106, 108, 112, 113, 114, 125, 126], "thi": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "your": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 65, 73, 96, 106], "browser": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57], "via": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 73, 77, 79, 89, 94, 108, 111, 112], "binder": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57], "loader": [73, 118, 119], "experi": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 59, 60, 62, 63, 64, 65, 66, 73, 74, 77, 86, 87, 100, 106], "initi": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 75, 77, 86, 87, 96, 100, 108, 118, 119, 123, 124], "from": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 60, 62, 63, 64, 65, 66, 68, 69, 70, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 108, 111, 112, 113, 114, 116, 118, 119, 124, 126, 127, 128, 130], "piml": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 107], "import": [1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 62, 63, 64, 65, 66, 71, 75, 85, 86, 87, 95, 108, 115, 116, 117, 118, 119, 120, 125, 126, 127, 128, 129, 130], "panda": [0, 9, 18, 106, 108], "pd": [2, 73, 82, 108], "exp": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 62, 63, 64, 65, 66, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106], "data_load": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 62, 63, 64, 65, 66, 73, 86, 87, 108], "cocircl": [1, 18, 19, 38, 73, 108], "bikeshar": [2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 21, 31, 33, 35, 41, 43, 45, 47, 49, 51, 56, 61, 73, 77, 79, 80, 81, 82, 83, 84, 93, 108, 133], "dataset": [0, 2, 3, 4, 5, 6, 7, 9, 18, 62, 63, 64, 65, 66, 68, 69, 70, 71, 74, 75, 77, 78, 79, 80, 81, 82, 83, 86, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 108, 118, 119, 123, 124], "internet": [], "data_panda": [], "read_csv": [2, 73], "http": [2, 73, 77, 87, 100, 108, 112, 115, 116], "github": [2, 73, 87, 108, 115, 116], "com": [2, 73, 87, 108, 115, 116], "selfexplainml": [2, 73, 87], "toolbox": [2, 73, 133], "blob": [2, 73], "main": [2, 62, 63, 66, 73, 77, 79, 94, 113, 114, 117, 118, 119, 120, 127, 128], "csv": [2, 73], "raw": [2, 49, 68, 70, 73, 96, 97, 102, 104, 107, 108, 109, 112, 115, 117, 118, 119, 120, 123, 124, 127, 128, 129, 130], "true": [2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 69, 73, 79, 80, 81, 82, 84, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 105, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "x0": [1, 22, 28, 37, 73, 96, 108], "x1": [1, 22, 28, 64, 73, 96, 108], "target": [1, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 65, 73, 74, 78, 79, 82, 83, 86, 93, 96, 104, 108, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130], "0": [1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 63, 65, 66, 68, 69, 70, 73, 74, 75, 76, 77, 79, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "783526": [1, 73], "502161": [1, 73], "1": [1, 2, 3, 4, 5, 7, 11, 15, 17, 18, 19, 20, 21, 23, 26, 27, 36, 37, 38, 42, 43, 44, 45, 46, 47, 49, 52, 55, 56, 57, 61, 62, 63, 65, 66, 69, 74, 76, 77, 78, 87, 88, 100, 106, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130, 133], "297809": [1, 73], "658405": [1, 73], "2": [1, 2, 3, 5, 7, 13, 18, 19, 20, 21, 22, 24, 25, 36, 37, 38, 40, 41, 42, 43, 44, 45, 48, 49, 50, 52, 56, 57, 61, 62, 66, 68, 70, 74, 75, 76, 77, 79, 82, 84, 86, 87, 88, 100, 106, 108, 110, 111, 113, 114, 115, 116, 118, 119, 123, 124, 125, 126, 127, 128, 129, 130, 133], "468272": [1, 73], "500653": [1, 73], "3": [1, 2, 3, 5, 20, 21, 24, 25, 26, 27, 30, 36, 37, 42, 43, 44, 45, 48, 49, 50, 51, 52, 55, 56, 57, 62, 63, 64, 65, 66, 68, 70, 76, 79, 80, 84, 90, 91, 92, 94, 95, 96, 99, 101, 102, 103, 104, 105, 106, 108, 111, 113, 114, 117, 118, 119, 120, 125, 127, 128, 129, 130], "134700": 1, "887973": 1, "4": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 62, 63, 64, 65, 66, 68, 69, 70, 76, 77, 78, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 111, 113, 114, 118, 119, 125], "337202": 1, "780797": 1, "1995": 1, "498109": 1, "889060": 1, "1996": 1, "312980": 1, "724953": 1, "1997": [1, 73], "542930": [1, 73], "583517": [1, 73], "1998": [1, 73], "871481": [1, 73], "491301": [1, 73], "1999": [1, 73], "323963": [1, 73], "719150": [1, 73], "2000": [1, 77, 82, 108], "row": [1, 2, 36, 94, 108], "x": [1, 2, 20, 21, 36, 68, 70, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 86, 89, 90, 91, 92, 93, 94, 96, 97, 99, 100, 102, 103, 104, 105, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130], "column": [1, 2, 5, 36, 65, 74, 90, 99, 105, 108, 125], "season": [2, 3, 4, 12, 21, 31, 33, 41, 72, 73, 76, 77, 82, 84, 89, 92, 93, 97, 99], "yr": [2, 3, 4, 11, 12, 13, 14, 15, 16, 21, 31, 33, 35, 41, 43, 45, 47, 49, 51, 56, 62, 72, 73, 76, 77], "mnth": [2, 3, 11, 12, 13, 14, 15, 16, 21, 31, 33, 35, 41, 43, 45, 47, 49, 51, 56, 62, 73, 76, 77], "hr": [2, 3, 4, 7, 12, 13, 14, 16, 21, 31, 33, 35, 41, 43, 45, 47, 49, 51, 56, 70, 72, 73, 76, 77, 79, 80, 81, 82, 83, 84, 89, 92, 93, 97, 99, 101, 102, 104], "holidai": [2, 3, 73, 76, 83], "weekdai": [2, 3, 13, 21, 35, 73, 76, 77, 92], "workingdai": [2, 3, 12, 43, 73, 76, 77, 82, 83, 89, 92, 97], "weathersit": [2, 3, 14, 73, 76, 77, 79], "6": [2, 3, 5, 20, 21, 22, 23, 24, 25, 37, 42, 43, 45, 48, 49, 52, 57, 62, 63, 64, 65, 66, 69, 73, 76, 77, 79, 80, 81, 87, 91, 95, 100, 101, 104, 106, 108, 111, 117, 118, 119, 120, 127, 128], "17374": 2, "12": [1, 2, 3, 20, 21, 26, 27, 37, 52, 63, 65, 73, 76, 87, 90, 103, 106], "19": [2, 37, 52], "17375": 2, "20": [2, 22, 23, 28, 29, 37, 42, 44, 52, 63, 65, 77, 84, 90, 91, 94, 95, 96, 101, 102, 103, 105, 106, 108, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130], "17376": 2, "21": [2, 37, 52, 73, 106], "17377": [2, 73], "22": [2, 37, 52, 73, 87], "17378": [2, 73], "23": [2, 3, 37, 52, 57, 73, 76, 87, 114, 116, 119, 124, 126, 128, 130], "temp": [2, 3, 4, 7, 11, 12, 13, 14, 15, 16, 21, 31, 33, 35, 41, 43, 45, 47, 49, 51, 56, 62, 72, 73, 76, 77, 93], "atemp": [2, 3, 8, 13, 14, 21, 31, 43, 45, 49, 70, 73, 78, 79, 81, 83, 84, 89, 92, 97, 101, 104], "hum": [2, 3, 21, 73, 76, 77, 81, 84, 89, 93, 97], "windspe": [2, 3, 21, 73, 76, 92], "cnt": [2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 21, 31, 33, 35, 41, 43, 45, 47, 49, 51, 56, 62, 70, 72, 73, 74, 76, 79, 80, 81, 82, 83, 84, 89, 92, 93, 96, 97, 99, 101, 102, 104, 105], "24": [2, 4, 7, 37, 44, 52, 53, 57, 58, 73, 75, 80, 106], "2879": [2, 44, 73], "81": [2, 73], "0000": [2, 3, 21, 36, 42, 44, 73, 76], "16": [2, 20, 21, 24, 25, 26, 27, 37, 52, 55, 73, 89, 90, 92, 95, 97], "2727": [2, 73], "80": [2, 44, 73, 112], "40": [2, 3, 36, 37, 52, 57, 73, 76, 94, 102, 104, 123, 124], "32": [2, 37, 52, 58, 73, 83, 87, 100, 113, 114], "75": [2, 44, 105], "13": [2, 3, 20, 21, 32, 37, 38, 52, 65], "26": [2, 37, 73], "2576": [2, 73], "60": [2, 42, 43, 65, 73], "1642": [2, 73], "119": 2, "89": 2, "90": [2, 52, 57, 65, 70, 73, 102], "56": [2, 73], "1343": [2, 73], "61": [2, 52, 57, 73], "65": [2, 37, 73, 80], "49": [2, 73], "17379": [2, 3, 5, 73, 74], "total": [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 74, 93, 94, 96, 99, 103, 112, 114, 116, 119, 124, 125, 126, 127, 128, 129, 130], "time": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 65, 77, 83, 84, 87, 90, 94, 102, 118, 119], "script": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57], "minut": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57], "11": [3, 20, 21, 37, 46, 50, 52, 62, 63, 65, 76, 81, 90, 106], "791": [], "second": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 68, 70, 72, 74, 76, 84, 89, 90, 92, 93, 94, 95, 97, 99, 101, 102, 103, 104, 105, 118, 119], "estim": [1, 2, 4, 5, 6, 12, 52, 57, 79, 82, 84, 89, 90, 91, 92, 93, 96, 97, 99, 102, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "memori": [1, 2, 4, 5, 6, 12, 52, 57, 110, 118, 119, 123, 124], "usag": [1, 2, 4, 5, 6, 12, 52, 57, 71, 77, 85, 90, 96, 97, 98, 99, 100], "mb": [1, 2, 4, 5, 6, 9, 12, 17, 38, 52, 53, 57, 58], "python": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 79, 84, 87, 90, 91, 94, 96, 97, 106], "sourc": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57], "plot_0_data_load": [], "py": [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 106], "jupyt": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 87], "notebook": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 62, 63, 66, 87], "ipynb": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 62, 63, 64, 65, 66], "galleri": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57], "gener": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 68, 73, 74, 77, 79, 80, 83, 84, 87, 88, 89, 90, 92, 94, 95, 96, 97, 99, 100, 101, 103, 105, 108, 110, 114, 116, 117, 118, 119, 120, 121, 122, 123, 124, 126, 128, 130, 133], "sphinx": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57], "show": [3, 4, 6, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 64, 65, 68, 69, 70, 72, 75, 77, 79, 80, 81, 82, 83, 84, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 108, 117, 118, 119, 120, 127, 128], "result": [3, 5, 6, 42, 43, 44, 45, 46, 47, 67, 68, 69, 70, 74, 75, 77, 79, 81, 82, 83, 84, 89, 90, 91, 92, 93, 94, 96, 97, 100, 101, 102, 104, 105, 108, 112, 113, 114, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130], "us": [3, 4, 5, 6, 7, 42, 43, 45, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 84, 86, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130], "silent": [3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 108], "data_summari": [3, 11, 12, 13, 14, 15, 16, 20, 21, 24, 26, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 62, 63, 64, 65, 66, 76, 87, 108], "feature_typ": [3, 76, 108, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "feature_exclud": [3, 11, 12, 13, 14, 15, 16, 20, 21, 24, 26, 30, 31, 32, 33, 34, 35, 36, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 76, 108], "name": [3, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 64, 65, 68, 70, 76, 77, 79, 80, 82, 84, 86, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 108, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "n_miss": [3, 76], "mean": [3, 36, 37, 68, 69, 74, 75, 76, 77, 79, 81, 83, 84, 90, 91, 93, 94, 96, 97, 99, 100, 101, 102, 103, 104, 108, 109, 110, 112, 113, 114, 115, 116, 118, 119, 123, 124, 125, 126, 127, 128, 129, 130], "std": [3, 36, 37, 76, 108], "min": [3, 74, 76, 108, 112, 118, 119, 127, 128], "q1": [3, 76], "median": [3, 63, 76, 90, 91, 95, 103, 126], "537775": [3, 76], "438776": [3, 76], "00": [3, 9, 17, 38, 53, 58, 76, 105], "7": [2, 3, 5, 20, 21, 37, 42, 43, 44, 45, 52, 56, 57, 62, 63, 64, 65, 66, 76, 77, 86, 89, 90, 97, 101, 102, 103, 104, 106, 113, 114], "546752": [3, 76], "914405": [3, 76], "003683": [3, 76], "005771": [3, 76], "496987": [3, 76], "192556": [3, 76], "02": [3, 38, 76], "3400": [3, 76], "5000": [3, 42, 45, 76, 77, 113, 114, 118, 119], "475775": 3, "171850": 3, "3333": [3, 42, 44], "4848": [3, 43], "5": [3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 55, 56, 57, 62, 63, 64, 65, 66, 68, 69, 70, 73, 76, 77, 78, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 108, 112, 118, 119, 123, 124, 125, 126], "627229": [3, 76], "192930": [3, 76], "4800": [3, 76], "6300": [3, 76], "190098": [3, 76], "122340": [3, 76], "1045": [3, 76], "1940": [3, 76], "189": [3, 76], "463088": [3, 76], "181": [3, 76], "387599": [3, 76], "142": [3, 76], "q3": [3, 76], "max": [3, 74, 75, 76, 89, 90, 94, 102, 108, 111, 113, 114, 115, 116, 117, 118, 119, 120, 125, 126, 127, 128, 129, 130], "10": [3, 11, 20, 21, 24, 25, 26, 27, 32, 33, 37, 38, 40, 42, 46, 47, 50, 51, 52, 55, 56, 62, 63, 65, 66, 68, 70, 75, 76, 77, 78, 80, 81, 83, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 101, 102, 103, 105, 108, 109, 111, 113, 114, 117, 118, 119, 120, 125, 126, 127, 128], "18": [3, 37, 52, 56, 76, 80, 87, 125, 126], "6600": [3, 76], "6212": [3, 43], "7800": [3, 76], "2537": [3, 76], "8507": [3, 76], "281": [3, 76], "977": [3, 76], "n_uniqu": [3, 76], "top1": [3, 76], "top2": [3, 76], "top3": [3, 76], "4496": [3, 76], "4409": [3, 76], "4242": [3, 76], "8734": [3, 76], "8645": [3, 76], "16879": [3, 76], "500": [3, 29, 76, 84, 108, 123, 124], "11865": [3, 76], "5514": [3, 76], "11413": [3, 76], "4544": [3, 76], "1419": [3, 76], "n_other": [3, 76], "4232": [3, 76], "html": [3, 77, 100, 112], "valu": [3, 5, 28, 29, 52, 65, 68, 69, 70, 72, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 89, 90, 91, 92, 93, 94, 95, 97, 99, 100, 101, 102, 103, 104, 105, 108, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "shape": [3, 89, 91, 92, 96, 97, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130], "tab": [3, 64, 65], "children": 3, "output": [3, 77, 79, 81, 82, 84, 91, 94, 97, 100, 112, 118, 119, 125, 126], "layout": 3, "height": 3, "350px": 3, "selected_index": 3, "titl": [3, 89, 90, 92, 96, 97], "numer": [3, 20, 21, 65, 68, 70, 72, 76, 77, 79, 82, 93, 99, 108, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "attribut": [3, 65, 66, 69, 81, 84, 109, 110, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "categor": [3, 21, 65, 72, 74, 76, 77, 79, 82, 93, 99, 100, 108, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "169": 3, "plot_1_data_summari": [3, 9], "plot": [4, 6, 8, 10, 11, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 46, 47, 50, 51, 68, 69, 70, 71, 75, 79, 80, 81, 83, 85, 87, 90, 93, 95, 100, 102, 103, 104, 108, 117, 118, 119, 120, 125, 126, 127, 128], "data": [4, 7, 8, 9, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 59, 60, 61, 68, 70, 77, 78, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 103, 104, 105, 108, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130, 133], "data_prepar": [4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 62, 63, 64, 65, 66, 74, 77, 86, 87, 108], "histogram": [4, 42, 43, 44, 45, 46, 47, 50, 51, 55, 56, 68, 70, 72, 89, 91, 92, 96, 97, 101, 105, 108, 127, 128, 129, 130], "densiti": [4, 50, 51, 72, 79, 105, 108, 118, 119], "univari": [4, 71, 96, 108], "uni_featur": [4, 12, 13, 14, 16, 21, 22, 23, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 72, 79, 80, 82, 84, 89, 91, 92, 93, 94, 96, 97, 108], "figsiz": [4, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 68, 69, 70, 77, 78, 79, 80, 81, 82, 83, 84, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 108, 111, 117, 118, 119, 120, 125, 126, 127, 128], "bar": [4, 68, 69, 70, 72, 77, 79, 82, 84, 91, 93, 96, 99], "scatter": [4, 16, 72, 84, 99, 108], "bivari": [4, 71, 108], "bi_featur": [4, 12, 14, 31, 33, 35, 36, 37, 72, 79, 82, 89, 92, 94, 97, 108], "box": [4, 59, 70, 72, 87, 89, 94, 95, 97, 104, 133], "stack": [4, 72, 115, 116], "correl": [4, 6, 7, 62, 63, 71, 72, 79, 82, 84, 96, 99, 108], "heatmap": [4, 26, 27, 72, 108], "multivari": [4, 71, 82, 108], "multi_typ": [4, 72, 108], "correlation_heatmap": [4, 72, 108], "graph": [4, 72], "correlation_graph": [4, 72, 108], "895": 4, "36": [4, 6, 12, 17, 37, 77], "plot_2_data_eda": [4, 9], "displai": [5, 68, 70, 72, 75, 78, 84, 89, 90, 91, 92, 93, 96, 97, 99, 102, 103, 104, 105, 108, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128], "task_typ": [5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 74, 86, 108], "regress": [5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 18, 19, 38, 39, 53, 54, 58, 62, 63, 67, 73, 74, 79, 80, 81, 82, 83, 84, 86, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 103, 104, 105, 108, 115, 116, 122, 125, 126, 133], "sample_weight": [5, 74, 108, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130], "none": [5, 49, 51, 55, 56, 68, 70, 74, 90, 103, 104, 105, 108, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "split_method": [5, 74, 108], "random": [5, 7, 71, 74, 75, 81, 83, 99, 101, 103, 104, 108, 109, 111, 112, 113, 114, 115, 116, 118, 119, 122, 123, 124, 125, 126, 127, 128, 129, 130], "test_ratio": [5, 74, 108], "random_st": [5, 74, 86, 108, 109, 110, 111, 112, 113, 114, 115, 116, 118, 119, 122, 123, 124, 125, 126, 127, 128, 129, 130], "numpi": [5, 106, 109, 112, 113, 114, 115, 116, 118, 119, 123, 124, 127, 128, 129, 130], "np": [5, 74, 109, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130], "custom_train_idx": [5, 74], "arang": [5, 74], "16000": [5, 74], "custom_test_idx": [5, 74], "train_idx": [5, 74, 108], "test_idx": [5, 74, 108], "config": [5, 74, 108], "exclud": [5, 62, 64, 65, 66, 74, 79, 108, 118, 119], "variabl": [5, 64, 65, 66, 68, 69, 70, 72, 73, 74, 77, 78, 80, 83, 84, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 105, 108], "weight": [5, 28, 29, 64, 74, 81, 84, 93, 94, 99, 108, 109, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130], "task": [5, 47, 68, 70, 74, 83, 84, 87, 95, 98, 101, 105, 108], "type": [5, 52, 72, 74, 76, 78, 87, 96, 100, 108, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "split": [5, 26, 27, 60, 74, 75, 79, 87, 90, 95, 96, 97, 102, 105, 108, 110, 113, 114, 115, 116, 125, 126, 127, 128, 129, 130], "method": [5, 6, 7, 48, 49, 62, 65, 67, 68, 70, 71, 74, 77, 78, 79, 82, 83, 84, 87, 91, 95, 96, 97, 100, 101, 102, 103, 104, 105, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "ratio": [5, 65, 74, 100, 101, 102, 103, 105, 108, 118, 119, 123, 124], "state": [5, 73, 74, 84, 87, 94, 100, 108, 113, 114, 122], "train": [5, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 60, 61, 68, 70, 71, 77, 78, 81, 82, 83, 84, 87, 88, 99, 100, 101, 102, 103, 105, 108, 109, 112, 113, 114, 115, 116, 118, 119, 123, 124, 125, 126, 127, 128, 133], "energi": [5, 74], "distanc": [5, 6, 7, 8, 46, 47, 50, 51, 55, 56, 65, 71, 75, 79, 108, 111, 125, 126], "000586": [5, 74], "manual": [5, 65, 74, 87, 91, 96, 118, 119], "542053": 5, "597": [], "1260": [], "plot_3_data_prepar": [5, 9], "analysi": [6, 62, 63, 64, 65, 71, 80, 83, 87, 102, 108, 133], "score": [6, 46, 69, 75, 79, 83, 84, 87, 92, 99, 100, 105, 108, 109, 110, 112, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130], "distribut": [6, 8, 46, 47, 50, 51, 62, 63, 65, 72, 74, 75, 77, 78, 84, 87, 94, 99, 102, 103, 104, 106, 108, 127, 128], "outlier_detect": [6, 75, 108], "pca": [6, 75, 108, 111], "cblof": [6, 108], "data_quality_check": [6, 75, 108], "score_distribut": [6, 75, 108], "threshold": [6, 7, 42, 43, 44, 45, 46, 47, 52, 55, 56, 65, 68, 70, 73, 75, 77, 87, 98, 99, 101, 102, 105, 108, 109, 110, 118, 119, 123, 124], "999": [6, 75], "marginal_outlier_distribut": [6, 75, 108], "strategi": [6, 7, 77, 108, 115, 116, 125, 126], "tsne_comparison": [6, 75, 108], "681": 6, "130": 6, "plot_4_data_qu": [6, 9], "four": [7, 75, 77, 79, 87, 93, 103, 108, 111, 125], "built": [0, 7, 9, 18, 71, 77, 84, 94, 101, 105, 108, 111], "pearson": [7, 77, 108], "feature_select": [7, 62, 63, 77, 87, 108], "cor": [7, 77, 108], "corr_algorithm": [7, 77, 108], "spearman": [7, 77, 108], "dcor": [7, 77, 106, 108], "permut": [7, 10, 17, 18, 63, 66, 77, 85, 87, 108, 125, 126], "pfi": [7, 11, 62, 77, 85, 87, 108], "95": [7, 77], "condit": [7, 10, 17, 18, 71, 72, 75, 84, 85, 97, 103, 105, 108], "independ": [7, 71, 75, 82, 84, 94, 96, 108], "rcit": [7, 108], "001": [7, 36, 37, 77, 94, 118, 119, 123, 124], "n_forward_phas": [7, 77, 108], "kernel_s": [7, 77, 108], "100": [7, 12, 16, 26, 27, 28, 42, 43, 45, 49, 50, 51, 52, 77, 84, 86, 90, 96, 100, 101, 105, 108, 110, 117, 118, 119, 120, 127, 128, 129, 130], "where": [7, 73, 74, 75, 77, 79, 82, 84, 87, 89, 90, 93, 94, 95, 96, 97, 99, 100, 101, 103, 105, 114, 116, 119, 124, 125, 126, 128, 130], "markov": [7, 77], "boundari": [7, 73, 77, 99, 108], "i": [7, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130], "non": [7, 65, 75, 77, 82, 91, 97, 99, 113, 114, 117, 120, 121, 122, 125, 126], "empti": [7, 77, 108, 118, 119], "preset": [7, 77, 108], "390": 7, "plot_5_feature_select": [7, 9], "shift": [8, 46, 47, 65, 78, 102, 104, 108], "psi": [8, 46, 47, 50, 51, 65, 78, 102, 103, 108, 111], "twosample_test": [8, 78, 108], "metric": [8, 42, 43, 44, 45, 48, 49, 52, 55, 56, 57, 64, 65, 67, 68, 70, 71, 83, 87, 98, 99, 101, 102, 103, 104, 105, 108, 113, 115, 118, 123, 125, 127, 129], "psi_bucket": [8, 78, 102, 103, 108], "uniform": [8, 52, 78, 100, 104, 108, 113, 114, 127, 128], "wd1": [8, 50, 51, 78, 102, 103, 108, 111], "k": [8, 68, 70, 75, 77, 78, 79, 83, 87, 89, 90, 92, 97, 102, 103, 108, 109, 111], "singl": [8, 42, 43, 44, 45, 68, 69, 70, 77, 79, 82, 84, 90, 93, 94, 101, 103, 105, 108, 117, 120, 125, 126], "quantil": [8, 48, 49, 52, 65, 68, 70, 73, 78, 79, 100, 102, 103, 104, 108, 113, 114], "740": 8, "plot_6_twosample_test": [8, 9], "04": [9, 38, 43, 84], "execut": [9, 17, 38, 53, 58, 77, 87], "auto_examples_data": 9, "file": [9, 17, 38, 53, 58, 86, 108, 118, 119], "000": [9, 17, 53, 56, 58, 66, 68, 89, 90, 92, 93, 94, 95, 97, 99, 101, 102, 103, 104, 105], "partial": [10, 17, 18, 77, 85, 87, 108, 118, 119], "depend": [10, 17, 18, 77, 80, 85, 87, 96, 108, 131], "individu": [10, 17, 18, 79, 81, 83, 84, 85, 93, 102, 105, 108, 118, 119], "expect": [10, 17, 18, 70, 84, 85, 90, 93, 102, 104, 110, 112, 114, 116, 119, 124, 126, 128, 130], "accumul": [10, 17, 18, 77, 85, 87, 96, 97, 108], "local": [10, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 62, 82, 84, 87, 88, 99, 108, 109, 117, 118, 119, 120, 125, 126, 127, 128, 133], "effect": [10, 17, 18, 22, 23, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 62, 63, 66, 69, 80, 81, 82, 84, 85, 87, 93, 94, 103, 108, 113, 114, 115, 116, 117, 118, 119, 120, 125, 126, 127, 128], "interpret": [10, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 59, 61, 77, 79, 85, 108, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130, 133], "model": [10, 11, 12, 13, 14, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 57, 58, 59, 60, 61, 68, 69, 70, 73, 74, 75, 77, 79, 80, 82, 83, 85, 99, 100, 101, 102, 103, 104, 105, 108, 109, 110, 111, 133], "agnost": [10, 17, 18, 62, 63, 66, 79, 82, 85, 87, 102, 103], "explan": [10, 17, 18, 62, 63, 66, 67, 82, 85, 87, 108], "shaplei": [10, 17, 18, 85], "addit": [10, 17, 18, 68, 69, 70, 79, 81, 85, 87, 88, 89, 90, 92, 95, 96, 97, 99, 101, 103, 105, 108, 113, 114, 115, 116, 117, 118, 119, 120, 133], "xgb2regressor": [11, 12, 13, 15, 16, 31, 41, 43, 45, 47, 51, 97, 108], "model_train": [11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 62, 63, 64, 65, 66, 86, 89, 90, 91, 92, 93, 94, 95, 96, 97, 108], "xgb2": [11, 12, 13, 15, 16, 18, 30, 31, 39, 40, 41, 42, 43, 44, 45, 47, 50, 51, 53, 55, 56, 65, 68, 70, 80, 81, 82, 83, 84, 87, 89, 92, 97, 99, 100, 101, 102, 103, 105, 108], "model_explain": [11, 12, 13, 14, 15, 16, 62, 63, 66, 79, 80, 81, 82, 83, 84, 87, 108], "n_repeat": [11, 83, 108], "574": 11, "plot_0_pfi": [11, 17], "n_estim": [12, 28, 29, 50, 51, 52, 86, 96, 97, 110, 127, 128, 129, 130], "1d": [12, 14, 63, 66, 78, 87, 97, 108], "pdp": [12, 62, 63, 66, 79, 80, 84, 85, 87, 108], "original_scal": [12, 13, 14, 15, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 50, 51, 55, 56, 79, 80, 81, 82, 84, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 101, 102, 103, 105, 108, 125, 126], "2d": [12, 14, 63, 66, 75, 82, 87, 97, 108], "pdp_size": [12, 82, 108], "10000": [12, 82, 101, 118, 119, 123, 124], "179": [12, 17], "31": [12, 17, 37], "plot_1_pdp": [12, 17], "ic": [13, 73, 85, 108], "313": 13, "plot_2_ic": [13, 17], "reludnnregressor": [14, 37, 94, 108], "reludnn": [14, 36, 48, 79, 94, 123, 124], "al": [14, 62, 63, 66, 84, 85, 108, 112], "17": [14, 20, 37, 52, 62, 70, 75, 79, 80, 81, 82, 83, 84, 89, 92, 93, 96, 97, 99, 101, 102, 104, 105, 106, 125, 126], "598": 14, "plot_3_al": [14, 17], "lime": [15, 62, 63, 66, 85, 87, 106, 108], "without": [15, 20, 21, 36, 37, 84, 90, 93], "center": [15, 20, 21, 36, 37, 74, 77, 79, 81, 94, 108, 109, 117, 118, 119, 120, 127, 128], "sample_id": [15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 81, 84, 89, 90, 91, 92, 93, 94, 95, 96, 97, 108], "fals": [15, 20, 21, 36, 37, 40, 41, 75, 81, 93, 94, 99, 100, 105, 108, 109, 110, 112, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128], "783": 15, "plot_4_lim": [15, 17], "shap": [16, 62, 63, 66, 85, 87, 106, 108], "waterfal": 16, "shap_waterfal": [16, 84, 108], "shap_fi": [16, 84, 108], "sample_s": [16, 84, 108, 118, 119], "shap_summari": [16, 84, 108], "shap_scatt": [16, 84, 108], "9": [16, 20, 21, 26, 37, 42, 45, 52, 53, 57, 62, 63, 65, 66, 75, 80, 90, 91, 95, 96, 101, 103, 104, 106], "493": 16, "plot_5_shap": [16, 17], "auto_examples_explain": 17, "glm": [18, 19, 38, 56, 57, 63, 65, 69, 70, 81, 87, 91, 93, 94, 96, 108, 127, 128], "logist": [18, 19, 38, 87, 93], "taiwan": [18, 19, 38, 66], "credit": [18, 19, 38, 52, 65, 66, 69, 73, 100, 108], "linear": [18, 19, 36, 37, 38, 75, 77, 81, 82, 84, 87, 88, 90, 91, 92, 108, 111, 121, 122, 133], "bike": [18, 19, 38, 62, 70, 73, 89, 92, 96, 97, 99, 101, 102, 104, 105, 108], "share": [18, 19, 38, 73, 89, 92, 97, 99, 108], "gam": [18, 19, 38, 46, 64, 70, 87, 89, 91, 96, 97, 102, 108, 117, 118, 119, 120], "classif": [18, 19, 20, 38, 39, 52, 53, 54, 57, 58, 64, 65, 66, 67, 73, 74, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 103, 104, 105, 108, 113, 115, 118, 123, 125, 126, 127, 129, 133], "california": [18, 19, 38, 73, 89, 90, 95, 96, 103, 108], "hous": [18, 19, 38, 63, 73, 89, 90, 95, 96, 103, 108], "tree": [18, 19, 26, 27, 38, 42, 43, 44, 45, 55, 56, 68, 70, 75, 81, 82, 84, 87, 88, 89, 91, 96, 97, 101, 105, 108, 110, 111, 113, 114, 115, 116, 125, 126, 127, 128, 129, 130, 133], "taiwancredit": [18, 19, 20, 26, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 55, 61, 68, 73, 89, 90, 92, 93, 94, 95, 97, 99, 101, 102, 103, 104, 105, 108, 133], "fig": [18, 19, 38, 49, 55, 68, 87, 90, 104, 108, 115, 116, 117, 118, 119, 120, 127, 128], "xgb": [18, 19, 38, 42, 43, 65, 75, 77, 92, 96, 97, 103, 105, 108, 127, 128, 129, 130], "ebm": [18, 19, 38, 57, 66, 69, 87, 89, 92, 108], "gami": [18, 19, 38, 87, 88, 89, 97, 108, 118, 119, 133], "net": [18, 19, 38, 87, 88, 89, 93, 108, 118, 119, 125, 126, 133], "relu": [18, 19, 38, 63, 66, 87, 88, 92, 108, 118, 119, 123, 124, 133], "dnn": [18, 19, 38, 63, 66, 87, 94, 108], "friedman": [18, 19, 38, 64, 73, 108, 126], "accuraci": [18, 39, 53, 55, 56, 67, 77, 84, 87, 98, 100, 102, 105, 108, 112, 113, 115, 118, 123, 125, 127, 129, 133], "weakspot": [18, 39, 53, 87, 98, 101, 102, 108, 133], "overfit": [18, 39, 53, 55, 56, 67, 77, 87, 89, 91, 94, 95, 96, 98, 99, 105, 108, 133], "reliabl": [18, 39, 53, 55, 56, 67, 79, 87, 98, 99, 105, 108, 133], "robust": [18, 39, 53, 55, 56, 67, 87, 89, 98, 103, 108, 133], "resili": [18, 39, 53, 55, 56, 67, 87, 98, 108, 133], "fair": [18, 39, 53, 54, 58, 61, 67, 73, 87, 98, 108, 133], "all": [18, 20, 21, 49, 65, 66, 68, 70, 75, 77, 79, 80, 83, 84, 89, 90, 91, 92, 93, 94, 97, 99, 100, 103, 104, 108, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "auto_examples_python": 18, "zip": 18, "auto_examples_jupyt": 18, "glmclassifi": [20, 57, 69, 93, 108], "limit_b": [20, 24, 26, 30, 32, 34, 36, 40, 42, 44, 46, 48, 50, 55], "sex": [20, 24, 26, 30, 32, 34, 36, 40, 42, 44, 46, 48, 50, 55], "educ": [20, 24, 26, 30, 32, 34, 36, 40, 42, 44, 46, 48, 50, 55], "marriag": [20, 24, 26, 30, 32, 34, 36, 40, 42, 44, 46, 48, 50, 55], "ag": [20, 24, 26, 30, 32, 34, 36, 40, 42, 44, 46, 48, 50, 55, 64], "flagdefault": [20, 24, 26, 30, 32, 34, 36, 40, 42, 44, 46, 48, 50, 55, 66, 68, 89, 90, 92, 93, 94, 95, 97, 99, 101, 102, 103, 104, 105], "evalu": [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 65, 68, 70, 77, 81, 83, 84, 87, 92, 99, 102, 103, 104, 105, 108], "predict": [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 46, 60, 68, 70, 77, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 102, 103, 104, 105, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 123, 124, 125, 126, 127, 128, 129, 130], "perform": [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 50, 51, 65, 69, 75, 83, 87, 89, 90, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 104, 105, 108, 109, 110, 112, 118, 119, 123, 124, 125, 126], "model_diagnos": [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 62, 63, 66, 87, 93, 99, 101, 102, 103, 104, 105, 108], "accuracy_t": [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 93, 99, 108], "acc": [20, 22, 24, 26, 28, 30, 32, 34, 36, 40, 42, 44, 52, 55, 65, 68, 70, 87, 99, 100, 101, 103, 104, 105, 108], "auc": [20, 22, 24, 26, 28, 30, 32, 34, 36, 40, 42, 48, 55, 70, 83, 87, 94, 99, 101, 103, 104, 105, 108], "recal": [20, 22, 24, 26, 28, 30, 32, 34, 36, 40, 87, 99, 100, 108], "precis": [20, 22, 24, 26, 28, 30, 32, 34, 36, 40, 75, 87, 99, 100, 108], "f1": [20, 22, 24, 26, 28, 30, 32, 34, 36, 40, 52, 55, 65, 87, 99, 100, 101, 103, 104, 105, 108], "8083": 20, "7375": 20, "2579": 20, "6834": 20, "3745": 20, "8150": 20, "7356": 20, "2583": 20, "6936": 20, "3764": 20, "gap": [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 87, 99, 101, 105, 108, 125, 126], "0067": [20, 34], "0019": [20, 45], "0004": [20, 35, 37, 101], "0102": [20, 43], "coeffici": [20, 21, 77, 81, 84, 87, 91, 94, 96, 108, 114, 116, 119, 124, 126, 128, 130], "model_interpret": [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 62, 63, 66, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 108], "glm_coef_plot": [20, 21, 93, 108], "tabl": [20, 21, 40, 41, 64, 65, 77, 93, 100, 101, 104, 105, 108], "glm_coef_tabl": [20, 21, 93, 108], "pay_amt3": 20, "6906": 20, "pay_amt1": [20, 66, 94], "6464": 20, "pay_amt2": [20, 105], "5927": 20, "pay_amt4": 20, "4080": 20, "pay_amt6": 20, "3255": 20, "pay_amt5": 20, "3122": 20, "bill_amt5": 20, "1892": 20, "pay_4": 20, "0329": 20, "8": [1, 9, 20, 21, 27, 37, 42, 43, 44, 45, 52, 57, 58, 62, 63, 64, 65, 66, 69, 80, 84, 89, 92, 100, 101, 104, 105, 106, 108, 113, 114, 117, 118, 119, 120, 127, 128], "bill_amt1": [20, 42, 44, 48, 66], "0168": 20, "bill_amt2": [20, 48], "1473": 20, "pay_2": [20, 42, 105], "bill_amt3": [20, 48], "6271": 20, "pay_5": 20, "6885": 20, "bill_amt4": 20, "7107": 20, "14": [20, 21, 37, 42, 52, 65], "bill_amt6": 20, "8201": 20, "15": [20, 21, 37, 52, 65, 84, 109, 110, 111, 113, 114], "pay_3": [20, 36, 94], "8883": 20, "pay_6": 20, "0435": 20, "pay_1": [20, 30, 32, 34, 36, 40, 42, 44, 46, 50, 55, 66, 68, 94, 99, 102, 103, 105], "2420": 20, "global_fi": [20, 21, 22, 23, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 89, 91, 92, 93, 94, 96, 97, 108], "local_fi": [20, 21, 22, 23, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 89, 91, 92, 93, 94, 96, 97, 108], "origin": [20, 21, 46, 52, 75, 77, 79, 81, 82, 83, 84, 90, 96, 99, 100, 101, 102, 108, 110, 117, 118, 119, 120, 125, 126, 127, 128], "scale": [20, 21, 63, 82, 90, 96, 99, 101, 104, 108, 109, 110, 111, 112, 117, 118, 119, 120, 125, 126, 127, 128], "089": [20, 38], "plot_0_glm_cl": [20, 38], "glmregressor": [21, 56, 93, 108], "mse": [21, 23, 25, 27, 29, 31, 33, 35, 37, 41, 49, 56, 70, 83, 87, 99, 101, 102, 103, 104, 105, 108], "mae": [21, 23, 25, 27, 29, 31, 33, 35, 37, 41, 43, 45, 56, 70, 87, 99, 101, 103, 104, 105, 108], "r2": [21, 23, 25, 27, 29, 31, 33, 35, 37, 41, 49, 56, 70, 99, 101, 103, 104, 105, 108], "0225": 21, "1105": 21, "3467": 21, "1090": 21, "3593": 21, "0015": [21, 36, 101], "0127": 21, "2133": 21, "weathersit_2": 21, "0274": 21, "holiday_1": 21, "0250": 21, "season_2": [21, 93], "0038": 21, "workingday_0": 21, "holiday_0": 21, "season_0": 21, "weathersit_0": 21, "workingday_1": 21, "0035": [21, 37, 42], "weathersit_1": 21, "0104": 21, "0125": 21, "season_1": [21, 93], "0193": 21, "0365": 21, "season_3": [21, 93], "0659": 21, "weathersit_3": 21, "0727": 21, "1742": 21, "4082": [21, 45], "546": [21, 38], "plot_0_glm_reg": [21, 38], "gamclassifi": [22, 46, 91, 108], "spline_ord": [22, 23, 91, 117, 120], "n_spline": [22, 23, 91, 117, 120], "lam": [22, 23, 91, 117, 120], "8363": 22, "9226": 22, "8428": 22, "8346": 22, "8387": 22, "8475": 22, "9306": 22, "8542": 22, "8325": 22, "8432": 22, "0112": [22, 34], "0080": [22, 25], "0113": 22, "0021": [22, 42, 43, 45], "0045": 22, "global": [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 62, 82, 87, 88, 108, 117, 118, 119, 120, 125, 126, 133], "global_effect_plot": [22, 23, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 89, 91, 92, 94, 96, 97, 108], "669": [22, 38], "plot_1_gam_cl": [22, 38], "gamregressor": [23, 91, 108], "californiahousing_trim2": [23, 25, 27, 29, 63, 73, 108], "medhousev": [23, 25, 27, 29, 63, 86, 90, 91, 95, 103], "0145": 23, "0867": 23, "7453": 23, "0152": [23, 43], "0883": 23, "7257": 23, "0007": [23, 24, 30, 34, 37, 40, 99], "0017": 23, "0196": 23, "medinc": [23, 29, 90, 91, 96], "312": [23, 38], "plot_1_gam_reg": [23, 38], "treeclassifi": [24, 55, 84, 95, 108], "max_depth": [24, 25, 26, 27, 49, 50, 52, 56, 65, 86, 90, 95, 105, 111, 115, 116, 125, 126, 129, 130], "8248": 24, "7716": 24, "3740": 24, "6985": 24, "4872": 24, "8255": 24, "7605": 24, "3601": 24, "6827": 24, "4715": 24, "0111": 24, "0140": 24, "0157": 24, "start": [24, 25, 73, 77, 90, 94, 95, 96, 108, 111], "root": [24, 25, 26, 27, 68, 75, 90, 95, 108, 111, 112, 125, 126], "node": [24, 25, 75, 84, 90, 94, 95, 96, 97, 108, 111, 113, 114, 115, 116, 125, 126, 127, 128, 129, 130], "tree_glob": [24, 25, 26, 27, 90, 95, 108], "depth": [24, 25, 26, 27, 75, 87, 88, 89, 90, 95, 100, 102, 108, 110, 111, 115, 116, 125, 126, 127, 128, 129, 130, 133], "th": [24, 75, 77, 79, 82, 84, 90, 91, 94, 96], "tree_loc": [24, 25, 26, 27, 90, 95, 108], "536": [24, 38], "plot_2_tree_cl": [24, 38], "treeregressor": [25, 84, 95, 108], "0184": 25, "0979": 25, "6762": 25, "0212": 25, "1059": 25, "6178": 25, "0028": [25, 26], "0584": 25, "338": [25, 38, 44], "plot_2_tree_reg": [25, 38], "figsclassifi": [26, 55, 90, 108], "max_it": [26, 27, 49, 89, 90, 115, 116, 117, 120], "8246": 26, "7891": 26, "3828": 26, "6908": 26, "4926": 26, "8218": [26, 32], "7637": 26, "3562": 26, "6638": 26, "4636": [26, 45], "0255": 26, "0266": 26, "0270": [26, 43], "0290": 26, "figs_heatmap": [26, 27, 90, 108], "tree_idx": [26, 27, 90, 108, 125, 126], "first": [26, 27, 63, 64, 65, 70, 73, 74, 76, 77, 79, 80, 81, 82, 83, 84, 87, 89, 90, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 112, 118, 119, 125, 126], "814": [26, 38], "plot_3_figs_cl": [26, 38], "figsregressor": [27, 49, 90, 108], "0103": 27, "0705": 27, "8196": 27, "0114": 27, "0739": 27, "7941": 27, "0012": [27, 35, 43], "0034": [27, 42], "0256": 27, "987": [27, 38], "plot_3_figs_reg": [27, 38], "xgb1classifi": [28, 96, 108], "max_bin": [28, 29, 89, 96, 97, 105, 113, 114, 127, 128, 129, 130], "min_bin_s": [28, 29, 96, 127, 128], "01": [28, 29, 38, 89, 96, 113, 114, 118, 119, 127, 128], "xgb1": [28, 29, 87, 96, 97, 108], "8512": 28, "9311": 28, "8342": 28, "8663": 28, "8499": 28, "8450": 28, "9028": 28, "8281": 28, "8457": 28, "8368": 28, "0062": [28, 32], "0283": [28, 43], "0060": [28, 35], "0206": [28, 45], "0131": [28, 29], "evid": [28, 29, 108, 127, 128], "xgb1_woe": [28, 29, 96, 108], "inform": [28, 29, 68, 73, 76, 87, 89, 90, 92, 93, 94, 95, 97, 99, 101, 102, 103, 104, 105, 108, 111, 112, 118, 119, 125, 127, 128], "xgb1_iv": [28, 29, 96, 108], "822": [28, 38], "plot_4_xgb1_cl": [28, 38], "xgb1regressor": [29, 96, 108], "0816": 29, "7704": 29, "0136": 29, "0822": 29, "7546": 29, "0005": [29, 31, 37, 41, 63, 99], "0006": [29, 33, 43, 45], "0159": [29, 45], "798": [29, 38], "plot_4_xgb1_reg": [29, 38], "xgb2classifi": [30, 40, 42, 44, 50, 52, 55, 97, 108], "8223": [30, 40, 99], "7970": [30, 40, 99], "3617": [30, 40, 99], "6924": [30, 40, 99], "4751": [30, 40, 99], "8288": [30, 40, 99], "7732": [30, 40, 99], "3624": [30, 40, 99], "7015": [30, 40, 99], "4779": [30, 40, 99], "0066": [30, 40, 45, 99], "0237": [30, 40, 99], "0091": [30, 40, 99], "0027": [30, 40, 99], "global_ei": [30, 31, 32, 33, 34, 35, 89, 92, 97, 108], "local_ei": [30, 31, 32, 33, 34, 35, 89, 92, 97, 108], "817": [30, 38], "plot_5_xgb2_cl": [30, 38], "0087": [31, 41, 45, 99], "0649": [31, 41, 99], "7469": [31, 41, 99], "0092": [31, 41, 99], "0668": [31, 41, 99], "7368": [31, 41, 99], "0018": [31, 41, 99], "0101": [31, 41, 99], "830": [31, 38], "plot_5_xgb2_reg": [31, 38], "explainableboostingclassifi": [32, 57, 69, 89, 108], "interact": [32, 33, 62, 63, 66, 79, 80, 82, 84, 87, 93, 94, 101, 113, 114, 115, 116, 118, 119], "7885": [32, 44], "3680": 32, "6854": 32, "4789": 32, "8280": 32, "7764": 32, "3716": 32, "6896": [32, 42], "4830": 32, "0121": 32, "0036": [32, 36], "0042": 32, "0040": [32, 37], "591": [32, 38], "plot_6_ebm_cl": [32, 38], "explainableboostingregressor": [33, 89, 108], "0072": 33, "0589": 33, "7920": 33, "0078": 33, "0615": 33, "7782": 33, "0026": 33, "0138": [33, 37], "727": [33, 38], "plot_6_ebm_reg": [33, 38], "gaminetclassifi": [34, 92, 108], "8191": 34, "7751": 34, "3577": 34, "6768": 34, "4681": 34, "8258": 34, "7697": 34, "3554": 34, "6881": 34, "4687": 34, "0054": [34, 45], "0023": [34, 37], "53": [34, 38, 77], "428": [34, 38], "plot_7_gaminet_cl": [34, 38], "gaminetregressor": [35, 92, 108], "0056": 35, "0526": 35, "8372": 35, "0538": 35, "8289": 35, "0083": 35, "48": [35, 37, 38], "387": [35, 38], "plot_7_gaminet_reg": [35, 38], "matplotlib": [36, 106, 117, 118, 119, 120, 127, 128], "pyplot": [36, 117, 118, 119, 120, 127, 128], "plt": [36, 117, 118, 119, 120, 127, 128], "reludnnclassifi": [36, 48, 94, 108], "hidden_layer_s": [36, 37, 94, 123, 124], "l1_reg": [36, 37, 94, 123, 124], "0002": [36, 37, 43, 94], "learning_r": [36, 37, 89, 94, 113, 114, 115, 116, 118, 119, 123, 124], "8200": [36, 87], "7723": 36, "3619": 36, "6793": 36, "4722": 36, "8300": 36, "7708": 36, "3655": 36, "7064": 36, "4817": 36, "0100": [36, 42, 44], "0271": 36, "0095": 36, "llm": [36, 37, 108], "llm_summari": [36, 37, 94, 108], "count": [36, 37, 62, 70, 79, 80, 81, 82, 83, 84, 89, 92, 93, 94, 96, 97, 99, 100, 101, 102, 104, 105, 108, 123, 124], "respons": [36, 37, 40, 62, 63, 64, 65, 66, 68, 70, 73, 77, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 108, 111, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130], "6535": 36, "1053": 36, "3069": 36, "6037": 36, "7349": 36, "4166": 36, "1066": 36, "3086": 36, "6477": 36, "6261": 36, "1307": 36, "2295": 36, "4207": 36, "5999": 36, "5003": 36, "1158": 36, "3100": 36, "4627": 36, "7819": 36, "7348": 36, "903": 36, "1595": 36, "3663": 36, "6118": 36, "5528": 36, "300": 36, "nan": [36, 37, 42], "7364": 36, "301": 36, "5529": 36, "302": 36, "7370": 36, "303": [36, 43], "7244": 36, "304": 36, "7134": 36, "305": 36, "parallel": [36, 37, 108, 113, 114, 118, 119], "coordin": [36, 37, 108], "llm_pc": [36, 37, 94, 108], "violin": [36, 37, 108], "llm_violin": [36, 37, 94, 108], "one": [36, 37, 62, 64, 65, 70, 72, 75, 77, 79, 82, 83, 87, 89, 92, 93, 94, 95, 96, 97, 101, 102, 103, 105, 106, 111, 113, 114, 118, 119, 125, 126], "44": [36, 38, 44, 80], "045": [36, 38], "plot_8_reludnn_cl": [36, 38], "0192": 37, "9784": 37, "0009": 37, "0199": 37, "9709": 37, "0075": 37, "215": [37, 77, 87], "4711": 37, "1584": 37, "0309": 37, "207": 37, "4700": 37, "1648": 37, "0327": 37, "185": 37, "4592": 37, "1754": 37, "0324": [37, 92], "148": [37, 43, 45, 101], "4698": 37, "1601": 37, "0003": 37, "0340": 37, "126": 37, "3969": 37, "1574": 37, "0186": 37, "106": 37, "3815": 37, "1582": 37, "0218": 37, "6136": 37, "1315": 37, "0013": 37, "0783": 37, "62": [37, 42, 52, 57, 64], "6301": 37, "1698": 37, "0008": [37, 43, 66, 93], "0750": 37, "3266": 37, "1242": 37, "0542": 37, "45": [37, 44, 83], "2920": 37, "1354": [37, 42, 105], "0551": 37, "43": 37, "6213": [37, 44], "1345": 37, "6046": 37, "1563": 37, "37": [37, 47], "2811": 37, "1128": 37, "0560": 37, "5604": 37, "1171": [37, 101], "0014": 37, "0784": 37, "35": 37, "2250": 37, "1211": 37, "0288": 37, "2636": 37, "1341": 37, "0604": 37, "5663": 37, "1579": 37, "0037": 37, "5213": 37, "1795": 37, "0010": 37, "0441": 37, "5491": 37, "1967": 37, "0451": 37, "6115": 37, "1256": 37, "5365": 37, "1195": 37, "4459": 37, "1685": 37, "0024": 37, "2393": 37, "1061": 37, "0342": 37, "3573": 37, "1770": 37, "0404": 37, "4821": 37, "1186": 37, "0135": 37, "25": [37, 42, 48, 52, 105], "5134": 37, "0839": 37, "0016": [37, 43, 45], "0625": [37, 44], "0238": 37, "27": 37, "4321": 37, "1450": 37, "0164": 37, "28": 37, "4558": 37, "0107": 37, "0240": 37, "29": [37, 52, 57], "1400": 37, "0890": 37, "0302": 37, "30": [37, 44, 65, 66, 68, 78, 87, 89, 90, 92, 93, 94, 95, 97, 99, 101, 102, 103, 104, 105], "2187": 37, "1037": 37, "0203": 37, "0751": 37, "1801": 37, "0305": 37, "0385": 37, "5209": 37, "0884": 37, "33": [37, 57, 65], "6258": 37, "0943": 37, "34": 37, "4773": [37, 45], "0875": 37, "x2": [37, 64, 73, 108], "210": [37, 38], "plot_8_reludnn_reg": [37, 38], "03": [38, 43], "51": 38, "945": 38, "auto_examples_model": 38, "09": 38, "08": 38, "07": [38, 84, 92], "05": [38, 43, 44, 45, 55, 56, 68, 70, 101, 123, 124], "confus": [40, 99, 108], "matrix": [40, 75, 77, 79, 94, 97, 99, 104, 108, 110, 114, 115, 116, 119, 123, 124, 125, 126, 128, 130], "roc": [40, 99, 108], "accuracy_plot": [40, 55, 56, 68, 70, 99, 108], "residu": [40, 41, 87, 89, 90, 92, 102, 103, 104, 108, 114, 116, 119, 124, 126, 128, 130], "respect": [40, 41, 74, 76, 77, 78, 81, 84, 90, 94, 99, 100, 102, 104, 108, 112, 118, 119], "accuracy_residu": [40, 41, 99, 108], "target_featur": [40, 41, 46, 47, 50, 51, 99, 102, 103, 108], "use_test": [40, 41, 42, 43, 44, 99, 101, 105, 108], "flagdefault_predict": 40, "765": 40, "plot_0_accuracy_cl": [40, 53], "cnt_predict": [41, 99], "278": 41, "plot_0_accuracy_reg": [41, 53], "base": [42, 43, 44, 45, 64, 68, 69, 70, 74, 76, 77, 78, 79, 81, 82, 83, 84, 87, 91, 92, 93, 95, 96, 99, 100, 102, 103, 104, 108, 109, 110, 112, 113, 114, 115, 116, 118, 119, 125, 126, 127, 128, 129, 130], "slice_method": [42, 43, 44, 45, 55, 56, 68, 70, 101, 105, 108], "slice_featur": [42, 43, 44, 45, 55, 56, 68, 70, 101, 105, 108], "min_sampl": [42, 43, 44, 45, 101, 105, 108], "return_data": [42, 43, 44, 45, 46, 47, 52, 57, 69, 81, 89, 91, 92, 93, 96, 97, 100, 101, 102, 105, 108], "test_acc": [42, 44, 105], "train_acc": [42, 44, 105], "1265": [42, 105], "5090": [42, 105], "6957": 42, "0061": 42, "2500": 42, "191": [42, 105], "800": [42, 105], "6911": 42, "6787": 42, "0123": 42, "1111": [42, 44], "2222": [42, 44], "268": [42, 43, 105], "956": [42, 105], "7276": 42, "7176": 42, "3750": 42, "6250": 42, "322": [42, 105], "7205": 42, "7171": 42, "5556": 42, "351": [42, 105], "1430": [42, 105], "6125": 42, "6147": 42, "7500": 42, "82": [42, 105], "360": [42, 105], "6220": 42, "0030": [42, 43, 45], "set": [42, 43, 44, 48, 55, 56, 62, 63, 64, 65, 66, 68, 70, 71, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "4444": [42, 44], "test_auc": 42, "train_auc": 42, "752": 42, "2936": 42, "6444": 42, "7049": 42, "0605": 42, "3521": 42, "13975": 42, "6348": 42, "6958": 42, "0610": 42, "513": 42, "2154": 42, "5452": 42, "0896": 42, "5750": 42, "7060": 42, "1310": 42, "6410": 42, "4000": 42, "6786": 42, "121": 42, "7000": [42, 44], "6364": [42, 43], "0636": 42, "2778": 42, "582": 42, "2407": 42, "7268": 42, "7084": 42, "0185": 42, "1667": [42, 44], "6862": 42, "6798": 42, "0063": [42, 43], "4705": 42, "6824": 42, "488": 42, "1817": 42, "7377": 42, "7342": 42, "900": 42, "plot_1_weakspot_cl": [42, 53], "test_ms": [43, 45, 101], "train_ms": [43, 45, 101], "445": [43, 45, 101], "1736": [43, 45, 101], "0226": [43, 45], "0205": [43, 45], "290": 43, "1168": 43, "0277": 43, "0938e": 43, "85": 43, "377": 43, "0207": 43, "0200": 43, "3215e": 43, "8851e": 43, "155": 43, "538": 43, "0153": 43, "1004e": 43, "97": [43, 52, 57], "365": 43, "0108": 43, "7190e": 43, "test_ma": [43, 45], "train_ma": [43, 45], "1175": 43, "1122": 43, "0053": 43, "1026": 43, "4077": 43, "0931": 43, "0919": 43, "3261": [43, 45], "3696": [43, 45], "135": [43, 45, 101], "592": [43, 45, 101], "1947": 43, "1677": 43, "2826": [43, 45], "579": [43, 45, 101], "1130": 43, "1062": 43, "0068": 43, "8478": 43, "1630": 43, "6382": 43, "0827": 43, "0825": 43, "4545": 43, "1110": 43, "0753": 43, "0634": 43, "0119": 43, "6667": 43, "1239": 43, "0841": 43, "0778": 43, "5152": 43, "5303": 43, "127": 43, "452": 43, "0746": 43, "0738": 43, "6818": 43, "7273": 43, "146": 43, "555": 43, "0787": 43, "0803": 43, "74": 43, "307": 43, "0736": 43, "0756": 43, "0020": 43, "5909": 43, "294": 43, "1282": 43, "0790": 43, "0820": 43, "9848": [43, 45], "196": 43, "882": [43, 45], "0744": 43, "0808": 43, "474": 43, "plot_1_weakspot_reg": [43, 53], "3781": 44, "41": 44, "131": 44, "7561": 44, "8473": 44, "0912": 44, "7167": 44, "8037": 44, "117": 44, "6333": 44, "7350": 44, "1017": 44, "2814": 44, "3685": 44, "7083": 44, "8133": 44, "1050": 44, "9237": 44, "9558": 44, "69": 44, "5797": 44, "6893": 44, "1096": 44, "6715": 44, "73": 44, "6500": 44, "7808": 44, "1308": 44, "7632": 44, "7953": 44, "92": 44, "6000": 44, "7717": 44, "1717": 44, "1073": 44, "3453": 44, "296": 44, "8480": 44, "0480": 44, "9831": 44, "8182": 44, "1182": 44, "52": [44, 77], "198": 44, "8283": 44, "0398": [44, 45], "7228": 44, "7332": 44, "299": 44, "6933": 44, "7559": 44, "9807": 44, "8000": 44, "1000": [44, 90, 118, 119, 123, 124], "794": 44, "plot_2_overfit_cl": [44, 53], "1020": 45, "0146": 45, "0139": 45, "6636": 45, "103": 45, "366": 45, "0391": 45, "0325": 45, "2318": 45, "173": 45, "645": 45, "0260": 45, "1803": 45, "122": 45, "461": 45, "0058": 45, "1364": 45, "5606": 45, "240": 45, "0093": 45, "0077": 45, "197": [45, 87, 101], "4924": 45, "1649": 45, "6580": 45, "062": 45, "057": 45, "005": 45, "0495": 45, "0098": 45, "0177": 45, "255": 45, "plot_2_overfit_reg": [45, 53], "calcul": [46, 47, 68, 74, 75, 77, 78, 79, 81, 83, 84, 89, 90, 91, 92, 93, 94, 96, 97, 100, 101, 102, 103, 105, 108, 109, 111, 112, 118, 119, 125, 126], "each": [46, 47, 66, 68, 69, 72, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 108, 109, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "between": [46, 47, 50, 51, 65, 69, 72, 74, 75, 77, 78, 79, 80, 82, 83, 84, 89, 91, 92, 93, 96, 97, 99, 101, 102, 103, 104, 105, 108, 125, 126], "un": [46, 47, 108], "reliability_dist": [46, 47, 102, 108], "distance_metr": [46, 47, 50, 51, 102, 103, 108], "bandwidth": [46, 47, 55, 56, 80, 108], "against": [46, 47, 50, 51, 68, 69, 70, 89, 92, 97, 99, 104, 106, 108], "given": [46, 47, 74, 75, 77, 81, 84, 89, 90, 92, 94, 96, 97, 100, 101, 102, 105, 108, 110, 111, 113, 115, 117, 118, 119, 120, 123, 125, 127, 128, 129], "reliability_margin": [46, 47, 102, 108], "bin": [46, 47, 52, 55, 56, 65, 68, 70, 78, 79, 87, 89, 96, 97, 98, 101, 102, 103, 105, 108, 113, 114, 127, 128, 129, 130], "calibr": [46, 68, 108], "probabl": [46, 68, 82, 84, 94, 99, 102, 103, 104, 108, 113, 115, 118, 123, 124, 125, 127, 129], "v": [46, 63, 66, 77, 108, 114, 116, 119, 124, 126, 128, 130], "reliability_calibr": [46, 102, 108], "diagram": [46, 55, 95, 108, 111, 125, 126], "reliability_perf": [46, 55, 68, 102, 108], "brier": [46, 108], "reliability_t": [46, 47, 102, 108], "1258": 46, "1276": 46, "059": 46, "plot_3_reliability_cl": [46, 53], "empir": [47, 74, 97, 102, 108], "coverag": [47, 56, 108], "averag": [47, 65, 70, 74, 75, 77, 79, 80, 81, 82, 83, 84, 90, 93, 94, 95, 96, 99, 101, 102, 105, 108, 110, 118, 119], "alpha": [47, 48, 49, 50, 51, 55, 56, 68, 70, 102, 103, 104, 108, 111, 112, 125, 126], "8892": 47, "2373": 47, "051": 47, "plot_3_reliability_reg": [47, 53], "default": [48, 55, 56, 62, 63, 64, 65, 66, 68, 70, 73, 77, 82, 83, 84, 87, 89, 90, 94, 95, 99, 101, 103, 104, 105, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "robustness_perf": [48, 49, 55, 56, 68, 70, 104, 108], "custom": [48, 49, 52, 55, 60, 62, 63, 66, 74, 91, 100, 108, 111, 115, 116, 118, 119, 127, 128], "perturn": [48, 49], "perturb_featur": [48, 49, 55, 68, 70, 104, 108], "size": [48, 49, 65, 68, 70, 75, 77, 82, 87, 94, 95, 96, 101, 104, 105, 108, 109, 111, 113, 114, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128], "perturb_s": [48, 49, 68, 70, 104, 108], "perturb_method": [48, 49, 68, 70, 104, 108], "worst": [48, 49, 50, 51, 55, 56, 102, 103, 108], "percent": [48, 49, 55, 56], "robustness_perf_worst": [48, 49, 55, 56, 68, 70, 104, 108], "448": 48, "plot_4_robustness_cl": [48, 53], "being": [49, 79, 83, 84, 87, 96, 100, 102, 103], "perturb": [49, 55, 68, 70, 81, 87, 108], "224": 49, "plot_4_robustness_reg": [49, 53], "scenario": [50, 51, 55, 56, 87, 103], "resilience_perf": [50, 51, 55, 56, 68, 70, 103, 108], "resilience_method": [50, 51, 55, 56, 68, 70, 103, 108], "hard": [50, 51, 68, 70, 94, 99, 103, 108, 112, 123, 124], "outer": [50, 51, 68, 70, 74, 103, 108, 113, 114], "cluster": [50, 51, 68, 70, 74, 90, 103, 108, 109, 111], "margin": [50, 51, 75, 81, 84, 87, 92, 93, 94, 108, 118, 119], "resilience_dist": [50, 51, 55, 56, 103, 108], "noneimmut": 50, "immu_featur": [50, 51, 55, 56, 68, 70, 103, 108], "n_cluster": [50, 51, 68, 70, 103, 108, 109], "resilience_shift_histogram": [50, 51, 103, 108], "resilience_shift_dens": [50, 51, 103, 108], "229": 50, "plot_5_resilience_cl": [50, 53], "immut": [51, 103, 108], "009": 51, "plot_5_resilience_reg": [51, 53], "simucredit": [52, 57, 65, 69, 73, 108], "race": [52, 57, 64, 65, 69, 100], "gender": [52, 57, 65, 69, 100], "approv": [52, 57, 65], "mono_increasing_list": [52, 96, 97, 118, 119, 127, 128, 129, 130], "mortgag": [52, 65, 73, 100, 108], "balanc": [52, 57, 65, 69, 96, 100, 108, 125], "mono_decreasing_list": [52, 96, 118, 119, 127, 128, 129, 130], "amount": [52, 65, 100, 112], "past": [52, 65, 100], "due": [52, 65, 69, 77, 78, 87, 91, 94, 97, 100, 104, 105], "util": [52, 65, 90, 99, 108], "delinqu": [52, 65], "inquiri": [52, 65], "open": [52, 65, 87], "trade": [52, 65, 100, 108], "xgb2_monoton": [52, 100], "metrics_result": [52, 57, 69, 100], "model_fair": [52, 65, 100, 108], "air": [52, 57, 65, 69, 100, 108], "group_categori": [52, 57, 69, 100, 108], "reference_group": [52, 57, 69, 100, 108], "protected_group": [52, 57, 69, 100, 108], "favorable_threshold": [52, 57, 69, 100, 108], "performance_metr": [52, 100, 108], "group": [52, 57, 64, 65, 81, 94, 100, 102, 108], "index": [52, 57, 74, 78, 79, 90, 94, 108, 113, 114, 118, 119, 125, 126], "categori": [52, 57, 64, 65, 72, 76, 79, 93, 100, 104, 108, 118, 119], "refer": [52, 57, 59, 64, 65, 73, 79, 82, 90, 91, 96, 100, 102, 105, 108, 125, 126], "protect": [52, 57, 64, 65, 69, 100, 108], "603728": 52, "745063": 52, "segment": [52, 57, 64, 65, 67, 72, 73, 87, 98, 105, 108], "segmented_result": [52, 57, 69, 100], "segmented_featur": [52, 57, 69, 100, 108], "segmented_bin": [52, 57, 69, 100, 108], "lower": [52, 57, 65, 69, 80, 91, 102, 105, 110, 112], "bound": [52, 57, 89, 99, 105], "upper": [52, 57, 73, 77, 89, 105, 108], "306": [52, 57], "451200": 52, "663992": 52, "601": [52, 57], "477974": 52, "640716": 52, "47": [52, 57], "1027": [52, 57], "623723": 52, "657706": 52, "1864": [52, 57], "639482": 52, "776867": 52, "94": [52, 57], "20384": [52, 57], "87": [52, 57], "849147": 52, "815034": 52, "binning_result": [52, 100, 127, 128], "binning_dict": [52, 100, 108], "id": [52, 90, 93, 95, 111], "configur": [52, 74, 80, 108], "715171": 52, "000368": 52, "003484": 52, "505151": 52, "000873": 52, "998020": 52, "506629": 52, "003422": 52, "979733": 52, "511253": 52, "003826": 52, "940766": 52, "522427": 52, "580318": 52, "988035": 52, "360787": 52, "584574": 52, "975176": 52, "364127": 52, "591296": 52, "934952": 52, "373758": 52, "600570": 52, "839246": 52, "400689": 52, "419545": 52, "011075": 52, "397111": 52, "423988": 52, "997716": 52, "400796": 52, "442289": 52, "959378": 52, "410201": 52, "469471": 52, "865747": 52, "437757": 52, "460530": 52, "996881": 52, "421800": 52, "463408": 52, "987163": 52, "424344": 52, "480924": 52, "951194": 52, "433464": 52, "506623": 52, "868160": 52, "457202": 52, "472251": 52, "999380": 52, "411107": 52, "476458": 52, "988062": 52, "414268": 52, "489755": 52, "954747": 52, "422231": 52, "509819": 52, "878128": 52, "444284": 52, "thresholding_result": [52, 100], "331291": 52, "883245": 52, "6765": 52, "892292": 52, "433": [52, 53], "plot_6_fair": [52, 53], "auto_examples_test": 53, "39": [53, 87, 106], "model_compar": [55, 56, 62, 63, 66, 68, 70, 87, 108], "historgram": [55, 56], "slice": [55, 56, 68, 70, 87, 101, 103, 105, 108], "reliability_bandwidth": [55, 56, 68, 70, 108], "565": 55, "plot_0_compare_classif": [55, 58], "xgboost": [56, 65, 75, 87, 88, 100, 105, 106, 108, 133], "xgbregressor": 56, "xgb7": [56, 65, 70], "reliability_coverag": [56, 70, 108], "plot_0_compare_regress": [56, 58], "model_fairness_compar": [57, 65, 69, 108], "glm_air": 57, "ebm_air": 57, "712368": 57, "647789": 57, "832585": 57, "781610": 57, "825086": 57, "439287": 57, "901729": 57, "703873": 57, "689973": 57, "545624": 57, "745220": 57, "642129": 57, "633800": 57, "687002": 57, "591785": 57, "701057": 57, "613486": 57, "721803": 57, "602803": 57, "826708": 57, "748971": 57, "890700": 57, "714674": 57, "835029": 57, "151": [57, 58], "plot_1_compare_fair": [57, 58], "auto_examples_testing_compar": 58, "comparison": [58, 59, 61, 71, 87, 108, 133], "welcom": 59, "scikit": [59, 73, 77, 80, 82, 83, 87, 93, 94, 100, 106, 108, 110, 112, 121, 122, 125, 126], "learn": [59, 62, 63, 66, 67, 69, 70, 73, 77, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 96, 97, 99, 100, 101, 102, 104, 105, 106, 108, 110, 112, 113, 114, 115, 116, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "instal": [59, 77, 87, 131], "api": [59, 64, 68, 70, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 110, 112], "class": [59, 65, 75, 93, 99, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "pipelin": [59, 86, 87, 108, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 133], "post": [59, 62, 63, 66, 77, 83, 87, 108, 133], "hoc": [59, 62, 63, 66, 77, 83, 87, 108, 133], "explain": [59, 61, 75, 79, 80, 81, 82, 83, 84, 87, 88, 96, 99, 108, 112, 113, 114, 133], "outcom": [59, 61, 87, 100, 108], "user": [59, 75, 77, 87, 90, 97, 99, 100, 104, 105, 107, 111], "guid": [59, 87, 99, 107], "introduct": [59, 77, 94, 133], "black": [59, 87, 89, 94, 97, 133], "diagnost": [59, 61, 67, 99, 108, 133], "suit": [59, 133], "case": [59, 64, 65, 70, 81, 83, 90, 93, 96, 99, 103, 104, 110, 113, 114, 125, 126, 133], "studi": [59, 133], "frequent": 59, "ask": 59, "question": 59, "how": [60, 62, 63, 66, 68, 70, 74, 77, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 101, 102, 103, 104, 105], "can": [60, 63, 65, 66, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 108, 112, 114, 116, 119, 124, 125, 126, 128, 130], "read": [60, 87], "regist": [60, 62, 64, 65, 66, 87, 90, 92, 108, 133], "my": 60, "own": [60, 125], "frame": [60, 91, 93], "get": [60, 65, 70, 74, 75, 76, 77, 78, 79, 81, 84, 89, 90, 91, 92, 93, 94, 96, 97, 100, 102, 104, 106, 108, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "chapter": 61, "includ": [61, 63, 66, 68, 73, 74, 77, 78, 82, 87, 89, 91, 92, 95, 96, 97, 99, 100, 101, 102, 103, 105, 106, 108, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "multipl": [61, 67, 84, 87, 90, 92, 96, 102, 105, 108], "low": [61, 62, 63, 65, 66, 69, 73, 83, 84, 87, 91, 95, 99, 108], "experiment": [61, 87, 108], "intepret": 61, "benchmark": 61, "californiah": [61, 91, 133], "simul": [61, 69, 73, 81, 84, 91, 96, 100, 104, 108, 133], "ml": [61, 73, 77, 87, 93, 108], "": [61, 62, 68, 74, 77, 78, 79, 80, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 95, 97, 99, 100, 101, 102, 103, 104, 105, 108, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "descript": [61, 73, 87, 108], "demonstr": [62, 63, 64, 65, 66, 68, 70, 77, 79, 80, 81, 82, 83, 84, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105], "its": [62, 63, 66, 70, 76, 77, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 101, 102, 103, 104, 105, 118, 119, 125], "mode": [62, 63, 66, 68, 73, 83, 87, 108, 118, 119, 125], "develop": [62, 63, 66, 70, 73, 79, 80, 81, 82, 83, 84, 87, 89, 92, 93, 94, 96, 97, 99, 101, 102, 104, 105, 108], "machin": [62, 63, 66, 67, 69, 70, 73, 77, 79, 80, 81, 82, 83, 84, 87, 88, 90, 92, 93, 96, 97, 99, 100, 101, 102, 104, 105, 108, 133], "uci": [62, 66, 68, 70, 73, 79, 80, 81, 82, 83, 84, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 101, 102, 103, 104, 105, 108], "repositori": [62, 66, 68, 70, 79, 80, 81, 82, 83, 84, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 101, 102, 103, 104, 105], "which": [62, 63, 66, 68, 70, 75, 77, 78, 79, 80, 81, 82, 83, 84, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 108, 110, 113, 115, 116, 118, 119, 123, 125, 126, 127, 128, 129, 130], "consist": [62, 63, 66, 70, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 101, 102, 103, 104, 105, 109, 110, 112, 114, 116, 119, 124, 126, 128, 130], "389": [62, 70, 79, 80, 81, 82, 83, 84, 89, 92, 93, 96, 97, 99, 101, 102, 104, 105], "hourli": [62, 70, 79, 80, 81, 82, 83, 84, 89, 92, 93, 96, 97, 99, 101, 102, 104, 105], "rental": [62, 70, 79, 80, 81, 82, 83, 84, 89, 92, 93, 96, 97, 99, 101, 102, 104, 105], "capit": [62, 70, 79, 80, 81, 82, 83, 84, 89, 92, 93, 96, 97, 99, 101, 102, 104, 105], "system": [62, 70, 79, 80, 81, 82, 83, 84, 87, 89, 92, 93, 96, 97, 99, 101, 102, 104, 105], "see": [62, 63, 66, 69, 70, 75, 77, 78, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 104, 105, 112, 125, 126], "detail": [62, 63, 66, 68, 70, 74, 75, 77, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 107, 125, 126], "here": [62, 63, 66, 72, 74, 75, 76, 77, 78, 79, 80, 82, 83, 89, 90, 92, 93, 97, 100, 101, 103, 111], "The": [62, 63, 64, 65, 66, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "continu": [62, 63, 70, 74, 77, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 118, 119], "problem": [62, 63, 64, 65, 66, 68, 70, 73, 79, 80, 81, 82, 83, 84, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 108, 125], "click": [62, 63, 64, 65, 66, 73, 106], "link": [62, 63, 64, 65, 66, 69, 72, 73, 74, 75, 76, 77, 78, 93, 100, 113, 114], "googl": [62, 63, 64, 65, 66, 73, 108], "colab": [62, 63, 64, 65, 66], "choos": [62, 63, 64, 65, 66, 73, 74, 75, 96, 101, 104, 105, 115, 116, 125, 126], "exploratori": [62, 63, 64, 65, 71, 108, 133], "need": [62, 75, 77, 79, 80, 82, 84, 87, 90, 96, 97, 99, 100, 101, 102, 106, 112], "specif": [62, 63, 66, 78, 79, 80, 82, 83, 87, 92, 93, 94, 95, 96, 97, 99, 100, 107, 108, 125, 126], "inher": [62, 63, 66, 87, 92, 94, 108], "pairwis": [62, 63, 66, 77, 79, 87, 89, 92, 97, 118, 119], "640": [63, 90, 91, 95, 103], "fetch": [63, 90, 91, 95, 103, 110], "sklearn": [63, 75, 77, 86, 87, 90, 91, 93, 95, 100, 102, 103, 108, 109, 125, 126], "three": [63, 68, 70, 72, 74, 77, 87, 92, 93, 99, 100, 101, 103, 104, 105], "version": [63, 78, 87, 102, 110, 113, 114, 116, 119, 124, 125, 126, 128, 130], "_raw": 63, "_trim1": 63, "trim": [63, 73], "onli": [63, 66, 70, 75, 76, 78, 81, 83, 84, 87, 89, 91, 92, 93, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 108, 109, 111, 112, 113, 114, 115, 116, 118, 119, 125, 126], "aveoccup": [63, 73, 90, 91, 96, 108], "_trim2": 63, "averoom": [63, 73, 96, 108], "avebedrm": [63, 73, 108], "popul": [63, 73, 78, 81, 93, 96, 105, 108], "price": [63, 91], "per": [63, 79, 84, 89, 94, 111, 113, 114, 118, 119, 127, 128, 129, 130], "block": [63, 118, 119], "log": [63, 82, 93, 96, 118, 119, 125], "Then": [63, 77, 78, 86, 94, 103, 105], "l1": [63, 93, 94, 121, 122, 123, 124, 126, 127, 128, 129, 130], "reigster": 63, "integr": [64, 81, 82, 87, 89, 93, 94], "sola": [64, 73, 106, 108], "ai": [64, 73, 87, 106, 108], "solassimu1": [64, 73, 108], "modifi": [64, 73, 89, 108], "demo": [64, 101, 105, 108, 118, 119], "covari": [64, 73, 75, 77, 87, 104, 108], "ar": [64, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "x5": [64, 73, 108], "label": [64, 68, 73, 99, 105, 108, 110, 113, 114, 115, 116, 118, 123, 124, 125, 126, 127, 129], "binari": [64, 65, 66, 68, 73, 74, 81, 82, 83, 84, 87, 91, 93, 94, 95, 96, 98, 103, 104, 108, 115, 116], "rest": [64, 73, 79, 80, 83, 89, 90, 92, 96, 102, 103, 104, 108], "demograph": [64, 65, 73, 100, 108], "contribut": [64, 73, 74, 80, 81, 83, 84, 91, 93, 96, 108, 113, 114, 117, 120, 127, 128], "minor": [64, 89], "major": 64, "grei": [64, 65], "color": [64, 65, 90], "when": [64, 65, 74, 75, 77, 79, 80, 81, 83, 84, 90, 92, 93, 94, 95, 97, 99, 101, 103, 104, 105, 108, 111, 112, 114, 116, 117, 118, 119, 120, 123, 124, 125, 126, 128, 130], "finish": 64, "suggest": [64, 79, 82, 84, 87, 91, 93, 99, 103], "procudur": 64, "add": [64, 65, 68, 70, 87, 97, 104, 108], "By": [64, 68, 70, 77, 78, 80, 81, 83, 87, 89, 90, 91, 93, 94, 95, 96, 99, 101, 102, 103, 104, 105, 125, 126], "enter": 64, "button": [64, 65, 73], "switch": [64, 96, 105], "other": [64, 66, 75, 76, 77, 79, 80, 82, 84, 87, 90, 91, 92, 93, 96, 102, 105], "view": [64, 69, 82, 83, 84, 89, 90, 92, 95, 99], "breakdown": 64, "model_fairness_sola": [64, 108], "we": [65, 68, 69, 70, 72, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 111, 118, 119], "decis": [65, 73, 75, 81, 84, 87, 88, 90, 100, 105, 108, 111, 125, 126, 133], "hypothes": 65, "statu": [65, 105, 111, 123, 124], "well": [65, 70, 77, 90, 91, 93, 95, 96, 97, 99, 101, 102, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "indic": [65, 68, 69, 73, 79, 80, 82, 83, 84, 89, 90, 91, 92, 93, 94, 96, 97, 99, 103, 104, 105, 108, 109, 110, 111, 113, 114, 118, 119, 125, 126, 127, 128, 129, 130], "20k": 65, "num": 65, "applic": [65, 69, 73, 77, 87, 108], "last": [65, 68, 74, 77, 79, 103, 106, 118, 119, 123, 124], "month": 65, "card": [65, 66, 68, 73, 89, 90, 92, 93, 94, 95, 97, 99, 101, 102, 103, 104, 105, 108], "minimum": [65, 75, 76, 87, 96, 99, 101, 105, 106, 111, 113, 114, 115, 116, 125, 126, 127, 128, 129, 130], "requir": [65, 68, 75, 77, 79, 82, 84, 87, 89, 93, 97, 99, 101, 102, 104, 105, 110, 112, 113, 114, 115, 116, 118, 123, 124, 125, 126, 127, 128, 129, 130], "payment": [65, 66], "wa": [65, 103, 110], "appli": [65, 68, 70, 84, 94, 96, 104, 125, 126], "account": [65, 84, 96], "date": 65, "ordin": [65, 74, 96, 108], "current": [65, 106, 125, 126], "dai": [65, 79, 80, 82, 89, 92, 97, 99], "so": [65, 69, 70, 77, 81, 83, 84, 90, 91, 93, 97, 100, 101, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "number": [65, 68, 74, 75, 76, 77, 78, 79, 83, 84, 89, 90, 91, 94, 96, 99, 100, 101, 102, 103, 104, 105, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130], "sum": [65, 74, 75, 77, 78, 87, 88, 89, 91, 92, 93, 94, 96, 97, 105, 108, 113, 114, 115, 116, 119, 124, 125, 126, 128, 130, 133], "divid": [65, 72, 75, 79, 89, 92, 95, 97, 99, 105, 112], "limit": [65, 77, 78, 79, 82, 90, 91, 94, 95], "cannot": [65, 69, 77, 93, 100, 102, 112], "kind": [65, 74, 100], "should": [65, 70, 77, 79, 82, 83, 87, 93, 94, 99, 100, 101, 102, 105, 108, 110, 113, 114, 117, 118, 119, 120, 125, 126, 127, 128], "nearli": [65, 73, 108], "depth2": 65, "depth7": 65, "xgbclassifi": 65, "To": [65, 74, 75, 77, 79, 80, 81, 82, 83, 84, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 101, 102, 103, 104, 105, 106, 125, 126], "e": [65, 75, 77, 78, 79, 80, 82, 84, 87, 89, 90, 91, 92, 93, 94, 96, 97, 99, 101, 103, 104, 105, 108, 110, 111], "g": [65, 77, 78, 84, 87, 89, 90, 91, 92, 93, 96, 97, 102, 105, 111], "favor": [65, 92, 108], "defaut": 65, "If": [65, 72, 75, 79, 82, 86, 90, 93, 96, 100, 102, 105, 106, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "find": [65, 89, 92, 94, 96, 99, 101, 102, 103, 125, 126], "higher": [65, 82, 90, 91, 99, 102, 112], "debias": 65, "unfair": [65, 69, 100], "mitig": [65, 77, 101], "an": [65, 68, 69, 70, 72, 74, 75, 76, 77, 79, 80, 81, 82, 84, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 101, 102, 103, 105, 106, 108, 109, 110, 112, 113, 114, 115, 116, 123, 124, 125, 126, 129, 130], "repeat": [65, 77, 81, 83, 97, 117, 120], "mani": [65, 79, 87, 93, 94, 99, 125, 126], "differ": [65, 67, 68, 69, 70, 72, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 87, 89, 92, 93, 94, 96, 97, 99, 100, 101, 102, 103, 104, 105, 108, 109, 112, 125, 126], "clear": [65, 79], "could": [65, 73, 75, 76, 84, 92, 118, 119], "remov": [65, 75, 76, 77, 83, 84, 93, 94, 97, 100, 108, 110, 112, 125, 126], "record": [65, 68, 70, 80, 83, 104, 105, 127, 128], "adjust": [65, 79, 95, 100, 102, 125], "vari": [65, 77, 80, 81, 103, 104, 125, 126], "For": [65, 68, 70, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 96, 97, 99, 100, 101, 102, 103, 105, 108, 109, 110, 112, 114, 116, 118, 119, 124, 125, 126, 128, 130], "both": [65, 69, 70, 72, 74, 77, 79, 80, 83, 84, 87, 89, 90, 91, 92, 93, 96, 97, 118, 119, 125], "good": [65, 94, 99, 103, 105], "client": [66, 68, 73, 89, 90, 92, 93, 94, 95, 97, 99, 101, 102, 103, 104, 105, 108], "200504": 66, "200509": 66, "subject": [66, 77, 87, 93, 105, 118, 119, 127, 128, 129, 130], "slight": 66, "preprocess": [66, 68, 73, 89, 90, 93, 97, 99, 101, 102, 104, 105, 108, 112], "histori": [66, 118, 119], "keep": [66, 79, 83, 94, 104, 112, 114, 116, 119, 124, 126, 128, 130], "while": [66, 77, 79, 80, 83, 84, 87, 89, 90, 91, 92, 93, 94, 96, 99, 100, 101, 103, 104, 125, 126], "l1_regular": 66, "compar": [67, 68, 69, 70, 75, 77, 78, 79, 81, 87, 90, 91, 92, 93, 96, 99, 100, 101, 102, 103, 105, 108], "section": [68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 84, 94, 99, 100, 104], "variou": [84, 87, 89, 92, 93, 99, 103, 105, 106, 108], "perspect": 89, "done": [68, 70, 79, 81, 97, 101, 102, 103, 105], "function": [68, 70, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 102, 104, 111, 113, 114, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130], "consid": [68, 69, 70, 82, 83, 84, 87, 92, 94, 95, 96, 97, 99, 100, 101, 102, 104, 105, 110, 113, 114, 115, 116, 125, 126], "chosen": [68, 70, 90, 91, 92, 96, 105, 108, 125, 126], "chart": [68, 70, 72, 82, 93, 99], "below": [68, 69, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 108], "As": [68, 75, 77, 79, 83, 84, 89, 91, 92, 94, 95, 96, 97, 99, 102, 103, 104, 105, 108, 118, 119], "legend": 68, "have": [68, 70, 75, 78, 79, 80, 82, 83, 84, 86, 87, 89, 90, 91, 92, 94, 95, 99, 101, 102, 103, 104, 105, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "similar": [68, 69, 75, 77, 79, 80, 81, 84, 89, 90, 91, 92, 94, 96, 97, 99, 101, 102, 103, 105, 118, 119], "ha": [68, 77, 78, 79, 81, 84, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 101, 103, 108, 125, 126], "slightli": [68, 77, 89, 92, 97, 103], "better": [68, 69, 75, 80, 83, 89, 94, 95, 96, 99, 100, 102, 103, 105], "under": [68, 70, 75, 77, 87, 93, 99, 103, 104, 105, 108, 115, 116, 125, 126], "region": [68, 69, 70, 87, 94, 101, 105, 108], "detect": [68, 70, 75, 87, 89, 101, 105, 108, 112, 113, 114], "algorithm": [68, 70, 75, 77, 85, 87, 89, 90, 94, 95, 97, 98, 108, 109, 112, 115, 116, 125, 126, 127, 128, 129, 130], "found": [68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 89, 90, 92, 93, 94, 95, 97, 99, 100, 101, 102, 103, 104, 105, 106, 125, 126], "keyword": [68, 70, 77, 79, 81, 82, 84, 89, 90, 91, 92, 93, 94, 95, 96, 97, 100, 101, 102, 103], "follow": [68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 108, 125, 126], "argument": [68, 70, 77, 78, 81, 82, 83, 84, 90, 92, 96, 99, 101, 102, 104, 105, 125, 126], "instead": [68, 70, 77, 79, 82, 84, 87, 89, 90, 93, 96, 97, 99, 102, 103, 105, 110, 112, 114, 116, 119, 124, 125, 126, 128, 130], "string": [68, 70, 108, 111, 112, 118, 119, 125, 126], "repres": [68, 70, 72, 74, 75, 77, 79, 80, 81, 82, 84, 90, 91, 93, 94, 95, 96, 97, 99, 103, 104, 105, 110, 123, 124], "illustr": [68, 69, 70, 79, 80, 82, 84, 96, 97, 99, 103, 104], "metricmetr": [68, 70], "interv": [68, 70, 79, 94, 102], "quantifi": [68, 84, 102], "squar": [68, 75, 77, 93, 94, 99, 105, 111, 112, 114, 116, 119, 122, 124, 126, 128, 130], "hat": [68, 70, 77, 79, 80, 82, 89, 90, 91, 92, 96, 97, 99, 102], "p": [68, 78, 82, 84, 96, 100, 102, 104, 108], "henc": [68, 75, 77, 89, 94, 96, 104], "shown": [68, 69, 70, 77, 78, 79, 84, 89, 90, 92, 93, 94, 95, 97, 99, 102, 104], "actual": [68, 89, 91, 92, 95, 96, 97, 99, 118, 119], "input": [68, 70, 73, 79, 80, 81, 82, 83, 84, 92, 93, 94, 99, 103, 104, 108, 109, 110, 111, 112, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "normal": [68, 70, 75, 77, 84, 90, 91, 93, 94, 96, 97, 104, 108, 110, 115, 116, 118, 119, 125, 126], "nois": [68, 70, 81, 87, 104, 108], "step": [68, 70, 73, 75, 77, 83, 84, 89, 90, 92, 94, 95, 96, 97, 101, 103, 104, 105, 108, 115, 116], "In": [68, 69, 70, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 96, 97, 99, 100, 101, 102, 103, 104, 105, 108, 110, 113, 115, 118, 119, 123, 125, 127, 129], "abov": [68, 69, 70, 77, 79, 82, 83, 84, 89, 91, 92, 94, 96, 97, 99, 102, 103, 104, 105], "On": [68, 70, 79, 90, 104, 105], "axi": [68, 69, 70, 81, 84, 89, 90, 92, 93, 94, 96, 97, 102, 103, 104, 105, 108], "y": [68, 69, 70, 74, 77, 81, 84, 86, 89, 90, 91, 92, 93, 94, 96, 97, 99, 100, 102, 104, 105, 108, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130], "best": [68, 70, 96, 97, 99, 114, 115, 116, 118, 119, 124, 125, 126, 128, 130], "option": [68, 70, 78, 83, 84, 87, 94, 96, 101, 102, 103, 104, 105, 106, 108, 112, 113, 114, 117, 118, 119, 120, 125, 126, 127, 128], "proport": [68, 70, 78, 93, 99, 102, 104, 125], "unperturb": 70, "also": [69, 70, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 102, 103, 104, 110, 111, 118, 119, 125, 126], "most": [70, 77, 80, 81, 83, 84, 89, 90, 91, 92, 93, 94, 95, 96, 97, 101, 106, 108, 118, 119], "resilience_perf_worst": [68, 70], "kmean": [68, 70, 74, 75, 103, 108, 109, 111], "high": [68, 70, 73, 77, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 101, 102, 103, 104, 105, 108, 125, 126], "compris": [68, 89, 90, 92, 93, 94, 95, 97, 99, 101, 102, 103, 104, 105], "april": [68, 87, 89, 90, 92, 93, 94, 95, 97, 99, 101, 102, 103, 104, 105], "2005": [68, 89, 90, 92, 93, 94, 95, 97, 99, 101, 102, 103, 104, 105], "septemb": [68, 89, 90, 92, 93, 94, 95, 97, 99, 101, 102, 103, 104, 105], "more": [68, 69, 75, 77, 78, 80, 82, 83, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 110, 112, 125, 126], "taiwancreditdata": [68, 89, 90, 92, 93, 94, 95, 97, 99, 101, 102, 103, 104, 105], "websit": [68, 89, 90, 92, 93, 94, 95, 97, 99, 101, 102, 103, 104, 105], "directli": [68, 69, 83, 84, 89, 93, 94, 96, 97, 99, 101, 102, 103, 104, 105, 106, 108], "although": [68, 79, 89, 92, 93, 97, 99, 101, 102, 104, 105], "some": [68, 77, 82, 83, 89, 91, 92, 93, 94, 96, 97, 99, 101, 102, 103, 104, 105, 108, 112, 114, 116, 118, 119, 124, 126, 128, 130], "serv": [68, 89, 90, 92, 93, 94, 95, 97, 99, 101, 102, 103, 104, 105], "introduc": [73, 74, 84, 91, 94, 100, 102], "modul": [69, 73, 74, 77, 86, 87, 93, 95, 100, 106, 108, 118, 119], "becaus": [69, 75, 79, 81, 93, 96, 99, 103, 114, 116, 119, 124, 126, 128, 130], "complex": [69, 77, 82, 89, 90, 91, 94, 95, 96, 105, 125, 126], "much": [79, 80, 84, 90, 93, 99, 103, 104], "But": [69, 75, 125, 126], "you": [73, 74, 76, 77, 81, 84, 86, 87, 89, 91, 92, 93, 95, 96, 97, 100, 103, 104, 106, 108, 111, 113, 115, 118, 123, 125, 126, 127, 129], "than": [69, 75, 76, 77, 79, 80, 81, 82, 84, 87, 90, 91, 93, 94, 96, 97, 99, 101, 102, 103, 104, 105, 108, 110, 112, 115, 116, 118, 119, 125, 126], "got": [75, 106], "especi": [69, 77, 90, 91, 93, 115, 116, 125, 126], "larg": [69, 77, 81, 84, 90, 91, 93, 94, 99, 101, 103, 109, 118, 119, 123, 124], "area": [91, 99, 100, 103], "That": [69, 79, 99, 103, 104, 105, 125, 126], "peopl": 97, "boxplot": 70, "mark": [70, 77, 93, 94, 103], "circl": 70, "thei": [69, 75, 77, 82, 84, 87, 89, 96, 97, 100, 103, 109, 112, 125, 126], "outperform": [], "purpos": [70, 77, 79, 82, 84, 87, 93, 97, 100, 102, 103, 105], "outsid": [70, 79, 82, 102, 108], "extern": [71, 108], "statist": [71, 77, 78, 80, 87, 93, 94, 108], "support": [72, 73, 74, 75, 79, 84, 87, 96, 97, 100, 103, 104, 106, 108, 109, 110, 112, 115, 116, 125, 126], "understand": [74, 80, 87, 91, 93, 94, 96], "graphic": [72, 80, 87], "represent": [72, 91, 92, 94, 97, 115, 116], "frequenc": [72, 76, 102, 125], "relationship": [72, 75, 77, 79, 80, 82, 83, 84, 91, 93, 94, 96, 99, 102, 104], "combin": [72, 77, 84, 90, 93], "collect": [72, 75, 90, 96, 97], "point": [72, 75, 77, 79, 81, 84, 91, 94, 96, 99, 104, 105, 108, 110, 115, 116, 118, 119, 125, 126, 127, 128, 129, 130], "dimension": [72, 75, 93], "within": [69, 72, 74, 90, 95, 97, 104, 108, 118, 119, 125, 126], "There": [72, 73, 77, 87, 93, 100], "approach": [77, 84, 87, 90, 93, 101, 103, 104], "usual": [73, 79, 83, 84, 87, 90, 100, 103, 105, 108], "whole": [73, 105], "put": [84, 86], "sever": [73, 75, 77, 84, 92, 96, 108, 110, 125, 126], "classic": [], "gaussian": [73, 75, 77, 104, 108, 109], "spheric": [73, 108], "archiv": [73, 108], "edu": [73, 108], "californiahousing_raw": [73, 86, 108], "crash": [73, 108], "cours": [73, 108], "californiahousing_trim1": [73, 108], "98": [73, 108], "A": [69, 73, 77, 82, 87, 93, 94, 99, 102, 103, 104, 108, 110, 111, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 128, 130], "solasai": [73, 108], "dispar": [73, 87, 99, 100, 108], "solashmda": [73, 108], "2018": [73, 84, 87, 108], "home": [73, 90, 91, 95, 103, 108], "disclosur": [73, 108], "act": [73, 108], "hmda": [73, 108], "about": [73, 79, 87, 108], "everi": [73, 90, 108, 117, 120, 125], "unit": [73, 93, 94, 108, 112], "easili": [75, 87, 90], "just": [73, 79, 84], "upload": 73, "new": [73, 75, 87, 90, 91, 102, 125, 126], "wrap": [73, 77], "allow": [74, 82, 84, 91, 96, 108, 117, 120, 125, 126], "procedur": [74, 77, 96], "like": [69, 74, 75, 79, 87, 89, 92, 94, 99, 100, 105, 108, 110, 113, 114, 115, 116, 118, 119, 123, 124, 125, 126, 127, 128, 129, 130], "And": [74, 75, 99, 100, 118, 119], "seed": [74, 108, 109, 111, 112, 115, 116, 118, 119, 127, 128, 129, 130], "decid": [74, 75, 108], "besid": 74, "euclidean": [74, 77, 103, 108, 111], "farthest": 74, "awai": 74, "after": [74, 75, 79, 86, 87, 93, 94, 100, 101, 106, 117, 118, 119, 120, 127, 128], "do": [74, 77, 79, 83, 84, 93, 101, 102, 103, 105, 125, 126], "079296": 74, "542358": 74, "list": [74, 77, 87, 92, 94, 100, 101, 105, 108, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "relat": [69, 74, 77, 78, 90, 92, 96, 97, 102, 103, 106, 108, 125, 126], "overal": [69, 74, 77, 79, 87, 90, 93, 95, 103, 127, 128], "measur": [74, 75, 77, 78, 83, 93, 96, 99, 102, 103, 110, 111, 125, 126], "edf": 74, "ed": 74, "2t": 74, "n": [74, 75, 77, 79, 82, 84, 99, 100, 102, 125, 126], "d": [74, 77, 78, 91, 93, 94], "observ": [70, 74, 75, 77, 80, 82, 89, 90, 91, 92, 93, 97, 99, 100, 102, 104, 110], "term": [70, 74, 81, 84, 87, 90, 91, 93, 94, 97, 113, 114, 115, 116, 117, 127, 128, 129, 130], "cross": [74, 77], "befor": [70, 74, 77, 93, 113, 114, 118, 119, 123, 124, 125, 126, 129], "did": [], "encod": [74, 87, 93, 96, 108], "scaler": [74, 117, 118, 119, 120, 127, 128], "transform": [74, 75, 77, 84, 91, 93, 94, 96, 104, 112], "complet": [74, 89, 92], "process": [76, 81, 82, 87, 90, 94, 96, 97, 100, 101, 105, 113, 114, 125, 126], "valid": [77, 87, 92, 102, 113, 114, 118, 119, 123, 124, 125, 126], "kei": [82, 89, 91, 92, 96, 100, 104], "characterist": [], "match": 106, "what": [125, 126], "anticip": [], "prior": [], "consumpt": [], "focu": [75, 80, 93, 101, 105], "help": [75, 77, 82, 84, 91, 93, 94, 96, 99, 103], "locat": 75, "randomli": [75, 81, 83, 84, 125, 126], "maximum": [75, 76, 77, 78, 89, 90, 95, 96, 97, 110, 113, 114, 117, 120, 125, 126, 127, 128, 129, 130], "sinc": [75, 87, 90, 96, 104, 113, 115, 118, 123, 125, 127, 129], "recurs": [75, 82, 94, 95, 111], "partit": [75, 80, 82, 125, 126, 127, 128, 129, 130], "structur": [75, 84, 87, 89, 92, 94], "equival": [77, 94, 97, 103, 105, 110], "path": [75, 84, 87, 90, 95, 108, 110, 111, 118, 119, 125, 126], "length": [75, 94, 110, 113, 114, 117, 120], "termin": [75, 87, 126], "over": [75, 77, 79, 84, 89, 92, 97, 104, 123, 124], "our": [80, 81, 83, 87, 90, 99, 102, 105], "produc": [75, 80, 102, 105], "notic": [75, 99], "shorter": 75, "anomali": [75, 109, 110, 112], "particular": [69, 75, 77, 78, 81, 84, 87, 91, 93, 94, 95, 96, 97, 102, 103, 110], "highli": [75, 77, 79, 82, 84, 95, 96], "implement": [77, 80, 81, 90, 93, 94, 102, 103, 115, 116], "isolationforest": [75, 108], "packag": [77, 79, 80, 81, 82, 84, 87, 89, 90, 91, 93, 94, 96, 97, 106], "It": [75, 77, 78, 79, 81, 84, 87, 89, 90, 91, 92, 93, 95, 96, 97, 99, 102, 103, 105, 108, 112, 118, 119, 123, 124, 125, 126], "ensembl": [75, 84, 90, 91, 101, 105, 110], "extratreeregressor": 75, "less": [69, 75, 79, 80, 82, 84, 91, 96, 99, 101, 102, 103, 104, 105, 108, 125, 126], "log_": 75, "build": 75, "liu2008": 75, "propos": [75, 89, 90, 97], "he": [75, 87], "xu": 75, "deng": 75, "2002": [], "uniqu": [76, 87, 94, 96, 97, 100, 105, 125, 126], "merit": [], "captur": [77, 81, 89, 91, 92, 93], "formula": [75, 77, 79, 84, 94, 102], "broken": [75, 83], "down": [75, 79, 84], "dbscan": 75, "intra": 75, "larger": [75, 79, 80, 83, 90, 91, 93, 94, 99, 101, 108, 109, 112, 117, 118, 119, 120], "them": [75, 77, 90, 91, 96, 100, 103, 104, 105, 125, 126], "centroid": 75, "inter": 75, "smaller": [75, 77, 90, 94, 95, 96, 99, 102, 103, 104, 105, 108, 118, 119, 125, 126], "nearest": [75, 101, 104], "multipli": [75, 102, 112, 125], "use_weight": [75, 109], "clustering_method": [75, 109], "mixtur": [75, 77, 109], "reduct": [75, 84, 125, 126, 127, 128, 129, 130], "spars": [93, 109, 110, 112, 125, 126], "mahalanobi": [75, 112], "error": [75, 87, 99, 103, 105, 106, 108, 126], "reconstruct": 75, "equal": [75, 78, 84, 89, 91, 93, 94, 99, 100, 102, 103, 105, 108, 110, 112, 115, 116, 117, 118, 119, 120, 125, 126], "zero": [75, 77, 79, 83, 89, 90, 91, 93, 94, 97, 99, 112, 113, 114, 125, 126], "standard": [75, 76, 77, 79, 87, 89, 93, 100, 108, 109, 110, 111, 112, 118, 119], "md": 75, "z_": [75, 79], "lambda_": 75, "eigenvalu": 75, "varianc": [75, 84, 89, 90, 91, 92, 93, 96, 97, 99, 104, 112, 118, 119, 126], "space": [75, 77, 78, 90, 91, 100, 105, 108], "give": [75, 83, 94, 96, 107, 118, 119], "u": [75, 79, 82, 83, 96, 102, 104, 105, 106, 114, 116, 119, 124, 126, 128, 130], "desir": [75, 96, 102], "further": [74, 77, 92, 96, 101, 102, 107, 127, 128, 129, 130], "final": [75, 77, 79, 80, 83, 84, 89, 91, 92, 94, 96, 97, 99, 102, 104, 127, 128], "reduc": [75, 77, 79, 83, 84, 90, 94, 97, 110], "absorb": 93, "advantag": [75, 77, 87, 89, 90], "call": [75, 77, 79, 82, 87, 89, 93, 94, 96, 99, 106, 110, 112, 113, 114, 116, 119, 124, 126, 128, 130], "iter": [75, 77, 83, 89, 90, 94, 97, 108, 112, 115, 116, 117, 118, 119, 120, 123, 124], "stop": [75, 77, 87, 90, 108, 113, 114, 115, 116, 118, 119, 123, 124, 125, 126], "until": [75, 89, 97, 125, 126], "certain": [75, 82, 84, 92], "met": 75, "leve": 75, "fit": [75, 77, 79, 80, 81, 82, 84, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 101, 102, 103, 105, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 133], "predictor": [69, 75, 80, 81, 82, 83, 87, 89, 91, 92, 93, 97, 105], "wai": [73, 75, 77, 84, 87, 91, 92, 94, 97, 108], "handl": [75, 77, 103], "sensit": [75, 84, 93, 94, 99, 100], "homogen": 75, "increas": [69, 75, 77, 80, 83, 84, 87, 89, 91, 92, 93, 94, 96, 97, 103, 104, 118, 119, 127, 128, 129, 130], "improv": [75, 87, 96, 103, 105, 112, 113, 114, 123, 124, 125, 126], "proper": 75, "defin": [74, 75, 77, 78, 80, 82, 83, 84, 94, 100, 101, 102, 103, 108, 110, 111, 114, 116, 119, 124, 125, 126, 128, 130], "whether": [75, 77, 82, 90, 96, 108, 109, 110, 111, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130], "visual": [75, 79, 80, 82, 87, 89, 90, 92, 93, 94, 97], "od": [], "t": [75, 86, 108, 118, 119, 123, 124, 125, 126], "sne": [75, 108], "deduc": [], "dimens": [75, 105, 112], "liu": [75, 77], "m": 84, "ting": 75, "z": [77, 84, 94, 97], "h": [79, 89, 92, 97], "zhou": 75, "2008": 75, "eighth": 75, "ieee": [75, 87], "intern": [75, 87, 110, 123, 124, 125, 126], "confer": [75, 87], "mine": [75, 87], "pisa": 75, "itali": 75, "pp": [75, 77, 87], "413": 75, "422": 75, "doi": [75, 87], "1109": 75, "icdm": 75, "summar": [76, 90, 99, 108], "basic": [76, 108], "meta": 76, "info": 76, "chang": [69, 76, 77, 78, 80, 81, 87, 93, 94, 100, 103, 104], "provid": [69, 76, 78, 80, 82, 83, 84, 87, 90, 92, 93, 94, 95, 96, 99, 103, 104, 105, 110, 111, 113, 114, 125, 126], "miss": [76, 84, 89], "deviat": [76, 100, 108, 118, 119], "third": [70, 76, 94, 101, 103, 118, 119], "highest": [76, 79, 84], "top": [76, 77, 78, 81, 89, 91, 92, 93, 94, 96, 97, 103, 118, 119], "aim": [77, 79], "subset": [69, 77, 80, 82, 95, 102, 110, 113, 115, 118, 123, 125, 127, 129], "relev": [77, 80, 93, 95], "comput": [75, 77, 79, 80, 82, 83, 84, 94, 96, 99, 100, 101, 102, 104, 108, 109, 110, 112, 118, 119, 123, 124, 125, 126], "burden": 77, "avoid": [77, 93, 94, 101, 118, 119, 123, 124], "moreov": [77, 79, 84, 99], "benefici": 77, "enhanc": [77, 87, 94, 99], "would": [77, 93, 94, 95, 99, 101, 103, 105, 114, 116, 118, 119, 124, 125, 126, 128, 130], "briefli": [91, 94, 102, 104], "note": [69, 70, 77, 78, 79, 81, 82, 83, 84, 89, 90, 91, 92, 93, 95, 96, 97, 99, 101, 102, 103, 105, 108, 110, 114, 116, 118, 119, 124, 125, 126, 128, 130], "treat": [87, 103, 105], "howev": [77, 80, 81, 82, 83, 84, 87, 89, 90, 91, 93, 94, 96, 97, 99, 102, 105], "treatment": 77, "veri": [77, 79, 81, 83, 92, 101, 103, 118, 119, 123, 124], "rigor": 77, "mathemat": [77, 87], "begin": [77, 78, 79, 80, 82, 84, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 102, 103, 111], "align": [77, 78, 79, 80, 82, 84, 89, 90, 91, 92, 93, 94, 96, 97, 99, 100, 102], "rho_": 77, "frac": [74, 77, 78, 79, 82, 84, 96, 97, 99, 100, 102, 114, 116, 119, 124, 126, 128, 130], "sum_": [77, 78, 79, 82, 84, 90, 94, 99, 100], "left": [69, 77, 84, 89, 90, 92, 97, 99, 111, 115, 116, 125, 126], "x_i": 77, "right": [69, 77, 81, 84, 89, 90, 92, 93, 96, 97, 99, 111, 115, 116, 125, 126], "y_i": [70, 77], "sqrt": [77, 102, 125, 126], "rang": [77, 79, 90, 94, 96, 97, 99, 100, 101, 103, 108], "sign": [77, 99], "denot": [77, 80, 83, 84, 94, 105], "direct": [77, 91, 93, 96], "magnitud": [77, 87, 93], "strength": [77, 91, 93, 94, 96, 108, 117, 118, 119, 120, 121, 122], "correspond": [77, 84, 89, 90, 91, 92, 93, 94, 96, 97, 101, 104, 105, 108, 123, 124, 125, 126], "straightforward": [77, 81, 82, 105], "greater": [77, 80, 99, 101, 102, 105, 108, 112, 115, 116, 118, 119, 125, 126], "specifi": [77, 79, 82, 83, 84, 87, 89, 90, 92, 93, 94, 96, 97, 99, 101, 102, 103, 104, 105, 108, 112, 125, 127, 128, 129, 130], "These": [73, 77, 105], "up": [77, 79, 82, 87, 97, 101, 105, 108, 125, 126], "line": [77, 80, 87, 94, 99, 100, 102, 103, 105, 108], "command": [77, 87, 93, 106], "figur": [69, 77, 78, 87, 89, 91, 92, 94, 96, 97, 102, 104, 108, 111, 117, 118, 119, 120, 125, 126, 127, 128], "blue": [77, 84, 90], "orang": 77, "posit": [77, 89, 91, 92, 93, 94, 97, 99, 100, 108, 110, 117, 118, 119, 120], "neg": [77, 79, 83, 89, 91, 92, 93, 96, 97, 99, 100, 110, 114, 116, 117, 119, 120, 121, 122, 124, 125, 126, 128, 130], "contain": [77, 83, 90, 91, 93, 105, 108, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "bottom": [77, 81, 89, 91, 92, 96, 99], "text": 77, "highlight": [77, 95], "easi": [77, 87, 95, 108], "mai": [77, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 93, 94, 95, 96, 99, 100, 103, 104, 106, 107, 108, 110, 111, 114, 115, 116, 119, 124, 125, 126, 128, 130], "deal": [69, 77, 99, 104, 118, 119, 123, 124], "complic": [90, 94, 103], "rank": [77, 83, 87, 93, 96, 103, 108], "r_": 77, "mathrm": [77, 80, 82, 96], "r": [77, 87, 94, 99, 100, 114, 116, 118, 119, 124, 126, 128, 130], "d_i": 77, "describ": [68, 70, 77, 79, 82, 104, 111], "monoton": [77, 82, 92, 94, 96, 97, 100, 103, 118, 119, 127, 128, 129, 130], "perfect": 77, "occur": [77, 97], "assum": [77, 82, 83, 84, 86, 91, 94, 95, 102, 104, 118, 119], "except": [77, 84, 97, 114, 116, 119, 124, 126, 128, 130], "replac": [77, 84, 100], "pair": [72, 77, 97, 100, 118, 119, 125], "vector": [77, 79, 84, 94, 97, 112, 123, 124], "advanc": 87, "a_": 77, "j": [77, 79, 84, 89, 91, 92, 93, 96, 97], "x_j": [77, 89, 93], "x_k": 77, "quad": 77, "ldot": [77, 84, 91, 93, 94, 102, 103], "b_": 77, "y_j": 77, "y_k": 77, "matric": [77, 109, 110, 112], "_": [77, 78, 79, 80, 82, 89, 92, 97, 99, 102], "cdot": [77, 93, 99], "b": [77, 78, 87, 94, 102, 103, 104, 118, 119], "arithmet": 77, "product": [77, 118, 119], "dcov": 77, "dvar": 77, "operatornam": 77, "determin": [77, 78, 82, 84, 90, 91, 99, 101, 102, 105, 108, 114, 116, 119, 123, 124, 126, 128, 130], "alwai": [77, 91, 99, 101, 114, 116, 119, 124, 125, 126, 128, 130], "don": [86, 125, 126], "take": [75, 77, 84, 87, 89, 92, 96, 97, 101], "absolut": [77, 78, 84, 93, 94, 99, 103, 104, 105, 108, 126], "li": [77, 87, 97], "flexibl": [83, 87, 91, 92, 96, 105], "computation": 77, "expens": [77, 108], "make": [77, 80, 81, 83, 87, 89, 91, 92, 93, 94, 95, 97, 99, 112, 118, 119, 127, 128, 129, 130], "scalabl": [77, 118, 119], "big": 77, "downsampl": [77, 84, 101], "statsmodel": [77, 106], "altern": [77, 78, 79, 84, 104, 125, 126], "automat": [77, 87, 96, 108, 113, 114, 125], "speed": [77, 82], "consider": 77, "compos": 77, "sort": [77, 103, 104], "descend": [77, 94, 103], "order": [77, 79, 87, 91, 93, 94, 96, 103, 105, 110, 117, 118, 119, 120, 125], "pre": [77, 84, 87, 102, 113, 114], "org": [77, 100, 112], "stabl": [77, 91, 93, 96, 100, 112], "inspect": [77, 87, 100, 125, 126], "permutation_import": [77, 83, 125, 126], "percentag": [77, 112], "potenti": [91, 126], "concern": 77, "noisi": 104, "thu": [90, 110], "incorrect": [99, 104, 105], "identifi": [77, 80, 84, 87, 91, 93, 96, 97, 99, 101, 103, 104, 105, 108, 110], "minim": [77, 108, 125, 126], "power": [77, 87, 94, 95, 96, 112], "probabilist": 77, "incorpor": [77, 92], "goal": [77, 84, 87], "perp": 77, "mid": 77, "kcit": 77, "zhang2012": 77, "kernel": [77, 84, 114, 116, 119, 124, 126, 128, 130], "work": [77, 82, 84, 87, 96, 97, 100, 108, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "arbitrari": [77, 87, 93, 102, 108, 133], "strobl2019": 77, "fast": [77, 87, 88, 89, 92, 94, 108, 115, 116, 133], "approxim": [77, 82, 84, 89, 90, 92, 96, 99, 103], "fourier": [77, 108], "reproduc": 77, "hibert": 77, "therefor": [77, 79, 81, 84, 93, 94, 104], "null": [77, 99], "hypothesi": 77, "sigma_": 77, "sigma": [77, 94, 100], "_f": 77, "gamma": [77, 96, 97, 127, 128, 129, 130], "asymptot": 77, "lambda_i": 77, "z_i": 77, "lindsai": 77, "pilla": 77, "basak": 77, "lpb": 77, "lindsayl2000": 77, "cdf": 77, "finit": 77, "borboudakis2019": 77, "elimin": 77, "conduct": 77, "delet": 77, "insignific": 77, "predefin": [77, 102], "remain": [77, 80, 81, 84, 93, 94, 104], "candid": [77, 92], "p_valu": 77, "among": [77, 84, 93, 100, 125, 126], "signific": [77, 83, 84, 87, 89, 92, 101, 102, 103], "ad": [77, 97, 99, 104, 110, 118, 119], "phase": [77, 123, 124], "charact": 77, "recommend": [77, 94], "yu2020": 77, "twice": 77, "paramet": [77, 79, 80, 81, 83, 84, 87, 89, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 104, 105, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "temporarili": 77, "temporari": 77, "perman": 77, "formul": [77, 87, 88], "fewer": [77, 118, 119], "seven": 77, "deep": [77, 87, 90, 94, 95, 108, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "capabl": [77, 87, 93], "causal": [77, 102], "level": [77, 84, 87, 89, 92, 97, 102, 104], "disadvantag": 77, "rel": [69, 70, 77, 89, 91, 93, 94, 96, 99, 103, 112, 125, 126], "sequenti": [77, 118, 119], "kun": 77, "zhang": [77, 87], "jona": 77, "peter": [77, 87, 93], "dominik": 77, "janz": 77, "bernhard": 77, "schoelkopf": 77, "2012": 77, "discoveri": [77, 87], "arxiv": [77, 84, 87], "preprint": [77, 84, 87], "1202": 77, "3775": 77, "eric": 77, "strobl": 77, "shyam": 77, "visweswaran": 77, "2019": [77, 87], "parametr": [77, 91], "journal": [77, 80, 87], "infer": [77, 96, 118, 119, 123, 124, 125, 126], "bruce": 77, "ramani": 77, "prasanta": 77, "moment": [77, 84], "theori": 77, "annal": 77, "institut": 77, "230": 77, "giorgo": 77, "borboudaki": 77, "ioanni": 77, "tsamardino": 77, "research": [77, 87, 89], "276": 77, "314": 77, "kui": 77, "yu": [77, 87], "xianji": 77, "guo": 77, "lin": 77, "jiuyong": 77, "hao": [77, 87], "wang": [77, 87], "zhaolong": 77, "ling": 77, "xindong": 77, "wu": [77, 87], "2020": [77, 87], "acm": [77, 87], "survei": 77, "csur": 77, "stabil": [78, 108], "extent": 78, "bucket": [100, 108], "q": [78, 102, 104], "ln": 78, "fix": [78, 79, 84, 105, 106, 118, 119, 125, 126], "wasserstein": [78, 108], "cumul": 78, "wd_": [], "kolmogorov": [78, 108], "smirnov": [78, 108], "scipi": [78, 106, 112], "stat": 78, "wasserstein_dist": 78, "ks_2samp": 78, "largest": [78, 81, 89, 91, 92, 93, 94, 96, 97, 102, 103, 104, 125, 126], "apley2016": [79, 87], "impact": [79, 84, 96, 97, 100, 108], "Its": [79, 99], "bias": [79, 94, 105], "overcom": 79, "offer": [79, 84, 94, 95, 103], "quicker": 79, "unbias": 79, "definit": [69, 79, 89, 92, 94], "interest": [68, 70, 79, 80, 81, 82, 87, 99, 101, 102, 105, 108], "let": [79, 80, 94, 104], "n_": [79, 94, 100], "uncent": [79, 81, 93], "k_": 79, "x_": [75, 79, 80, 82, 89, 91, 92, 94, 96, 97, 102, 117, 118, 119, 120, 127, 128], "f": [78, 79, 80, 82, 83, 84, 91, 92, 96, 97, 102], "textbf": [79, 89, 90, 91, 92, 93, 94, 96, 97], "tag": [79, 82, 84, 89, 90, 91, 92, 93, 94, 96, 97, 99], "faster": [79, 82, 89, 90], "too": [79, 84, 94, 96, 117, 120, 125, 126], "small": [79, 84, 89, 90, 92, 94, 99, 104, 109], "might": [79, 95], "accur": [79, 87, 95, 96, 99, 102], "hand": [79, 87, 90], "curv": [79, 99, 102, 103], "pleas": [79, 80, 83, 84, 92, 94, 107], "paper": [79, 87, 110], "pyal": 79, "strongli": 79, "across": [79, 80, 84, 93, 99, 103, 125, 126], "extrapol": [79, 82], "beyond": [79, 87], "envelop": [79, 82], "move": 79, "anoth": [79, 89, 96, 103, 111], "unreli": [79, 102], "lead": [79, 81, 87, 89, 91, 93, 96, 102, 104, 112], "word": [79, 102], "tell": [79, 90, 96, 102, 104, 110], "peak": [79, 89, 92, 97, 99, 103], "rush": [79, 89, 92, 99, 102], "hour": [79, 89, 92, 93, 97, 99, 102], "around": [79, 80, 89, 92, 97, 99, 101, 103, 105], "draw": [79, 84, 89, 90, 92, 96, 97, 103, 108, 111], "reach": 79, "previou": [79, 80, 99, 103], "creat": [79, 81, 94, 103, 110, 125, 126], "onc": [79, 90, 95, 97], "element": [79, 81, 99, 104, 123, 124, 125, 126], "light": [79, 90], "rain": 79, "etc": [79, 96, 113, 114], "heavi": 79, "significantli": [79, 81, 93, 99, 104], "simpl": [79, 94, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "still": [79, 80, 89, 92, 94, 96, 97, 101, 103, 105], "technic": 79, "subtract": [79, 81, 93, 97], "lighter": 79, "shade": [79, 90], "darker": [79, 90], "quit": [79, 89, 96, 97], "must": [79, 81, 104, 117, 120, 121, 122], "mind": 79, "dure": [79, 80, 81, 82, 90, 92, 96, 99, 102, 125, 126], "g2015": 80, "instanc": [75, 80, 81, 84, 89, 90, 93, 99, 103, 104, 105, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "complement": [80, 82], "c": [80, 82, 94, 102, 104, 106], "document": [80, 83], "avail": [80, 82, 84, 87, 96, 99, 101, 102, 103, 104, 105, 108, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "snippet": 80, "global_ic": 80, "constant": [80, 89, 91, 93, 96, 97, 99, 114, 116, 119, 124, 126, 128, 130], "examin": 80, "ani": [69, 80, 83, 84, 87, 89, 90, 91, 97, 115, 116, 125, 126], "pattern": [75, 80, 87, 89, 91, 94, 104], "apart": 80, "period": 80, "goldstein": 80, "alex": 80, "adam": [80, 118, 119], "kapeln": 80, "justin": 80, "bleich": 80, "emil": 80, "pitkin": 80, "2015": [80, 87], "ribeiro2016": [81, 87], "tool": [81, 82, 84, 87, 99, 108], "doe": [81, 83, 101, 105, 125, 126], "surrog": [69, 81, 84, 103, 108], "lasso": [81, 87, 93, 122], "assign": [81, 93, 95, 100, 109, 112], "proxim": 81, "predict_proba": [81, 108, 113, 115, 117, 118, 123, 125, 127, 129], "close": [81, 89, 93, 94, 99, 102], "greatli": [81, 84], "judgment": 81, "sens": 81, "crucial": [81, 95, 105], "itself": [81, 93, 113, 114], "unchang": [81, 83, 93, 104], "essenti": [81, 93, 99, 103], "rather": [81, 93, 105], "becom": [81, 84, 87, 90, 91, 93, 99, 103, 105], "neglig": [81, 93], "am": [81, 89, 92], "now": [81, 93], "mainli": [81, 93], "intercept": [81, 90, 93, 94, 96, 97, 115, 116, 122, 127, 128], "hastie2015": [82, 87], "assumpt": [82, 91, 93, 96, 112], "odd": [82, 93, 108], "suppos": [82, 84, 125], "x_c": 82, "context": [82, 84, 95, 97, 104], "mathbb": [82, 89, 90, 91, 92, 93, 94, 96, 97], "int": [78, 82, 108, 109, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130], "dx_": 82, "commonli": [82, 95, 96, 97], "brute": 82, "obtain": [82, 84, 89, 94, 96, 101, 102, 118, 119, 125, 126, 127, 128], "partial_depend": 82, "few": [82, 96], "inaccur": [82, 102], "far": 82, "inconsist": 82, "ones": [69, 77, 82, 92], "accomplish": 82, "trigger": [82, 93, 94, 96, 113, 114, 115, 116, 118, 119], "want": [82, 84, 86, 90, 93, 97, 100, 103], "tend": [82, 87, 91, 94, 97], "substanti": 82, "4th": 82, "joint": 82, "subsampl": [82, 84, 108], "entir": [69, 70, 82, 84, 95, 99, 103], "daytim": 82, "nighttim": 82, "influenc": [83, 91, 114, 116, 119, 124, 126, 128, 130], "loss": [83, 90, 96, 102, 108, 118, 119, 123, 124, 126, 127, 128, 129, 130], "l": [78, 83, 94], "typic": [83, 93], "l2001": 83, "shuffl": 83, "drop": [83, 93, 104, 105], "assess": [69, 83, 91, 99, 101, 102, 104, 105], "relianc": 83, "reveal": [83, 89, 97], "fulli": [83, 87], "either": [83, 87, 89, 90, 95, 97, 99, 113, 114, 125, 126], "futur": [83, 86, 133], "releas": 83, "next": [83, 90, 91, 95, 96, 99, 102], "degrad": [68, 83, 87, 104], "involv": [83, 93, 96, 103], "achiev": [83, 92, 94, 96], "truncat": [83, 112, 117, 120, 125, 126], "alreadi": [73, 83, 86, 94], "site": 83, "repetit": [83, 104, 108], "valuabl": [83, 96, 99], "insight": [83, 92, 103], "appear": [83, 96, 99, 103], "seem": [83, 84], "surpris": 83, "breiman": 83, "2001": [83, 87], "forest": [83, 110], "lundberg2017": [84, 87], "lundberg2018": 84, "concept": 84, "sport": 84, "analogi": 84, "won": 84, "soccer": 84, "game": 84, "winner": 84, "bonu": 84, "fairli": 84, "team": 84, "member": [84, 110], "know": [84, 93, 125, 126], "five": 84, "player": 84, "who": 84, "plai": 84, "role": [84, 89, 97], "victori": 84, "recogn": 84, "come": [84, 87], "success": [84, 94], "imlbook": 84, "shapblog": 84, "possess": 84, "attract": 84, "properti": [84, 94, 110, 125, 126], "missing": 84, "decompos": [84, 97], "prime": 84, "phi_0": 84, "phi_j": 84, "z_j": 84, "coalit": 84, "off": [84, 94, 99, 100, 108, 111], "phi_": 84, "shap_": 84, "otherwis": [84, 90, 96, 101, 105, 108, 112, 127, 128], "possibl": [84, 93, 99, 100, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "subseteq": 84, "val": 84, "cup": 84, "return": [84, 91, 101, 105, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "factor": [84, 96, 109], "accept": [84, 109, 112], "problemat": 84, "worth": [84, 90], "sole": 84, "affect": [84, 93, 101], "common": [84, 91, 93, 101], "background": 84, "mere": 84, "former": [69, 84, 104], "challeng": [84, 99, 103], "practic": [69, 84, 90, 94, 101], "latter": [84, 104, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "break": 84, "interven": 84, "intervent": 84, "inspir": 84, "particularli": [84, 87], "ignor": [84, 101, 105, 106, 108, 110, 112, 125, 126], "unlik": [84, 90], "guarante": 84, "lot": 84, "linearshap": 84, "treeshap": 84, "paragraph": 84, "benefit": 84, "math": 84, "coef": 84, "design": [84, 92, 103, 133], "leaf": [84, 90, 96, 97, 110, 111, 113, 114, 115, 116, 125, 126, 127, 128, 129, 130], "explicitli": 84, "present": [84, 99, 110, 112], "went": 84, "exactli": [84, 91, 96], "bit": [84, 101], "slower": [84, 90, 110], "ll": 84, "i_j": 84, "consum": 84, "place": 84, "red": [84, 90, 102, 103, 105], "had": 84, "greatest": 84, "pdf": 84, "spap": 84, "lundberg": [84, 87], "scott": [84, 87], "gabriel": 84, "erion": 84, "su": [84, 87], "lee": [84, 87], "1802": 84, "03888": 84, "object": [86, 91, 93, 105, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "lightgbm": 86, "lgbmregressor": 86, "lgbm2": 86, "lgbm_2": 86, "abl": [86, 90, 91], "extract": [86, 94, 97, 112, 117, 118, 119, 120, 127, 128], "model_sav": [86, 108], "ch_lgmb_2": 86, "pkl": [86, 108], "pickl": [86, 108], "make_pipelin": [86, 108], "lgmb_2_load": 86, "model_select": 86, "train_test_split": 86, "train_x": [86, 108], "test_x": [86, 108], "train_i": [86, 108], "test_i": [86, 108], "test_siz": 86, "lgbm7": 86, "ravel": 86, "lgmb_7": 86, "pi": [87, 94], "pai": 87, "em": 87, "el": 87, "access": 87, "workflow": [87, 94, 96, 108, 125, 126], "grow": [87, 90, 125, 126], "weak": [87, 101, 105], "uncertainti": [87, 102], "exist": [87, 89, 90, 92, 93, 97, 99, 105, 108], "mlop": 87, "platform": [87, 106], "assur": 87, "enabl": [87, 95, 96, 99, 105, 112], "furthermor": [87, 90], "comprehens": [87, 99], "bank": 87, "project": 87, "supervis": [87, 105], "increasingli": 87, "domain": 87, "consequ": [87, 102], "lack": 87, "difficult": 87, "trust": 87, "emerg": 87, "pedregosa2011": 87, "kokhlikyan2020": 87, "klaise2021": 87, "baniecki2021": 87, "li2022": 87, "known": [87, 93, 94, 95, 102, 125, 126], "pitfal": 87, "rudin2019": 87, "molnar2020": 87, "yang2021a": 87, "yang2021b": [87, 92], "sudjianto2020": [87, 94], "interpretml": 87, "nori2013": [87, 89], "microsoft": [87, 89], "promot": 87, "boost": [87, 88, 90, 96, 108, 113, 114, 127, 128, 129, 130, 133], "ga2m": 87, "lou2013": [87, 89], "One": [77, 87, 106], "sudjianto2021": 87, "discuss": [87, 104], "meantim": 87, "chung2019": 87, "pycaret": 87, "tensorflow": 87, "finra": 87, "toolkit": 87, "same": [70, 87, 89, 90, 92, 94, 97, 99, 100, 103, 104, 108, 113, 114, 125], "Such": [87, 94, 104], "sometim": [87, 112], "demand": [87, 99], "risk": [87, 96], "manag": [87, 108], "routin": 87, "exercis": 87, "conceptu": 87, "sound": 87, "angl": 87, "been": [87, 90, 91, 94, 95], "adopt": 87, "launch": 87, "2022": 87, "interfac": [87, 108], "panel": [87, 99], "widget": 87, "dashboard": 87, "lab": 87, "conveni": 87, "data_qu": 87, "choic": [87, 93, 94], "parameter": 87, "action": 87, "through": [87, 90, 92, 94, 125, 126], "cell": 87, "autom": 87, "appropri": [69, 87, 95], "registr": [87, 108], "mandatori": 87, "unifi": 87, "glass": 87, "section_3": 87, "section_4": 87, "cover": [87, 102], "aspect": [87, 92], "even": [87, 90, 94, 103, 125, 126], "though": 87, "simplif": 87, "regard": 87, "worthwhil": 87, "mention": [87, 99, 101, 105], "enough": [87, 94, 107], "backend": 87, "simplic": 87, "2023": 87, "ell_1": 87, "ell_2": 87, "regular": [87, 91, 92, 93, 94, 118, 119, 123, 124, 127, 128, 129, 130], "spline": [87, 91, 96, 117, 118, 119, 120], "serven2018": 87, "greedi": [87, 88, 108, 115, 116, 133], "tan2022": [87, 90], "extrem": [87, 90, 94], "gradient": [87, 89, 94, 127, 128, 129, 130], "chen2015": 87, "lengerich2020": [87, 96, 97], "network": [87, 88, 91, 92, 118, 119, 123, 124, 133], "aletheia": [87, 94, 123, 124], "unwrapp": [87, 123, 124], "sparsif": 87, "brief": [87, 94], "popular": [87, 93], "identif": 87, "techniqu": [87, 96, 105], "underfit": [77, 87, 89], "accord": [87, 94, 96, 100, 103, 104, 108, 110, 118, 119], "quantif": 87, "conform": [87, 102, 108], "wang2023": [], "cui2023": 87, "out": [87, 94, 96, 103, 105, 118, 119, 123, 124], "de": [87, 94], "bia": [69, 87, 94, 123, 124], "art": 87, "expand": [87, 125, 126], "track": 87, "report": 87, "fabian": 87, "pedregosa": 87, "ga\u00ebl": 87, "varoquaux": 87, "alexandr": 87, "gramfort": 87, "vincent": 87, "michel": 87, "bertrand": 87, "thirion": 87, "olivi": 87, "grisel": 87, "mathieu": 87, "blondel": 87, "prettenhof": 87, "ron": 87, "weiss": 87, "dubourg": 87, "jake": 87, "vanderpla": 87, "passo": 87, "david": 87, "cournapeau": 87, "matthieu": 87, "brucher": 87, "perrot": 87, "\u00e9douard": 87, "duchesnai": 87, "2011": 87, "2825": 87, "2830": 87, "narin": 87, "kokhlikyan": 87, "vivek": 87, "miglani": 87, "miguel": 87, "martin": 87, "edward": 87, "bilal": 87, "alsallakh": 87, "jonathan": 87, "reynold": 87, "alexand": 87, "melnikov": 87, "natalia": 87, "kliushkina": 87, "carlo": 87, "araya": 87, "siqi": 87, "yan": 87, "orion": 87, "reblitz": 87, "richardson": 87, "captum": 87, "librari": 87, "pytorch": [87, 123, 124], "2009": 87, "07896": 87, "jani": 87, "klais": 87, "arnaud": 87, "van": 87, "looveren": 87, "giovanni": 87, "vacanti": 87, "alexandru": 87, "coca": 87, "2021": 87, "alibi": 87, "8194": 87, "hubert": 87, "baniecki": 87, "wojciech": 87, "kretowicz": 87, "piotr": 87, "piatyszek": 87, "jakub": 87, "wisniewski": 87, "przemyslaw": 87, "biecek": 87, "dalex": 87, "9759": 87, "9765": 87, "xuhong": 87, "haoyi": 87, "xiong": 87, "xingjian": 87, "xuanyu": 87, "zeyu": 87, "chen": 87, "deje": 87, "dou": 87, "interpretdl": 87, "paddlepaddl": 87, "cynthia": 87, "rudin": 87, "stake": 87, "natur": 87, "ntellig": 87, "206": 87, "christoph": 87, "molnar": 87, "gunnar": 87, "k\u00f6nig": 87, "julia": 87, "herbing": 87, "timo": 87, "freiesleben": 87, "susann": 87, "dandl": 87, "christian": 87, "scholbeck": 87, "giusepp": 87, "casalicchio": 87, "moritz": 87, "gross": 87, "wentrup": 87, "bernd": 87, "bischl": 87, "xxai": 87, "workshop": 87, "held": 87, "conjunct": 87, "icml": 87, "juli": 87, "vienna": 87, "austria": 87, "revis": 87, "extend": [87, 90], "68": 87, "cham": 87, "springer": 87, "publish": 87, "harsha": 87, "nori": 87, "samuel": 87, "jenkin": 87, "paul": 87, "koch": 87, "rich": 87, "caruana": 87, "framework": [87, 102], "1909": 87, "09223": 87, "yin": 87, "lou": 87, "johann": 87, "gehrk": 87, "gile": 87, "hooker": 87, "2013": 87, "intellig": 87, "proceed": 87, "19th": 87, "sigkdd": 87, "knowledg": 87, "623": 87, "631": 87, "agu": 87, "sudjianto": 87, "aijun": 87, "2111": 87, "01743": 87, "yeounoh": 87, "chung": 87, "tim": 87, "kraska": 87, "neokli": 87, "polyzoti": 87, "ki": 87, "hyun": 87, "tae": 87, "steven": 87, "euijong": 87, "whang": 87, "finder": 87, "35th": 87, "engin": 87, "icd": 87, "1550": 87, "1553": 87, "daniel": 87, "w": [78, 87, 94, 118, 119], "aplei": 87, "jingyu": 87, "zhu": 87, "2016": 87, "1612": 87, "08468": 87, "marco": 87, "tulio": 87, "ribeiro": 87, "sameer": 87, "singh": 87, "guestrin": 87, "why": [87, 96], "classifi": [87, 93, 99, 103, 108, 110, 113, 115, 117, 118, 121, 123, 125], "22nd": 87, "2017": 87, "neural": [87, 88, 91, 92, 133], "trevor": 87, "hasti": 87, "robert": 87, "tibshirani": 87, "wainwright": 87, "sparsiti": [87, 92, 112], "crc": 87, "press": 87, "serv\u00e9n": 87, "charli": 87, "brummitt": 87, "pygam": [87, 91, 106, 117, 120], "zenodo": 87, "5281": 87, "1208723": 87, "shuo": 87, "tan": 87, "chandan": 87, "keyan": 87, "nasseri": 87, "abhineet": 87, "agarw": 87, "2201": 87, "11931": 87, "benjamin": 87, "lengerich": 87, "sarah": 87, "chun": 87, "june": 87, "purifi": [87, 97], "anova": [87, 97, 113, 114, 127, 128, 129, 130], "effici": [87, 110, 112], "recov": 87, "artifici": 87, "2402": 87, "2412": 87, "pmlr": 87, "tianqi": 87, "tong": 87, "william": 87, "knauth": 87, "rahul": 87, "zebin": 87, "yang": 87, "unwrap": [87, 94], "04041": 87, "shiji": 87, "cui": 87, "runz": 87, "hot": [87, 93, 96], "2304": 87, "13761": 87, "yaqun": [], "et": 112, "tbd": [], "architectur": [87, 118, 119], "constraint": [87, 92, 96, 97, 105, 115, 116, 118, 119, 127, 128, 129, 130], "transact": 87, "2610": 87, "2621": 87, "recognit": [75, 87], "120": 87, "108192": 87, "mu": [89, 90, 91, 92, 93, 96, 97], "limits_": [89, 92, 96, 97], "h_": [89, 92, 96, 97], "f_": [89, 90, 91, 92, 97], "jk": [89, 92, 97], "shallow": [89, 95], "round": [89, 104, 113, 114], "fashion": [89, 125, 126], "cut": [89, 108], "pick": 89, "converg": [89, 94, 97, 117, 120], "piecewis": [89, 91, 92, 96, 97], "superior": 97, "hyperparamet": [75, 89, 90, 91, 92, 93, 94, 95, 96, 97], "sacrific": 89, "rate": [89, 94, 99, 100, 108, 113, 114, 115, 116, 118, 119, 123, 124, 127, 128, 129, 130], "256": [89, 113, 114, 127, 128, 129, 130], "outlier": [89, 108, 109, 110, 112], "togeth": [89, 91, 92, 93, 94, 102, 115, 116, 118, 119], "pm": [89, 92], "somehow": 89, "correct": [89, 105, 106], "night": 89, "spring": 89, "domin": [89, 97], "part": [89, 90, 97], "0818": 89, "06": [89, 92, 97], "similarli": [89, 90, 94, 97, 102], "almost": 89, "contrast": [89, 90, 93, 96, 97, 99], "recent": [90, 106], "cart": 90, "special": [90, 94, 96], "f_k": 90, "mathbf": 90, "manner": [90, 108], "pseudo": 90, "express": [90, 91, 94, 97, 118, 119], "form": [90, 93, 94, 95, 97, 99, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "search": [90, 100, 125, 126], "whichev": 90, "author": 90, "imodel": [90, 115, 116], "re": [90, 96, 110, 115, 116], "integ": [90, 113, 114, 125, 126], "unlimit": [90, 125, 126], "criteria": [90, 125, 126], "control": [90, 91, 94, 95, 96, 100, 103, 112, 125, 126], "hardli": 90, "gain": [90, 125], "along": [90, 105], "scheme": [78, 90], "hierarch": 90, "dendrogram": 90, "subplot": [90, 94, 99], "middl": [90, 99], "deeper": 90, "rightmost": 90, "convei": 90, "dark": 90, "necessari": [90, 99], "decsion_tre": 90, "distinguish": [77, 90, 92, 99, 105, 108], "099": 90, "094": 90, "extens": [], "primari": 91, "equat": [91, 94, 125, 126], "unknown": 91, "smooth": [91, 92, 99, 115, 116, 117, 120, 125, 126], "varieti": 91, "ensur": [91, 95, 96, 97, 103, 112], "degre": [91, 101], "polynomi": 91, "quadrat": 91, "cubic": 91, "knot": 91, "anchor": 91, "With": [91, 93, 96], "intric": 91, "poorer": 91, "penalti": [91, 93, 94, 117, 120], "prevent": [91, 101], "encourag": 91, "simpler": [91, 94, 96], "generaliz": 91, "smoother": 91, "convers": 91, "rougher": 91, "slope": 91, "flat": 91, "steep": 91, "sharp": 91, "incom": 91, "_j": [91, 96], "latitud": [91, 96], "longitud": [91, 96], "strongest": 91, "drive": 91, "3804": 91, "reformul": 92, "disentangl": [92, 94], "feedforward": [92, 94], "subnetwork": [92, 118, 119], "hidden": [92, 94, 118, 119, 123, 124], "layer": [92, 94, 118, 119, 123, 124], "parsimoni": [92, 97], "hered": [92, 118, 119], "least": [92, 94, 96, 115, 116, 122, 125, 126], "parent": 92, "clariti": [92, 118, 119], "mutual": [75, 92], "purif": [92, 97, 117, 118, 119, 120, 127, 128], "constrain": [92, 96], "decreas": [92, 96, 103, 115, 116, 118, 119, 125, 126, 127, 128, 129, 130], "impos": [92, 118, 119, 123, 124], "gaminet": 92, "prune": [92, 97, 118, 119, 125, 126], "trivial": [92, 94, 97], "retrain": 92, "simultan": 92, "fine": [92, 118, 119], "tune": [92, 96, 108, 118, 119], "activ": [92, 94, 97, 118, 119, 123, 124], "saturdai": 92, "sundai": 92, "mondai": 92, "fridai": 92, "compon": [92, 94, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "aggreg": [92, 93, 97, 117, 118, 119, 120, 127, 128], "w_1": 93, "x_1": 93, "w_2": 93, "x_2": 93, "w_d": 93, "x_d": 93, "ident": [93, 94, 99, 102, 125, 126], "logit": 93, "l2": [93, 121, 122, 126, 127, 128, 129, 130], "l1_regularz": [93, 121, 122], "penal": [93, 94, 118, 119], "l2_regularz": [93, 121, 122], "shrink": [93, 94], "toward": [93, 94], "closer": [], "variant": [93, 96], "linear_model": 93, "linearregress": 93, "constrainst": 93, "ridg": [93, 122], "elasticnet": [93, 122], "elast": 93, "logisticregress": 93, "hold": [69, 93], "binomi": [], "address": [93, 105], "issu": [93, 118, 119, 123, 124], "associ": [93, 125], "opposit": [93, 110], "temperatur": [93, 97], "humid": 93, "convert": [93, 110, 112, 125, 126], "separ": [93, 96, 99], "dummi": 93, "season_4": 93, "multicollinear": [], "overparameter": 93, "fourth": 93, "nonlinear": [93, 94], "print": 93, "screen": [93, 118, 119], "export": 93, "w_j": 93, "behavior": 93, "longer": 93, "stem": 93, "unstabl": [93, 94], "turn": [93, 96, 118, 119], "field": 102, "rectifi": 94, "remark": 94, "appeal": 94, "excel": 94, "intrins": 94, "overview": 94, "neuron": 94, "chi": 94, "mbox": 94, "eta": [94, 96, 97, 127, 128, 129, 130], "sigmoid": [94, 118, 119], "despit": 94, "said": 94, "equiv": 94, "n_l": 94, "exhibit": 94, "simplifi": [94, 96], "tild": 94, "oper": [94, 95], "tupl": [94, 108, 111, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130], "poor": 94, "1e": [94, 108, 113, 114, 118, 119, 123, 124], "descent": 94, "unpen": 94, "float": [94, 108, 109, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "critic": [94, 102], "unnecessarili": 94, "long": [94, 117, 120, 125, 126], "wherea": 94, "5153": 94, "105570": 94, "584421": 94, "735054": 94, "static": 94, "wide": [94, 99], "roughli": 94, "vice": 94, "versa": 94, "impli": 94, "upon": [94, 99, 104], "eleg": 94, "belong": [94, 100], "diagon": [94, 99], "decomposit": [94, 96], "uniformli": [94, 118, 119], "sin": 94, "epsilon": 94, "n_featur": [94, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130], "influenti": 95, "render": 95, "wrapper": [95, 97, 110, 117, 120, 121, 122, 125, 126], "decisiontreeregressor": 95, "often": 95, "suffer": 95, "rule": [95, 111, 115, 116], "criterion": [95, 125, 126], "branch": [95, 115, 116, 125, 126], "easier": [95, 96], "suitabl": [93, 96], "restrict": 96, "stump": 96, "deriv": [96, 118, 119], "stage": [96, 113, 114, 118, 119, 123, 124], "adapt": [93, 96], "optim": [87, 96, 99, 108, 118, 119, 127, 128], "optbin": [96, 106, 127, 128], "woe": 96, "refit": [96, 127, 128], "firstli": 96, "arrang": 96, "format": 96, "taken": 96, "inherit": [96, 97], "tree_method": [96, 97, 105, 127, 128, 129, 130], "reg_lambda": [96, 97, 127, 128, 129, 130], "reg_alpha": [96, 97, 127, 128, 129, 130], "feature_nam": [96, 105, 108, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "correctli": [96, 99, 113, 115, 118, 123, 125, 127, 129], "max_n_bin": 96, "strike": 96, "difficulti": 96, "fit_method": 96, "addition": [96, 97, 99, 103], "iv": 96, "aid": 96, "accompani": 96, "trend": 96, "plateau": 96, "geograph": 96, "amplifi": 96, "lontitud": 96, "restructur": 97, "proce": 97, "enforc": [97, 117, 120], "feel": 97, "celsiu": 97, "50": [97, 104, 111, 113, 114, 123, 124], "comfort": 97, "outdoor": 97, "cooler": 97, "hotter": 97, "willing": 97, "ride": 97, "bicycl": 97, "0606": 97, "summat": 97, "plu": [97, 99], "sklearn_metr": 99, "y_": [99, 102, 117, 118, 119, 120, 127, 128], "character": 99, "ideal": [99, 102], "width": [78, 99, 100, 102], "band": 99, "residual_plot": 99, "analyz": [93, 99, 102], "appar": 99, "notabl": [99, 103], "heterogen": 99, "reason": [99, 105], "evenli": 99, "noteworthi": 99, "_predict": 99, "variat": [99, 104], "made": [69, 99, 100], "imbalanc": 99, "alon": 99, "whose": 99, "guess": [99, 112], "harmon": 99, "2tp": 99, "fp": [99, 100], "fn": [99, 100], "resembl": 99, "scatterplot": 99, "lowess": 99, "thorough": 99, "mislabel": 99, "abil": [99, 102, 103], "tpr": 99, "fpr": 99, "tradeoff": 99, "irrelev": 99, "imparti": 100, "were": 100, "ethnic": 100, "sexual": 100, "orient": 100, "disabl": [100, 108], "advers": [100, 108], "tp_": 100, "fn_": 100, "tp": 100, "smd": [100, 108], "outcome_x": 100, "fp_": 100, "span": 100, "dictionari": [100, 115, 116, 117, 120, 125, 126], "accuracy_scor": 100, "f1_score": 100, "dash": 100, "ax": 100, "fail": 101, "unseen": [101, 102], "neighbor": 101, "cost": [101, 118, 119, 125, 126], "previous": [101, 105], "warn": [101, 105, 125, 126], "messag": [101, 105, 106], "biksshar": 101, "017079": 101, "015575": 101, "001504": 101, "285": 101, "005226": 101, "004305": 101, "000921": 101, "1743": 101, "006050": 101, "005585": 101, "000465": 101, "7am": 101, "9am": 101, "0171": 101, "0156": 101, "seen": 101, "pure": [101, 125, 126], "2am": 101, "55": [101, 103], "326087": 101, "369565": 101, "98480": 101, "036693": 101, "029954": 101, "006739": 101, "282609": 101, "013106": 101, "011935": 101, "001172": 101, "000000": [101, 105], "065217": 101, "55305": 101, "831": 101, "001208": 101, "000855": 101, "000353": 101, "trustworthi": 102, "healthcar": 102, "financ": 102, "safeti": 102, "crqr": 102, "exchang": 102, "epsilon_": 102, "s_": 102, "construct": 102, "confid": 102, "gbdt": 102, "88705": 102, "232974": 102, "88": [102, 105], "233": 102, "2563": 102, "wise": [102, 112], "conclud": 102, "discret": [78, 102, 104], "dot": [102, 103, 105, 108], "matur": 102, "isoton": 102, "maintain": 103, "unexpect": [103, 104], "situat": 103, "likelihood": 103, "bad": [103, 108], "mostli": 103, "akin": 103, "steadili": 103, "declin": 103, "unsupervis": [103, 105, 111, 112], "necessarili": [103, 112], "lowest": 103, "thought": 103, "recalcul": 103, "moder": 103, "encount": 104, "drift": 104, "aris": [104, 105], "alter": 104, "underli": [104, 125, 126], "showcas": 104, "leverag": 104, "lambda": [104, 123, 124], "var": 104, "sai": [104, 105], "86": 104, "invers": [104, 125], "ten": 104, "encapsul": 104, "look": [104, 108, 125, 126], "wors": [104, 114, 116, 119, 124, 126, 128, 130], "poorli": 104, "underperform": 105, "inadequ": 105, "inappropri": 105, "insuffici": 105, "filter": 105, "connect": 105, "merg": 105, "min_samples_leaf": [105, 111, 113, 114, 115, 116, 125, 126], "n_estimaor": 105, "hist": [105, 127, 128, 129, 130], "granular": 105, "723": 105, "boolean": [105, 115, 116], "annot": 105, "695652": 105, "689587": 105, "006065": 105, "test_metr": 105, "train_metr": 105, "No": [105, 106, 123, 124], "250000": 105, "691099": 105, "678750": 105, "012349": 105, "111111": 105, "222222": 105, "727612": 105, "717573": 105, "010039": 105, "375000": 105, "625000": 105, "720497": 105, "717134": 105, "003362": 105, "333333": 105, "555556": 105, "612536": 105, "614685": 105, "002150": 105, "750000": 105, "621951": 105, "003049": 105, "o": 106, "py37": 106, "py38": 106, "py39": 106, "py310": 106, "win": 106, "linux": 106, "maco": 106, "environ": 106, "pip": 106, "ipywidget": 106, "joblib": 106, "ipython": 106, "seaborn": 106, "xlrd": 106, "torch": [106, 118, 119], "natsort": 106, "psutil": 106, "dill": 106, "ortool": 106, "momentchi2": 106, "possbl": 106, "upgrad": 106, "reinstal": 106, "try": 106, "conda": 106, "forg": 106, "runtimeerror": 106, "traceback": 106, "compil": 106, "0x10": 106, "0xf": 106, "restart": 106, "runtim": 106, "guidelin": 107, "highcode_onli": 108, "str": [108, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "bool": [108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "css": 108, "ingest": 108, "union": 108, "datafram": [0, 9, 18, 108], "pass": [108, 112, 117, 120, 125, 126], "program": [87, 108], "trime": 108, "preview": 108, "unicod": 108, "wheter": 108, "arrai": [108, 109, 110, 112, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130], "n_samples_train": 108, "n_samples_test": 108, "kmeanstre": 108, "dict": [108, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "99": 108, "forward": 108, "backward": 108, "use": 108, "earli": [108, 113, 114, 115, 116, 118, 119, 123, 124], "fbedk": 108, "get_data": 108, "ndarrai": [108, 109, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130], "n_sampl": [108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130], "workfolw": 108, "Not": [108, 110, 112], "get_feature_nam": 108, "get_feature_typ": 108, "get_model": 108, "modelpipelin": 108, "get_model_config": 108, "get_raw_data": 108, "datatupl": 108, "train_sample_weight": 108, "test_sample_weight": 108, "target_nam": 108, "get_target_nam": 108, "normalize_strategi": 108, "encode_strategi": 108, "excluded_featur": 108, "style": 108, "minmax": 108, "unit_norm": 108, "one_hot": 108, "xndarrai": 108, "param": [108, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "regressor": [108, 114, 116, 119, 120, 122, 124, 126, 128, 130], "insid": 108, "whther": 108, "testdataresult": [108, 117, 118, 119, 120, 125, 126, 127, 128], "diagnos": 108, "repeatit": 108, "substract": 108, "metric_threshold": 108, "favorable_class": 108, "thresholding_bin": 108, "by_weight": 108, "binar": 108, "segement": 108, "rsmd": 108, "categorical_feature_nam": 108, "savedmodel": 108, "save": [108, 118, 119, 133], "self": [108, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "get_all_supported_model": 108, "model_tun": 108, "max_interaction_bin": [113, 114], "outer_bag": [113, 114], "inner_bag": [113, 114], "validation_s": [113, 114], "early_stopping_round": [113, 114], "early_stopping_toler": [113, 114], "0001": [113, 114, 118, 119], "max_round": [113, 114], "max_leav": [111, 113, 114], "n_job": [110, 113, 114, 118, 119], "quantile_human": [113, 114], "bag": [110, 113, 114], "inner": [113, 114], "toler": [112, 113, 114, 118, 119], "dictat": [113, 114], "smallest": [112, 113, 114], "delta": [113, 114], "job": [113, 114], "cpu": [113, 114, 118, 119, 123, 124], "decision_funct": [109, 110, 111, 112, 113, 114, 115, 117, 118, 123, 127, 129], "arg": [113, 114, 117, 120, 121, 127, 128], "get_param": [110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "subobject": [110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "map": [110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "model_unwrapp": [113, 114, 123, 124, 129, 130], "placehold": [113, 114], "unp": [113, 114, 123, 124, 129, 130], "ebmexplain": [113, 114], "multi": [113, 115, 118, 123, 124, 125, 127, 129], "harsh": [113, 115, 118, 123, 125, 127, 129], "n_output": [113, 114, 115, 116, 118, 119, 123, 124, 125, 126, 127, 128, 129, 130], "wrt": [113, 114, 115, 116, 118, 119, 123, 124, 125, 126, 127, 128, 129, 130], "set_param": [110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "nest": [110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "__": [110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "updat": [87, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "y_true": [114, 116, 119, 124, 126, 128, 130], "y_pred": [114, 116, 119, 124, 126, 128, 130], "arbitrarili": [114, 116, 119, 124, 126, 128, 130], "disregard": [114, 116, 119, 124, 126, 128, 130], "precomput": [114, 116, 119, 124, 126, 128, 130], "n_samples_fit": [114, 116, 119, 124, 126, 128, 130], "multioutput": [114, 116, 119, 124, 125, 126, 128, 130], "uniform_averag": [114, 116, 119, 124, 126, 128, 130], "r2_score": [114, 116, 119, 124, 126, 128, 130], "multioutputregressor": [114, 116, 119, 124, 126, 128, 130], "splitter": [115, 116, 125, 126], "min_impurity_decreas": [115, 116, 125, 126], "concis": [115, 116], "csinva": [115, 116], "splite": [111, 115, 116], "leav": [111, 115, 116, 125, 126], "induc": [115, 116, 125, 126], "impur": [115, 116, 125, 126], "feature_names_": [115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "feature_types_": [115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "n_features_in_": [110, 111, 115, 116, 118, 119, 123, 124, 125, 126, 127, 128, 129, 130], "intercept_": [115, 116, 127, 128], "trees_": [115, 116], "n_tree_": [115, 116], "n_iter_": [115, 116], "iteract": [115, 116], "early_stop_": [115, 116], "tree_importance_": [115, 116], "explain_tre": [115, 116], "get_tree_diag": [115, 116, 125, 126], "get_tree_heatmap": [115, 116], "global_explain": [115, 116, 117, 118, 119, 120], "global_interpret": [115, 116, 117, 118, 119, 120, 125, 126, 127, 128], "interpret_local_tre": [115, 116, 125, 126], "local_explain": [115, 116], "plot_feature_importance_heatmap": [115, 116], "plot_local_tre": [115, 116, 125, 126], "plot_tree_diag": [115, 116, 125, 126], "get_binary_matrix": [115, 116], "get_binary_represent": [115, 116], "get_depth": [115, 116, 125, 126], "get_depths_interact": [115, 116], "pred": [115, 116, 118, 119, 123, 124, 127, 128, 129, 130], "pred_proba": [115, 118, 123, 127, 129], "proba": [115, 118, 125, 127, 129], "update_tree_import": [115, 116], "stronger": [117, 120], "solver": [112, 117, 120], "get_interaction_effect": [117, 118, 119, 120, 127, 128], "interpret_effect": [117, 118, 119, 120, 127, 128], "interpret_ei": [117, 118, 119, 120, 127, 128], "interpret_local_ei": [117, 118, 119, 120, 127, 128], "plot_ei": [117, 118, 119, 120, 127, 128], "plot_interaction_effect": [117, 118, 119, 120, 127, 128], "plot_local_ei": [117, 118, 119, 120, 127, 128], "plot_main_effect": [117, 118, 119, 120, 127, 128], "get_main_effect": [117, 118, 119, 120, 127, 128], "truncate_dict": [117, 120, 125, 126], "interpret_fi": [117, 118, 119, 120, 127, 128], "interpret_local_fi": [117, 118, 119, 120, 127, 128], "local_feature_explain": [117, 118, 119, 120, 127, 128], "plot_fi": [117, 118, 119, 120, 127, 128], "interpret_result": [117, 118, 119, 120, 125, 126, 127, 128], "max_show": [117, 118, 119, 120, 127, 128], "return_fig": [117, 118, 119, 120, 125, 126, 127, 128], "plot_local_fi": [117, 118, 119, 120, 127, 128], "interact_num": [118, 119], "subnet_size_main_effect": [118, 119], "subnet_size_interact": [118, 119], "activation_func": [118, 119], "max_epoch": [118, 119, 123, 124], "early_stop_thr": [118, 119], "auto": [110, 112, 118, 119, 125, 126, 127, 128, 129, 130], "batch_siz": [118, 119, 123, 124], "batch_size_infer": [118, 119, 123, 124], "max_iter_per_epoch": [118, 119], "val_ratio": [118, 119, 123, 124], "warm_start": [110, 118, 119], "gam_sample_s": [118, 119], "mlp_sample_s": [118, 119], "reg_clar": [118, 119], "loss_threshold": [118, 119], "reg_mono": [118, 119], "mono_sample_s": [118, 119], "include_interaction_list": [118, 119], "boundary_clip": [118, 119], "verbos": [110, 118, 119, 123, 124], "devic": [118, 119, 123, 124], "tanh": [118, 119], "epoch": [118, 119, 123, 124], "batch": [118, 119, 123, 124], "init": [118, 119], "clip": [118, 119], "reshuffl": [118, 119], "ratiom": [118, 119], "rough": [118, 119], "tensor": [118, 119], "teacher": [118, 119], "sub": [118, 119], "achiv": [118, 119], "spacec": [118, 119], "feature_name1": [118, 119], "feature_name2": [118, 119], "core": [118, 119], "hardwar": [118, 119], "net_": [118, 119, 123, 124], "data_dict_density_": [118, 119], "err_train_main_effect_training_": [118, 119], "err_val_main_effect_training_": [118, 119], "err_train_interaction_training_": [118, 119], "err_val_interaction_training_": [118, 119], "err_train_tuning_": [118, 119], "err_val_tuning_": [118, 119], "interaction_list_": [118, 119], "active_main_effect_index_": [118, 119], "active_interaction_index_": [118, 119], "main_effect_val_loss_": [118, 119], "interaction_val_loss_": [118, 119], "time_cost_": [118, 119], "clarity_": [118, 119], "monotonicity_": [118, 119], "is_fitted_": [109, 111, 118, 119, 123, 124, 127, 128, 129, 130], "n_interactions_": [118, 119], "dummy_values_": [118, 119], "cfeature_num_": [118, 119], "nfeature_num_": [118, 119], "cfeature_names_": [118, 119], "nfeature_names_": [118, 119], "cfeature_index_list_": [118, 119], "nfeature_index_list_": [118, 119], "num_classes_list_": [118, 119], "mu_list_": [118, 119], "std_list_": [118, 119], "min_value_": [118, 119, 127, 128], "max_value_": [118, 119, 127, 128], "mono_increasing_list_index_": [118, 119], "mono_decreasing_list_index_": [118, 119], "include_interaction_list_index_": [118, 119], "training_generator_": [118, 119], "fasttensordataload": [118, 119], "validation_generator_": [118, 119], "warm_init_main_effect_data_": [118, 119], "warm": [118, 119], "warm_init_interaction_data_": [118, 119], "main_effect_norm_": [118, 119], "interaction_norm_": [118, 119], "feature_importance_": [118, 119, 127, 128, 129, 130], "data_dict_global_": [118, 119], "certify_mono": [118, 119], "certifi": [118, 119], "satisfi": [118, 119], "mono_statu": [118, 119], "main_effect": [118, 119], "softmax": [118, 123, 124, 129], "fine_tune_select": [118, 119], "main_effect_list": [118, 119], "interaction_list": [118, 119], "lr": [118, 119], "unselect": [118, 119], "norm": [118, 119], "get_aggregate_output": [118, 119], "get_clarity_loss": [118, 119], "clarity_loss": [118, 119], "get_effect_import": [118, 119], "get_feature_import": [118, 119], "get_global_effects_": [118, 119], "main_grid_s": [118, 119], "interact_grid_s": [118, 119], "grid": [118, 119], "get_interaction_raw_output": [118, 119], "n_interact": [118, 119], "get_main_effect_raw_output": [118, 119], "get_mono_loss": [118, 119], "mono_loss": [118, 119], "folder": [118, 119], "disk": [118, 119], "local_effect_explain": [118, 119], "partial_deriv": [118, 119], "plote": [118, 119], "update_effect_import": [118, 119], "update_feature_import": [118, 119, 127, 128], "kwarg": 121, "regularz": [121, 122], "fit_intercept": 122, "ordinari": 122, "dropout_prob": [123, 124], "n_epoch_no_chang": [123, 124], "iht": [123, 124], "phase_epoch": [123, 124], "perceptron": [123, 124], "dropout": [123, 124], "doesn": [123, 124], "early_stop": [123, 124], "cuda": [123, 124], "statit": [123, 124], "coefs_": [123, 124], "len": [123, 124], "ith": [123, 124], "intercepts_": [123, 124], "no_improved_count_": [123, 124], "train_epoch_loss_": [123, 124], "valid_epoch_loss_": [123, 124], "get_raw_output": [123, 124], "unwrapperclassifi": 123, "funciton": [123, 124], "unwrapperregressor": 124, "min_samples_split": [125, 126], "min_weight_fraction_leaf": [125, 126], "max_featur": [110, 125, 126], "max_leaf_nod": [125, 126], "ccp_alpha": [125, 126], "docstr": [125, 126], "gini": [125, 126], "entropi": 125, "log_loss": 125, "shannon": 125, "fraction": [74, 125, 126, 127, 128], "ceil": [125, 126], "log2": [125, 126], "randomst": [125, 126], "determinist": [125, 126], "behaviour": [125, 126], "n_t": [125, 126], "n_t_r": [125, 126], "right_impur": [125, 126], "n_t_l": [125, 126], "left_impur": [125, 126], "child": [111, 125, 126], "class_weight": 125, "class_label": 125, "multilabel": 125, "n_class": 125, "bincount": 125, "subtre": [125, 126], "classes_": 125, "feature_importances_": [125, 126], "max_features_": [125, 126], "n_classes_": 125, "n_outputs_": [125, 126], "tree_": [111, 125, 126], "check_input": [125, 126], "dtype": [110, 125, 126], "float32": [110, 125, 126], "csr_matrix": [110, 125, 126], "bypass": [125, 126], "unless": [125, 126], "x_leav": [125, 126], "datapoint": [125, 126], "node_count": [111, 125, 126], "possibli": [125, 126], "cost_complexity_pruning_path": [125, 126], "minimal_cost_complexity_prun": [125, 126], "csc_matrix": [110, 125, 126], "carri": [125, 126], "ccp_path": [125, 126], "bunch": [125, 126], "decision_path": [111, 125, 126], "n_node": [125, 126], "csr": [125, 126], "goe": [125, 126], "brought": [125, 126], "mislead": [125, 126], "cardin": [125, 126], "get_n_leav": [125, 126], "n_leav": [125, 126], "useless": [125, 126], "n_features_": [110, 125, 126], "deprec": [110, 125, 126], "predict_log_proba": 125, "squared_error": 126, "friedman_ms": 126, "absolute_error": 126, "poisson": 126, "devianc": 126, "refit_method": [127, 128], "max_bin_s": [127, 128], "true_to_data": [127, 128], "xgboostclassifi": [127, 129], "exact": [112, 127, 128, 129, 130], "approx": [127, 128, 129, 130], "gpu_hist": [127, 128, 129, 130], "split_info_": [127, 128, 129, 130], "n_splits_raw_": [127, 128, 129, 130], "totoal": [111, 127, 128, 129, 130], "n_splits_": [127, 128, 129, 130], "xgb_params_": [127, 128, 129, 130], "effects_": [127, 128], "get_binning_result": [127, 128], "get_global_effect": [127, 128], "global_visualize_dict": [127, 128], "interpret_iv": [127, 128], "include_intercept": [127, 128], "plot_iv": [127, 128], "plot_wo": [127, 128], "xgboostregressor": [128, 130], "xgbunwrapperclassifi": 129, "xgbunwrapperregressor": 130, "quick": 131, "troubleshoot": 131, "plan": 133, "fei": 75, "toni": 75, "kai": 75, "ming": 75, "zhi": 75, "hua": 75, "ieeexplor": [], "abstract": [], "4781136": [], "citep": 87, "yang2020enhanc": [], "yang2021gami": [], "sudjianto2020unwrap": [], "pimldoc": 87, "v0": 87, "latest": 87, "guillermo2020": 87, "nava": 87, "palencia": 87, "guillermo": 87, "08025": 87, "dx": 78, "sup_x": 78, "553": 1, "plot_0_data_loader_builtin": [1, 9], "656": 2, "plot_0_data_loader_datafram": [2, 9], "209": [], "pairwisepearson": 72, "rational": 75, "ii": 77, "iii": 77, "kullback": 78, "leibler": 78, "d_": 78, "kl": 78, "p_i": 78, "q_i": 78, "asymmetr": 78, "resect": 78, "quartil": 76, "sumd": [], "079349": 5, "523": [5, 9], "1146": 5, "1145": 9, "iqr_scal": [109, 110, 111, 112], "clustering_threshold": 109, "gmm": 109, "base_estimator_": 109, "cluster_centers_": 109, "cluster_sizes_": 109, "small_cluster_labels_": 109, "large_cluster_labels_": 109, "detector": [109, 112], "anomaly_scor": 109, "max_sampl": 110, "bootstrap": 110, "estimators_samples_": 110, "drawn": 110, "isol": 110, "n_left": 110, "abnorm": 110, "inlier": 110, "dynam": 110, "footprint": 110, "store": 110, "convent": [110, 112], "fit_predict": 110, "is_inli": 110, "score_sampl": 110, "n_compon": [111, 112], "d_reduction_method": [111, 112], "min_dist": 111, "distance_measur": 111, "reconsterr": 111, "distance_measure_param": 111, "deafult": 111, "64": 111, "callabl": 111, "n_samples1": 111, "n_samples2": 111, "node_count_": 111, "leaf_idx_list_": 111, "calculate_spca": 111, "dist": 111, "path_al": 111, "get_rul": 111, "node_id": 111, "defulat": 111, "whihc": 111, "inequ": 111, "plot_tre": 111, "draw_depth": 111, "inf": 111, "start_node_id": 111, "predict_leaf_id": 111, "n_selected_compon": 112, "cumulative_vari": 112, "score_typ": 112, "copi": 112, "whiten": 112, "svd_solver": 112, "tol": 112, "iterated_pow": 112, "kept": 112, "mle": 112, "minka": 112, "arpack": 112, "princip": 112, "overwritten": 112, "yield": 112, "fit_transform": 112, "components_": 112, "singular": 112, "uncorrel": 112, "signal": 112, "downstream": 112, "wire": 112, "polici": 112, "500x500": 112, "svd": 112, "afterward": 112, "lapack": 112, "linalg": 112, "postprocess": 112, "strictli": 112, "halko": 112, "sparser": 112, "auto_exampl": 112, "plot_scaling_import": 112, "warpper": 75, "he2003": 75, "zengyou": 75, "xiaofei": 75, "shengchun": 75, "2003": 75, "discov": 75, "letter": 75, "1641": 75, "1650": 75, "basd": 112, "basi": [68, 70], "african": 69, "american": 69, "white": 69, "women": 69, "men": 69, "discrimin": 69, "those": 69, "conclus": [69, 70], "plotfirst": 70, "se": 70, "_i": 70, "literatur": 93, "reader": 93, "consult": 93, "mccullagh1989": 93, "shrunk": 93, "mccullagh": 93, "john": 93, "nelder": 93, "1989": 93, "chapman": 93, "hall": 93, "edit": 93, "again": 70, "ae": 70}, "objects": {"piml": [[108, 0, 1, "", "Experiment"]], "piml.Experiment": [[108, 1, 1, "", "data_loader"], [108, 1, 1, "", "data_prepare"], [108, 1, 1, "", "data_quality_check"], [108, 1, 1, "", "data_summary"], [108, 1, 1, "", "eda"], [108, 1, 1, "", "feature_select"], [108, 1, 1, "", "get_data"], [108, 1, 1, "", "get_feature_names"], [108, 1, 1, "", "get_feature_types"], [108, 1, 1, "", "get_model"], [108, 1, 1, "", "get_model_config"], [108, 1, 1, "", "get_raw_data"], [108, 1, 1, "", "get_target_name"], [108, 1, 1, "", "make_pipeline"], [108, 1, 1, "", "model_compare"], [108, 1, 1, "", "model_diagnose"], [108, 1, 1, "", "model_explain"], [108, 1, 1, "", "model_fairness"], [108, 1, 1, "", "model_fairness_compare"], [108, 1, 1, "", "model_fairness_solas"], [108, 1, 1, "", "model_interpret"], [108, 1, 1, "", "model_save"], [108, 1, 1, "", "model_train"], [108, 1, 1, "", "model_tune"], [108, 1, 1, "", "register"], [108, 1, 1, "", "twosample_test"]], "piml.data.outlier_detection": [[109, 0, 1, "", "CBLOF"], [110, 0, 1, "", "IsolationForest"], [111, 0, 1, "", "KMeansTree"], [112, 0, 1, "", "PCA"]], "piml.data.outlier_detection.CBLOF": [[109, 1, 1, "", "decision_function"]], "piml.data.outlier_detection.IsolationForest": [[110, 1, 1, "", "decision_function"], [110, 2, 1, "", "estimators_samples_"], [110, 1, 1, "", "fit"], [110, 1, 1, "", "fit_predict"], [110, 1, 1, "", "get_params"], [110, 2, 1, "", "n_features_"], [110, 1, 1, "", "predict"], [110, 1, 1, "", "score_samples"], [110, 1, 1, "", "set_params"]], "piml.data.outlier_detection.KMeansTree": [[111, 1, 1, "", "decision_path"], [111, 1, 1, "", "fit"], [111, 1, 1, "", "get_params"], [111, 1, 1, "", "get_rule"], [111, 1, 1, "", "plot_tree"], [111, 1, 1, "", "predict_leaf_id"], [111, 1, 1, "", "set_params"]], "piml.data.outlier_detection.PCA": [[112, 1, 1, "", "decision_function"], [112, 1, 1, "", "fit"]], "piml.models": [[113, 0, 1, "", "ExplainableBoostingClassifier"], [114, 0, 1, "", "ExplainableBoostingRegressor"], [115, 0, 1, "", "FIGSClassifier"], [116, 0, 1, "", "FIGSRegressor"], [117, 0, 1, "", "GAMClassifier"], [118, 0, 1, "", "GAMINetClassifier"], [119, 0, 1, "", "GAMINetRegressor"], [120, 0, 1, "", "GAMRegressor"], [121, 0, 1, "", "GLMClassifier"], [122, 0, 1, "", "GLMRegressor"], [123, 0, 1, "", "ReluDNNClassifier"], [124, 0, 1, "", "ReluDNNRegressor"], [125, 0, 1, "", "TreeClassifier"], [126, 0, 1, "", "TreeRegressor"], [127, 0, 1, "", "XGB1Classifier"], [128, 0, 1, "", "XGB1Regressor"], [129, 0, 1, "", "XGB2Classifier"], [130, 0, 1, "", "XGB2Regressor"]], "piml.models.ExplainableBoostingClassifier": [[113, 1, 1, "", "decision_function"], [113, 1, 1, "", "fit"], [113, 1, 1, "", "get_params"], [113, 1, 1, "", "model_unwrapper"], [113, 1, 1, "", "predict"], [113, 1, 1, "", "predict_proba"], [113, 1, 1, "", "score"], [113, 1, 1, "", "set_params"]], "piml.models.ExplainableBoostingRegressor": [[114, 1, 1, "", "decision_function"], [114, 1, 1, "", "fit"], [114, 1, 1, "", "get_params"], [114, 1, 1, "", "model_unwrapper"], [114, 1, 1, "", "predict"], [114, 1, 1, "", "score"], [114, 1, 1, "", "set_params"]], "piml.models.FIGSClassifier": [[115, 1, 1, "", "decision_function"], [115, 1, 1, "", "fit"], [115, 1, 1, "", "get_binary_matrix"], [115, 1, 1, "", "get_binary_representation"], [115, 1, 1, "", "get_depths"], [115, 1, 1, "", "get_depths_interactions"], [115, 1, 1, "", "get_params"], [115, 1, 1, "", "predict"], [115, 1, 1, "", "predict_proba"], [115, 1, 1, "", "score"], [115, 1, 1, "", "set_params"], [115, 1, 1, "", "update_tree_importance"]], "piml.models.FIGSRegressor": [[116, 1, 1, "", "fit"], [116, 1, 1, "", "get_binary_matrix"], [116, 1, 1, "", "get_binary_representation"], [116, 1, 1, "", "get_depths"], [116, 1, 1, "", "get_depths_interactions"], [116, 1, 1, "", "get_params"], [116, 1, 1, "", "predict"], [116, 1, 1, "", "score"], [116, 1, 1, "", "set_params"], [116, 1, 1, "", "update_tree_importance"]], "piml.models.GAMClassifier": [[117, 1, 1, "", "fit"], [117, 1, 1, "", "get_main_effect"], [117, 1, 1, "", "get_params"], [117, 1, 1, "", "global_interpret"], [117, 1, 1, "", "interpret_fi"], [117, 1, 1, "", "interpret_local_fi"], [117, 1, 1, "", "local_feature_explain"], [117, 1, 1, "", "plot_fi"], [117, 1, 1, "", "plot_local_fi"], [117, 1, 1, "", "set_params"]], "piml.models.GAMINetClassifier": [[118, 1, 1, "", "certify_mono"], [118, 1, 1, "", "decision_function"], [118, 1, 1, "", "fine_tune_selected"], [118, 1, 1, "", "fit"], [118, 1, 1, "", "get_aggregate_output"], [118, 1, 1, "", "get_clarity_loss"], [118, 1, 1, "", "get_effect_importance"], [118, 1, 1, "", "get_feature_importance"], [118, 1, 1, "", "get_global_effects_"], [118, 1, 1, "", "get_interaction_raw_output"], [118, 1, 1, "", "get_main_effect"], [118, 1, 1, "", "get_main_effect_raw_output"], [118, 1, 1, "", "get_mono_loss"], [118, 1, 1, "", "get_params"], [118, 1, 1, "", "interpret_fi"], [118, 1, 1, "", "interpret_local_fi"], [118, 1, 1, "", "load"], [118, 1, 1, "", "local_effect_explain"], [118, 1, 1, "", "local_feature_explain"], [118, 1, 1, "", "partial_derivatives"], [118, 1, 1, "", "plot_fi"], [118, 1, 1, "", "plot_local_fi"], [118, 1, 1, "", "predict"], [118, 1, 1, "", "predict_proba"], [118, 1, 1, "", "save"], [118, 1, 1, "", "score"], [118, 1, 1, "", "set_params"], [118, 1, 1, "", "update_effect_importance"], [118, 1, 1, "", "update_feature_importance"]], "piml.models.GAMINetRegressor": [[119, 1, 1, "", "certify_mono"], [119, 1, 1, "", "fine_tune_selected"], [119, 1, 1, "", "fit"], [119, 1, 1, "", "get_aggregate_output"], [119, 1, 1, "", "get_clarity_loss"], [119, 1, 1, "", "get_effect_importance"], [119, 1, 1, "", "get_feature_importance"], [119, 1, 1, "", "get_global_effects_"], [119, 1, 1, "", "get_interaction_raw_output"], [119, 1, 1, "", "get_main_effect"], [119, 1, 1, "", "get_main_effect_raw_output"], [119, 1, 1, "", "get_mono_loss"], [119, 1, 1, "", "get_params"], [119, 1, 1, "", "interpret_fi"], [119, 1, 1, "", "interpret_local_fi"], [119, 1, 1, "", "load"], [119, 1, 1, "", "local_effect_explain"], [119, 1, 1, "", "local_feature_explain"], [119, 1, 1, "", "partial_derivatives"], [119, 1, 1, "", "plot_fi"], [119, 1, 1, "", "plot_local_fi"], [119, 1, 1, "", "predict"], [119, 1, 1, "", "save"], [119, 1, 1, "", "score"], [119, 1, 1, "", "set_params"], [119, 1, 1, "", "update_effect_importance"], [119, 1, 1, "", "update_feature_importance"]], "piml.models.GAMRegressor": [[120, 1, 1, "", "fit"], [120, 1, 1, "", "get_main_effect"], [120, 1, 1, "", "get_params"], [120, 1, 1, "", "global_interpret"], [120, 1, 1, "", "interpret_fi"], [120, 1, 1, "", "interpret_local_fi"], [120, 1, 1, "", "local_feature_explain"], [120, 1, 1, "", "plot_fi"], [120, 1, 1, "", "plot_local_fi"], [120, 1, 1, "", "set_params"]], "piml.models.GLMClassifier": [[121, 1, 1, "", "get_params"], [121, 1, 1, "", "set_params"]], "piml.models.GLMRegressor": [[122, 1, 1, "", "get_params"], [122, 1, 1, "", "set_params"]], "piml.models.ReluDNNClassifier": [[123, 1, 1, "", "decision_function"], [123, 1, 1, "", "fit"], [123, 1, 1, "", "get_params"], [123, 1, 1, "", "get_raw_output"], [123, 1, 1, "", "model_unwrapper"], [123, 1, 1, "", "predict"], [123, 1, 1, "", "predict_proba"], [123, 1, 1, "", "score"], [123, 1, 1, "", "set_params"]], "piml.models.ReluDNNRegressor": [[124, 1, 1, "", "fit"], [124, 1, 1, "", "get_params"], [124, 1, 1, "", "get_raw_output"], [124, 1, 1, "", "model_unwrapper"], [124, 1, 1, "", "predict"], [124, 1, 1, "", "score"], [124, 1, 1, "", "set_params"]], "piml.models.TreeClassifier": [[125, 1, 1, "", "apply"], [125, 1, 1, "", "cost_complexity_pruning_path"], [125, 1, 1, "", "decision_path"], [125, 2, 1, "", "feature_importances_"], [125, 1, 1, "", "fit"], [125, 1, 1, "", "get_depth"], [125, 1, 1, "", "get_n_leaves"], [125, 1, 1, "", "get_params"], [125, 1, 1, "", "get_tree_diag"], [125, 1, 1, "", "global_interpret"], [125, 1, 1, "", "interpret_local_tree"], [125, 2, 1, "", "n_features_"], [125, 1, 1, "", "plot_local_tree"], [125, 1, 1, "", "plot_tree_diag"], [125, 1, 1, "", "predict"], [125, 1, 1, "", "predict_log_proba"], [125, 1, 1, "", "predict_proba"], [125, 1, 1, "", "score"], [125, 1, 1, "", "set_params"]], "piml.models.TreeRegressor": [[126, 1, 1, "", "apply"], [126, 1, 1, "", "cost_complexity_pruning_path"], [126, 1, 1, "", "decision_path"], [126, 2, 1, "", "feature_importances_"], [126, 1, 1, "", "fit"], [126, 1, 1, "", "get_depth"], [126, 1, 1, "", "get_n_leaves"], [126, 1, 1, "", "get_params"], [126, 1, 1, "", "get_tree_diag"], [126, 1, 1, "", "global_interpret"], [126, 1, 1, "", "interpret_local_tree"], [126, 2, 1, "", "n_features_"], [126, 1, 1, "", "plot_local_tree"], [126, 1, 1, "", "plot_tree_diag"], [126, 1, 1, "", "predict"], [126, 1, 1, "", "score"], [126, 1, 1, "", "set_params"]], "piml.models.XGB1Classifier": [[127, 1, 1, "", "decision_function"], [127, 1, 1, "", "fit"], [127, 1, 1, "", "get_main_effect"], [127, 1, 1, "", "get_params"], [127, 1, 1, "", "interpret_fi"], [127, 1, 1, "", "interpret_iv"], [127, 1, 1, "", "interpret_local_fi"], [127, 1, 1, "", "local_feature_explain"], [127, 1, 1, "", "plot_fi"], [127, 1, 1, "", "plot_iv"], [127, 1, 1, "", "plot_local_fi"], [127, 1, 1, "", "plot_woe"], [127, 1, 1, "", "predict"], [127, 1, 1, "", "predict_proba"], [127, 1, 1, "", "score"], [127, 1, 1, "", "set_params"], [127, 1, 1, "", "update_feature_importance"]], "piml.models.XGB1Regressor": [[128, 1, 1, "", "fit"], [128, 1, 1, "", "get_main_effect"], [128, 1, 1, "", "get_params"], [128, 1, 1, "", "interpret_fi"], [128, 1, 1, "", "interpret_iv"], [128, 1, 1, "", "interpret_local_fi"], [128, 1, 1, "", "local_feature_explain"], [128, 1, 1, "", "plot_fi"], [128, 1, 1, "", "plot_iv"], [128, 1, 1, "", "plot_local_fi"], [128, 1, 1, "", "plot_woe"], [128, 1, 1, "", "predict"], [128, 1, 1, "", "score"], [128, 1, 1, "", "set_params"], [128, 1, 1, "", "update_feature_importance"]], "piml.models.XGB2Classifier": [[129, 1, 1, "", "decision_function"], [129, 1, 1, "", "fit"], [129, 1, 1, "", "get_params"], [129, 1, 1, "", "model_unwrapper"], [129, 1, 1, "", "predict"], [129, 1, 1, "", "predict_proba"], [129, 1, 1, "", "score"], [129, 1, 1, "", "set_params"]], "piml.models.XGB2Regressor": [[130, 1, 1, "", "fit"], [130, 1, 1, "", "get_params"], [130, 1, 1, "", "model_unwrapper"], [130, 1, 1, "", "predict"], [130, 1, 1, "", "score"], [130, 1, 1, "", "set_params"]]}, "objtypes": {"0": "py:class", "1": "py:method", "2": "py:property"}, "objnames": {"0": ["py", "class", "Python class"], "1": ["py", "method", "Python method"], "2": ["py", "property", "Python property"]}, "titleterms": {"data": [0, 1, 2, 3, 5, 6, 18, 62, 63, 64, 65, 66, 71, 73, 74, 75, 76, 86, 102, 107, 109, 110, 111, 112], "pipelin": [0, 18, 71, 107], "load": [1, 2, 62, 63, 64, 65, 66, 73, 86, 106], "summari": [3, 76, 84, 94], "eda": 4, "prepar": [5, 62, 63, 64, 65, 66, 74], "qualiti": [6, 75], "check": 6, "featur": [7, 11, 77, 83, 84, 89, 90, 91, 92, 93, 94, 96, 97, 104], "select": [7, 77], "two": [8, 78, 79, 82, 101, 105], "sampl": [8, 68, 70, 78, 104], "test": [8, 18, 39, 52, 62, 63, 64, 65, 66, 74, 77, 78, 104, 107], "comput": [9, 17, 38, 53, 58], "time": [9, 17, 38, 53, 58], "post": [10, 18, 85, 107], "hoc": [10, 18, 85, 107], "explain": [10, 18, 62, 63, 66, 85, 89, 107], "permut": [11, 83], "import": [11, 77, 83, 84, 89, 90, 91, 92, 93, 94, 96, 97, 106], "partial": [12, 82], "depend": [12, 82, 84, 106], "plot": [12, 72, 78, 82, 84, 89, 91, 92, 94, 96, 97, 99, 101, 105], "individu": [13, 80], "condit": [13, 77, 80], "expect": [13, 80], "accumul": [14, 79], "local": [14, 15, 75, 79, 81, 85, 89, 90, 91, 92, 93, 94, 95, 96, 97], "effect": [14, 79, 89, 91, 92, 96, 97], "interpret": [15, 18, 19, 62, 63, 66, 81, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 107], "model": [15, 18, 19, 54, 55, 56, 62, 63, 64, 65, 66, 67, 81, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 107, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "agnost": [15, 81], "explan": [15, 16, 81, 84], "shaplei": [16, 84], "addit": [16, 84, 91], "exampl": [18, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105], "outcom": [18, 39, 62, 63, 66, 107], "comparison": [18, 54, 55, 56, 57, 62, 63, 65, 66, 67, 68, 69, 70, 75, 78, 103], "glm": [20, 21], "logist": 20, "regress": [20, 21, 23, 25, 27, 29, 31, 33, 35, 37, 41, 43, 45, 47, 49, 51, 56, 70, 93, 99, 102], "taiwan": [20, 26, 30, 32, 34, 36, 68, 89, 90, 92, 93, 94, 95, 97, 99, 101, 102, 103, 104, 105], "credit": [20, 26, 30, 32, 34, 36, 68, 89, 90, 92, 93, 94, 95, 97, 99, 101, 102, 103, 104, 105], "linear": [21, 93, 94], "bike": [21, 31, 33, 35, 79, 80, 81, 82, 83, 84, 93], "share": [21, 31, 33, 35, 79, 80, 81, 82, 83, 84, 93], "gam": [22, 23], "classif": [22, 24, 26, 28, 30, 32, 34, 36, 40, 42, 44, 46, 48, 50, 55, 68, 99, 102], "cocircl": [22, 28, 91, 96], "california": [23, 25, 27, 29, 91], "hous": [23, 25, 27, 29, 91], "tree": [24, 25, 90, 95], "taiwancredit": [24, 66], "fig": [26, 27], "xgb": [28, 29, 30, 31], "1": [28, 29, 64, 68, 70, 73, 79, 80, 81, 82, 83, 84, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 101, 102, 103, 104, 105], "2": [30, 31, 65, 73, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 101, 102, 103, 104, 105], "ebm": [32, 33], "gami": [34, 35, 92], "net": [34, 35, 92], "relu": [36, 37, 94], "dnn": [36, 37], "friedman": [37, 94], "accuraci": [40, 41, 68, 70, 99], "weakspot": [42, 43, 105], "overfit": [44, 45, 68, 70, 101], "reliabl": [46, 47, 68, 70, 102], "robust": [48, 49, 68, 70, 104], "resili": [50, 51, 68, 70, 103], "fair": [52, 57, 64, 65, 69, 100], "xgb2": 52, "tabl": [59, 94, 99, 102], "Of": 59, "content": 59, "frequent": 60, "ask": 60, "question": 60, "case": 61, "studi": [61, 64, 65], "bikeshar": [62, 70, 89, 92, 96, 97, 99, 101, 102, 104, 105], "train": [62, 63, 64, 65, 66, 74, 86, 89, 90, 91, 92, 93, 94, 95, 96, 97], "intepret": [62, 63, 66], "diagnost": [62, 63, 66, 87, 98], "benchmark": [62, 63, 66], "californiah": [63, 90, 95, 103], "simul": [64, 65], "ml": [64, 65], "": [64, 65], "descript": 65, "score": [68, 70, 102], "auc": 68, "f1": 68, "bandwidth": [68, 70, 102], "diagram": [68, 90, 102], "perform": [68, 70, 103], "worst": [68, 70, 104], "metric": [69, 78, 100], "segment": [69, 100], "mean": 70, "squar": 70, "error": 70, "absolut": 70, "r": 70, "coverag": [70, 102], "exploratori": 72, "analysi": [72, 75], "univari": 72, "bivari": 72, "multivari": 72, "full": [], "built": [1, 73], "dataset": [1, 73], "extern": 73, "config": [], "set": 74, "distanc": [74, 77, 78, 102, 103], "method": [75, 107], "isol": 75, "forest": 75, "cluster": 75, "base": 75, "outlier": [75, 107], "factor": 75, "princip": 75, "compon": 75, "kmeanstre": [75, 111], "refer": [75, 77, 80, 83, 84, 87, 93, 107], "statist": 76, "correl": 77, "random": 77, "independ": 77, "rcit": 77, "forward": 77, "backward": 77, "earli": 77, "drop": 77, "fbedk": 77, "usag": [78, 79, 80, 81, 82, 83, 84, 101, 103, 104, 105], "margin": [78, 102, 103], "densiti": [78, 103], "al": 79, "algorithm": [79, 80, 81, 82, 83, 84, 101, 103, 104, 105], "detail": [79, 80, 81, 82, 83, 84, 101, 103, 104, 105], "One": [79, 82, 101, 105], "wai": [79, 82, 101, 105], "ic": 80, "lime": 81, "pdp": 82, "pfi": 83, "shap": 84, "exact": 84, "solut": 84, "kernelshap": 84, "specif": 84, "The": 84, "waterfal": 84, "global": [85, 89, 90, 91, 92, 93, 94, 95, 96, 97], "black": 86, "box": 86, "regist": 86, "save": 86, "fit": 86, "arbitrari": 86, "introduct": 87, "toolbox": 87, "design": 87, "suit": [87, 98], "futur": 87, "plan": 87, "boost": 89, "machin": 89, "main": [89, 91, 92, 96, 97], "interact": [89, 92, 97], "contribut": [89, 92, 94, 97], "fast": 90, "greedi": 90, "sum": 90, "heatmap": 90, "gener": [91, 93], "coeffici": 93, "origin": 93, "scale": 93, "option": 93, "center": 93, "neural": 94, "network": 94, "formul": 94, "llm": 94, "parallel": 94, "coordin": 94, "violin": 94, "profil": 94, "pairwis": 94, "decis": 95, "xgboost": [96, 97], "depth": [96, 97], "weight": 96, "evid": 96, "inform": 96, "valu": 96, "task": [99, 102], "residu": 99, "binari": [99, 102], "bin": 100, "threshold": 100, "un": 102, "classifi": 102, "calibr": 102, "brier": 102, "histogram": 103, "perturb": 104, "For": 104, "numer": 104, "categor": 104, "variabl": 104, "whole": 104, "instal": 106, "quick": 106, "troubleshoot": 106, "could": 106, "find": 106, "version": 106, "satisfi": 106, "requir": 106, "piml": [106, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "cannot": 106, "uninstal": 106, "llvmlite": 106, "librari": 106, "libxgboost": 106, "so": 106, "colab": 106, "api": 107, "experi": [107, 108], "class": 107, "high": [], "code": [], "us": 77, "explainableboostingclassifi": 113, "explainableboostingregressor": 114, "figsclassifi": 115, "figsregressor": 116, "gamclassifi": 117, "gaminetclassifi": 118, "gaminetregressor": 119, "gamregressor": 120, "glmclassifi": 121, "glmregressor": 122, "reludnnclassifi": 123, "reludnnregressor": 124, "treeclassifi": 125, "treeregressor": 126, "xgb1classifi": 127, "xgb1regressor": 128, "xgb2classifi": 129, "xgb2regressor": 130, "welcom": 131, "scikit": 131, "learn": 131, "user": 133, "guid": 133, "panda": [2, 73], "datafram": [2, 73], "from": 73, "cblof": [75, 109], "function": 107, "detect": 107, "outlier_detect": [109, 110, 111, 112], "isolationforest": 110, "pca": 112}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 8, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.intersphinx": 1, "sphinx": 57}, "alltitles": {"Data Pipeline": [[0, "data-pipeline"], [18, "data-pipeline"], [71, "data-pipeline"], [107, "data-pipeline"]], "Data Load (Built-in Dataset)": [[1, "data-load-built-in-dataset"]], "Data Load (Pandas DataFrame)": [[2, "data-load-pandas-dataframe"]], "Data Summary": [[3, "data-summary"], [76, "data-summary"]], "EDA": [[4, "eda"]], "Data Preparation": [[5, "data-preparation"], [74, "data-preparation"]], "Data Quality Check": [[6, "data-quality-check"]], "Feature Selection": [[7, "feature-selection"], [77, "feature-selection"]], "Two Sample Test": [[8, "two-sample-test"], [78, "two-sample-test"]], "Computation times": [[9, "computation-times"], [17, "computation-times"], [38, "computation-times"], [53, "computation-times"], [58, "computation-times"]], "Post hoc Explainability": [[10, "post-hoc-explainability"], [18, "post-hoc-explainability"]], "Permutation Feature Importance": [[11, "permutation-feature-importance"]], "Partial Dependence Plot": [[12, "partial-dependence-plot"]], "Individual Conditional Expectation": [[13, "individual-conditional-expectation"]], "Accumulated Local Effects": [[14, "accumulated-local-effects"]], "Local Interpretable Model-Agnostic Explanation": [[15, "local-interpretable-model-agnostic-explanation"]], "SHapley Additive exPlanations": [[16, "shapley-additive-explanations"]], "Examples": [[18, "examples"], [72, "examples"], [73, "examples"], [74, "examples"], [76, "examples"], [77, "examples"], [78, "examples"], [79, "examples"], [80, "examples"], [81, "examples"], [82, "examples"], [84, "examples"], [90, "examples"], [92, "examples"], [99, "examples"], [101, "examples"], [102, "examples"], [103, "examples"], [104, "examples"], [105, "examples"], [75, "examples"], [69, "examples"], [89, "examples"], [93, "examples"], [94, "examples"], [95, "examples"], [96, "examples"], [97, "examples"], [100, "examples"], [68, "examples"], [70, "examples"]], "Interpretable Models": [[18, "interpretable-models"], [19, "interpretable-models"], [87, "interpretable-models"], [88, "interpretable-models"], [107, "interpretable-models"]], "Outcome Testing": [[18, "outcome-testing"], [39, "outcome-testing"], [107, "outcome-testing"]], "Model Comparison": [[18, "model-comparison"], [54, "model-comparison"], [67, "model-comparison"]], "GLM Logistic Regression (Taiwan Credit)": [[20, "glm-logistic-regression-taiwan-credit"]], "GLM Linear Regression (Bike Sharing)": [[21, "glm-linear-regression-bike-sharing"]], "GAM Classification (CoCircles)": [[22, "gam-classification-cocircles"]], "GAM Regression (California Housing)": [[23, "gam-regression-california-housing"]], "Tree Classification (TaiwanCredit)": [[24, "tree-classification-taiwancredit"]], "Tree Regression (California Housing)": [[25, "tree-regression-california-housing"]], "FIGS Classification (Taiwan Credit)": [[26, "figs-classification-taiwan-credit"]], "FIGS Regression (California Housing)": [[27, "figs-regression-california-housing"]], "XGB-1 Classification (CoCircles)": [[28, "xgb-1-classification-cocircles"]], "XGB-1 Regression (California Housing)": [[29, "xgb-1-regression-california-housing"]], "XGB-2 Classification (Taiwan Credit)": [[30, "xgb-2-classification-taiwan-credit"]], "XGB-2 Regression (Bike Sharing)": [[31, "xgb-2-regression-bike-sharing"]], "EBM Classification (Taiwan Credit)": [[32, "ebm-classification-taiwan-credit"]], "EBM Regression (Bike Sharing)": [[33, "ebm-regression-bike-sharing"]], "GAMI-Net Classification (Taiwan Credit)": [[34, "gami-net-classification-taiwan-credit"]], "GAMI-Net Regression (Bike Sharing)": [[35, "gami-net-regression-bike-sharing"]], "ReLU DNN Classification (Taiwan Credit)": [[36, "relu-dnn-classification-taiwan-credit"]], "ReLU DNN Regression (Friedman)": [[37, "relu-dnn-regression-friedman"]], "Accuracy: Classification": [[40, "accuracy-classification"]], "Accuracy: Regression": [[41, "accuracy-regression"]], "WeakSpot: Classification": [[42, "weakspot-classification"]], "WeakSpot: Regression": [[43, "weakspot-regression"]], "Overfit: Classification": [[44, "overfit-classification"]], "Overfit: Regression": [[45, "overfit-regression"]], "Reliability: Classification": [[46, "reliability-classification"]], "Reliability: Regression": [[47, "reliability-regression"]], "Robustness: Classification": [[48, "robustness-classification"]], "Robustness: Regression": [[49, "robustness-regression"]], "Resilience: Classification": [[50, "resilience-classification"]], "Resilience - Regression": [[51, "resilience-regression"]], "Fairness Test: XGB2": [[52, "fairness-test-xgb2"]], "Model Comparison: Classification": [[55, "model-comparison-classification"]], "Model Comparison: Regression": [[56, "model-comparison-regression"]], "Fairness Comparison": [[57, "fairness-comparison"], [69, "fairness-comparison"]], "Table Of Contents": [[59, "table-of-contents"]], "Frequently Asked Questions": [[60, "frequently-asked-questions"]], "Case Studies": [[61, "case-studies"]], "BikeSharing Data": [[62, "BikeSharing-Data"]], "Load and Prepare Data": [[62, "Load-and-Prepare-Data"], [63, "Load-and-Prepare-Data"], [64, "Load-and-Prepare-Data"], [66, "Load-and-Prepare-Data"]], "Train Intepretable Models": [[62, "Train-Intepretable-Models"], [63, "Train-Intepretable-Models"], [66, "Train-Intepretable-Models"]], "Interpretability and Explainability": [[62, "Interpretability-and-Explainability"], [63, "Interpretability-and-Explainability"], [66, "Interpretability-and-Explainability"]], "Model Diagnostics and Outcome Testing": [[62, "Model-Diagnostics-and-Outcome-Testing"], [63, "Model-Diagnostics-and-Outcome-Testing"], [66, "Model-Diagnostics-and-Outcome-Testing"]], "Model Comparison and Benchmarking": [[62, "Model-Comparison-and-Benchmarking"], [63, "Model-Comparison-and-Benchmarking"], [66, "Model-Comparison-and-Benchmarking"]], "CaliforniaHousing Data": [[63, "CaliforniaHousing-Data"]], "Fairness Simulation Study 1": [[64, "Fairness-Simulation-Study-1"]], "Train ML Model(s)": [[64, "Train-ML-Model(s)"], [65, "Train-ML-Model(s)"]], "Fairness Testing": [[64, "Fairness-Testing"], [65, "Fairness-Testing"]], "Fairness Simulation Study 2": [[65, "Fairness-Simulation-Study-2"]], "Data Description": [[65, "Data-Description"]], "Load and Prepare data": [[65, "Load-and-Prepare-data"]], "Fairness Testing Comparison": [[65, "Fairness-Testing-Comparison"]], "TaiwanCredit Data": [[66, "TaiwanCredit-Data"]], "Example": [[72, null], [74, null], [76, null], [77, null], [78, null], [83, "example"], [75, null], [69, null], [100, null], [91, "example"]], "Exploratory Analysis": [[72, "exploratory-analysis"]], "Univariate Plots": [[72, "univariate-plots"]], "Bivariate Plots": [[72, "bivariate-plots"]], "Multivariate Plots": [[72, "multivariate-plots"]], "Data Load": [[73, "data-load"]], "Built-in Dataset": [[73, "built-in-dataset"]], "External Dataset": [[73, "external-dataset"]], "Example 1: Load built-in datasets": [[73, null]], "Example 2: Load data from pandas DataFrame": [[73, null]], "Setting": [[74, "setting"]], "Train-Test Distance": [[74, "train-test-distance"]], "Summary Statistics": [[76, "summary-statistics"]], "References": [[77, null], [80, null], [83, null], [84, null], [87, null], [75, null], [93, null]], "Correlations": [[77, "correlations"]], "Distance Correlation": [[77, "distance-correlation"]], "Use of Feature Importance": [[77, "use-of-feature-importance"]], "Randomized Conditional Independence Test": [[77, "randomized-conditional-independence-test"]], "RCIT Test": [[77, "rcit-test"]], "Forward-Backward selection with Early Dropping (FBEDk):": [[77, "forward-backward-selection-with-early-dropping-fbedk"]], "Distance Metrics": [[78, "distance-metrics"]], "Usage": [[78, "usage"], [79, "usage"], [80, "usage"], [81, "usage"], [82, "usage"], [83, "usage"], [84, "usage"], [101, "usage"], [103, "usage"], [104, "usage"], [105, "usage"]], "Distance Metric Plot": [[78, "distance-metric-plot"]], "Marginal Density Comparison": [[78, "marginal-density-comparison"], [103, "marginal-density-comparison"]], "ALE (Accumulated Local Effects)": [[79, "ale-accumulated-local-effects"]], "Algorithm Details": [[79, "algorithm-details"], [80, "algorithm-details"], [81, "algorithm-details"], [82, "algorithm-details"], [83, "algorithm-details"], [84, "algorithm-details"], [101, "algorithm-details"], [103, "algorithm-details"], [104, "algorithm-details"], [105, "algorithm-details"]], "One-way ALE": [[79, "one-way-ale"]], "Two-way ALE": [[79, "two-way-ale"]], "Example 1: Bike Sharing": [[79, null], [80, null], [81, null], [82, null], [83, null], [84, null], [93, null]], "ICE (Individual Conditional Expectation)": [[80, "ice-individual-conditional-expectation"]], "LIME (Local Interpretable Model-Agnostic Explanation)": [[81, "lime-local-interpretable-model-agnostic-explanation"]], "PDP (Partial Dependence Plot)": [[82, "pdp-partial-dependence-plot"]], "One-way PDPs": [[82, "one-way-pdps"]], "Two-way PDPs": [[82, "two-way-pdps"]], "PFI (Permutation Feature Importance)": [[83, "pfi-permutation-feature-importance"]], "SHAP (SHapley Additive exPlanations)": [[84, "shap-shapley-additive-explanations"]], "Exact Solution": [[84, "exact-solution"]], "KernelSHAP": [[84, "kernelshap"]], "Algorithms for specific models": [[84, "algorithms-for-specific-models"]], "The Waterfall plot": [[84, "the-waterfall-plot"]], "SHAP Feature importance": [[84, "shap-feature-importance"]], "SHAP Summary plot": [[84, "shap-summary-plot"]], "SHAP Dependence Plot": [[84, "shap-dependence-plot"]], "Post-hoc Explainability": [[85, "post-hoc-explainability"], [107, "post-hoc-explainability"]], "Global Explainability": [[85, "global-explainability"]], "Local Explainability": [[85, "local-explainability"]], "Black-box Models": [[86, "black-box-models"]], "Train and Register Models": [[86, "train-and-register-models"]], "Save Fitted Models": [[86, "save-fitted-models"]], "Load and Register Fitted Models": [[86, "load-and-register-fitted-models"]], "Register Arbitrary Models and Data": [[86, "register-arbitrary-models-and-data"]], "Introduction": [[87, "introduction"], [87, "id1"]], "Toolbox Design": [[87, "toolbox-design"]], "Diagnostic Suite": [[87, "diagnostic-suite"], [98, "diagnostic-suite"]], "Future Plan": [[87, "future-plan"]], "Model Training": [[90, "model-training"], [92, "model-training"], [89, "model-training"], [93, "model-training"], [94, "model-training"], [95, "model-training"], [96, "model-training"], [97, "model-training"], [91, "model-training"]], "Global Interpretation": [[90, "global-interpretation"], [92, "global-interpretation"], [89, "global-interpretation"], [93, "global-interpretation"], [94, "global-interpretation"], [95, "global-interpretation"], [96, "global-interpretation"], [97, "global-interpretation"], [91, "global-interpretation"]], "Local Interpretation": [[90, "local-interpretation"], [92, "local-interpretation"], [89, "local-interpretation"], [93, "local-interpretation"], [94, "local-interpretation"], [95, "local-interpretation"], [96, "local-interpretation"], [97, "local-interpretation"], [91, "local-interpretation"]], "Examples 2: Taiwan Credit": [[90, null], [92, null], [99, null], [101, null], [102, null], [103, null], [104, null], [105, null], [89, null], [94, null], [95, null], [97, null]], "Fast Interpretable Greedy-tree Sums": [[90, "fast-interpretable-greedy-tree-sums"]], "Feature Importance Heatmap": [[90, "feature-importance-heatmap"]], "Tree Diagram": [[90, "tree-diagram"]], "Example 1: CaliforniaHousing": [[90, null], [103, null], [95, null]], "Example 1: BikeSharing": [[92, null], [99, null], [101, null], [102, null], [104, null], [105, null], [89, null], [96, null], [97, null], [70, null]], "Main Effect Plot": [[92, "main-effect-plot"], [89, "main-effect-plot"], [96, "main-effect-plot"], [97, "main-effect-plot"], [91, "main-effect-plot"]], "Interaction Plot": [[92, "interaction-plot"], [89, "interaction-plot"], [97, "interaction-plot"]], "Effect Importance": [[92, "effect-importance"], [89, "effect-importance"], [97, "effect-importance"]], "Feature Importance": [[92, "feature-importance"], [89, "feature-importance"], [93, "feature-importance"], [96, "feature-importance"], [97, "feature-importance"], [91, "feature-importance"]], "Local Effect Contribution": [[92, "local-effect-contribution"], [89, "local-effect-contribution"], [97, "local-effect-contribution"]], "Local Feature Contribution": [[92, "local-feature-contribution"], [89, "local-feature-contribution"], [97, "local-feature-contribution"]], "GAMI-Net": [[92, "gami-net"]], "Accuracy": [[99, "accuracy"]], "Regression Tasks": [[99, "regression-tasks"]], "Accuracy Table": [[99, "accuracy-table"], [99, "id1"]], "Residual Plot": [[99, "residual-plot"], [99, "id2"]], "Binary Classification": [[99, "binary-classification"]], "Accuracy Plot": [[99, "accuracy-plot"]], "Overfit": [[101, "overfit"]], "One-way Overfit Plot": [[101, "one-way-overfit-plot"]], "Two-way Overfit Plot": [[101, "two-way-overfit-plot"]], "Reliability": [[102, "reliability"]], "Reliability for Regression Tasks": [[102, "reliability-for-regression-tasks"]], "Coverage and Bandwidth Table": [[102, "coverage-and-bandwidth-table"]], "Distance of Reliable and Un-reliable Data": [[102, "distance-of-reliable-and-un-reliable-data"], [102, "id1"]], "Marginal Bandwidth": [[102, "marginal-bandwidth"], [102, "id2"]], "Reliability for Binary Classification": [[102, "reliability-for-binary-classification"]], "Classifier Calibration": [[102, "classifier-calibration"]], "Reliability Diagram": [[102, "reliability-diagram"]], "Brier Score Table": [[102, "brier-score-table"]], "Resilience Performance": [[103, "resilience-performance"], [68, "resilience-performance"], [70, "resilience-performance"]], "Resilience": [[103, "resilience"]], "Resilience Distance": [[103, "resilience-distance"]], "Marginal Histogram Comparison": [[103, "marginal-histogram-comparison"]], "Robustness": [[104, "robustness"]], "Perturbation For Numerical Features": [[104, "perturbation-for-numerical-features"]], "Perturbation for Categorical Variable": [[104, "perturbation-for-categorical-variable"]], "Robustness on the whole test sample": [[104, "robustness-on-the-whole-test-sample"]], "Robustness on worst test samples": [[104, "robustness-on-worst-test-samples"]], "WeakSpot": [[105, "weakspot"]], "One-way WeakSpot Plot": [[105, "one-way-weakspot-plot"]], "Two-way WeakSpot Plot": [[105, "two-way-weakspot-plot"]], "Installation": [[106, "installation"]], "Quick Install": [[106, "quick-install"]], "Dependencies": [[106, "dependencies"]], "Troubleshooting": [[106, "troubleshooting"]], "Could not find a version that satisfies the requirement PiML": [[106, "could-not-find-a-version-that-satisfies-the-requirement-piml"]], "Cannot uninstall \u201cllvmlite\u201d.": [[106, "cannot-uninstall-llvmlite"]], "Library \u201clibxgboost.so\u201d not loaded": [[106, "library-libxgboost-so-not-loaded"]], "Cannot import PiML on Colab": [[106, "cannot-import-piml-on-colab"]], "API Reference": [[107, "api-reference"]], "Experiment Class": [[107, "experiment-class"]], "Functions": [[107, "functions"], [107, "id1"]], "Outlier Detection Methods": [[107, "outlier-detection-methods"]], "Model Classes": [[107, "model-classes"]], "piml.Experiment": [[108, "piml-experiment"]], "piml.data.outlier_detection.CBLOF": [[109, "piml-data-outlier-detection-cblof"]], "piml.data.outlier_detection.IsolationForest": [[110, "piml-data-outlier-detection-isolationforest"]], "piml.data.outlier_detection.KMeansTree": [[111, "piml-data-outlier-detection-kmeanstree"]], "piml.data.outlier_detection.PCA": [[112, "piml-data-outlier-detection-pca"]], "piml.models.ExplainableBoostingClassifier": [[113, "piml-models-explainableboostingclassifier"]], "piml.models.ExplainableBoostingRegressor": [[114, "piml-models-explainableboostingregressor"]], "piml.models.FIGSClassifier": [[115, "piml-models-figsclassifier"]], "piml.models.FIGSRegressor": [[116, "piml-models-figsregressor"]], "piml.models.GAMClassifier": [[117, "piml-models-gamclassifier"]], "piml.models.GAMINetClassifier": [[118, "piml-models-gaminetclassifier"]], "piml.models.GAMINetRegressor": [[119, "piml-models-gaminetregressor"]], "piml.models.GAMRegressor": [[120, "piml-models-gamregressor"]], "piml.models.GLMClassifier": [[121, "piml-models-glmclassifier"]], "piml.models.GLMRegressor": [[122, "piml-models-glmregressor"]], "piml.models.ReluDNNClassifier": [[123, "piml-models-reludnnclassifier"]], "piml.models.ReluDNNRegressor": [[124, "piml-models-reludnnregressor"]], "piml.models.TreeClassifier": [[125, "piml-models-treeclassifier"]], "piml.models.TreeRegressor": [[126, "piml-models-treeregressor"]], "piml.models.XGB1Classifier": [[127, "piml-models-xgb1classifier"]], "piml.models.XGB1Regressor": [[128, "piml-models-xgb1regressor"]], "piml.models.XGB2Classifier": [[129, "piml-models-xgb2classifier"]], "piml.models.XGB2Regressor": [[130, "piml-models-xgb2regressor"]], "Welcome to scikit-learn": [[131, "welcome-to-scikit-learn"]], "User Guide": [[133, "user-guide"]], "Data Quality": [[75, "data-quality"]], "Method": [[75, "method"]], "Isolation Forest": [[75, "isolation-forest"]], "Cluster-Based Local Outlier Factor (CBLOF)": [[75, "cluster-based-local-outlier-factor-cblof"]], "Principal Component Analysis": [[75, "principal-component-analysis"]], "KmeansTree": [[75, "kmeanstree"]], "Analysis and Comparison": [[75, "analysis-and-comparison"]], "Fairness Metrics": [[69, "fairness-metrics"], [100, "fairness-metrics"]], "Segmented": [[69, "segmented"]], "Explainable Boosting Machines": [[89, "explainable-boosting-machines"]], "Generalized Linear Models": [[93, "generalized-linear-models"]], "Regression Coefficients": [[93, "regression-coefficients"]], "Original Scale Option": [[93, "original-scale-option"]], "Centered Option": [[93, "centered-option"]], "Example 2: Taiwan Credit": [[93, null]], "ReLU Neural Network": [[94, "relu-neural-network"]], "Model Formulation": [[94, "model-formulation"]], "Local Linear Models": [[94, "local-linear-models"]], "LLM Summary Table": [[94, "llm-summary-table"]], "Parallel Coordinate Plot": [[94, "parallel-coordinate-plot"]], "LLM Violin Plot": [[94, "llm-violin-plot"]], "Feature Importance Plot": [[94, "feature-importance-plot"]], "LLM profile plot": [[94, "llm-profile-plot"]], "LLM pairwise plot": [[94, "llm-pairwise-plot"]], "Local Feature Contribution plot": [[94, "local-feature-contribution-plot"]], "Example 1: Friedman": [[94, null]], "Decision Tree": [[95, "decision-tree"]], "Example 2: CoCircles": [[96, null], [91, null]], "XGBoost Depth 1": [[96, "xgboost-depth-1"]], "Weight of Evidence Plot": [[96, "weight-of-evidence-plot"]], "Information Value Plot": [[96, "information-value-plot"]], "XGBoost Depth 2": [[97, "xgboost-depth-2"]], "Fairness": [[100, "fairness"]], "Fairness Segmented": [[100, "fairness-segmented"]], "Fairness Binning": [[100, "fairness-binning"]], "Fairness Thresholding": [[100, "fairness-thresholding"]], "Generalized Additive Model": [[91, "generalized-additive-model"]], "Example 1: California Housing": [[91, null]], "Comparison for Classification": [[68, "comparison-for-classification"]], "Accuracy Comparison": [[68, "accuracy-comparison"], [70, "accuracy-comparison"]], "Accuracy Score": [[68, "accuracy-score"]], "AUC Score": [[68, "auc-score"]], "F1 Score": [[68, "f1-score"]], "Overfit Comparison": [[68, "overfit-comparison"], [70, "overfit-comparison"]], "Reliability Comparison": [[68, "reliability-comparison"], [70, "reliability-comparison"]], "Bandwidth Comparison": [[68, "bandwidth-comparison"], [70, "bandwidth-comparison"]], "Reliability Diagram Comparison": [[68, "reliability-diagram-comparison"]], "Robustness Comparison": [[68, "robustness-comparison"], [70, "robustness-comparison"]], "Robustness Performance": [[68, "robustness-performance"], [70, "robustness-performance"]], "Robustness Performance on Worst Samples": [[68, "robustness-performance-on-worst-samples"], [70, "robustness-performance-on-worst-samples"]], "Resilience Comparison": [[68, "resilience-comparison"], [70, "resilience-comparison"]], "Resilience Performance on Worst Samples": [[68, "resilience-performance-on-worst-samples"], [70, "resilience-performance-on-worst-samples"]], "Examples 1: Taiwan Credit": [[68, null]], "Comparison for Regression": [[70, "comparison-for-regression"]], "Mean Squared Error": [[70, "mean-squared-error"]], "Mean Absolute Error": [[70, "mean-absolute-error"]], "R-squared Score": [[70, "r-squared-score"]], "Coverage Comparison": [[70, "coverage-comparison"]]}, "indexentries": {}}) \ No newline at end of file +Search.setIndex({"docnames": ["auto_examples/data/index", "auto_examples/data/plot_0_data_loader_builtin", "auto_examples/data/plot_0_data_loader_dataframe", "auto_examples/data/plot_1_data_summary", "auto_examples/data/plot_2_data_eda", "auto_examples/data/plot_3_data_prepare", "auto_examples/data/plot_4_data_quality", "auto_examples/data/plot_5_feature_select", "auto_examples/data/plot_6_twosample_test", "auto_examples/data/sg_execution_times", "auto_examples/explain/index", "auto_examples/explain/plot_0_pfi", "auto_examples/explain/plot_1_pdp", "auto_examples/explain/plot_2_ice", "auto_examples/explain/plot_3_ale", "auto_examples/explain/plot_4_lime", "auto_examples/explain/plot_5_shap", "auto_examples/explain/sg_execution_times", "auto_examples/index", "auto_examples/models/index", "auto_examples/models/plot_0_glm_cls", "auto_examples/models/plot_0_glm_reg", "auto_examples/models/plot_1_gam_cls", "auto_examples/models/plot_1_gam_reg", "auto_examples/models/plot_2_tree_cls", "auto_examples/models/plot_2_tree_reg", "auto_examples/models/plot_3_figs_cls", "auto_examples/models/plot_3_figs_reg", "auto_examples/models/plot_4_xgb1_cls", "auto_examples/models/plot_4_xgb1_reg", "auto_examples/models/plot_5_xgb2_cls", "auto_examples/models/plot_5_xgb2_reg", "auto_examples/models/plot_6_ebm_cls", "auto_examples/models/plot_6_ebm_reg", "auto_examples/models/plot_7_gaminet_cls", "auto_examples/models/plot_7_gaminet_reg", "auto_examples/models/plot_8_reludnn_cls", "auto_examples/models/plot_8_reludnn_reg", "auto_examples/models/sg_execution_times", "auto_examples/testing/index", "auto_examples/testing/plot_0_accuracy_cls", "auto_examples/testing/plot_0_accuracy_reg", "auto_examples/testing/plot_1_weakspot_cls", "auto_examples/testing/plot_1_weakspot_reg", "auto_examples/testing/plot_2_overfit_cls", "auto_examples/testing/plot_2_overfit_reg", "auto_examples/testing/plot_3_reliability_cls", "auto_examples/testing/plot_3_reliability_reg", "auto_examples/testing/plot_4_robustness_cls", "auto_examples/testing/plot_4_robustness_reg", "auto_examples/testing/plot_5_resilience_cls", "auto_examples/testing/plot_5_resilience_reg", "auto_examples/testing/plot_6_fairness", "auto_examples/testing/sg_execution_times", "auto_examples/testing_compare/index", "auto_examples/testing_compare/plot_0_compare_classification", "auto_examples/testing_compare/plot_0_compare_regression", "auto_examples/testing_compare/plot_1_compare_fairness", "auto_examples/testing_compare/sg_execution_times", "contents", "faq", "guides/cases", "guides/cases/Example_BikeSharing", "guides/cases/Example_CaliforniaHousing", "guides/cases/Example_Fairness_SimuStudy1", "guides/cases/Example_Fairness_SimuStudy2", "guides/cases/Example_TaiwanCredit", "guides/comparison", "guides/comparison/compare_classification", "guides/comparison/compare_fairness", "guides/comparison/compare_regression", "guides/data", "guides/data/data_eda", "guides/data/data_load", "guides/data/data_prepare", "guides/data/data_quality", "guides/data/data_summary", "guides/data/feature_select", "guides/data/twosample_test", "guides/explain/ale", "guides/explain/ice", "guides/explain/lime", "guides/explain/pdp", "guides/explain/pfi", "guides/explain/shap", "guides/explainability", "guides/extmodels", "guides/introduction", "guides/models", "guides/models/ebm", "guides/models/figs", "guides/models/gam", "guides/models/gaminet", "guides/models/glm", "guides/models/reludnn", "guides/models/tree", "guides/models/xgb1", "guides/models/xgb2", "guides/testing", "guides/testing/accuracy", "guides/testing/fairness", "guides/testing/overfit", "guides/testing/reliability", "guides/testing/resilience", "guides/testing/robustness", "guides/testing/weakspot", "install", "modules/classes", "modules/generated/piml.Experiment", "modules/generated/piml.data.outlier_detection.CBLOF", "modules/generated/piml.data.outlier_detection.IsolationForest", "modules/generated/piml.data.outlier_detection.KMeansTree", "modules/generated/piml.data.outlier_detection.PCA", "modules/generated/piml.models.ExplainableBoostingClassifier", "modules/generated/piml.models.ExplainableBoostingRegressor", "modules/generated/piml.models.FIGSClassifier", "modules/generated/piml.models.FIGSRegressor", "modules/generated/piml.models.GAMClassifier", "modules/generated/piml.models.GAMINetClassifier", "modules/generated/piml.models.GAMINetRegressor", "modules/generated/piml.models.GAMRegressor", "modules/generated/piml.models.GLMClassifier", "modules/generated/piml.models.GLMRegressor", "modules/generated/piml.models.ReluDNNClassifier", "modules/generated/piml.models.ReluDNNRegressor", "modules/generated/piml.models.TreeClassifier", "modules/generated/piml.models.TreeRegressor", "modules/generated/piml.models.XGB1Classifier", "modules/generated/piml.models.XGB1Regressor", "modules/generated/piml.models.XGB2Classifier", "modules/generated/piml.models.XGB2Regressor", "preface", "tune_toc", "user_guide"], "filenames": ["auto_examples\\data\\index.rst", "auto_examples\\data\\plot_0_data_loader_builtin.rst", "auto_examples\\data\\plot_0_data_loader_dataframe.rst", "auto_examples\\data\\plot_1_data_summary.rst", "auto_examples\\data\\plot_2_data_eda.rst", "auto_examples\\data\\plot_3_data_prepare.rst", "auto_examples\\data\\plot_4_data_quality.rst", "auto_examples\\data\\plot_5_feature_select.rst", "auto_examples\\data\\plot_6_twosample_test.rst", "auto_examples\\data\\sg_execution_times.rst", "auto_examples\\explain\\index.rst", "auto_examples\\explain\\plot_0_pfi.rst", "auto_examples\\explain\\plot_1_pdp.rst", "auto_examples\\explain\\plot_2_ice.rst", "auto_examples\\explain\\plot_3_ale.rst", "auto_examples\\explain\\plot_4_lime.rst", "auto_examples\\explain\\plot_5_shap.rst", "auto_examples\\explain\\sg_execution_times.rst", "auto_examples\\index.rst", "auto_examples\\models\\index.rst", "auto_examples\\models\\plot_0_glm_cls.rst", "auto_examples\\models\\plot_0_glm_reg.rst", "auto_examples\\models\\plot_1_gam_cls.rst", "auto_examples\\models\\plot_1_gam_reg.rst", "auto_examples\\models\\plot_2_tree_cls.rst", "auto_examples\\models\\plot_2_tree_reg.rst", "auto_examples\\models\\plot_3_figs_cls.rst", "auto_examples\\models\\plot_3_figs_reg.rst", "auto_examples\\models\\plot_4_xgb1_cls.rst", "auto_examples\\models\\plot_4_xgb1_reg.rst", "auto_examples\\models\\plot_5_xgb2_cls.rst", "auto_examples\\models\\plot_5_xgb2_reg.rst", "auto_examples\\models\\plot_6_ebm_cls.rst", "auto_examples\\models\\plot_6_ebm_reg.rst", "auto_examples\\models\\plot_7_gaminet_cls.rst", "auto_examples\\models\\plot_7_gaminet_reg.rst", "auto_examples\\models\\plot_8_reludnn_cls.rst", "auto_examples\\models\\plot_8_reludnn_reg.rst", "auto_examples\\models\\sg_execution_times.rst", "auto_examples\\testing\\index.rst", "auto_examples\\testing\\plot_0_accuracy_cls.rst", "auto_examples\\testing\\plot_0_accuracy_reg.rst", "auto_examples\\testing\\plot_1_weakspot_cls.rst", "auto_examples\\testing\\plot_1_weakspot_reg.rst", "auto_examples\\testing\\plot_2_overfit_cls.rst", "auto_examples\\testing\\plot_2_overfit_reg.rst", "auto_examples\\testing\\plot_3_reliability_cls.rst", "auto_examples\\testing\\plot_3_reliability_reg.rst", "auto_examples\\testing\\plot_4_robustness_cls.rst", "auto_examples\\testing\\plot_4_robustness_reg.rst", "auto_examples\\testing\\plot_5_resilience_cls.rst", "auto_examples\\testing\\plot_5_resilience_reg.rst", "auto_examples\\testing\\plot_6_fairness.rst", "auto_examples\\testing\\sg_execution_times.rst", "auto_examples\\testing_compare\\index.rst", "auto_examples\\testing_compare\\plot_0_compare_classification.rst", "auto_examples\\testing_compare\\plot_0_compare_regression.rst", "auto_examples\\testing_compare\\plot_1_compare_fairness.rst", "auto_examples\\testing_compare\\sg_execution_times.rst", "contents.rst", "faq.rst", "guides\\cases.rst", "guides\\cases\\Example_BikeSharing.ipynb", "guides\\cases\\Example_CaliforniaHousing.ipynb", "guides\\cases\\Example_Fairness_SimuStudy1.ipynb", "guides\\cases\\Example_Fairness_SimuStudy2.ipynb", "guides\\cases\\Example_TaiwanCredit.ipynb", "guides\\comparison.rst", "guides\\comparison\\compare_classification.rst", "guides\\comparison\\compare_fairness.rst", "guides\\comparison\\compare_regression.rst", "guides\\data.rst", "guides\\data\\data_eda.rst", "guides\\data\\data_load.rst", "guides\\data\\data_prepare.rst", "guides\\data\\data_quality.rst", "guides\\data\\data_summary.rst", "guides\\data\\feature_select.rst", "guides\\data\\twosample_test.rst", "guides\\explain\\ale.rst", "guides\\explain\\ice.rst", "guides\\explain\\lime.rst", "guides\\explain\\pdp.rst", "guides\\explain\\pfi.rst", "guides\\explain\\shap.rst", "guides\\explainability.rst", "guides\\extmodels.rst", "guides\\introduction.rst", "guides\\models.rst", "guides\\models\\ebm.rst", "guides\\models\\figs.rst", "guides\\models\\gam.rst", "guides\\models\\gaminet.rst", "guides\\models\\glm.rst", "guides\\models\\reludnn.rst", "guides\\models\\tree.rst", "guides\\models\\xgb1.rst", "guides\\models\\xgb2.rst", "guides\\testing.rst", "guides\\testing\\accuracy.rst", "guides\\testing\\fairness.rst", "guides\\testing\\overfit.rst", "guides\\testing\\reliability.rst", "guides\\testing\\resilience.rst", "guides\\testing\\robustness.rst", "guides\\testing\\weakspot.rst", "install.rst", "modules\\classes.rst", "modules\\generated\\piml.Experiment.rst", "modules\\generated\\piml.data.outlier_detection.CBLOF.rst", "modules\\generated\\piml.data.outlier_detection.IsolationForest.rst", "modules\\generated\\piml.data.outlier_detection.KMeansTree.rst", "modules\\generated\\piml.data.outlier_detection.PCA.rst", "modules\\generated\\piml.models.ExplainableBoostingClassifier.rst", "modules\\generated\\piml.models.ExplainableBoostingRegressor.rst", "modules\\generated\\piml.models.FIGSClassifier.rst", "modules\\generated\\piml.models.FIGSRegressor.rst", "modules\\generated\\piml.models.GAMClassifier.rst", "modules\\generated\\piml.models.GAMINetClassifier.rst", "modules\\generated\\piml.models.GAMINetRegressor.rst", "modules\\generated\\piml.models.GAMRegressor.rst", "modules\\generated\\piml.models.GLMClassifier.rst", "modules\\generated\\piml.models.GLMRegressor.rst", "modules\\generated\\piml.models.ReluDNNClassifier.rst", "modules\\generated\\piml.models.ReluDNNRegressor.rst", "modules\\generated\\piml.models.TreeClassifier.rst", "modules\\generated\\piml.models.TreeRegressor.rst", "modules\\generated\\piml.models.XGB1Classifier.rst", "modules\\generated\\piml.models.XGB1Regressor.rst", "modules\\generated\\piml.models.XGB2Classifier.rst", "modules\\generated\\piml.models.XGB2Regressor.rst", "preface.rst", "tune_toc.rst", "user_guide.rst"], "titles": ["Data Pipeline", "Data Load (Built-in Dataset)", "Data Load (Pandas DataFrame)", "Data Summary", "EDA", "Data Preparation", "Data Quality Check", "Feature Selection", "Two Sample Test", "Computation times", "Post hoc Explainability", "Permutation Feature Importance", "Partial Dependence Plot", "Individual Conditional Expectation", "Accumulated Local Effects", "Local Interpretable Model-Agnostic Explanation", "SHapley Additive exPlanations", "Computation times", "Examples", "Interpretable Models", "GLM Logistic Regression (Taiwan Credit)", "GLM Linear Regression (Bike Sharing)", "GAM Classification (CoCircles)", "GAM Regression (California Housing)", "Tree Classification (TaiwanCredit)", "Tree Regression (California Housing)", "FIGS Classification (Taiwan Credit)", "FIGS Regression (California Housing)", "XGB-1 Classification (CoCircles)", "XGB-1 Regression (California Housing)", "XGB-2 Classification (Taiwan Credit)", "XGB-2 Regression (Bike Sharing)", "EBM Classification (Taiwan Credit)", "EBM Regression (Bike Sharing)", "GAMI-Net Classification (Taiwan Credit)", "GAMI-Net Regression (Bike Sharing)", "ReLU DNN Classification (Taiwan Credit)", "ReLU DNN Regression (Friedman)", "Computation times", "Outcome Testing", "Accuracy: Classification", "Accuracy: Regression", "WeakSpot: Classification", "WeakSpot: Regression", "Overfit: Classification", "Overfit: Regression", "Reliability: Classification", "Reliability: Regression", "Robustness: Classification", "Robustness: Regression", "Resilience: Classification", "Resilience - Regression", "Fairness Test: XGB2", "Computation times", "Model Comparison", "Model Comparison: Classification", "Model Comparison: Regression", "Fairness Comparison", "Computation times", "Table Of Contents", "Frequently Asked Questions", "8. Case Studies", "8.1. BikeSharing Data", "8.2. CaliforniaHousing Data", "8.4. Fairness Simulation Study 1", "8.5. Fairness Simulation Study 2", "8.3. TaiwanCredit Data", "7. Model Comparison", "7.2. Comparison for Classification", "7.3. Fairness Comparison", "7.1. Comparison for Regression", "2. Data Pipeline", "2.4. Exploratory Analysis", "2.1. Data Load", "2.3. Data Preparation", "2.5. Data Quality", "2.2. Data Summary", "2.6. Feature Selection", "2.7. Two Sample Test", "4.1.4. ALE (Accumulated Local Effects)", "4.1.3. ICE (Individual Conditional Expectation)", "4.2.1. LIME (Local Interpretable Model-Agnostic Explanation)", "4.1.2. PDP (Partial Dependence Plot)", "4.1.1. PFI (Permutation Feature Importance)", "4.2.2. SHAP (SHapley Additive exPlanations)", "4. Post-hoc Explainability", "3. Black-box Models", "1. Introduction", "5. Interpretable Models", "5.7. Explainable Boosting Machines", "5.4. Fast Interpretable Greedy-tree Sums", "5.2. Generalized Additive Model", "5.8. GAMI-Net", "5.1. Generalized Linear Models", "5.9. ReLU Neural Network", "5.3. Decision Tree", "5.5. XGBoost Depth 1", "5.6. XGBoost Depth 2", "6. Diagnostic Suite", "6.1. Accuracy", "6.7. Fairness", "6.3. Overfit", "6.4. Reliability", "6.6. Resilience", "6.5. Robustness", "6.2. WeakSpot", "Installation", "API Reference", "piml.Experiment", "piml.data.outlier_detection.CBLOF", "piml.data.outlier_detection.IsolationForest", "piml.data.outlier_detection.KMeansTree", "piml.data.outlier_detection.PCA", "piml.models.ExplainableBoostingClassifier", "piml.models.ExplainableBoostingRegressor", "piml.models.FIGSClassifier", "piml.models.FIGSRegressor", "piml.models.GAMClassifier", "piml.models.GAMINetClassifier", "piml.models.GAMINetRegressor", "piml.models.GAMRegressor", "piml.models.GLMClassifier", "piml.models.GLMRegressor", "piml.models.ReluDNNClassifier", "piml.models.ReluDNNRegressor", "piml.models.TreeClassifier", "piml.models.TreeRegressor", "piml.models.XGB1Classifier", "piml.models.XGB1Regressor", "piml.models.XGB2Classifier", "piml.models.XGB2Regressor", "Welcome to scikit-learn", "<no title>", "User guide: contents"], "terms": {"load": [0, 9, 18, 44, 61, 68, 71, 76, 87, 89, 93, 97, 99, 101, 102, 104, 105, 108, 118, 119, 133], "built": [0, 7, 9, 18, 71, 77, 84, 94, 101, 105, 108, 111], "dataset": [0, 2, 3, 4, 5, 6, 7, 9, 18, 62, 63, 64, 65, 66, 68, 69, 70, 71, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 86, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 108, 118, 119, 123, 124], "panda": [0, 9, 18, 106, 108], "datafram": [0, 9, 18, 108], "summari": [0, 9, 16, 18, 36, 37, 71, 90, 99, 104, 105, 108, 133], "eda": [0, 9, 18, 62, 63, 64, 65, 66, 72, 87, 108], "prepar": [0, 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 61, 71, 75, 83, 86, 91, 94, 95, 108, 133], "qualiti": [0, 9, 18, 71, 87, 100, 102, 108, 125, 126, 133], "check": [0, 9, 18, 62, 63, 65, 75, 103, 108, 125, 126], "featur": [0, 3, 6, 8, 9, 10, 16, 17, 18, 20, 21, 22, 23, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 55, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 85, 87, 95, 99, 100, 101, 102, 103, 105, 108, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 133], "select": [0, 6, 9, 18, 64, 65, 68, 70, 71, 74, 75, 79, 92, 94, 95, 96, 101, 103, 104, 108, 112, 118, 119, 125, 126, 133], "two": [0, 9, 18, 36, 37, 42, 43, 44, 45, 65, 69, 71, 72, 73, 74, 75, 76, 77, 80, 81, 84, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 102, 104, 108, 111, 133], "sampl": [0, 5, 9, 18, 48, 49, 50, 51, 55, 56, 62, 63, 65, 71, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 105, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130, 133], "test": [0, 5, 7, 9, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 48, 49, 53, 59, 60, 61, 68, 69, 70, 71, 73, 83, 87, 93, 99, 100, 101, 102, 103, 105, 108, 113, 114, 115, 116, 118, 119, 123, 124, 125, 126, 127, 128, 129, 130, 133], "go": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57], "end": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 77, 78, 79, 80, 82, 84, 87, 89, 90, 91, 92, 93, 94, 96, 97, 99, 100, 102, 125, 126], "download": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57], "full": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 69, 72, 73, 74, 75, 76, 77, 78, 79, 81, 87, 89, 91, 92, 93, 94, 96, 97, 100, 102, 103, 104, 107, 108, 112], "exampl": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 61, 62, 63, 64, 65, 66, 67, 71, 85, 87, 88, 98, 125], "code": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 108], "run": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 62, 63, 64, 65, 66, 77, 87, 100, 103, 104, 106, 108, 112, 113, 114, 125, 126], "thi": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "your": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 65, 73, 74, 76, 96, 106], "browser": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57], "via": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 73, 77, 79, 89, 94, 108, 111, 112], "binder": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57], "experi": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 59, 60, 62, 63, 64, 65, 66, 73, 77, 86, 87, 100, 106], "initi": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 77, 86, 87, 96, 100, 108, 118, 119, 123, 124], "from": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 108, 111, 112, 113, 114, 116, 118, 119, 124, 126, 127, 128, 130], "piml": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 107], "import": [1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 62, 63, 64, 65, 66, 71, 74, 75, 85, 86, 87, 95, 108, 115, 116, 117, 118, 119, 120, 125, 126, 127, 128, 129, 130], "exp": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 62, 63, 64, 65, 66, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106], "data_load": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 62, 63, 64, 65, 66, 73, 86, 87, 108], "cocircl": [1, 18, 19, 38, 73, 108], "x0": [1, 22, 28, 37, 73, 96, 108], "x1": [1, 22, 28, 64, 73, 96, 108], "target": [1, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 65, 73, 74, 78, 79, 82, 83, 86, 93, 96, 104, 108, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130], "0": [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 63, 65, 66, 68, 69, 70, 73, 74, 75, 76, 77, 79, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "783526": [1, 73], "502161": [1, 73], "1": [1, 2, 3, 5, 7, 11, 15, 17, 18, 19, 20, 21, 23, 26, 27, 36, 37, 38, 42, 43, 44, 45, 46, 47, 49, 52, 55, 56, 57, 61, 62, 63, 65, 66, 69, 74, 75, 77, 78, 87, 88, 100, 106, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130, 133], "297809": [1, 73], "658405": [1, 73], "2": [1, 2, 3, 5, 7, 13, 18, 19, 20, 21, 22, 24, 25, 36, 37, 38, 40, 41, 42, 43, 44, 45, 48, 49, 50, 52, 56, 57, 61, 62, 66, 68, 70, 74, 75, 77, 79, 82, 84, 86, 87, 88, 100, 106, 108, 110, 111, 113, 114, 115, 116, 118, 119, 123, 124, 125, 126, 127, 128, 129, 130, 133], "468272": [1, 73], "500653": [1, 73], "3": [1, 2, 3, 5, 20, 21, 24, 25, 26, 27, 30, 36, 37, 42, 43, 44, 45, 48, 49, 50, 51, 52, 55, 56, 57, 62, 63, 64, 65, 66, 68, 70, 74, 76, 79, 80, 84, 90, 91, 92, 94, 95, 96, 99, 101, 102, 103, 104, 105, 106, 108, 111, 113, 114, 117, 118, 119, 120, 125, 127, 128, 129, 130], "134700": 1, "887973": 1, "4": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 77, 78, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 111, 113, 114, 118, 119, 125], "337202": 1, "780797": 1, "1995": 1, "498109": 1, "889060": 1, "1996": 1, "312980": 1, "724953": 1, "1997": [1, 73], "542930": [1, 73], "583517": [1, 73], "1998": [1, 73], "871481": [1, 73], "491301": [1, 73], "1999": [1, 73], "323963": [1, 73], "719150": [1, 73], "2000": [1, 77, 82, 108], "row": [1, 2, 36, 94, 108], "x": [1, 2, 20, 21, 36, 68, 70, 75, 77, 78, 79, 80, 81, 82, 83, 84, 86, 89, 90, 91, 92, 93, 94, 96, 97, 99, 100, 102, 103, 104, 105, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130], "column": [1, 2, 5, 36, 65, 74, 90, 99, 105, 108, 125], "total": [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 93, 94, 96, 99, 103, 112, 114, 116, 119, 124, 125, 126, 127, 128, 129, 130], "time": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 65, 77, 83, 84, 87, 90, 94, 102, 118, 119], "script": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57], "minut": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57], "8": [1, 20, 21, 27, 37, 42, 43, 44, 45, 52, 57, 58, 62, 63, 64, 65, 66, 69, 80, 84, 89, 92, 100, 101, 104, 105, 106, 108, 113, 114, 117, 118, 119, 120, 127, 128], "553": 1, "second": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 68, 70, 72, 74, 76, 84, 89, 90, 92, 93, 94, 95, 97, 99, 101, 102, 103, 104, 105, 118, 119], "estim": [1, 2, 3, 4, 5, 6, 12, 52, 57, 79, 82, 84, 89, 90, 91, 92, 93, 96, 97, 99, 102, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "memori": [1, 2, 3, 4, 5, 6, 12, 52, 57, 110, 118, 119, 123, 124], "usag": [1, 2, 3, 4, 5, 6, 12, 52, 57, 71, 75, 77, 85, 90, 96, 97, 98, 99, 100], "12": [1, 2, 3, 20, 21, 26, 27, 37, 52, 63, 65, 73, 87, 90, 103, 106], "mb": [1, 2, 3, 4, 5, 6, 9, 12, 17, 38, 52, 53, 57, 58], "python": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 79, 84, 87, 90, 91, 94, 96, 97, 106], "sourc": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57], "plot_0_data_loader_builtin": [1, 9], "py": [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 106], "jupyt": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 87], "notebook": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 62, 63, 66, 87], "ipynb": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 62, 63, 64, 65, 66], "galleri": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57], "gener": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 68, 73, 74, 77, 79, 80, 83, 84, 87, 88, 89, 90, 92, 94, 95, 96, 97, 99, 100, 101, 103, 105, 108, 110, 114, 116, 117, 118, 119, 120, 121, 122, 123, 124, 126, 128, 130, 133], "sphinx": [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57], "pd": [2, 73, 82, 108], "read_csv": [2, 73], "http": [2, 73, 77, 87, 100, 108, 112, 115, 116], "github": [2, 73, 87, 108, 115, 116], "com": [2, 73, 87, 108, 115, 116], "selfexplainml": [2, 73, 87], "toolbox": [2, 73, 133], "blob": [2, 73], "main": [2, 62, 63, 66, 73, 77, 79, 94, 113, 114, 117, 118, 119, 120, 127, 128], "bikeshar": [2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 21, 31, 33, 35, 41, 43, 45, 47, 49, 51, 56, 61, 73, 77, 79, 80, 81, 82, 83, 84, 93, 108, 133], "csv": [2, 73], "raw": [2, 49, 68, 70, 73, 96, 97, 102, 104, 107, 108, 109, 112, 115, 117, 118, 119, 120, 123, 124, 127, 128, 129, 130], "true": [2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 69, 73, 79, 80, 81, 82, 84, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 105, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "season": [2, 3, 4, 12, 21, 31, 33, 41, 72, 73, 77, 82, 84, 89, 92, 93, 97, 99], "yr": [2, 3, 4, 11, 12, 13, 14, 15, 16, 21, 31, 33, 35, 41, 43, 45, 47, 49, 51, 56, 62, 72, 73, 76, 77], "mnth": [2, 3, 11, 12, 13, 14, 15, 16, 21, 31, 33, 35, 41, 43, 45, 47, 49, 51, 56, 62, 73, 76, 77], "hr": [2, 3, 4, 7, 12, 13, 14, 16, 21, 31, 33, 35, 41, 43, 45, 47, 49, 51, 56, 70, 72, 73, 77, 79, 80, 81, 82, 83, 84, 89, 92, 93, 97, 99, 101, 102, 104], "holidai": [2, 3, 73, 83], "weekdai": [2, 3, 13, 21, 35, 73, 76, 77, 92], "workingdai": [2, 3, 12, 43, 73, 77, 82, 83, 89, 92, 97], "weathersit": [2, 3, 14, 73, 77, 79], "6": [2, 3, 4, 5, 9, 20, 21, 22, 23, 24, 25, 37, 42, 43, 45, 48, 49, 52, 57, 62, 63, 64, 65, 66, 69, 72, 73, 74, 77, 79, 80, 81, 87, 91, 95, 100, 101, 104, 106, 108, 111, 117, 118, 119, 120, 127, 128], "17374": 2, "19": [2, 37, 52], "17375": 2, "20": [2, 22, 23, 28, 29, 37, 42, 44, 52, 63, 65, 74, 77, 84, 90, 91, 94, 95, 96, 101, 102, 103, 105, 106, 108, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130], "17376": 2, "21": [2, 37, 52, 73, 106], "17377": [2, 73], "22": [2, 37, 52, 73, 87], "17378": [2, 73], "23": [2, 3, 37, 52, 57, 73, 87, 114, 116, 119, 124, 126, 128, 130], "temp": [2, 3, 4, 7, 11, 12, 13, 14, 15, 16, 21, 31, 33, 35, 41, 43, 45, 47, 49, 51, 56, 62, 72, 73, 76, 77, 93], "atemp": [2, 3, 8, 13, 14, 21, 31, 43, 45, 49, 70, 73, 78, 79, 81, 83, 84, 89, 92, 97, 101, 104], "hum": [2, 3, 21, 73, 77, 81, 84, 89, 93, 97], "windspe": [2, 3, 21, 73, 92], "cnt": [2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 21, 31, 33, 35, 41, 43, 45, 47, 49, 51, 56, 62, 70, 72, 73, 74, 79, 80, 81, 82, 83, 84, 89, 92, 93, 96, 97, 99, 101, 102, 104, 105], "24": [2, 3, 5, 7, 37, 44, 52, 53, 57, 58, 73, 75, 80, 106], "2879": [2, 44, 73], "81": [2, 73], "0000": [2, 3, 21, 36, 42, 44, 73], "16": [2, 3, 20, 21, 24, 25, 26, 27, 37, 52, 55, 73, 89, 90, 92, 95, 97], "2727": [2, 73], "80": [2, 44, 73, 112], "40": [2, 3, 9, 36, 37, 52, 57, 73, 94, 102, 104, 123, 124], "32": [2, 37, 52, 58, 73, 83, 87, 100, 113, 114], "75": [2, 44, 105], "13": [2, 3, 20, 21, 32, 37, 38, 52, 65, 76], "26": [2, 37, 73], "2576": [2, 73], "60": [2, 42, 43, 65, 73], "1642": [2, 73], "119": 2, "89": 2, "90": [2, 52, 57, 65, 70, 73, 102], "56": [2, 73], "1343": [2, 73], "61": [2, 52, 57, 73], "65": [2, 37, 73, 80], "49": [2, 73], "17379": [2, 3, 5, 73, 74, 76], "7": [2, 3, 5, 20, 21, 37, 42, 43, 44, 45, 52, 56, 57, 62, 63, 64, 65, 66, 74, 77, 86, 89, 90, 97, 101, 102, 103, 104, 106, 113, 114], "656": 2, "plot_0_data_loader_datafram": [2, 9], "show": [3, 4, 6, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 64, 65, 68, 69, 70, 72, 74, 75, 77, 79, 80, 81, 82, 83, 84, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 108, 117, 118, 119, 120, 127, 128], "result": [3, 5, 6, 42, 43, 44, 45, 46, 47, 67, 68, 69, 70, 75, 77, 79, 81, 82, 83, 84, 89, 90, 91, 92, 93, 94, 96, 97, 100, 101, 102, 104, 105, 108, 112, 113, 114, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130], "us": [3, 4, 5, 6, 7, 42, 43, 45, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 86, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130], "highcode_onli": [3, 108], "silent": [3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 108], "data_summari": [3, 11, 12, 13, 14, 15, 16, 20, 21, 24, 26, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 62, 63, 64, 65, 66, 76, 87, 108], "feature_typ": [3, 76, 108, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "feature_exclud": [3, 11, 12, 13, 14, 15, 16, 20, 21, 24, 26, 30, 31, 32, 33, 34, 35, 36, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 76, 108], "name": [3, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 64, 65, 68, 70, 74, 75, 76, 77, 79, 80, 82, 84, 86, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 108, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "n_miss": [3, 76], "mean": [3, 36, 37, 68, 69, 74, 75, 76, 77, 79, 81, 83, 84, 90, 91, 93, 94, 96, 97, 99, 100, 101, 102, 103, 104, 108, 109, 110, 112, 113, 114, 115, 116, 118, 119, 123, 124, 125, 126, 127, 128, 129, 130], "std": [3, 36, 37, 76, 108], "min": [3, 74, 76, 108, 112, 118, 119, 127, 128], "q1": [3, 76], "median": [3, 63, 76, 90, 91, 95, 103, 126], "537775": 3, "438776": 3, "00": [3, 9, 17, 38, 53, 58, 105], "11": [3, 20, 21, 37, 46, 50, 52, 62, 63, 65, 81, 90, 106], "546752": 3, "914405": 3, "003683": 3, "005771": 3, "496987": 3, "192556": 3, "02": [3, 38], "3400": 3, "5000": [3, 42, 45, 77, 113, 114, 118, 119], "475775": 3, "171850": 3, "3333": [3, 42, 44], "4848": [3, 43], "5": [3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 55, 56, 57, 62, 63, 64, 65, 66, 68, 69, 70, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 108, 112, 118, 119, 123, 124, 125, 126], "627229": 3, "192930": 3, "4800": 3, "6300": 3, "190098": 3, "122340": 3, "1045": 3, "1940": 3, "189": 3, "463088": 3, "181": 3, "387599": 3, "142": 3, "q3": [3, 76], "max": [3, 74, 76, 89, 90, 94, 102, 108, 111, 113, 114, 115, 116, 117, 118, 119, 120, 125, 126, 127, 128, 129, 130], "10": [3, 11, 20, 21, 24, 25, 26, 27, 32, 33, 37, 38, 40, 42, 46, 47, 50, 51, 52, 55, 56, 62, 63, 65, 66, 68, 70, 75, 77, 78, 80, 81, 83, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 101, 102, 103, 105, 108, 109, 111, 113, 114, 117, 118, 119, 120, 125, 126, 127, 128], "18": [3, 37, 52, 56, 80, 87, 125, 126], "6600": 3, "6212": [3, 43], "7800": 3, "2537": 3, "8507": 3, "281": 3, "977": 3, "n_uniqu": [3, 76], "top1": [3, 76], "top2": [3, 76], "top3": [3, 76], "4496": 3, "4409": 3, "4242": 3, "8734": 3, "8645": 3, "16879": 3, "500": [3, 29, 84, 108, 123, 124], "11865": 3, "5514": 3, "11413": 3, "4544": 3, "1419": 3, "n_other": [3, 76], "4232": 3, "html": [3, 74, 76, 77, 100, 112], "valu": [3, 5, 28, 29, 52, 65, 68, 69, 70, 72, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 89, 90, 91, 92, 93, 94, 95, 97, 99, 100, 101, 102, 103, 104, 105, 108, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "shape": [3, 76, 89, 91, 92, 96, 97, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130], "tab": [3, 64, 65, 76], "children": [3, 76], "output": [3, 74, 76, 77, 79, 81, 82, 84, 91, 94, 97, 100, 112, 118, 119, 125, 126], "layout": [3, 76], "height": [3, 76], "350px": [3, 76], "selected_index": [3, 76], "titl": [3, 76, 89, 90, 92, 96, 97], "numer": [3, 20, 21, 65, 68, 70, 72, 74, 77, 79, 82, 93, 99, 108, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "attribut": [3, 65, 66, 69, 81, 84, 109, 110, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "categor": [3, 21, 65, 72, 74, 77, 79, 82, 93, 99, 100, 108, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "remov": [3, 65, 75, 77, 83, 84, 93, 94, 97, 100, 108, 110, 112, 125, 126], "chang": [3, 69, 75, 77, 78, 80, 81, 87, 93, 94, 100, 103, 104], "type": [3, 5, 52, 72, 74, 75, 78, 87, 96, 100, 108, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "2512": 3, "2502": 3, "2487": 3, "9878": 3, "595": 3, "plot_1_data_summari": [3, 9], "plot": [4, 6, 8, 10, 11, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 46, 47, 50, 51, 68, 69, 70, 71, 75, 79, 80, 81, 83, 85, 87, 90, 93, 95, 100, 102, 103, 104, 108, 117, 118, 119, 120, 125, 126, 127, 128], "data": [4, 7, 8, 9, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 59, 60, 61, 68, 70, 72, 77, 78, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 103, 104, 105, 108, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130, 133], "data_prepar": [4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 62, 63, 64, 65, 66, 74, 77, 86, 87, 108], "histogram": [4, 42, 43, 44, 45, 46, 47, 50, 51, 55, 56, 68, 70, 72, 89, 91, 92, 96, 97, 101, 105, 108, 127, 128, 129, 130], "densiti": [4, 50, 51, 72, 79, 105, 108, 118, 119], "univari": [4, 71, 96, 108], "uni_featur": [4, 12, 13, 14, 16, 21, 22, 23, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 72, 79, 80, 82, 84, 89, 91, 92, 93, 94, 96, 97, 108], "figsiz": [4, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 68, 69, 70, 72, 77, 78, 79, 80, 81, 82, 83, 84, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 108, 111, 117, 118, 119, 120, 125, 126, 127, 128], "bar": [4, 68, 69, 70, 72, 77, 79, 82, 84, 91, 93, 96, 99], "scatter": [4, 16, 72, 84, 99, 108], "bivari": [4, 71, 108], "bi_featur": [4, 12, 14, 31, 33, 35, 36, 37, 72, 79, 82, 89, 92, 94, 97, 108], "box": [4, 59, 70, 72, 87, 89, 94, 95, 97, 104, 133], "stack": [4, 72, 115, 116], "correl": [4, 6, 7, 62, 63, 71, 72, 75, 79, 82, 84, 96, 99, 108], "heatmap": [4, 26, 27, 72, 108], "multivari": [4, 71, 75, 82, 108], "multi_typ": [4, 72, 108], "correlation_heatmap": [4, 72, 108], "graph": [4, 72], "correlation_graph": [4, 72, 108], "48": [4, 9, 35, 37, 38], "021": [4, 9], "41": [4, 44], "plot_2_data_eda": [4, 9], "displai": [5, 68, 70, 72, 75, 78, 84, 89, 90, 91, 92, 93, 96, 97, 99, 102, 103, 104, 105, 108, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128], "numpi": [5, 106, 109, 112, 113, 114, 115, 116, 118, 119, 123, 124, 127, 128, 129, 130], "np": [5, 74, 109, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130], "random": [5, 7, 71, 75, 81, 83, 99, 101, 103, 104, 108, 109, 111, 112, 113, 114, 115, 116, 118, 119, 122, 123, 124, 125, 126, 127, 128, 129, 130], "split": [5, 26, 27, 60, 71, 75, 79, 87, 90, 95, 96, 97, 102, 105, 108, 110, 113, 114, 115, 116, 125, 126, 127, 128, 129, 130], "task_typ": [5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 74, 86, 108], "regress": [5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 18, 19, 38, 39, 53, 54, 58, 62, 63, 67, 73, 74, 79, 80, 81, 82, 83, 84, 86, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 103, 104, 105, 108, 115, 116, 122, 125, 126, 133], "sample_weight": [5, 74, 108, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130], "none": [5, 49, 51, 55, 56, 68, 70, 74, 90, 103, 104, 105, 108, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "split_method": [5, 74, 108], "test_ratio": [5, 74, 108], "random_st": [5, 74, 86, 108, 109, 110, 111, 112, 113, 114, 115, 116, 118, 119, 122, 123, 124, 125, 126, 127, 128, 129, 130], "config": [5, 74, 108], "exclud": [5, 62, 64, 65, 66, 74, 79, 108, 118, 119], "variabl": [5, 64, 65, 66, 68, 69, 70, 72, 73, 74, 75, 77, 78, 80, 83, 84, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 105, 108], "weight": [5, 28, 29, 64, 74, 81, 84, 93, 94, 99, 108, 109, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130], "task": [5, 47, 68, 70, 74, 75, 83, 84, 87, 95, 98, 101, 105, 108], "method": [5, 6, 7, 48, 49, 62, 65, 67, 68, 70, 71, 74, 77, 78, 79, 82, 83, 84, 87, 91, 95, 96, 97, 100, 101, 102, 103, 104, 105, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "ratio": [5, 65, 74, 100, 101, 102, 103, 105, 108, 118, 119, 123, 124], "state": [5, 73, 74, 84, 87, 94, 100, 108, 113, 114, 122], "train": [5, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 60, 61, 68, 70, 71, 77, 78, 81, 82, 83, 84, 87, 88, 99, 100, 101, 102, 103, 105, 108, 109, 112, 113, 114, 115, 116, 118, 119, 123, 124, 125, 126, 127, 128, 133], "energi": [5, 74], "distanc": [5, 6, 7, 8, 46, 47, 50, 51, 55, 56, 65, 71, 74, 75, 79, 108, 111, 125, 126], "000586": [5, 74], "outer": [5, 50, 51, 68, 70, 103, 108, 113, 114], "base": [5, 42, 43, 44, 45, 64, 68, 69, 70, 71, 76, 77, 78, 79, 81, 82, 83, 84, 87, 91, 92, 93, 95, 96, 99, 100, 102, 103, 104, 108, 109, 110, 112, 113, 114, 115, 116, 118, 119, 125, 126, 127, 128, 129, 130], "167242": [5, 74], "kmean": [5, 68, 70, 103, 108, 109, 111], "421888": [5, 74], "178697": [5, 74], "custom": [5, 48, 49, 52, 55, 60, 62, 63, 66, 74, 76, 91, 100, 108, 111, 115, 116, 118, 119, 127, 128], "custom_train_idx": [5, 74], "arang": [5, 74], "16000": [5, 74], "custom_test_idx": [5, 74], "train_idx": [5, 74, 108], "test_idx": [5, 74, 108], "manual": [5, 65, 76, 87, 91, 96, 118, 119], "079349": [5, 74], "542053": [5, 74], "418": 5, "2184": 5, "plot_3_data_prepar": [5, 9], "analysi": [6, 62, 63, 64, 65, 71, 74, 80, 83, 87, 102, 108, 133], "score": [6, 46, 69, 71, 79, 83, 84, 87, 92, 99, 100, 105, 108, 109, 110, 112, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130], "distribut": [6, 8, 46, 47, 50, 51, 62, 63, 65, 71, 72, 74, 77, 78, 84, 87, 94, 99, 102, 103, 104, 106, 108, 127, 128], "outlier_detect": [6, 75, 108], "pca": [6, 75, 108, 111], "cblof": [6, 71, 108], "data_quality_check": [6, 75, 108], "score_distribut": [6, 75, 108], "threshold": [6, 7, 42, 43, 44, 45, 46, 47, 52, 55, 56, 65, 68, 70, 73, 75, 77, 87, 98, 99, 101, 102, 105, 108, 109, 110, 118, 119, 123, 124], "999": [6, 75], "marginal_outlier_distribut": [6, 75, 108], "strategi": [6, 7, 77, 108, 115, 116, 125, 126], "tsne_comparison": [6, 75, 108], "36": [6, 12, 17, 37, 77], "681": 6, "130": 6, "plot_4_data_qu": [6, 9], "four": [7, 74, 75, 77, 79, 87, 93, 103, 108, 111, 125], "pearson": [7, 72, 77, 108], "feature_select": [7, 62, 63, 77, 87, 108], "cor": [7, 77, 108], "corr_algorithm": [7, 77, 108], "spearman": [7, 77, 108], "dcor": [7, 77, 106, 108], "permut": [7, 10, 17, 18, 63, 66, 77, 85, 87, 108, 125, 126], "pfi": [7, 11, 62, 77, 85, 87, 108], "95": [7, 77], "condit": [7, 10, 17, 18, 71, 72, 75, 84, 85, 97, 103, 105, 108], "independ": [7, 71, 75, 82, 84, 94, 96, 108], "rcit": [7, 108], "001": [7, 36, 37, 77, 94, 118, 119, 123, 124], "n_forward_phas": [7, 77, 108], "kernel_s": [7, 77, 108], "100": [7, 12, 16, 26, 27, 28, 42, 43, 45, 49, 50, 51, 52, 77, 84, 86, 90, 96, 100, 101, 105, 108, 110, 117, 118, 119, 120, 127, 128, 129, 130], "where": [7, 72, 73, 74, 75, 77, 79, 82, 84, 87, 89, 90, 93, 94, 95, 96, 97, 99, 100, 101, 103, 105, 114, 116, 119, 124, 125, 126, 128, 130], "markov": [7, 77], "boundari": [7, 73, 77, 99, 108], "i": [7, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130], "non": [7, 65, 77, 82, 91, 97, 99, 113, 114, 117, 120, 121, 122, 125, 126], "empti": [7, 77, 108, 118, 119], "preset": [7, 77, 108], "390": 7, "plot_5_feature_select": [7, 9], "shift": [8, 46, 47, 65, 78, 102, 104, 108], "psi": [8, 46, 47, 50, 51, 65, 78, 102, 103, 108, 111], "twosample_test": [8, 78, 108], "metric": [8, 42, 43, 44, 45, 48, 49, 52, 55, 56, 57, 64, 65, 67, 68, 70, 71, 74, 83, 87, 98, 99, 101, 102, 103, 104, 105, 108, 113, 115, 118, 123, 125, 127, 129], "psi_bucket": [8, 78, 102, 103, 108], "uniform": [8, 52, 78, 100, 104, 108, 113, 114, 127, 128], "wd1": [8, 50, 51, 78, 102, 103, 108, 111], "k": [8, 68, 70, 74, 75, 77, 78, 79, 83, 87, 89, 90, 92, 97, 102, 103, 108, 109, 111], "singl": [8, 42, 43, 44, 45, 68, 69, 70, 72, 77, 79, 82, 84, 90, 93, 94, 101, 103, 105, 108, 117, 120, 125, 126], "quantil": [8, 48, 49, 52, 65, 68, 70, 73, 75, 78, 79, 100, 102, 103, 104, 108, 113, 114], "740": 8, "plot_6_twosample_test": [8, 9], "execut": [9, 17, 38, 53, 58, 77, 87], "auto_examples_data": 9, "file": [9, 17, 38, 53, 58, 86, 108, 118, 119], "000": [9, 17, 53, 56, 58, 66, 68, 89, 90, 92, 93, 94, 95, 97, 99, 101, 102, 103, 104, 105], "partial": [10, 17, 18, 77, 85, 87, 108, 118, 119], "depend": [10, 17, 18, 77, 80, 85, 87, 96, 108, 131], "individu": [10, 17, 18, 74, 75, 79, 81, 83, 84, 85, 93, 102, 105, 108, 118, 119], "expect": [10, 17, 18, 70, 72, 75, 84, 85, 90, 93, 102, 104, 110, 112, 114, 116, 119, 124, 126, 128, 130], "accumul": [10, 17, 18, 77, 85, 87, 96, 97, 108], "local": [10, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 62, 71, 82, 84, 87, 88, 99, 108, 109, 117, 118, 119, 120, 125, 126, 127, 128, 133], "effect": [10, 17, 18, 22, 23, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 62, 63, 66, 69, 74, 75, 80, 81, 82, 84, 85, 87, 93, 94, 103, 108, 113, 114, 115, 116, 117, 118, 119, 120, 125, 126, 127, 128], "interpret": [10, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 59, 61, 77, 79, 85, 108, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130, 133], "model": [10, 11, 12, 13, 14, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 57, 58, 59, 60, 61, 68, 69, 70, 73, 74, 75, 77, 79, 80, 82, 83, 85, 99, 100, 101, 102, 103, 104, 105, 108, 109, 110, 111, 133], "agnost": [10, 17, 18, 62, 63, 66, 79, 82, 85, 87, 102, 103], "explan": [10, 17, 18, 62, 63, 66, 67, 82, 85, 87, 108], "shaplei": [10, 17, 18, 85], "addit": [10, 17, 18, 68, 69, 70, 74, 75, 76, 79, 81, 85, 87, 88, 89, 90, 92, 95, 96, 97, 99, 101, 103, 105, 108, 113, 114, 115, 116, 117, 118, 119, 120, 133], "xgb2regressor": [11, 12, 13, 15, 16, 31, 41, 43, 45, 47, 51, 97, 108], "model_train": [11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 62, 63, 64, 65, 66, 86, 89, 90, 91, 92, 93, 94, 95, 96, 97, 108], "xgb2": [11, 12, 13, 15, 16, 18, 30, 31, 39, 40, 41, 42, 43, 44, 45, 47, 50, 51, 53, 55, 56, 65, 68, 70, 80, 81, 82, 83, 84, 87, 89, 92, 97, 99, 100, 101, 102, 103, 105, 108], "model_explain": [11, 12, 13, 14, 15, 16, 62, 63, 66, 79, 80, 81, 82, 83, 84, 87, 108], "n_repeat": [11, 83, 108], "574": 11, "plot_0_pfi": [11, 17], "n_estim": [12, 28, 29, 50, 51, 52, 86, 96, 97, 110, 127, 128, 129, 130], "1d": [12, 14, 63, 66, 78, 87, 97, 108], "pdp": [12, 62, 63, 66, 79, 80, 84, 85, 87, 108], "original_scal": [12, 13, 14, 15, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 50, 51, 55, 56, 79, 80, 81, 82, 84, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 101, 102, 103, 105, 108, 125, 126], "2d": [12, 14, 63, 66, 75, 82, 87, 97, 108], "pdp_size": [12, 82, 108], "10000": [12, 74, 82, 101, 118, 119, 123, 124], "179": [12, 17], "31": [12, 17, 37], "plot_1_pdp": [12, 17], "ic": [13, 73, 85, 108], "313": 13, "plot_2_ic": [13, 17], "reludnnregressor": [14, 37, 94, 108], "reludnn": [14, 36, 48, 79, 94, 123, 124], "al": [14, 62, 63, 66, 84, 85, 108, 112], "17": [14, 20, 37, 52, 62, 70, 75, 79, 80, 81, 82, 83, 84, 89, 92, 93, 96, 97, 99, 101, 102, 104, 105, 106, 125, 126], "598": 14, "plot_3_al": [14, 17], "lime": [15, 62, 63, 66, 85, 87, 106, 108], "without": [15, 20, 21, 36, 37, 84, 90, 93], "center": [15, 20, 21, 36, 37, 74, 77, 79, 81, 94, 108, 109, 117, 118, 119, 120, 127, 128], "sample_id": [15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 81, 84, 89, 90, 91, 92, 93, 94, 95, 96, 97, 108], "fals": [15, 20, 21, 36, 37, 40, 41, 81, 93, 94, 99, 100, 105, 108, 109, 110, 112, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128], "783": 15, "plot_4_lim": [15, 17], "shap": [16, 62, 63, 66, 85, 87, 106, 108], "waterfal": 16, "shap_waterfal": [16, 84, 108], "shap_fi": [16, 84, 108], "sample_s": [16, 84, 108, 118, 119], "shap_summari": [16, 84, 108], "shap_scatt": [16, 84, 108], "9": [16, 20, 21, 26, 37, 42, 45, 52, 53, 57, 62, 63, 65, 66, 75, 80, 90, 91, 95, 96, 101, 103, 104, 106], "493": 16, "plot_5_shap": [16, 17], "auto_examples_explain": 17, "glm": [18, 19, 38, 56, 57, 63, 65, 69, 70, 81, 87, 91, 93, 94, 96, 108, 127, 128], "logist": [18, 19, 38, 87, 93], "taiwan": [18, 19, 38, 66], "credit": [18, 19, 38, 52, 65, 66, 69, 73, 100, 108], "linear": [18, 19, 36, 37, 38, 77, 81, 82, 84, 87, 88, 90, 91, 92, 108, 111, 121, 122, 133], "bike": [18, 19, 38, 62, 70, 73, 89, 92, 96, 97, 99, 101, 102, 104, 105, 108], "share": [18, 19, 38, 73, 89, 92, 97, 99, 108], "gam": [18, 19, 38, 46, 64, 70, 87, 89, 91, 96, 97, 102, 108, 117, 118, 119, 120], "classif": [18, 19, 20, 38, 39, 52, 53, 54, 57, 58, 64, 65, 66, 67, 73, 74, 75, 76, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 103, 104, 105, 108, 113, 115, 118, 123, 125, 126, 127, 129, 133], "california": [18, 19, 38, 73, 89, 90, 95, 96, 103, 108], "hous": [18, 19, 38, 63, 73, 89, 90, 95, 96, 103, 108], "tree": [18, 19, 26, 27, 38, 42, 43, 44, 45, 55, 56, 68, 70, 75, 81, 82, 84, 87, 88, 89, 91, 96, 97, 101, 105, 108, 110, 111, 113, 114, 115, 116, 125, 126, 127, 128, 129, 130, 133], "taiwancredit": [18, 19, 20, 26, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 55, 61, 68, 73, 89, 90, 92, 93, 94, 95, 97, 99, 101, 102, 103, 104, 105, 108, 133], "fig": [18, 19, 38, 49, 55, 68, 87, 90, 104, 108, 115, 116, 117, 118, 119, 120, 127, 128], "xgb": [18, 19, 38, 42, 43, 65, 77, 92, 96, 97, 103, 105, 108, 127, 128, 129, 130], "ebm": [18, 19, 38, 57, 66, 69, 87, 89, 92, 108], "gami": [18, 19, 38, 87, 88, 89, 97, 108, 118, 119, 133], "net": [18, 19, 38, 87, 88, 89, 93, 108, 118, 119, 125, 126, 133], "relu": [18, 19, 38, 63, 66, 87, 88, 92, 108, 118, 119, 123, 124, 133], "dnn": [18, 19, 38, 63, 66, 87, 94, 108], "friedman": [18, 19, 38, 64, 73, 108, 126], "accuraci": [18, 39, 53, 55, 56, 67, 77, 84, 87, 98, 100, 102, 105, 108, 112, 113, 115, 118, 123, 125, 127, 129, 133], "weakspot": [18, 39, 53, 87, 98, 101, 102, 108, 133], "overfit": [18, 39, 53, 55, 56, 67, 77, 87, 89, 91, 94, 95, 96, 98, 99, 105, 108, 133], "reliabl": [18, 39, 53, 55, 56, 67, 75, 79, 87, 98, 99, 105, 108, 133], "robust": [18, 39, 53, 55, 56, 67, 87, 89, 98, 103, 108, 133], "resili": [18, 39, 53, 55, 56, 67, 87, 98, 108, 133], "fair": [18, 39, 53, 54, 58, 61, 67, 73, 87, 98, 108, 133], "all": [18, 20, 21, 49, 65, 66, 68, 70, 74, 75, 77, 79, 80, 83, 84, 89, 90, 91, 92, 93, 94, 97, 99, 100, 103, 104, 108, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "auto_examples_python": 18, "zip": 18, "auto_examples_jupyt": 18, "glmclassifi": [20, 57, 69, 93, 108], "limit_b": [20, 24, 26, 30, 32, 34, 36, 40, 42, 44, 46, 48, 50, 55], "sex": [20, 24, 26, 30, 32, 34, 36, 40, 42, 44, 46, 48, 50, 55], "educ": [20, 24, 26, 30, 32, 34, 36, 40, 42, 44, 46, 48, 50, 55], "marriag": [20, 24, 26, 30, 32, 34, 36, 40, 42, 44, 46, 48, 50, 55], "ag": [20, 24, 26, 30, 32, 34, 36, 40, 42, 44, 46, 48, 50, 55, 64], "flagdefault": [20, 24, 26, 30, 32, 34, 36, 40, 42, 44, 46, 48, 50, 55, 66, 68, 89, 90, 92, 93, 94, 95, 97, 99, 101, 102, 103, 104, 105], "evalu": [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 65, 68, 70, 77, 81, 83, 84, 87, 92, 99, 102, 103, 104, 105, 108], "predict": [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 46, 60, 68, 70, 77, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 102, 103, 104, 105, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 123, 124, 125, 126, 127, 128, 129, 130], "perform": [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 50, 51, 65, 69, 74, 75, 83, 87, 89, 90, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 104, 105, 108, 109, 110, 112, 118, 119, 123, 124, 125, 126], "model_diagnos": [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 62, 63, 66, 87, 93, 99, 101, 102, 103, 104, 105, 108], "accuracy_t": [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 93, 99, 108], "acc": [20, 22, 24, 26, 28, 30, 32, 34, 36, 40, 42, 44, 52, 55, 65, 68, 70, 87, 99, 100, 101, 103, 104, 105, 108], "auc": [20, 22, 24, 26, 28, 30, 32, 34, 36, 40, 42, 48, 55, 70, 83, 87, 94, 99, 101, 103, 104, 105, 108], "recal": [20, 22, 24, 26, 28, 30, 32, 34, 36, 40, 87, 99, 100, 108], "precis": [20, 22, 24, 26, 28, 30, 32, 34, 36, 40, 75, 87, 99, 100, 108], "f1": [20, 22, 24, 26, 28, 30, 32, 34, 36, 40, 52, 55, 65, 87, 99, 100, 101, 103, 104, 105, 108], "8083": 20, "7375": 20, "2579": 20, "6834": 20, "3745": 20, "8150": 20, "7356": 20, "2583": 20, "6936": 20, "3764": 20, "gap": [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 87, 99, 101, 105, 108, 125, 126], "0067": [20, 34], "0019": [20, 45], "0004": [20, 35, 37, 101], "0102": [20, 43], "coeffici": [20, 21, 72, 77, 81, 84, 87, 91, 94, 96, 108, 114, 116, 119, 124, 126, 128, 130], "model_interpret": [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 62, 63, 66, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 108], "glm_coef_plot": [20, 21, 93, 108], "tabl": [20, 21, 40, 41, 64, 65, 74, 77, 93, 100, 101, 104, 105, 108], "glm_coef_tabl": [20, 21, 93, 108], "pay_amt3": 20, "6906": 20, "pay_amt1": [20, 66, 94], "6464": 20, "pay_amt2": [20, 105], "5927": 20, "pay_amt4": 20, "4080": 20, "pay_amt6": 20, "3255": 20, "pay_amt5": 20, "3122": 20, "bill_amt5": 20, "1892": 20, "pay_4": 20, "0329": 20, "bill_amt1": [20, 42, 44, 48, 66], "0168": 20, "bill_amt2": [20, 48], "1473": 20, "pay_2": [20, 42, 105], "bill_amt3": [20, 48], "6271": 20, "pay_5": 20, "6885": 20, "bill_amt4": 20, "7107": 20, "14": [20, 21, 37, 42, 52, 65], "bill_amt6": 20, "8201": 20, "15": [20, 21, 37, 52, 65, 84, 109, 110, 111, 113, 114], "pay_3": [20, 36, 94], "8883": 20, "pay_6": 20, "0435": 20, "pay_1": [20, 30, 32, 34, 36, 40, 42, 44, 46, 50, 55, 66, 68, 94, 99, 102, 103, 105], "2420": 20, "global_fi": [20, 21, 22, 23, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 89, 91, 92, 93, 94, 96, 97, 108], "local_fi": [20, 21, 22, 23, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 89, 91, 92, 93, 94, 96, 97, 108], "origin": [20, 21, 46, 52, 75, 77, 79, 81, 82, 83, 84, 90, 96, 99, 100, 101, 102, 108, 110, 117, 118, 119, 120, 125, 126, 127, 128], "scale": [20, 21, 63, 82, 90, 96, 99, 101, 104, 108, 109, 110, 111, 112, 117, 118, 119, 120, 125, 126, 127, 128], "089": [20, 38], "plot_0_glm_cl": [20, 38], "glmregressor": [21, 56, 93, 108], "mse": [21, 23, 25, 27, 29, 31, 33, 35, 37, 41, 49, 56, 70, 83, 87, 99, 101, 102, 103, 104, 105, 108], "mae": [21, 23, 25, 27, 29, 31, 33, 35, 37, 41, 43, 45, 56, 70, 87, 99, 101, 103, 104, 105, 108], "r2": [21, 23, 25, 27, 29, 31, 33, 35, 37, 41, 49, 56, 70, 99, 101, 103, 104, 105, 108], "0225": 21, "1105": 21, "3467": 21, "1090": 21, "3593": 21, "0015": [21, 36, 101], "0127": 21, "2133": 21, "weathersit_2": 21, "0274": 21, "holiday_1": 21, "0250": 21, "season_2": [21, 93], "0038": 21, "workingday_0": 21, "holiday_0": 21, "season_0": 21, "weathersit_0": 21, "workingday_1": 21, "0035": [21, 37, 42], "weathersit_1": 21, "0104": 21, "0125": 21, "season_1": [21, 93], "0193": 21, "0365": 21, "season_3": [21, 93], "0659": 21, "weathersit_3": 21, "0727": 21, "1742": 21, "4082": [21, 45], "546": [21, 38], "plot_0_glm_reg": [21, 38], "gamclassifi": [22, 46, 91, 108], "spline_ord": [22, 23, 91, 117, 120], "n_spline": [22, 23, 91, 117, 120], "lam": [22, 23, 91, 117, 120], "8363": 22, "9226": 22, "8428": 22, "8346": 22, "8387": 22, "8475": 22, "9306": 22, "8542": 22, "8325": 22, "8432": 22, "0112": [22, 34], "0080": [22, 25], "0113": 22, "0021": [22, 42, 43, 45], "0045": 22, "global": [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 62, 82, 87, 88, 108, 117, 118, 119, 120, 125, 126, 133], "global_effect_plot": [22, 23, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 89, 91, 92, 94, 96, 97, 108], "669": [22, 38], "plot_1_gam_cl": [22, 38], "gamregressor": [23, 91, 108], "californiahousing_trim2": [23, 25, 27, 29, 63, 73, 108], "medhousev": [23, 25, 27, 29, 63, 86, 90, 91, 95, 103], "0145": 23, "0867": 23, "7453": 23, "0152": [23, 43], "0883": 23, "7257": 23, "0007": [23, 24, 30, 34, 37, 40, 99], "0017": 23, "0196": 23, "medinc": [23, 29, 90, 91, 96], "312": [23, 38], "plot_1_gam_reg": [23, 38], "treeclassifi": [24, 55, 84, 95, 108], "max_depth": [24, 25, 26, 27, 49, 50, 52, 56, 65, 86, 90, 95, 105, 111, 115, 116, 125, 126, 129, 130], "8248": 24, "7716": 24, "3740": 24, "6985": 24, "4872": 24, "8255": 24, "7605": 24, "3601": 24, "6827": 24, "4715": 24, "0111": 24, "0140": 24, "0157": 24, "start": [24, 25, 73, 77, 90, 94, 95, 96, 108, 111], "root": [24, 25, 26, 27, 68, 90, 95, 108, 111, 112, 125, 126], "node": [24, 25, 72, 75, 84, 90, 94, 95, 96, 97, 108, 111, 113, 114, 115, 116, 125, 126, 127, 128, 129, 130], "tree_glob": [24, 25, 26, 27, 90, 95, 108], "depth": [24, 25, 26, 27, 75, 87, 88, 89, 90, 95, 100, 102, 108, 110, 111, 115, 116, 125, 126, 127, 128, 129, 130, 133], "th": [24, 75, 77, 79, 82, 84, 90, 91, 94, 96], "tree_loc": [24, 25, 26, 27, 90, 95, 108], "536": [24, 38], "plot_2_tree_cl": [24, 38], "treeregressor": [25, 84, 95, 108], "0184": 25, "0979": 25, "6762": 25, "0212": 25, "1059": 25, "6178": 25, "0028": [25, 26], "0584": 25, "338": [25, 38, 44], "plot_2_tree_reg": [25, 38], "figsclassifi": [26, 55, 90, 108], "max_it": [26, 27, 49, 89, 90, 115, 116, 117, 120], "8246": 26, "7891": 26, "3828": 26, "6908": 26, "4926": 26, "8218": [26, 32], "7637": 26, "3562": 26, "6638": 26, "4636": [26, 45], "0255": 26, "0266": 26, "0270": [26, 43], "0290": 26, "figs_heatmap": [26, 27, 90, 108], "tree_idx": [26, 27, 90, 108, 125, 126], "first": [26, 27, 63, 64, 65, 70, 73, 74, 76, 77, 79, 80, 81, 82, 83, 84, 87, 89, 90, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 112, 118, 119, 125, 126], "814": [26, 38], "plot_3_figs_cl": [26, 38], "figsregressor": [27, 49, 90, 108], "0103": 27, "0705": 27, "8196": 27, "0114": 27, "0739": 27, "7941": 27, "0012": [27, 35, 43], "0034": [27, 42], "0256": 27, "987": [27, 38], "plot_3_figs_reg": [27, 38], "xgb1classifi": [28, 96, 108], "max_bin": [28, 29, 89, 96, 97, 105, 113, 114, 127, 128, 129, 130], "min_bin_s": [28, 29, 96, 127, 128], "01": [28, 29, 38, 89, 96, 113, 114, 118, 119, 127, 128], "xgb1": [28, 29, 87, 96, 97, 108], "8512": 28, "9311": 28, "8342": 28, "8663": 28, "8499": 28, "8450": 28, "9028": 28, "8281": 28, "8457": 28, "8368": 28, "0062": [28, 32], "0283": [28, 43], "0060": [28, 35], "0206": [28, 45], "0131": [28, 29], "evid": [28, 29, 108, 127, 128], "xgb1_woe": [28, 29, 96, 108], "inform": [28, 29, 68, 73, 74, 76, 87, 89, 90, 92, 93, 94, 95, 97, 99, 101, 102, 103, 104, 105, 108, 111, 112, 118, 119, 125, 127, 128], "xgb1_iv": [28, 29, 96, 108], "822": [28, 38], "plot_4_xgb1_cl": [28, 38], "xgb1regressor": [29, 96, 108], "0816": 29, "7704": 29, "0136": 29, "0822": 29, "7546": 29, "0005": [29, 31, 37, 41, 63, 99], "0006": [29, 33, 43, 45], "0159": [29, 45], "798": [29, 38], "plot_4_xgb1_reg": [29, 38], "xgb2classifi": [30, 40, 42, 44, 50, 52, 55, 97, 108], "8223": [30, 40, 99], "7970": [30, 40, 99], "3617": [30, 40, 99], "6924": [30, 40, 99], "4751": [30, 40, 99], "8288": [30, 40, 99], "7732": [30, 40, 99], "3624": [30, 40, 99], "7015": [30, 40, 99], "4779": [30, 40, 99], "0066": [30, 40, 45, 99], "0237": [30, 40, 99], "0091": [30, 40, 99], "0027": [30, 40, 99], "global_ei": [30, 31, 32, 33, 34, 35, 89, 92, 97, 108], "local_ei": [30, 31, 32, 33, 34, 35, 89, 92, 97, 108], "817": [30, 38], "plot_5_xgb2_cl": [30, 38], "0087": [31, 41, 45, 99], "0649": [31, 41, 99], "7469": [31, 41, 99], "0092": [31, 41, 99], "0668": [31, 41, 99], "7368": [31, 41, 99], "0018": [31, 41, 99], "0101": [31, 41, 99], "830": [31, 38], "plot_5_xgb2_reg": [31, 38], "explainableboostingclassifi": [32, 57, 69, 89, 108], "interact": [32, 33, 62, 63, 66, 75, 79, 80, 82, 84, 87, 93, 94, 101, 113, 114, 115, 116, 118, 119], "7885": [32, 44], "3680": 32, "6854": 32, "4789": 32, "8280": 32, "7764": 32, "3716": 32, "6896": [32, 42], "4830": 32, "0121": 32, "0036": [32, 36], "0042": 32, "0040": [32, 37], "591": [32, 38], "plot_6_ebm_cl": [32, 38], "explainableboostingregressor": [33, 89, 108], "0072": 33, "0589": 33, "7920": 33, "0078": 33, "0615": 33, "7782": 33, "0026": 33, "0138": [33, 37], "727": [33, 38], "plot_6_ebm_reg": [33, 38], "gaminetclassifi": [34, 92, 108], "8191": 34, "7751": 34, "3577": 34, "6768": 34, "4681": 34, "8258": 34, "7697": 34, "3554": 34, "6881": 34, "4687": 34, "0054": [34, 45], "0023": [34, 37], "53": [34, 38, 77], "428": [34, 38], "plot_7_gaminet_cl": [34, 38], "gaminetregressor": [35, 92, 108], "0056": 35, "0526": 35, "8372": 35, "0538": 35, "8289": 35, "0083": 35, "387": [35, 38], "plot_7_gaminet_reg": [35, 38], "matplotlib": [36, 106, 117, 118, 119, 120, 127, 128], "pyplot": [36, 117, 118, 119, 120, 127, 128], "plt": [36, 117, 118, 119, 120, 127, 128], "reludnnclassifi": [36, 48, 94, 108], "hidden_layer_s": [36, 37, 94, 123, 124], "l1_reg": [36, 37, 94, 123, 124], "0002": [36, 37, 43, 94], "learning_r": [36, 37, 89, 94, 113, 114, 115, 116, 118, 119, 123, 124], "8200": [36, 87], "7723": 36, "3619": 36, "6793": 36, "4722": 36, "8300": 36, "7708": 36, "3655": 36, "7064": 36, "4817": 36, "0100": [36, 42, 44], "0271": 36, "0095": 36, "llm": [36, 37, 108], "llm_summari": [36, 37, 94, 108], "count": [36, 37, 62, 70, 76, 79, 80, 81, 82, 83, 84, 89, 92, 93, 94, 96, 97, 99, 100, 101, 102, 104, 105, 108, 123, 124], "respons": [36, 37, 40, 62, 63, 64, 65, 66, 68, 70, 73, 77, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 108, 111, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130], "6535": 36, "1053": 36, "3069": 36, "6037": 36, "7349": 36, "4166": 36, "1066": 36, "3086": 36, "6477": 36, "6261": 36, "1307": 36, "2295": 36, "4207": 36, "5999": 36, "5003": 36, "1158": 36, "3100": 36, "4627": 36, "7819": 36, "7348": 36, "903": 36, "1595": 36, "3663": 36, "6118": 36, "5528": 36, "300": 36, "nan": [36, 37, 42], "7364": 36, "301": 36, "5529": 36, "302": 36, "7370": 36, "303": [36, 43], "7244": 36, "304": 36, "7134": 36, "305": 36, "parallel": [36, 37, 108, 113, 114, 118, 119], "coordin": [36, 37, 108], "llm_pc": [36, 37, 94, 108], "violin": [36, 37, 108], "llm_violin": [36, 37, 94, 108], "one": [36, 37, 62, 64, 65, 70, 72, 75, 76, 77, 79, 82, 83, 87, 89, 92, 93, 94, 95, 96, 97, 101, 102, 103, 105, 106, 111, 113, 114, 118, 119, 125, 126], "44": [36, 38, 44, 80], "045": [36, 38], "plot_8_reludnn_cl": [36, 38], "0192": 37, "9784": 37, "0009": 37, "0199": 37, "9709": 37, "0075": 37, "215": [37, 77, 87], "4711": 37, "1584": 37, "0309": 37, "207": 37, "4700": 37, "1648": 37, "0327": 37, "185": 37, "4592": 37, "1754": 37, "0324": [37, 92], "148": [37, 43, 45, 101], "4698": 37, "1601": 37, "0003": 37, "0340": 37, "126": 37, "3969": 37, "1574": 37, "0186": 37, "106": 37, "3815": 37, "1582": 37, "0218": 37, "6136": 37, "1315": 37, "0013": 37, "0783": 37, "62": [37, 42, 52, 57, 64], "6301": 37, "1698": 37, "0008": [37, 43, 66, 93], "0750": 37, "3266": 37, "1242": 37, "0542": 37, "45": [37, 44, 83], "2920": 37, "1354": [37, 42, 105], "0551": 37, "43": 37, "6213": [37, 44], "1345": 37, "6046": 37, "1563": 37, "37": [37, 47], "2811": 37, "1128": 37, "0560": 37, "5604": 37, "1171": [37, 101], "0014": 37, "0784": 37, "35": 37, "2250": 37, "1211": 37, "0288": 37, "2636": 37, "1341": 37, "0604": 37, "5663": 37, "1579": 37, "0037": 37, "5213": 37, "1795": 37, "0010": 37, "0441": 37, "5491": 37, "1967": 37, "0451": 37, "6115": 37, "1256": 37, "5365": 37, "1195": 37, "4459": 37, "1685": 37, "0024": 37, "2393": 37, "1061": 37, "0342": 37, "3573": 37, "1770": 37, "0404": 37, "4821": 37, "1186": 37, "0135": 37, "25": [37, 42, 48, 52, 105], "5134": 37, "0839": 37, "0016": [37, 43, 45], "0625": [37, 44], "0238": 37, "27": 37, "4321": 37, "1450": 37, "0164": 37, "28": 37, "4558": 37, "0107": 37, "0240": 37, "29": [37, 52, 57], "1400": 37, "0890": 37, "0302": 37, "30": [37, 44, 65, 66, 68, 74, 76, 78, 87, 89, 90, 92, 93, 94, 95, 97, 99, 101, 102, 103, 104, 105], "2187": 37, "1037": 37, "0203": 37, "0751": 37, "1801": 37, "0305": 37, "0385": 37, "5209": 37, "0884": 37, "33": [37, 57, 65], "6258": 37, "0943": 37, "34": 37, "4773": [37, 45], "0875": 37, "x2": [37, 64, 73, 108], "210": [37, 38], "plot_8_reludnn_reg": [37, 38], "03": [38, 43], "51": 38, "945": 38, "auto_examples_model": 38, "09": 38, "08": 38, "07": [38, 84, 92], "05": [38, 43, 44, 45, 55, 56, 68, 70, 101, 123, 124], "04": [38, 43, 84], "confus": [40, 99, 108], "matrix": [40, 72, 75, 77, 79, 94, 97, 99, 104, 108, 110, 114, 115, 116, 119, 123, 124, 125, 126, 128, 130], "roc": [40, 99, 108], "accuracy_plot": [40, 55, 56, 68, 70, 99, 108], "residu": [40, 41, 87, 89, 90, 92, 102, 103, 104, 108, 114, 116, 119, 124, 126, 128, 130], "respect": [40, 41, 74, 77, 78, 81, 84, 90, 94, 99, 100, 102, 104, 108, 112, 118, 119], "accuracy_residu": [40, 41, 99, 108], "target_featur": [40, 41, 46, 47, 50, 51, 99, 102, 103, 108], "use_test": [40, 41, 42, 43, 44, 99, 101, 105, 108], "flagdefault_predict": 40, "765": 40, "plot_0_accuracy_cl": [40, 53], "cnt_predict": [41, 99], "278": 41, "plot_0_accuracy_reg": [41, 53], "slice_method": [42, 43, 44, 45, 55, 56, 68, 70, 101, 105, 108], "slice_featur": [42, 43, 44, 45, 55, 56, 68, 70, 101, 105, 108], "min_sampl": [42, 43, 44, 45, 101, 105, 108], "return_data": [42, 43, 44, 45, 46, 47, 52, 57, 69, 81, 89, 91, 92, 93, 96, 97, 100, 101, 102, 105, 108], "test_acc": [42, 44, 105], "train_acc": [42, 44, 105], "1265": [42, 105], "5090": [42, 105], "6957": 42, "0061": 42, "2500": 42, "191": [42, 105], "800": [42, 105], "6911": 42, "6787": 42, "0123": 42, "1111": [42, 44], "2222": [42, 44], "268": [42, 43, 105], "956": [42, 105], "7276": 42, "7176": 42, "3750": 42, "6250": 42, "322": [42, 105], "7205": 42, "7171": 42, "5556": 42, "351": [42, 105], "1430": [42, 105], "6125": 42, "6147": 42, "7500": 42, "82": [42, 105], "360": [42, 105], "6220": 42, "0030": [42, 43, 45], "set": [42, 43, 44, 48, 55, 56, 62, 63, 64, 65, 66, 68, 70, 71, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "4444": [42, 44], "test_auc": 42, "train_auc": 42, "752": 42, "2936": 42, "6444": 42, "7049": 42, "0605": 42, "3521": 42, "13975": 42, "6348": 42, "6958": 42, "0610": 42, "513": 42, "2154": 42, "5452": 42, "0896": 42, "5750": 42, "7060": 42, "1310": 42, "6410": 42, "4000": 42, "6786": 42, "121": 42, "7000": [42, 44], "6364": [42, 43], "0636": 42, "2778": 42, "582": 42, "2407": 42, "7268": 42, "7084": 42, "0185": 42, "1667": [42, 44], "6862": 42, "6798": 42, "0063": [42, 43], "4705": 42, "6824": 42, "488": 42, "1817": 42, "7377": 42, "7342": 42, "900": 42, "plot_1_weakspot_cl": [42, 53], "test_ms": [43, 45, 101], "train_ms": [43, 45, 101], "445": [43, 45, 101], "1736": [43, 45, 101], "0226": [43, 45], "0205": [43, 45], "290": 43, "1168": 43, "0277": 43, "0938e": 43, "85": 43, "377": 43, "0207": 43, "0200": 43, "3215e": 43, "8851e": 43, "155": 43, "538": 43, "0153": 43, "1004e": 43, "97": [43, 52, 57], "365": 43, "0108": 43, "7190e": 43, "test_ma": [43, 45], "train_ma": [43, 45], "1175": 43, "1122": 43, "0053": 43, "1026": 43, "4077": 43, "0931": 43, "0919": 43, "3261": [43, 45], "3696": [43, 45], "135": [43, 45, 101], "592": [43, 45, 101], "1947": 43, "1677": 43, "2826": [43, 45], "579": [43, 45, 101], "1130": 43, "1062": 43, "0068": 43, "8478": 43, "1630": 43, "6382": 43, "0827": 43, "0825": 43, "4545": 43, "1110": 43, "0753": 43, "0634": 43, "0119": 43, "6667": 43, "1239": 43, "0841": 43, "0778": 43, "5152": 43, "5303": 43, "127": 43, "452": 43, "0746": 43, "0738": 43, "6818": 43, "7273": 43, "146": 43, "555": 43, "0787": 43, "0803": 43, "74": 43, "307": 43, "0736": 43, "0756": 43, "0020": 43, "5909": 43, "294": 43, "1282": 43, "0790": 43, "0820": 43, "9848": [43, 45], "196": 43, "882": [43, 45], "0744": 43, "0808": 43, "474": 43, "plot_1_weakspot_reg": [43, 53], "3781": 44, "131": 44, "7561": 44, "8473": 44, "0912": 44, "7167": 44, "8037": 44, "117": 44, "6333": 44, "7350": 44, "1017": 44, "2814": 44, "3685": 44, "7083": 44, "8133": 44, "1050": 44, "9237": 44, "9558": 44, "69": 44, "5797": 44, "6893": 44, "1096": 44, "6715": 44, "73": 44, "6500": 44, "7808": 44, "1308": 44, "7632": 44, "7953": 44, "92": 44, "6000": 44, "7717": 44, "1717": 44, "1073": 44, "3453": 44, "296": 44, "8480": 44, "0480": 44, "9831": 44, "8182": 44, "1182": 44, "52": [44, 77], "198": 44, "8283": 44, "0398": [44, 45], "7228": 44, "7332": 44, "299": 44, "6933": 44, "7559": 44, "9807": 44, "8000": 44, "1000": [44, 90, 118, 119, 123, 124], "794": 44, "plot_2_overfit_cl": [44, 53], "1020": 45, "0146": 45, "0139": 45, "6636": 45, "103": 45, "366": 45, "0391": 45, "0325": 45, "2318": 45, "173": 45, "645": 45, "0260": 45, "1803": 45, "122": 45, "461": 45, "0058": 45, "1364": 45, "5606": 45, "240": 45, "0093": 45, "0077": 45, "197": [45, 87, 101], "4924": 45, "1649": 45, "6580": 45, "062": 45, "057": 45, "005": 45, "0495": 45, "0098": 45, "0177": 45, "255": 45, "plot_2_overfit_reg": [45, 53], "calcul": [46, 47, 68, 74, 75, 77, 78, 79, 81, 83, 84, 89, 90, 91, 92, 93, 94, 96, 97, 100, 101, 102, 103, 105, 108, 109, 111, 112, 118, 119, 125, 126], "each": [46, 47, 66, 68, 69, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 108, 109, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "between": [46, 47, 50, 51, 65, 69, 72, 74, 75, 77, 78, 79, 80, 82, 83, 84, 89, 91, 92, 93, 96, 97, 99, 101, 102, 103, 104, 105, 108, 125, 126], "un": [46, 47, 108], "reliability_dist": [46, 47, 102, 108], "distance_metr": [46, 47, 50, 51, 102, 103, 108], "bandwidth": [46, 47, 55, 56, 80, 108], "against": [46, 47, 50, 51, 68, 69, 70, 75, 89, 92, 97, 99, 104, 106, 108], "given": [46, 47, 75, 77, 81, 84, 89, 90, 92, 94, 96, 97, 100, 101, 102, 105, 108, 110, 111, 113, 115, 117, 118, 119, 120, 123, 125, 127, 128, 129], "reliability_margin": [46, 47, 102, 108], "bin": [46, 47, 52, 55, 56, 65, 68, 70, 78, 79, 87, 89, 96, 97, 98, 101, 102, 103, 105, 108, 113, 114, 127, 128, 129, 130], "calibr": [46, 68, 108], "probabl": [46, 68, 82, 84, 94, 99, 102, 103, 104, 108, 113, 115, 118, 123, 124, 125, 127, 129], "v": [46, 63, 66, 77, 108, 114, 116, 119, 124, 126, 128, 130], "reliability_calibr": [46, 102, 108], "diagram": [46, 55, 95, 108, 111, 125, 126], "reliability_perf": [46, 55, 68, 102, 108], "brier": [46, 108], "reliability_t": [46, 47, 102, 108], "1258": 46, "1276": 46, "059": 46, "plot_3_reliability_cl": [46, 53], "empir": [47, 74, 97, 102, 108], "coverag": [47, 56, 108], "averag": [47, 65, 70, 75, 77, 79, 80, 81, 82, 83, 84, 90, 93, 94, 95, 96, 99, 101, 102, 105, 108, 110, 118, 119], "alpha": [47, 48, 49, 50, 51, 55, 56, 68, 70, 102, 103, 104, 108, 111, 112, 125, 126], "8892": 47, "2373": 47, "051": 47, "plot_3_reliability_reg": [47, 53], "default": [48, 55, 56, 62, 63, 64, 65, 66, 68, 70, 73, 74, 75, 77, 82, 83, 84, 87, 89, 90, 94, 95, 99, 101, 103, 104, 105, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "robustness_perf": [48, 49, 55, 56, 68, 70, 104, 108], "perturn": [48, 49], "perturb_featur": [48, 49, 55, 68, 70, 104, 108], "size": [48, 49, 65, 68, 70, 75, 77, 82, 87, 94, 95, 96, 101, 104, 105, 108, 109, 111, 113, 114, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128], "perturb_s": [48, 49, 68, 70, 104, 108], "perturb_method": [48, 49, 68, 70, 104, 108], "worst": [48, 49, 50, 51, 55, 56, 102, 103, 108], "percent": [48, 49, 55, 56, 74], "robustness_perf_worst": [48, 49, 55, 56, 68, 70, 104, 108], "448": 48, "plot_4_robustness_cl": [48, 53], "being": [49, 79, 83, 84, 87, 96, 100, 102, 103], "perturb": [49, 55, 68, 70, 81, 87, 108], "224": 49, "plot_4_robustness_reg": [49, 53], "scenario": [50, 51, 55, 56, 74, 87, 103], "resilience_perf": [50, 51, 55, 56, 68, 70, 103, 108], "resilience_method": [50, 51, 55, 56, 68, 70, 103, 108], "hard": [50, 51, 68, 70, 94, 99, 103, 108, 112, 123, 124], "cluster": [50, 51, 68, 70, 71, 74, 90, 103, 108, 109, 111], "margin": [50, 51, 71, 72, 81, 84, 87, 92, 93, 94, 108, 118, 119], "resilience_dist": [50, 51, 55, 56, 103, 108], "noneimmut": 50, "immu_featur": [50, 51, 55, 56, 68, 70, 103, 108], "n_cluster": [50, 51, 68, 70, 103, 108, 109], "resilience_shift_histogram": [50, 51, 103, 108], "resilience_shift_dens": [50, 51, 103, 108], "229": 50, "plot_5_resilience_cl": [50, 53], "immut": [51, 103, 108], "009": 51, "plot_5_resilience_reg": [51, 53], "simucredit": [52, 57, 65, 69, 73, 108], "race": [52, 57, 64, 65, 69, 100], "gender": [52, 57, 65, 69, 100], "approv": [52, 57, 65], "mono_increasing_list": [52, 96, 97, 118, 119, 127, 128, 129, 130], "mortgag": [52, 65, 73, 100, 108], "balanc": [52, 57, 65, 69, 96, 100, 108, 125], "mono_decreasing_list": [52, 96, 118, 119, 127, 128, 129, 130], "amount": [52, 65, 100, 112], "past": [52, 65, 100], "due": [52, 65, 69, 77, 78, 87, 91, 94, 97, 100, 104, 105], "util": [52, 65, 74, 75, 90, 99, 108], "delinqu": [52, 65], "inquiri": [52, 65], "open": [52, 65, 87], "trade": [52, 65, 100, 108], "xgb2_monoton": [52, 100], "metrics_result": [52, 57, 69, 100], "model_fair": [52, 65, 100, 108], "air": [52, 57, 65, 69, 100, 108], "group_categori": [52, 57, 69, 100, 108], "reference_group": [52, 57, 69, 100, 108], "protected_group": [52, 57, 69, 100, 108], "favorable_threshold": [52, 57, 69, 100, 108], "performance_metr": [52, 100, 108], "group": [52, 57, 64, 65, 81, 94, 100, 102, 108], "index": [52, 57, 74, 78, 79, 90, 94, 108, 113, 114, 118, 119, 125, 126], "categori": [52, 57, 64, 65, 72, 74, 75, 76, 79, 93, 100, 104, 108, 118, 119], "refer": [52, 57, 59, 64, 65, 73, 79, 82, 90, 91, 96, 100, 102, 105, 108, 125, 126], "protect": [52, 57, 64, 65, 69, 100, 108], "603728": 52, "745063": 52, "segment": [52, 57, 64, 65, 67, 72, 73, 87, 98, 105, 108], "segmented_result": [52, 57, 69, 100], "segmented_featur": [52, 57, 69, 100, 108], "segmented_bin": [52, 57, 69, 100, 108], "lower": [52, 57, 65, 69, 80, 91, 102, 105, 110, 112], "bound": [52, 57, 89, 99, 105], "upper": [52, 57, 73, 77, 89, 105, 108], "306": [52, 57], "451200": 52, "663992": 52, "601": [52, 57], "477974": 52, "640716": 52, "47": [52, 57], "1027": [52, 57], "623723": 52, "657706": 52, "1864": [52, 57], "639482": 52, "776867": 52, "94": [52, 57], "20384": [52, 57], "87": [52, 57], "849147": 52, "815034": 52, "binning_result": [52, 100, 127, 128], "binning_dict": [52, 100, 108], "id": [52, 90, 93, 95, 111], "configur": [52, 74, 80, 108], "715171": 52, "000368": 52, "003484": 52, "505151": 52, "000873": 52, "998020": 52, "506629": 52, "003422": 52, "979733": 52, "511253": 52, "003826": 52, "940766": 52, "522427": 52, "580318": 52, "988035": 52, "360787": 52, "584574": 52, "975176": 52, "364127": 52, "591296": 52, "934952": 52, "373758": 52, "600570": 52, "839246": 52, "400689": 52, "419545": 52, "011075": 52, "397111": 52, "423988": 52, "997716": 52, "400796": 52, "442289": 52, "959378": 52, "410201": 52, "469471": 52, "865747": 52, "437757": 52, "460530": 52, "996881": 52, "421800": 52, "463408": 52, "987163": 52, "424344": 52, "480924": 52, "951194": 52, "433464": 52, "506623": 52, "868160": 52, "457202": 52, "472251": 52, "999380": 52, "411107": 52, "476458": 52, "988062": 52, "414268": 52, "489755": 52, "954747": 52, "422231": 52, "509819": 52, "878128": 52, "444284": 52, "thresholding_result": [52, 100], "331291": 52, "883245": 52, "6765": 52, "892292": 52, "433": [52, 53], "plot_6_fair": [52, 53], "auto_examples_test": 53, "39": [53, 87, 106], "model_compar": [55, 56, 62, 63, 66, 68, 70, 87, 108], "historgram": [55, 56], "slice": [55, 56, 68, 70, 87, 101, 103, 105, 108], "reliability_bandwidth": [55, 56, 68, 70, 108], "565": 55, "plot_0_compare_classif": [55, 58], "xgboost": [56, 65, 75, 87, 88, 100, 105, 106, 108, 133], "xgbregressor": 56, "xgb7": [56, 65, 70], "reliability_coverag": [56, 70, 108], "plot_0_compare_regress": [56, 58], "model_fairness_compar": [57, 65, 69, 108], "glm_air": 57, "ebm_air": 57, "712368": 57, "647789": 57, "832585": 57, "781610": 57, "825086": 57, "439287": 57, "901729": 57, "703873": 57, "689973": 57, "545624": 57, "745220": 57, "642129": 57, "633800": 57, "687002": 57, "591785": 57, "701057": 57, "613486": 57, "721803": 57, "602803": 57, "826708": 57, "748971": 57, "890700": 57, "714674": 57, "835029": 57, "151": [57, 58], "plot_1_compare_fair": [57, 58], "auto_examples_testing_compar": 58, "comparison": [58, 59, 61, 71, 87, 108, 133], "welcom": 59, "scikit": [59, 73, 77, 80, 82, 83, 87, 93, 94, 100, 106, 108, 110, 112, 121, 122, 125, 126], "learn": [59, 62, 63, 66, 67, 69, 70, 73, 77, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 96, 97, 99, 100, 101, 102, 104, 105, 106, 108, 110, 112, 113, 114, 115, 116, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "instal": [59, 77, 87, 131], "api": [59, 64, 68, 70, 75, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 110, 112], "class": [59, 65, 93, 99, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "pipelin": [59, 86, 87, 108, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 133], "post": [59, 62, 63, 66, 77, 83, 87, 108, 133], "hoc": [59, 62, 63, 66, 77, 83, 87, 108, 133], "explain": [59, 61, 75, 79, 80, 81, 82, 83, 84, 87, 88, 96, 99, 108, 112, 113, 114, 133], "outcom": [59, 61, 87, 100, 108], "user": [59, 74, 75, 76, 77, 87, 90, 97, 99, 100, 104, 105, 107, 111], "guid": [59, 87, 99, 107], "introduct": [59, 74, 77, 94, 133], "black": [59, 87, 89, 94, 97, 133], "diagnost": [59, 61, 67, 99, 108, 133], "suit": [59, 76, 133], "case": [59, 64, 65, 70, 74, 76, 81, 83, 90, 93, 96, 99, 103, 104, 110, 113, 114, 125, 126, 133], "studi": [59, 133], "frequent": 59, "ask": 59, "question": 59, "how": [60, 62, 63, 66, 68, 70, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 101, 102, 103, 104, 105], "can": [60, 63, 65, 66, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 108, 112, 114, 116, 119, 124, 125, 126, 128, 130], "read": [60, 87], "regist": [60, 62, 64, 65, 66, 87, 90, 92, 108, 133], "my": 60, "own": [60, 74, 125], "frame": [60, 91, 93], "get": [60, 65, 70, 77, 78, 79, 81, 84, 89, 90, 91, 92, 93, 94, 96, 97, 100, 102, 104, 106, 108, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "chapter": 61, "includ": [61, 63, 66, 68, 73, 74, 75, 76, 77, 78, 82, 87, 89, 91, 92, 95, 96, 97, 99, 100, 101, 102, 103, 105, 106, 108, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "multipl": [61, 67, 75, 84, 87, 90, 92, 96, 102, 105, 108], "low": [61, 62, 63, 65, 66, 69, 73, 83, 84, 87, 91, 95, 99, 108], "experiment": [61, 87, 108], "intepret": 61, "benchmark": 61, "californiah": [61, 91, 133], "simul": [61, 69, 73, 81, 84, 91, 96, 100, 104, 108, 133], "ml": [61, 73, 77, 87, 93, 108], "": [61, 62, 68, 75, 77, 78, 79, 80, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 95, 97, 99, 100, 101, 102, 103, 104, 105, 108, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "descript": [61, 73, 87, 108], "demonstr": [62, 63, 64, 65, 66, 68, 70, 74, 77, 79, 80, 81, 82, 83, 84, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105], "its": [62, 63, 66, 70, 75, 77, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 101, 102, 103, 104, 105, 118, 119, 125], "mode": [62, 63, 66, 68, 73, 83, 87, 108, 118, 119, 125], "develop": [62, 63, 66, 70, 73, 79, 80, 81, 82, 83, 84, 87, 89, 92, 93, 94, 96, 97, 99, 101, 102, 104, 105, 108], "machin": [62, 63, 66, 67, 69, 70, 73, 77, 79, 80, 81, 82, 83, 84, 87, 88, 90, 92, 93, 96, 97, 99, 100, 101, 102, 104, 105, 108, 133], "uci": [62, 66, 68, 70, 73, 79, 80, 81, 82, 83, 84, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 101, 102, 103, 104, 105, 108], "repositori": [62, 66, 68, 70, 79, 80, 81, 82, 83, 84, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 101, 102, 103, 104, 105], "which": [62, 63, 66, 68, 70, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 108, 110, 113, 115, 116, 118, 119, 123, 125, 126, 127, 128, 129, 130], "consist": [62, 63, 66, 70, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 101, 102, 103, 104, 105, 109, 110, 112, 114, 116, 119, 124, 126, 128, 130], "389": [62, 70, 79, 80, 81, 82, 83, 84, 89, 92, 93, 96, 97, 99, 101, 102, 104, 105], "hourli": [62, 70, 79, 80, 81, 82, 83, 84, 89, 92, 93, 96, 97, 99, 101, 102, 104, 105], "rental": [62, 70, 79, 80, 81, 82, 83, 84, 89, 92, 93, 96, 97, 99, 101, 102, 104, 105], "capit": [62, 70, 79, 80, 81, 82, 83, 84, 89, 92, 93, 96, 97, 99, 101, 102, 104, 105], "system": [62, 70, 79, 80, 81, 82, 83, 84, 87, 89, 92, 93, 96, 97, 99, 101, 102, 104, 105], "see": [62, 63, 66, 69, 70, 75, 77, 78, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 104, 105, 112, 125, 126], "detail": [62, 63, 66, 68, 70, 75, 77, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 107, 125, 126], "here": [62, 63, 66, 74, 75, 77, 78, 79, 80, 82, 83, 89, 90, 92, 93, 97, 100, 101, 103, 111], "The": [62, 63, 64, 65, 66, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "continu": [62, 63, 70, 74, 75, 77, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 118, 119], "problem": [62, 63, 64, 65, 66, 68, 70, 73, 79, 80, 81, 82, 83, 84, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 108, 125], "click": [62, 63, 64, 65, 66, 73, 106], "link": [62, 63, 64, 65, 66, 69, 72, 73, 74, 75, 76, 77, 78, 93, 100, 113, 114], "googl": [62, 63, 64, 65, 66, 73, 108], "colab": [62, 63, 64, 65, 66], "choos": [62, 63, 64, 65, 66, 73, 75, 96, 101, 104, 105, 115, 116, 125, 126], "exploratori": [62, 63, 64, 65, 71, 108, 133], "need": [62, 75, 76, 77, 79, 80, 82, 84, 87, 90, 96, 97, 99, 100, 101, 102, 106, 112], "specif": [62, 63, 66, 74, 75, 76, 78, 79, 80, 82, 83, 87, 92, 93, 94, 95, 96, 97, 99, 100, 107, 108, 125, 126], "inher": [62, 63, 66, 87, 92, 94, 108], "pairwis": [62, 63, 66, 72, 77, 79, 87, 89, 92, 97, 118, 119], "640": [63, 90, 91, 95, 103], "fetch": [63, 90, 91, 95, 103, 110], "sklearn": [63, 75, 77, 86, 87, 90, 91, 93, 95, 100, 102, 103, 108, 109, 125, 126], "three": [63, 68, 70, 72, 74, 76, 77, 87, 92, 93, 99, 100, 101, 103, 104, 105], "version": [63, 78, 87, 102, 110, 113, 114, 116, 119, 124, 125, 126, 128, 130], "_raw": 63, "_trim1": 63, "trim": [63, 73], "onli": [63, 66, 70, 75, 78, 81, 83, 84, 87, 89, 91, 92, 93, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 108, 109, 111, 112, 113, 114, 115, 116, 118, 119, 125, 126], "aveoccup": [63, 73, 90, 91, 96, 108], "_trim2": 63, "averoom": [63, 73, 96, 108], "avebedrm": [63, 73, 108], "popul": [63, 73, 78, 81, 93, 96, 105, 108], "price": [63, 91], "per": [63, 79, 84, 89, 94, 111, 113, 114, 118, 119, 127, 128, 129, 130], "block": [63, 118, 119], "log": [63, 82, 93, 96, 118, 119, 125], "Then": [63, 74, 77, 78, 86, 94, 103, 105], "l1": [63, 93, 94, 121, 122, 123, 124, 126, 127, 128, 129, 130], "reigster": 63, "integr": [64, 81, 82, 87, 89, 93, 94], "sola": [64, 73, 106, 108], "ai": [64, 73, 87, 106, 108], "solassimu1": [64, 73, 108], "modifi": [64, 73, 76, 89, 108], "demo": [64, 101, 105, 108, 118, 119], "covari": [64, 73, 75, 77, 87, 104, 108], "ar": [64, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "x5": [64, 73, 108], "label": [64, 68, 73, 74, 76, 99, 105, 108, 110, 113, 114, 115, 116, 118, 123, 124, 125, 126, 127, 129], "binari": [64, 65, 66, 68, 73, 74, 81, 82, 83, 84, 87, 91, 93, 94, 95, 96, 98, 103, 104, 108, 115, 116], "rest": [64, 73, 75, 79, 80, 83, 89, 90, 92, 96, 102, 103, 104, 108], "demograph": [64, 65, 73, 100, 108], "contribut": [64, 73, 75, 80, 81, 83, 84, 91, 93, 96, 108, 113, 114, 117, 120, 127, 128], "minor": [64, 89], "major": 64, "grei": [64, 65], "color": [64, 65, 90], "when": [64, 65, 75, 77, 79, 80, 81, 83, 84, 90, 92, 93, 94, 95, 97, 99, 101, 103, 104, 105, 108, 111, 112, 114, 116, 117, 118, 119, 120, 123, 124, 125, 126, 128, 130], "finish": 64, "suggest": [64, 75, 79, 82, 84, 87, 91, 93, 99, 103], "procudur": 64, "add": [64, 65, 68, 70, 87, 97, 104, 108], "By": [64, 68, 70, 74, 75, 76, 77, 78, 80, 81, 83, 87, 89, 90, 91, 93, 94, 95, 96, 99, 101, 102, 103, 104, 105, 125, 126], "enter": [64, 76], "button": [64, 65, 73], "switch": [64, 96, 105], "other": [64, 66, 74, 75, 76, 77, 79, 80, 82, 84, 87, 90, 91, 92, 93, 96, 102, 105], "view": [64, 69, 82, 83, 84, 89, 90, 92, 95, 99], "breakdown": 64, "model_fairness_sola": [64, 108], "we": [65, 68, 69, 70, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 111, 118, 119], "decis": [65, 73, 81, 84, 87, 88, 90, 100, 105, 108, 111, 125, 126, 133], "hypothes": 65, "statu": [65, 105, 111, 123, 124], "well": [65, 70, 77, 90, 91, 93, 95, 96, 97, 99, 101, 102, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "indic": [65, 68, 69, 73, 74, 75, 79, 80, 82, 83, 84, 89, 90, 91, 92, 93, 94, 96, 97, 99, 103, 104, 105, 108, 109, 110, 111, 113, 114, 118, 119, 125, 126, 127, 128, 129, 130], "20k": 65, "num": 65, "applic": [65, 69, 73, 77, 87, 108], "last": [65, 68, 74, 77, 79, 103, 106, 118, 119, 123, 124], "month": 65, "card": [65, 66, 68, 73, 74, 76, 89, 90, 92, 93, 94, 95, 97, 99, 101, 102, 103, 104, 105, 108], "minimum": [65, 75, 76, 87, 96, 99, 101, 105, 106, 111, 113, 114, 115, 116, 125, 126, 127, 128, 129, 130], "requir": [65, 68, 74, 75, 76, 77, 79, 82, 84, 87, 89, 93, 97, 99, 101, 102, 104, 105, 110, 112, 113, 114, 115, 116, 118, 123, 124, 125, 126, 127, 128, 129, 130], "payment": [65, 66], "wa": [65, 103, 110], "appli": [65, 68, 70, 74, 84, 94, 96, 104, 125, 126], "account": [65, 75, 84, 96], "date": 65, "ordin": [65, 74, 96, 108], "current": [65, 106, 125, 126], "dai": [65, 79, 80, 82, 89, 92, 97, 99], "so": [65, 69, 70, 76, 77, 81, 83, 84, 90, 91, 93, 97, 100, 101, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "number": [65, 68, 74, 75, 76, 77, 78, 79, 83, 84, 89, 90, 91, 94, 96, 99, 100, 101, 102, 103, 104, 105, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130], "sum": [65, 75, 77, 78, 87, 88, 89, 91, 92, 93, 94, 96, 97, 105, 108, 113, 114, 115, 116, 119, 124, 125, 126, 128, 130, 133], "divid": [65, 72, 74, 75, 79, 89, 92, 95, 97, 99, 105, 112], "limit": [65, 77, 78, 79, 82, 90, 91, 94, 95], "cannot": [65, 69, 77, 93, 100, 102, 112], "kind": [65, 100], "should": [65, 70, 77, 79, 82, 83, 87, 93, 94, 99, 100, 101, 102, 105, 108, 110, 113, 114, 117, 118, 119, 120, 125, 126, 127, 128], "nearli": [65, 73, 108], "depth2": 65, "depth7": 65, "xgbclassifi": 65, "To": [65, 74, 77, 79, 80, 81, 82, 83, 84, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 101, 102, 103, 104, 105, 106, 125, 126], "e": [65, 75, 77, 78, 79, 80, 82, 84, 87, 89, 90, 91, 92, 93, 94, 96, 97, 99, 101, 103, 104, 105, 108, 110, 111], "g": [65, 77, 78, 84, 87, 89, 90, 91, 92, 93, 96, 97, 102, 105, 111], "favor": [65, 92, 108], "defaut": 65, "If": [65, 74, 75, 79, 82, 86, 90, 93, 96, 100, 102, 105, 106, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "find": [65, 89, 92, 94, 96, 99, 101, 102, 103, 125, 126], "higher": [65, 75, 82, 90, 91, 99, 102, 112], "debias": 65, "unfair": [65, 69, 100], "mitig": [65, 75, 77, 101], "an": [65, 68, 69, 70, 72, 74, 75, 76, 77, 79, 80, 81, 82, 84, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 101, 102, 103, 105, 106, 108, 109, 110, 112, 113, 114, 115, 116, 123, 124, 125, 126, 129, 130], "repeat": [65, 75, 77, 81, 83, 97, 117, 120], "mani": [65, 75, 79, 87, 93, 94, 99, 125, 126], "differ": [65, 67, 68, 69, 70, 71, 72, 74, 77, 78, 79, 81, 82, 83, 84, 87, 89, 92, 93, 94, 96, 97, 99, 100, 101, 102, 103, 104, 105, 108, 109, 112, 125, 126], "clear": [65, 79], "could": [65, 73, 84, 92, 118, 119], "record": [65, 68, 70, 80, 83, 104, 105, 127, 128], "adjust": [65, 76, 79, 95, 100, 102, 125], "vari": [65, 77, 80, 81, 103, 104, 125, 126], "For": [65, 68, 70, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 96, 97, 99, 100, 101, 102, 103, 105, 108, 109, 110, 112, 114, 116, 118, 119, 124, 125, 126, 128, 130], "both": [65, 69, 70, 72, 75, 77, 79, 80, 83, 84, 87, 89, 90, 91, 92, 93, 96, 97, 118, 119, 125], "good": [65, 94, 99, 103, 105], "client": [66, 68, 73, 89, 90, 92, 93, 94, 95, 97, 99, 101, 102, 103, 104, 105, 108], "200504": 66, "200509": 66, "subject": [66, 77, 87, 93, 105, 118, 119, 127, 128, 129, 130], "slight": 66, "preprocess": [66, 68, 73, 74, 89, 90, 93, 97, 99, 101, 102, 104, 105, 108, 112], "histori": [66, 118, 119], "keep": [66, 79, 83, 94, 104, 112, 114, 116, 119, 124, 126, 128, 130], "while": [66, 75, 77, 79, 80, 83, 84, 87, 89, 90, 91, 92, 93, 94, 96, 99, 100, 101, 103, 104, 125, 126], "l1_regular": 66, "compar": [67, 68, 69, 70, 75, 77, 78, 79, 81, 87, 90, 91, 92, 93, 96, 99, 100, 101, 102, 103, 105, 108], "section": [68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 84, 94, 99, 100, 104], "describ": [68, 70, 75, 77, 79, 82, 104, 111], "basi": [68, 70], "In": [68, 69, 70, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 96, 97, 99, 100, 101, 102, 103, 104, 105, 108, 110, 113, 115, 118, 119, 123, 125, 127, 129], "done": [68, 70, 79, 81, 97, 101, 102, 103, 105], "function": [68, 70, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 102, 104, 111, 113, 114, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130], "illustr": [68, 69, 70, 79, 80, 82, 84, 96, 97, 99, 103, 104], "consid": [68, 69, 70, 75, 82, 83, 84, 87, 92, 94, 95, 96, 97, 99, 100, 101, 102, 104, 105, 110, 113, 114, 115, 116, 125, 126], "chosen": [68, 70, 74, 90, 91, 92, 96, 105, 108, 125, 126], "chart": [68, 70, 72, 82, 93, 99], "below": [68, 69, 70, 73, 75, 77, 78, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 108], "As": [68, 76, 77, 79, 83, 84, 89, 91, 92, 94, 95, 96, 97, 99, 102, 103, 104, 105, 108, 118, 119], "legend": 68, "have": [68, 70, 74, 75, 76, 78, 79, 80, 82, 83, 84, 86, 87, 89, 90, 91, 92, 94, 95, 99, 101, 102, 103, 104, 105, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "similar": [68, 69, 77, 79, 80, 81, 84, 89, 90, 91, 92, 94, 96, 97, 99, 101, 102, 103, 105, 118, 119], "ha": [68, 75, 77, 78, 79, 81, 84, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 101, 103, 108, 125, 126], "slightli": [68, 77, 89, 92, 97, 103], "better": [68, 69, 75, 80, 83, 89, 94, 95, 96, 99, 100, 102, 103, 105], "under": [68, 70, 75, 77, 87, 93, 99, 103, 104, 105, 108, 115, 116, 125, 126], "region": [68, 69, 70, 87, 94, 101, 105, 108], "interest": [68, 70, 75, 79, 80, 81, 82, 87, 99, 101, 102, 105, 108], "detect": [68, 70, 72, 75, 87, 89, 101, 105, 108, 112, 113, 114], "algorithm": [68, 70, 74, 75, 77, 85, 87, 89, 90, 94, 95, 97, 98, 108, 109, 112, 115, 116, 125, 126, 127, 128, 129, 130], "found": [68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 89, 90, 92, 93, 94, 95, 97, 99, 100, 101, 102, 103, 104, 105, 106, 125, 126], "argument": [68, 70, 77, 78, 81, 82, 83, 84, 90, 92, 96, 99, 101, 102, 104, 105, 125, 126], "instead": [68, 70, 76, 77, 79, 82, 84, 87, 89, 90, 93, 96, 97, 99, 102, 103, 105, 110, 112, 114, 116, 119, 124, 125, 126, 128, 130], "string": [68, 70, 76, 108, 111, 112, 118, 119, 125, 126], "repres": [68, 70, 72, 75, 77, 79, 80, 81, 82, 84, 90, 91, 93, 94, 95, 96, 97, 99, 103, 104, 105, 110, 123, 124], "follow": [68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 108, 125, 126], "keyword": [68, 70, 75, 77, 79, 81, 82, 84, 89, 90, 91, 92, 93, 94, 95, 96, 97, 100, 101, 102, 103], "metricmetr": [68, 70], "interv": [68, 70, 79, 94, 102], "quantifi": [68, 74, 75, 84, 102], "squar": [68, 75, 77, 93, 94, 99, 105, 111, 112, 114, 116, 119, 122, 124, 126, 128, 130], "hat": [68, 70, 77, 79, 80, 82, 89, 90, 91, 92, 96, 97, 99, 102], "p": [68, 78, 82, 84, 96, 100, 102, 104, 108], "henc": [68, 77, 89, 94, 96, 104], "shown": [68, 69, 70, 77, 78, 79, 84, 89, 90, 92, 93, 94, 95, 97, 99, 102, 104], "actual": [68, 74, 75, 89, 91, 92, 95, 96, 97, 99, 118, 119], "input": [68, 70, 73, 79, 80, 81, 82, 83, 84, 92, 93, 94, 99, 103, 104, 108, 109, 110, 111, 112, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "normal": [68, 70, 75, 77, 84, 90, 91, 93, 94, 96, 97, 104, 108, 110, 115, 116, 118, 119, 125, 126], "nois": [68, 70, 81, 87, 104, 108], "step": [68, 70, 73, 75, 77, 83, 84, 89, 90, 92, 94, 95, 96, 97, 101, 103, 104, 105, 108, 115, 116], "abov": [68, 69, 70, 75, 77, 79, 82, 83, 84, 89, 91, 92, 94, 96, 97, 99, 102, 103, 104, 105], "On": [68, 70, 74, 79, 90, 104, 105], "axi": [68, 69, 70, 81, 84, 89, 90, 92, 93, 94, 96, 97, 102, 103, 104, 105, 108], "y": [68, 69, 70, 77, 81, 84, 86, 89, 90, 91, 92, 93, 94, 96, 97, 99, 100, 102, 104, 105, 108, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130], "best": [68, 70, 96, 97, 99, 114, 115, 116, 118, 119, 124, 125, 126, 128, 130], "option": [68, 70, 74, 75, 76, 78, 83, 84, 87, 94, 96, 101, 102, 103, 104, 105, 106, 108, 112, 113, 114, 117, 118, 119, 120, 125, 126, 127, 128], "proport": [68, 70, 78, 93, 99, 102, 104, 125], "degrad": [68, 83, 87, 104], "resilience_perf_worst": [68, 70], "high": [68, 70, 73, 75, 77, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 101, 102, 103, 104, 105, 108, 125, 126], "compris": [68, 89, 90, 92, 93, 94, 95, 97, 99, 101, 102, 103, 104, 105], "april": [68, 87, 89, 90, 92, 93, 94, 95, 97, 99, 101, 102, 103, 104, 105], "2005": [68, 89, 90, 92, 93, 94, 95, 97, 99, 101, 102, 103, 104, 105], "septemb": [68, 89, 90, 92, 93, 94, 95, 97, 99, 101, 102, 103, 104, 105], "more": [68, 69, 74, 75, 77, 78, 80, 82, 83, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 110, 112, 125, 126], "taiwancreditdata": [68, 89, 90, 92, 93, 94, 95, 97, 99, 101, 102, 103, 104, 105], "websit": [68, 89, 90, 92, 93, 94, 95, 97, 99, 101, 102, 103, 104, 105], "directli": [68, 69, 72, 83, 84, 89, 93, 94, 96, 97, 99, 101, 102, 103, 104, 105, 106, 108], "although": [68, 75, 79, 89, 92, 93, 97, 99, 101, 102, 104, 105], "some": [68, 77, 82, 83, 89, 91, 92, 93, 94, 96, 97, 99, 101, 102, 103, 104, 105, 108, 112, 114, 116, 118, 119, 124, 126, 128, 130], "serv": [68, 75, 89, 90, 92, 93, 94, 95, 97, 99, 101, 102, 103, 104, 105], "deal": [69, 77, 99, 104, 118, 119, 123, 124], "modul": [69, 73, 74, 75, 76, 77, 86, 87, 93, 95, 100, 106, 108, 118, 119], "assess": [69, 72, 74, 83, 91, 99, 101, 102, 104, 105], "bia": [69, 87, 94, 123, 124], "than": [69, 75, 76, 77, 79, 80, 81, 82, 84, 87, 90, 91, 93, 94, 96, 97, 99, 101, 102, 103, 104, 105, 108, 110, 112, 115, 116, 118, 119, 125, 126], "becaus": [69, 79, 81, 93, 96, 99, 103, 114, 116, 119, 124, 126, 128, 130], "former": [69, 84, 104], "complex": [69, 75, 77, 82, 89, 90, 91, 94, 95, 96, 105, 125, 126], "But": [69, 75, 125, 126], "definit": [69, 79, 89, 92, 94], "made": [69, 99, 100], "note": [69, 70, 74, 75, 77, 78, 79, 81, 82, 83, 84, 89, 90, 91, 92, 93, 95, 96, 97, 99, 101, 102, 103, 105, 108, 110, 114, 116, 118, 119, 124, 125, 126, 128, 130], "ani": [69, 80, 83, 84, 87, 89, 90, 91, 97, 115, 116, 125, 126], "like": [69, 75, 79, 87, 89, 92, 94, 99, 100, 105, 108, 110, 113, 114, 115, 116, 118, 119, 123, 124, 125, 126, 127, 128, 129, 130], "surrog": [69, 81, 84, 103, 108], "relat": [69, 77, 78, 90, 92, 96, 97, 102, 103, 106, 108, 125, 126], "left": [69, 74, 76, 77, 84, 89, 90, 92, 97, 99, 111, 115, 116, 125, 126], "african": 69, "american": 69, "white": 69, "ones": [69, 77, 82, 92], "right": [69, 77, 81, 84, 89, 90, 92, 93, 96, 97, 99, 111, 115, 116, 125, 126], "women": 69, "men": 69, "A": [69, 73, 75, 77, 82, 87, 93, 94, 99, 102, 103, 104, 108, 110, 111, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 128, 130], "discrimin": 69, "practic": [69, 84, 90, 94, 101], "less": [69, 76, 79, 80, 82, 84, 91, 96, 99, 101, 102, 103, 104, 105, 108, 125, 126], "figur": [69, 77, 78, 87, 89, 91, 92, 94, 96, 97, 102, 104, 108, 111, 117, 118, 119, 120, 125, 126, 127, 128], "thei": [69, 75, 77, 82, 84, 87, 89, 96, 97, 100, 103, 109, 112, 125, 126], "particular": [69, 77, 78, 81, 84, 87, 91, 93, 94, 95, 96, 97, 102, 103, 110], "those": 69, "overal": [69, 75, 77, 79, 87, 90, 93, 95, 103, 127, 128], "entir": [69, 70, 82, 84, 95, 99, 103], "also": [69, 70, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 102, 103, 104, 110, 111, 118, 119, 125, 126], "within": [69, 72, 74, 75, 90, 95, 97, 104, 108, 118, 119, 125, 126], "appropri": [69, 74, 87, 95], "subset": [69, 75, 77, 80, 82, 95, 102, 110, 113, 115, 118, 123, 125, 127, 129], "provid": [69, 74, 75, 76, 78, 80, 82, 83, 84, 87, 90, 92, 93, 94, 95, 96, 99, 103, 104, 105, 110, 111, 113, 114, 125, 126], "predictor": [69, 74, 80, 81, 82, 83, 87, 89, 91, 92, 93, 97, 105], "especi": [69, 77, 90, 91, 93, 115, 116, 125, 126], "larg": [69, 75, 77, 81, 84, 90, 91, 93, 94, 99, 101, 103, 109, 118, 119, 123, 124], "That": [69, 79, 99, 103, 104, 105, 125, 126], "rel": [69, 70, 75, 77, 89, 91, 93, 94, 96, 99, 103, 112, 125, 126], "increas": [69, 75, 77, 80, 83, 84, 87, 89, 91, 92, 93, 94, 96, 97, 103, 104, 118, 119, 127, 128, 129, 130], "conclus": [69, 70], "hold": [69, 93], "plotfirst": 70, "observ": [70, 75, 77, 80, 82, 89, 90, 91, 92, 93, 97, 99, 100, 102, 104, 110], "se": 70, "y_i": [70, 77], "_i": 70, "boxplot": 70, "mark": [70, 75, 77, 93, 94, 103], "circl": [70, 75], "same": [70, 75, 87, 89, 90, 92, 94, 97, 99, 100, 103, 104, 108, 113, 114, 125], "befor": [70, 74, 77, 93, 113, 114, 118, 119, 123, 124, 125, 126, 129], "third": [70, 74, 76, 94, 101, 103, 118, 119], "term": [70, 81, 84, 87, 90, 91, 93, 94, 97, 113, 114, 115, 116, 117, 127, 128, 129, 130], "again": 70, "ae": 70, "purpos": [70, 75, 77, 79, 82, 84, 87, 93, 97, 100, 102, 103, 105], "outsid": [70, 79, 82, 102, 108], "unperturb": 70, "most": [70, 74, 77, 80, 81, 83, 84, 89, 90, 91, 92, 93, 94, 95, 96, 97, 101, 106, 108, 118, 119], "extern": [71, 108], "statist": [71, 77, 78, 80, 87, 93, 94, 108], "manipul": 71, "basic": [71, 76, 108], "isol": [71, 110], "forest": [71, 83, 110], "outlier": [71, 72, 89, 108, 109, 110, 112], "factor": [71, 84, 96, 109], "princip": [71, 112], "compon": [71, 92, 94, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "kmeanstre": [71, 108], "support": [72, 73, 74, 79, 84, 87, 96, 97, 100, 103, 104, 106, 108, 109, 110, 112, 115, 116, 125, 126], "allow": [72, 74, 75, 76, 82, 84, 91, 96, 108, 117, 120, 125, 126], "visual": [72, 75, 79, 80, 82, 87, 89, 90, 92, 93, 94, 97], "explor": 72, "identif": [72, 87], "potenti": [72, 75, 91, 126], "These": [72, 73, 74, 77, 105], "aid": [72, 96], "understand": [72, 80, 87, 91, 93, 94, 96], "rang": [72, 75, 77, 79, 90, 94, 96, 97, 99, 100, 101, 103, 108], "deviat": [72, 75, 76, 100, 108, 118, 119], "pattern": [72, 75, 80, 87, 89, 91, 94, 104], "presenc": [72, 75], "space": [72, 75, 77, 78, 90, 91, 100, 105, 108], "frequenc": [72, 76, 102, 125], "graphic": [72, 80, 87], "represent": [72, 75, 91, 92, 94, 97, 115, 116], "relationship": [72, 75, 77, 79, 80, 82, 83, 84, 91, 93, 94, 96, 99, 102, 104], "combin": [72, 75, 77, 84, 90, 93], "collect": [72, 90, 96, 97], "point": [72, 75, 77, 79, 81, 84, 91, 94, 96, 99, 104, 105, 108, 110, 115, 116, 118, 119, 125, 126, 127, 128, 129, 130], "dimension": [72, 75, 93], "There": [72, 73, 77, 87, 93, 100], "altern": [72, 77, 78, 79, 84, 104, 125, 126], "connect": [72, 105], "line": [72, 75, 77, 80, 87, 94, 99, 100, 102, 103, 105, 108], "introduc": [73, 75, 84, 91, 94, 100, 102], "loader": [73, 118, 119], "usual": [73, 79, 83, 84, 87, 90, 100, 103, 105, 108], "whole": [73, 74, 105], "sever": [73, 77, 84, 92, 96, 108, 110, 125, 126], "alreadi": [73, 83, 86, 94], "upload": 73, "gaussian": [73, 75, 77, 104, 108, 109], "spheric": [73, 108], "archiv": [73, 108], "edu": [73, 108], "californiahousing_raw": [73, 86, 108], "crash": [73, 108], "cours": [73, 108], "californiahousing_trim1": [73, 108], "98": [73, 108], "solasai": [73, 108], "dispar": [73, 87, 99, 100, 108], "solashmda": [73, 108], "2018": [73, 84, 87, 108], "home": [73, 90, 91, 95, 103, 108], "disclosur": [73, 108], "act": [73, 108], "hmda": [73, 108], "about": [73, 79, 87, 108], "everi": [73, 90, 108, 117, 120, 125], "unit": [73, 93, 94, 108, 112], "you": [73, 74, 76, 77, 81, 84, 86, 87, 89, 91, 92, 93, 95, 96, 97, 100, 103, 104, 106, 108, 111, 113, 115, 118, 123, 125, 126, 127, 129], "wai": [73, 77, 84, 87, 91, 92, 94, 97, 108], "just": [73, 79, 84], "new": [73, 75, 87, 90, 91, 102, 125, 126], "wrap": [73, 77], "abil": [74, 75, 99, 102, 103], "variou": [74, 75, 84, 87, 89, 92, 93, 99, 103, 105, 106, 108], "aspect": [74, 75, 87, 92], "addition": [74, 76, 96, 97, 99, 103], "specifi": [74, 76, 77, 79, 82, 83, 84, 87, 89, 90, 92, 93, 94, 96, 97, 99, 101, 102, 103, 104, 105, 108, 112, 125, 127, 128, 129, 130], "paramet": [74, 75, 76, 77, 79, 80, 81, 83, 84, 87, 89, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 104, 105, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "seed": [74, 108, 109, 111, 112, 115, 116, 118, 119, 127, 128, 129, 130], "greater": [74, 75, 76, 77, 80, 99, 101, 102, 105, 108, 112, 115, 116, 118, 119, 125, 126], "control": [74, 76, 90, 91, 94, 95, 96, 100, 103, 112, 125, 126], "flexibl": [74, 76, 83, 87, 91, 92, 96, 105], "accord": [74, 87, 94, 96, 100, 103, 104, 108, 110, 118, 119], "prefer": 74, "typic": [74, 83, 93], "howev": [74, 75, 77, 80, 81, 82, 83, 84, 87, 89, 90, 91, 93, 94, 96, 97, 99, 102, 105], "locat": [74, 75], "explicitli": [74, 76, 84], "identifi": [74, 75, 77, 80, 84, 87, 91, 93, 96, 97, 99, 101, 103, 104, 105, 108, 110], "desir": [74, 75, 96, 102], "ensur": [74, 76, 91, 95, 96, 97, 103, 112], "correct": [74, 89, 105, 106], "automat": [74, 76, 77, 87, 96, 108, 113, 114, 125], "determin": [74, 75, 76, 77, 78, 82, 84, 90, 91, 99, 101, 102, 105, 108, 114, 116, 119, 123, 124, 126, 128, 130], "assum": [74, 77, 82, 83, 84, 86, 91, 94, 95, 102, 104, 118, 119], "hand": [74, 79, 87, 90], "suitabl": [74, 75, 93, 96], "handl": [74, 75, 77, 103], "assign": [74, 81, 93, 95, 100, 109, 112], "certain": [74, 75, 76, 82, 84, 92], "carri": [74, 125, 126], "signific": [74, 77, 83, 84, 87, 89, 92, 101, 102, 103], "process": [74, 75, 81, 82, 87, 90, 94, 96, 97, 100, 101, 105, 113, 114, 125, 126], "n": [74, 76, 77, 79, 82, 84, 99, 100, 102, 125, 126], "style": [74, 76, 108], "width": [74, 76, 78, 99, 100, 102], "pa": [74, 76], "encod": [74, 87, 93, 96, 108], "standard": [74, 76, 77, 79, 87, 89, 93, 100, 108, 109, 110, 111, 112, 118, 119], "scaler": [74, 117, 118, 119, 120, 127, 128], "onc": [74, 79, 90, 95, 97], "conduct": [74, 77], "dissimilar": [74, 75], "edf": 74, "reduc": [74, 75, 77, 79, 83, 84, 90, 94, 97, 110], "comput": [74, 75, 77, 79, 80, 82, 83, 84, 94, 96, 99, 100, 101, 102, 104, 108, 109, 110, 112, 118, 119, 123, 124, 125, 126], "burden": [74, 75, 77], "subsampl": [74, 75, 82, 84, 108], "transform": [74, 75, 77, 84, 91, 93, 94, 96, 104, 112], "would": [74, 77, 93, 94, 95, 99, 101, 103, 105, 114, 116, 118, 119, 124, 125, 126, 128, 130], "list": [74, 76, 77, 87, 92, 94, 100, 101, 105, 108, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "euclidean": [74, 75, 77, 103, 108, 111], "far": [74, 75, 82], "awai": 74, "farthest": 74, "fit": [74, 75, 77, 79, 80, 81, 82, 84, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 101, 102, 103, 105, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 133], "randomli": [74, 75, 81, 83, 84, 125, 126], "remain": [74, 77, 80, 81, 84, 93, 94, 104], "length": [74, 75, 94, 110, 113, 114, 117, 120], "contain": [74, 75, 77, 83, 90, 91, 93, 105, 108, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "element": [74, 79, 81, 99, 104, 123, 124, 125, 126], "distinct": [74, 75], "characterist": [74, 75], "over": [74, 76, 77, 79, 84, 89, 92, 97, 104, 123, 124], "aforement": 74, "defin": [74, 77, 78, 80, 82, 83, 84, 94, 100, 101, 102, 103, 108, 110, 111, 114, 116, 119, 124, 125, 126, 128, 130], "composit": 74, "focus": 75, "address": [75, 93, 105], "after": [75, 79, 86, 87, 93, 94, 100, 101, 106, 117, 118, 119, 120, 127, 128], "help": [75, 77, 82, 84, 91, 93, 94, 96, 99, 103], "enhanc": [75, 77, 87, 94, 99], "subsequ": 75, "adopt": [75, 87], "uniqu": [75, 76, 87, 94, 96, 97, 100, 105, 125, 126], "approach": [75, 77, 84, 87, 90, 93, 101, 103, 104], "liu2008": 75, "It": [75, 76, 77, 78, 79, 81, 84, 87, 89, 90, 91, 92, 93, 95, 96, 97, 99, 102, 103, 105, 108, 112, 118, 119, 123, 124, 125, 126], "begin": [75, 77, 78, 79, 80, 82, 84, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 102, 103, 111], "maximum": [75, 76, 77, 78, 89, 90, 95, 96, 97, 110, 113, 114, 117, 120, 125, 126, 127, 128, 129, 130], "recurs": [75, 82, 94, 95, 111], "construct": [75, 102], "until": [75, 89, 97, 125, 126], "instanc": [75, 76, 80, 81, 84, 89, 90, 93, 99, 103, 104, 105, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "measur": [75, 77, 78, 83, 93, 96, 99, 102, 103, 110, 111, 125, 126], "anomali": [75, 109, 110, 112], "path": [75, 84, 87, 90, 95, 108, 110, 111, 118, 119, 125, 126], "shorter": 75, "easier": [75, 95, 96], "separ": [75, 76, 93, 96, 99], "contrast": [75, 89, 90, 93, 96, 97, 99], "longer": [75, 93], "effici": [75, 87, 110, 112], "doe": [75, 81, 83, 101, 105, 125, 126], "reli": [75, 76], "make": [75, 77, 80, 81, 83, 87, 89, 91, 92, 93, 94, 95, 97, 99, 112, 118, 119, 127, 128, 129, 130], "isolationforest": [75, 108], "wrapper": [75, 95, 97, 110, 117, 120, 121, 122, 125, 126], "implement": [75, 77, 80, 81, 90, 93, 94, 102, 103, 115, 116], "ensembl": [75, 84, 90, 91, 101, 105, 110], "propos": [75, 89, 90, 97], "he2003": 75, "partit": [75, 80, 82, 125, 126, 127, 128, 129, 130], "mixtur": [75, 77, 109], "classifi": [75, 87, 93, 99, 103, 108, 110, 113, 115, 117, 118, 121, 123, 125], "small": [75, 79, 84, 89, 90, 92, 94, 99, 104, 109], "belong": [75, 94, 100], "correspond": [75, 77, 84, 89, 90, 91, 92, 93, 94, 96, 97, 101, 104, 105, 108, 123, 124, 125, 126], "centroid": 75, "nearest": [75, 101, 104], "multipli": [75, 102, 112, 125], "emphas": 75, "impact": [75, 79, 84, 96, 97, 100, 108], "larger": [75, 79, 80, 83, 90, 91, 93, 94, 99, 101, 108, 109, 112, 117, 118, 119, 120], "neighbor": [75, 101], "comprehens": [75, 87, 99], "reduct": [75, 84, 125, 126, 127, 128, 129, 130], "techniqu": [75, 87, 96, 105], "mahalanobi": [75, 112], "error": [75, 87, 99, 103, 105, 106, 108, 126], "reconstruct": 75, "elabor": 75, "take": [75, 77, 84, 87, 89, 92, 96, 97, 101], "structur": [75, 84, 87, 89, 92, 94], "got": [75, 106], "easili": [75, 87, 90], "formula": [75, 77, 79, 84, 94, 102], "shyu2003": 75, "md": 75, "z_": [75, 79], "lambda_": 75, "eigenvalu": 75, "varianc": [75, 84, 89, 90, 91, 92, 93, 96, 97, 99, 104, 112, 118, 119, 126], "give": [75, 83, 94, 96, 107, 118, 119], "u": [75, 79, 82, 83, 96, 102, 104, 105, 106, 114, 116, 119, 124, 126, 128, 130], "obtain": [75, 76, 82, 84, 89, 94, 96, 101, 102, 118, 119, 125, 126, 127, 128], "x_": [75, 79, 80, 82, 89, 91, 92, 94, 96, 97, 102, 117, 118, 119, 120, 127, 128], "final": [75, 77, 79, 80, 83, 84, 89, 91, 92, 94, 96, 97, 99, 102, 104, 127, 128], "among": [75, 77, 84, 93, 100, 125, 126], "mutual": [75, 92], "author": [75, 90], "advantag": [75, 77, 87, 89, 90], "outlin": 75, "iter": [75, 77, 83, 89, 90, 94, 97, 108, 112, 115, 116, 117, 118, 119, 120, 123, 124], "met": 75, "reach": [75, 79], "level": [75, 77, 84, 87, 89, 92, 97, 102, 104], "child": [75, 111, 125, 126], "leav": [75, 111, 115, 116, 125, 126], "behavior": [75, 93], "capabl": [75, 77, 87, 93], "aim": [75, 77, 79], "homogen": 75, "further": [75, 77, 92, 96, 101, 102, 107, 127, 128, 129, 130], "pleas": [75, 79, 80, 83, 84, 92, 94, 107], "subsect": 75, "briefli": [75, 91, 94, 102, 104], "kei": [75, 82, 89, 91, 92, 96, 100, 104], "decid": [75, 108], "whether": [75, 77, 82, 90, 96, 108, 109, 110, 111, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130], "red": [75, 84, 90, 102, 103, 105], "dot": [75, 102, 103, 105, 108], "mai": [75, 77, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 93, 94, 95, 96, 99, 100, 103, 104, 106, 107, 108, 110, 111, 114, 115, 116, 119, 124, 125, 126, 128, 130], "fall": 75, "still": [75, 79, 80, 89, 92, 94, 96, 97, 101, 103, 105], "context": [75, 82, 84, 95, 97, 104], "phenomenon": 75, "highlight": [75, 77, 95], "t": [75, 86, 108, 118, 119, 123, 124, 125, 126], "sne": [75, 108], "dimens": [75, 105, 112], "worth": [75, 84, 90], "meaning": 75, "insight": [75, 83, 92, 103], "mention": [75, 87, 99, 101, 105], "reveal": [75, 83, 89, 97], "notic": [75, 99], "discrep": 75, "fei": 75, "toni": 75, "liu": [75, 77], "kai": 75, "ming": 75, "ting": 75, "zhi": 75, "hua": 75, "zhou": 75, "2008": 75, "eighth": 75, "ieee": [75, 87], "intern": [75, 87, 110, 123, 124, 125, 126], "confer": [75, 87], "mine": [75, 87], "pisa": 75, "itali": 75, "pp": [75, 77, 87], "413": 75, "422": 75, "doi": [75, 87], "1109": 75, "icdm": 75, "zengyou": 75, "he": [75, 87], "xiaofei": 75, "xu": 75, "shengchun": 75, "deng": 75, "2003": 75, "discov": 75, "recognit": [75, 87], "letter": 75, "1641": 75, "1650": 75, "mei": 75, "ling": [75, 77], "shyu": 75, "shu": 75, "ching": 75, "chen": [75, 87], "kanoksri": 75, "sarinnapakorn": 75, "liwu": 75, "novel": 75, "scheme": [75, 78, 90], "miami": 75, "univ": 75, "coral": 75, "gabl": 75, "fl": 75, "dept": 75, "electr": 75, "engin": [75, 87], "involv": [76, 83, 93, 96, 103], "summar": [76, 90, 99, 108], "meta": 76, "overview": [76, 94], "enabl": [76, 87, 95, 96, 99, 105, 112], "present": [76, 84, 99, 110, 112], "panel": [76, 87, 99], "anoth": [76, 79, 89, 96, 103, 111], "otherwis": [76, 84, 90, 96, 101, 105, 108, 112, 127, 128], "regard": [76, 87], "miss": [76, 84, 89], "quartil": 76, "highest": [76, 79, 84], "top": [76, 77, 78, 81, 89, 91, 92, 93, 94, 96, 97, 103, 118, 119], "call": [76, 77, 79, 82, 87, 89, 93, 94, 96, 99, 106, 110, 112, 113, 114, 116, 119, 124, 126, 128, 130], "attribu": 76, "offer": [76, 79, 84, 94, 95, 103], "sensit": [76, 84, 93, 94, 99, 100], "must": [76, 79, 81, 104, 117, 120, 121, 122], "format": [76, 96], "sole": [76, 84], "avail": [76, 80, 82, 84, 87, 96, 99, 101, 102, 103, 104, 105, 108, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "want": [76, 82, 84, 86, 90, 93, 97, 100, 103], "do": [76, 77, 79, 83, 84, 93, 101, 102, 103, 105, 125, 126], "align": [76, 77, 78, 79, 80, 82, 84, 89, 90, 91, 92, 93, 94, 96, 97, 99, 100, 102], "relev": [77, 80, 93, 95], "avoid": [77, 93, 94, 101, 118, 119, 123, 124], "moreov": [77, 79, 84, 99], "benefici": 77, "distinguish": [77, 90, 92, 99, 105, 108], "treatment": 77, "rigor": 77, "mathemat": [77, 87], "rho_": 77, "frac": [77, 78, 79, 82, 84, 96, 97, 99, 100, 102, 114, 116, 119, 124, 126, 128, 130], "sum_": [77, 78, 79, 82, 84, 90, 94, 99, 100], "x_i": 77, "sqrt": [77, 102, 125, 126], "sign": [77, 99], "denot": [77, 80, 83, 84, 94, 105], "direct": [77, 91, 93, 96], "magnitud": [77, 87, 93], "strength": [77, 91, 93, 94, 96, 108, 117, 118, 119, 120, 121, 122], "straightforward": [77, 81, 82, 105], "up": [77, 79, 82, 87, 97, 101, 105, 108, 125, 126], "command": [77, 87, 93, 106], "blue": [77, 84, 90], "orang": 77, "posit": [77, 89, 91, 92, 93, 94, 97, 99, 100, 108, 110, 117, 118, 119, 120], "neg": [77, 79, 83, 89, 91, 92, 93, 96, 97, 99, 100, 110, 114, 116, 117, 119, 120, 121, 122, 124, 125, 126, 128, 130], "bottom": [77, 81, 89, 91, 92, 96, 99], "text": 77, "easi": [77, 87, 95, 108], "One": [77, 87, 106], "rank": [77, 83, 87, 93, 96, 103, 108], "r_": 77, "mathrm": [77, 80, 82, 96], "r": [77, 87, 94, 99, 100, 114, 116, 118, 119, 124, 126, 128, 130], "d_i": 77, "them": [77, 90, 91, 96, 100, 103, 104, 105, 125, 126], "monoton": [77, 82, 92, 94, 96, 97, 100, 103, 118, 119, 127, 128, 129, 130], "perfect": 77, "occur": [77, 97], "except": [77, 84, 97, 114, 116, 119, 124, 126, 128, 130], "replac": [77, 84, 100], "pair": [77, 97, 100, 118, 119, 125], "vector": [77, 79, 84, 94, 97, 112, 123, 124], "a_": 77, "j": [77, 79, 84, 89, 91, 92, 93, 96, 97], "x_j": [77, 89, 93], "x_k": 77, "quad": 77, "ldot": [77, 84, 91, 93, 94, 102, 103], "b_": 77, "y_j": 77, "y_k": 77, "matric": [77, 109, 110, 112], "_": [77, 78, 79, 80, 82, 89, 92, 97, 99, 102], "cdot": [77, 93, 99], "b": [77, 78, 87, 94, 102, 103, 104, 118, 119], "arithmet": 77, "product": [77, 118, 119], "dcov": 77, "dvar": 77, "operatornam": 77, "alwai": [77, 91, 99, 101, 114, 116, 119, 124, 125, 126, 128, 130], "absolut": [77, 78, 84, 93, 94, 99, 103, 104, 105, 108, 126], "captur": [77, 81, 89, 91, 92, 93], "computation": 77, "veri": [77, 79, 81, 83, 92, 101, 103, 118, 119, 123, 124], "expens": [77, 108], "scalabl": [77, 118, 119], "big": 77, "downsampl": [77, 84, 101], "statsmodel": [77, 106], "packag": [77, 79, 80, 81, 82, 84, 87, 89, 90, 91, 93, 94, 96, 97, 106], "speed": [77, 82], "consider": 77, "compos": 77, "sort": [77, 103, 104], "descend": [77, 94, 103], "order": [77, 79, 87, 91, 93, 94, 96, 103, 105, 110, 117, 118, 119, 120, 125], "pre": [77, 84, 87, 102, 113, 114], "org": [77, 100, 112], "stabl": [77, 91, 93, 96, 100, 112], "inspect": [77, 87, 100, 125, 126], "permutation_import": [77, 83, 125, 126], "valid": [77, 87, 92, 102, 113, 114, 118, 119, 123, 124, 125, 126], "percentag": [77, 112], "concern": 77, "ii": 77, "iii": 77, "underfit": [77, 87, 89], "minim": [77, 108, 125, 126], "power": [77, 87, 94, 95, 96, 112], "probabilist": 77, "incorpor": [77, 92], "z": [77, 84, 94, 97], "goal": [77, 84, 87], "perp": 77, "mid": 77, "highli": [77, 79, 82, 84, 95, 96], "kcit": 77, "zhang2012": 77, "kernel": [77, 84, 114, 116, 119, 124, 126, 128, 130], "work": [77, 82, 84, 87, 96, 97, 100, 108, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "arbitrari": [77, 87, 93, 102, 108, 133], "strobl2019": 77, "fast": [77, 87, 88, 89, 92, 94, 108, 115, 116, 133], "approxim": [77, 82, 84, 89, 90, 92, 96, 99, 103], "fourier": [77, 108], "reproduc": 77, "hibert": 77, "therefor": [77, 79, 81, 84, 93, 94, 104], "null": [77, 99], "hypothesi": 77, "equival": [77, 94, 97, 103, 105, 110], "zero": [77, 79, 83, 89, 90, 91, 93, 94, 97, 99, 112, 113, 114, 125, 126], "cross": 77, "sigma_": 77, "sigma": [77, 94, 100], "_f": 77, "gamma": [77, 96, 97, 127, 128, 129, 130], "asymptot": 77, "lambda_i": 77, "z_i": 77, "d": [77, 78, 91, 93, 94], "lindsai": 77, "pilla": 77, "basak": 77, "lpb": 77, "lindsayl2000": 77, "cdf": 77, "finit": 77, "borboudakis2019": 77, "elimin": 77, "delet": 77, "insignific": 77, "predefin": [77, 102], "candid": [77, 92], "p_valu": 77, "ad": [77, 97, 99, 104, 110, 118, 119], "stop": [77, 87, 90, 108, 113, 114, 115, 116, 118, 119, 123, 124, 125, 126], "phase": [77, 123, 124], "charact": 77, "recommend": [77, 94], "yu2020": 77, "twice": 77, "temporarili": 77, "temporari": 77, "perman": 77, "formul": [77, 87, 88], "smaller": [77, 90, 94, 95, 96, 99, 102, 103, 104, 105, 108, 118, 119, 125, 126], "fewer": [77, 118, 119], "procedur": [77, 96], "seven": 77, "deep": [77, 87, 90, 94, 95, 108, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "causal": [77, 102], "disadvantag": 77, "sequenti": [77, 118, 119], "kun": 77, "zhang": [77, 87], "jona": 77, "peter": [77, 87, 93], "dominik": 77, "janz": 77, "bernhard": 77, "schoelkopf": 77, "2012": 77, "discoveri": [77, 87], "arxiv": [77, 84, 87], "preprint": [77, 84, 87], "1202": 77, "3775": 77, "eric": 77, "strobl": 77, "shyam": 77, "visweswaran": 77, "2019": [77, 87], "parametr": [77, 91], "journal": [77, 80, 87], "infer": [77, 96, 118, 119, 123, 124, 125, 126], "bruce": 77, "ramani": 77, "prasanta": 77, "moment": [77, 84], "theori": 77, "annal": 77, "institut": 77, "230": 77, "giorgo": 77, "borboudaki": 77, "ioanni": 77, "tsamardino": 77, "research": [77, 87, 89], "276": 77, "314": 77, "kui": 77, "yu": [77, 87], "xianji": 77, "guo": 77, "lin": 77, "jiuyong": 77, "li": [77, 87, 97], "hao": [77, 87], "wang": [77, 87], "zhaolong": 77, "xindong": 77, "wu": [77, 87], "2020": [77, 87], "acm": [77, 87], "survei": 77, "csur": 77, "stabil": [78, 108], "extent": 78, "discret": [78, 102, 104], "kullback": 78, "leibler": 78, "l": [78, 83, 94], "q": [78, 102, 104], "d_": 78, "kl": 78, "p_i": 78, "ln": 78, "q_i": 78, "asymmetr": 78, "resect": 78, "equal": [78, 84, 89, 91, 93, 94, 99, 100, 102, 103, 105, 108, 110, 112, 115, 116, 117, 118, 119, 120, 125, 126], "fix": [78, 79, 84, 105, 106, 118, 119, 125, 126], "wasserstein": [78, 108], "cumul": 78, "f": [78, 79, 80, 82, 83, 84, 91, 92, 96, 97, 102], "w": [78, 87, 94, 118, 119], "int": [78, 82, 108, 109, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130], "dx": 78, "kolmogorov": [78, 108], "smirnov": [78, 108], "wasserstein_dist": 78, "ks_2samp": 78, "scipi": [78, 106, 112], "stat": 78, "sup_x": 78, "largest": [78, 81, 89, 91, 92, 93, 94, 96, 97, 102, 103, 104, 125, 126], "apley2016": [79, 87], "Its": [79, 99], "bias": [79, 94, 105], "overcom": 79, "quicker": 79, "unbias": 79, "let": [79, 80, 94, 104], "n_": [79, 94, 100], "uncent": [79, 81, 93], "h": [79, 89, 92, 97], "k_": 79, "textbf": [79, 89, 90, 91, 92, 93, 94, 96, 97], "tag": [79, 82, 84, 89, 90, 91, 92, 93, 94, 96, 97, 99], "faster": [79, 82, 89, 90], "too": [79, 84, 94, 96, 117, 120, 125, 126], "might": [79, 95], "accur": [79, 87, 95, 96, 99, 102], "curv": [79, 99, 102, 103], "down": [79, 84], "paper": [79, 87, 110], "pyal": 79, "strongli": 79, "across": [79, 80, 84, 93, 99, 103, 125, 126], "extrapol": [79, 82], "beyond": [79, 87], "envelop": [79, 82], "move": 79, "unreli": [79, 102], "lead": [79, 81, 87, 89, 91, 93, 96, 102, 104, 112], "word": [79, 102], "tell": [79, 90, 96, 102, 104, 110], "peak": [79, 89, 92, 97, 99, 103], "rush": [79, 89, 92, 99, 102], "hour": [79, 89, 92, 93, 97, 99, 102], "around": [79, 80, 89, 92, 97, 99, 101, 103, 105], "draw": [79, 84, 89, 90, 92, 96, 97, 103, 108, 111], "previou": [79, 80, 99, 103], "creat": [79, 81, 94, 103, 110, 125, 126], "light": [79, 90], "rain": 79, "etc": [79, 96, 113, 114], "heavi": 79, "significantli": [79, 81, 93, 99, 104], "simpl": [79, 94, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "much": [79, 80, 84, 90, 93, 99, 103, 104], "technic": 79, "subtract": [79, 81, 93, 97], "lighter": 79, "shade": [79, 90], "darker": [79, 90], "quit": [79, 89, 96, 97], "mind": 79, "dure": [79, 80, 81, 82, 90, 92, 96, 99, 102, 125, 126], "g2015": 80, "focu": [80, 93, 101, 105], "complement": [80, 82], "c": [80, 82, 94, 102, 104, 106], "document": [80, 83], "snippet": 80, "global_ic": 80, "produc": [80, 102, 105], "constant": [80, 89, 91, 93, 96, 97, 99, 114, 116, 119, 124, 126, 128, 130], "examin": 80, "our": [80, 81, 83, 87, 90, 99, 102, 105], "apart": 80, "period": 80, "goldstein": 80, "alex": 80, "adam": [80, 118, 119], "kapeln": 80, "justin": 80, "bleich": 80, "emil": 80, "pitkin": 80, "2015": [80, 87], "ribeiro2016": [81, 87], "tool": [81, 82, 84, 87, 99, 108], "lasso": [81, 87, 93, 122], "proxim": 81, "predict_proba": [81, 108, 113, 115, 117, 118, 123, 125, 127, 129], "close": [81, 89, 93, 94, 99, 102], "greatli": [81, 84], "judgment": 81, "sens": 81, "crucial": [81, 95, 105], "itself": [81, 93, 113, 114], "unchang": [81, 83, 93, 104], "essenti": [81, 93, 99, 103], "rather": [81, 93, 105], "becom": [81, 84, 87, 90, 91, 93, 99, 103, 105], "neglig": [81, 93], "am": [81, 89, 92], "now": [81, 93], "mainli": [81, 93], "intercept": [81, 90, 93, 94, 96, 97, 115, 116, 122, 127, 128], "hastie2015": [82, 87], "assumpt": [82, 91, 93, 96, 112], "odd": [82, 93, 108], "suppos": [82, 84, 125], "x_c": 82, "mathbb": [82, 89, 90, 91, 92, 93, 94, 96, 97], "dx_": 82, "commonli": [82, 95, 96, 97], "brute": 82, "partial_depend": 82, "few": [82, 96], "inaccur": [82, 102], "inconsist": 82, "accomplish": 82, "trigger": [82, 93, 94, 96, 113, 114, 115, 116, 118, 119], "tend": [82, 87, 91, 94, 97], "substanti": 82, "4th": 82, "joint": 82, "daytim": 82, "nighttim": 82, "influenc": [83, 91, 114, 116, 119, 124, 126, 128, 130], "loss": [83, 90, 96, 102, 108, 118, 119, 123, 124, 126, 127, 128, 129, 130], "l2001": 83, "shuffl": 83, "broken": 83, "drop": [83, 93, 104, 105], "relianc": 83, "fulli": [83, 87], "either": [83, 87, 89, 90, 95, 97, 99, 113, 114, 125, 126], "futur": [83, 86, 133], "releas": 83, "next": [83, 90, 91, 95, 96, 99, 102], "achiev": [83, 92, 94, 96], "truncat": [83, 112, 117, 120, 125, 126], "site": 83, "repetit": [83, 104, 108], "valuabl": [83, 96, 99], "appear": [83, 96, 99, 103], "seem": [83, 84], "surpris": 83, "breiman": 83, "2001": [83, 87], "lundberg2017": [84, 87], "lundberg2018": 84, "concept": 84, "sport": 84, "analogi": 84, "won": 84, "soccer": 84, "game": 84, "winner": 84, "bonu": 84, "fairli": 84, "team": 84, "member": [84, 110], "know": [84, 93, 125, 126], "five": 84, "player": 84, "who": 84, "plai": 84, "role": [84, 89, 97], "victori": 84, "recogn": 84, "come": [84, 87], "success": [84, 94], "imlbook": 84, "shapblog": 84, "possess": 84, "attract": 84, "properti": [84, 94, 110, 125, 126], "missing": 84, "decompos": [84, 97], "prime": 84, "phi_0": 84, "phi_j": 84, "z_j": 84, "coalit": 84, "off": [84, 94, 99, 100, 108, 111], "phi_": 84, "shap_": 84, "possibl": [84, 93, 99, 100, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "subseteq": 84, "val": 84, "cup": 84, "return": [84, 91, 101, 105, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "accept": [84, 109, 112], "problemat": 84, "affect": [84, 93, 101], "common": [84, 91, 93, 101], "background": 84, "mere": 84, "challeng": [84, 99, 103], "latter": [84, 104, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "break": 84, "interven": 84, "intervent": 84, "inspir": 84, "particularli": [84, 87], "ignor": [84, 101, 105, 106, 108, 110, 112, 125, 126], "put": [84, 86], "unlik": [84, 90], "guarante": 84, "lot": 84, "linearshap": 84, "treeshap": 84, "paragraph": 84, "benefit": 84, "math": 84, "coef": 84, "design": [84, 92, 103, 133], "leaf": [84, 90, 96, 97, 110, 111, 113, 114, 115, 116, 125, 126, 127, 128, 129, 130], "went": 84, "exactli": [84, 91, 96], "bit": [84, 101], "slower": [84, 90, 110], "ll": 84, "i_j": 84, "consum": 84, "place": 84, "had": 84, "greatest": 84, "pdf": 84, "spap": 84, "lundberg": [84, 87], "scott": [84, 87], "m": 84, "gabriel": 84, "erion": 84, "su": [84, 87], "lee": [84, 87], "1802": 84, "03888": 84, "object": [86, 91, 93, 105, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "lightgbm": 86, "lgbmregressor": 86, "lgbm2": 86, "lgbm_2": 86, "abl": [86, 90, 91], "extract": [86, 94, 97, 112, 117, 118, 119, 120, 127, 128], "model_sav": [86, 108], "ch_lgmb_2": 86, "pkl": [86, 108], "pickl": [86, 108], "make_pipelin": [86, 108], "lgmb_2_load": 86, "don": [86, 125, 126], "model_select": 86, "train_test_split": 86, "train_x": [86, 108], "test_x": [86, 108], "train_i": [86, 108], "test_i": [86, 108], "test_siz": 86, "lgbm7": 86, "ravel": 86, "lgmb_7": 86, "pi": [87, 94], "pai": 87, "em": 87, "el": 87, "access": 87, "workflow": [87, 94, 96, 108, 125, 126], "grow": [87, 90, 125, 126], "weak": [87, 101, 105], "uncertainti": [87, 102], "exist": [87, 89, 90, 92, 93, 97, 99, 105, 108], "mlop": 87, "platform": [87, 106], "assur": 87, "furthermor": [87, 90], "bank": 87, "project": 87, "supervis": [87, 105], "increasingli": 87, "domain": 87, "consequ": [87, 102], "lack": 87, "difficult": 87, "trust": 87, "emerg": 87, "pedregosa2011": 87, "kokhlikyan2020": 87, "klaise2021": 87, "baniecki2021": 87, "li2022": 87, "known": [87, 93, 94, 95, 102, 125, 126], "pitfal": 87, "rudin2019": 87, "molnar2020": 87, "yang2021a": 87, "yang2021b": [87, 92], "sudjianto2020": [87, 94], "interpretml": 87, "nori2013": [87, 89], "microsoft": [87, 89], "promot": 87, "boost": [87, 88, 90, 96, 108, 113, 114, 127, 128, 129, 130, 133], "ga2m": 87, "lou2013": [87, 89], "sudjianto2021": 87, "discuss": [87, 104], "meantim": 87, "chung2019": 87, "pycaret": 87, "tensorflow": 87, "finra": 87, "toolkit": 87, "Such": [87, 94, 104], "sometim": [87, 112], "demand": [87, 99], "risk": [87, 96], "manag": [87, 108], "routin": 87, "exercis": 87, "conceptu": 87, "sound": 87, "angl": 87, "been": [87, 90, 91, 94, 95], "sinc": [87, 90, 96, 104, 113, 115, 118, 123, 125, 127, 129], "launch": 87, "2022": 87, "interfac": [87, 108], "widget": 87, "dashboard": 87, "lab": 87, "conveni": 87, "data_qu": 87, "choic": [87, 93, 94], "parameter": 87, "action": 87, "through": [87, 90, 92, 94, 125, 126], "cell": 87, "termin": [87, 126], "autom": 87, "registr": [87, 108], "mandatori": 87, "unifi": 87, "glass": 87, "section_3": 87, "section_4": 87, "cover": [87, 102], "treat": [87, 103, 105], "even": [87, 90, 94, 103, 125, 126], "though": 87, "simplif": 87, "worthwhil": 87, "enough": [87, 94, 107], "backend": 87, "simplic": 87, "citep": 87, "pimldoc": 87, "v0": 87, "latest": 87, "updat": [87, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "2023": 87, "ell_1": 87, "ell_2": 87, "regular": [87, 91, 92, 93, 94, 118, 119, 123, 124, 127, 128, 129, 130], "spline": [87, 91, 96, 117, 118, 119, 120], "serven2018": 87, "greedi": [87, 88, 108, 115, 116, 133], "tan2022": [87, 90], "extrem": [87, 90, 94], "gradient": [87, 89, 94, 127, 128, 129, 130], "optim": [87, 96, 99, 108, 118, 119, 127, 128], "chen2015": 87, "guillermo2020": 87, "purifi": [87, 97], "lengerich2020": [87, 96, 97], "network": [87, 88, 91, 92, 118, 119, 123, 124, 133], "aletheia": [87, 94, 123, 124], "unwrapp": [87, 123, 124], "sparsif": 87, "brief": [87, 94], "popular": [87, 93], "quantif": 87, "conform": [87, 102, 108], "cui2023": 87, "out": [87, 94, 96, 103, 105, 118, 119, 123, 124], "de": [87, 94], "art": 87, "improv": [87, 96, 103, 105, 112, 113, 114, 123, 124, 125, 126], "expand": [87, 125, 126], "track": 87, "report": 87, "fabian": 87, "pedregosa": 87, "ga\u00ebl": 87, "varoquaux": 87, "alexandr": 87, "gramfort": 87, "vincent": 87, "michel": 87, "bertrand": 87, "thirion": 87, "olivi": 87, "grisel": 87, "mathieu": 87, "blondel": 87, "prettenhof": 87, "ron": 87, "weiss": 87, "dubourg": 87, "jake": 87, "vanderpla": 87, "passo": 87, "david": 87, "cournapeau": 87, "matthieu": 87, "brucher": 87, "perrot": 87, "\u00e9douard": 87, "duchesnai": 87, "2011": 87, "2825": 87, "2830": 87, "narin": 87, "kokhlikyan": 87, "vivek": 87, "miglani": 87, "miguel": 87, "martin": 87, "edward": 87, "bilal": 87, "alsallakh": 87, "jonathan": 87, "reynold": 87, "alexand": 87, "melnikov": 87, "natalia": 87, "kliushkina": 87, "carlo": 87, "araya": 87, "siqi": 87, "yan": 87, "orion": 87, "reblitz": 87, "richardson": 87, "captum": 87, "librari": 87, "pytorch": [87, 123, 124], "2009": 87, "07896": 87, "jani": 87, "klais": 87, "arnaud": 87, "van": 87, "looveren": 87, "giovanni": 87, "vacanti": 87, "alexandru": 87, "coca": 87, "2021": 87, "alibi": 87, "8194": 87, "hubert": 87, "baniecki": 87, "wojciech": 87, "kretowicz": 87, "piotr": 87, "piatyszek": 87, "jakub": 87, "wisniewski": 87, "przemyslaw": 87, "biecek": 87, "dalex": 87, "9759": 87, "9765": 87, "xuhong": 87, "haoyi": 87, "xiong": 87, "xingjian": 87, "xuanyu": 87, "zeyu": 87, "deje": 87, "dou": 87, "interpretdl": 87, "paddlepaddl": 87, "cynthia": 87, "rudin": 87, "stake": 87, "natur": 87, "ntellig": 87, "206": 87, "christoph": 87, "molnar": 87, "gunnar": 87, "k\u00f6nig": 87, "julia": 87, "herbing": 87, "timo": 87, "freiesleben": 87, "susann": 87, "dandl": 87, "christian": 87, "scholbeck": 87, "giusepp": 87, "casalicchio": 87, "moritz": 87, "gross": 87, "wentrup": 87, "bernd": 87, "bischl": 87, "xxai": 87, "workshop": 87, "held": 87, "conjunct": 87, "icml": 87, "juli": 87, "vienna": 87, "austria": 87, "revis": 87, "extend": [87, 90], "68": 87, "cham": 87, "springer": 87, "publish": 87, "harsha": 87, "nori": 87, "samuel": 87, "jenkin": 87, "paul": 87, "koch": 87, "rich": 87, "caruana": 87, "framework": [87, 102], "1909": 87, "09223": 87, "yin": 87, "lou": 87, "johann": 87, "gehrk": 87, "gile": 87, "hooker": 87, "2013": 87, "intellig": 87, "proceed": 87, "19th": 87, "sigkdd": 87, "knowledg": 87, "623": 87, "631": 87, "agu": 87, "sudjianto": 87, "aijun": 87, "2111": 87, "01743": 87, "yeounoh": 87, "chung": 87, "tim": 87, "kraska": 87, "neokli": 87, "polyzoti": 87, "ki": 87, "hyun": 87, "tae": 87, "steven": 87, "euijong": 87, "whang": 87, "finder": 87, "35th": 87, "icd": 87, "1550": 87, "1553": 87, "daniel": 87, "aplei": 87, "jingyu": 87, "zhu": 87, "2016": 87, "1612": 87, "08468": 87, "marco": 87, "tulio": 87, "ribeiro": 87, "sameer": 87, "singh": 87, "guestrin": 87, "why": [87, 96], "22nd": 87, "2017": 87, "advanc": 87, "neural": [87, 88, 91, 92, 133], "trevor": 87, "hasti": 87, "robert": 87, "tibshirani": 87, "wainwright": 87, "sparsiti": [87, 92, 112], "crc": 87, "press": 87, "serv\u00e9n": 87, "charli": 87, "brummitt": 87, "pygam": [87, 91, 106, 117, 120], "zenodo": 87, "5281": 87, "1208723": 87, "shuo": 87, "tan": 87, "chandan": 87, "keyan": 87, "nasseri": 87, "abhineet": 87, "agarw": 87, "2201": 87, "11931": 87, "benjamin": 87, "lengerich": 87, "sarah": 87, "chun": 87, "june": 87, "anova": [87, 97, 113, 114, 127, 128, 129, 130], "recov": 87, "artifici": 87, "2402": 87, "2412": 87, "pmlr": 87, "tianqi": 87, "tong": 87, "william": 87, "knauth": 87, "rahul": 87, "zebin": 87, "yang": 87, "unwrap": [87, 94], "04041": 87, "shiji": 87, "cui": 87, "runz": 87, "hot": [87, 93, 96], "2304": 87, "13761": 87, "architectur": [87, 118, 119], "constraint": [87, 92, 96, 97, 105, 115, 116, 118, 119, 127, 128, 129, 130], "transact": 87, "2610": 87, "2621": 87, "120": 87, "108192": 87, "nava": 87, "palencia": 87, "guillermo": 87, "program": [87, 108], "08025": 87, "mu": [89, 90, 91, 92, 93, 96, 97], "limits_": [89, 92, 96, 97], "h_": [89, 92, 96, 97], "f_": [89, 90, 91, 92, 97], "jk": [89, 92, 97], "shallow": [89, 95], "round": [89, 104, 113, 114], "fashion": [89, 125, 126], "cut": [89, 108], "pick": 89, "converg": [89, 94, 97, 117, 120], "piecewis": [89, 91, 92, 96, 97], "hyperparamet": [89, 90, 91, 92, 93, 94, 95, 96, 97], "sacrific": 89, "rate": [89, 94, 99, 100, 108, 113, 114, 115, 116, 118, 119, 123, 124, 127, 128, 129, 130], "256": [89, 113, 114, 127, 128, 129, 130], "perspect": 89, "togeth": [89, 91, 92, 93, 94, 102, 115, 116, 118, 119], "pm": [89, 92], "somehow": 89, "night": 89, "spring": 89, "domin": [89, 97], "part": [89, 90, 97], "0818": 89, "06": [89, 92, 97], "complet": [89, 92], "similarli": [89, 90, 94, 97, 102], "almost": 89, "recent": [90, 106], "cart": 90, "special": [90, 94, 96], "f_k": 90, "mathbf": 90, "manner": [90, 108], "pseudo": 90, "express": [90, 91, 94, 97, 118, 119], "form": [90, 93, 94, 95, 97, 99, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "search": [90, 100, 125, 126], "whichev": 90, "imodel": [90, 115, 116], "re": [90, 96, 110, 115, 116], "integ": [90, 113, 114, 125, 126], "unlimit": [90, 125, 126], "criteria": [90, 125, 126], "hardli": 90, "complic": [90, 94, 103], "gain": [90, 125], "along": [90, 105], "hierarch": 90, "dendrogram": 90, "subplot": [90, 94, 99], "middl": [90, 99], "thu": [90, 110], "deeper": 90, "rightmost": 90, "convei": 90, "dark": 90, "necessari": [90, 99], "decsion_tre": 90, "099": 90, "094": 90, "primari": 91, "equat": [91, 94, 125, 126], "unknown": 91, "smooth": [91, 92, 99, 115, 116, 117, 120, 125, 126], "varieti": 91, "degre": [91, 101], "polynomi": 91, "quadrat": 91, "cubic": 91, "knot": 91, "anchor": 91, "With": [91, 93, 96], "intric": 91, "poorer": 91, "penalti": [91, 93, 94, 117, 120], "prevent": [91, 101], "encourag": 91, "simpler": [91, 94, 96], "generaliz": 91, "smoother": 91, "convers": 91, "rougher": 91, "slope": 91, "flat": 91, "steep": 91, "sharp": 91, "incom": 91, "area": [91, 99, 100, 103], "_j": [91, 96], "latitud": [91, 96], "longitud": [91, 96], "strongest": 91, "drive": 91, "3804": 91, "reformul": 92, "disentangl": [92, 94], "feedforward": [92, 94], "subnetwork": [92, 118, 119], "hidden": [92, 94, 118, 119, 123, 124], "layer": [92, 94, 118, 119, 123, 124], "parsimoni": [92, 97], "hered": [92, 118, 119], "least": [92, 94, 96, 115, 116, 122, 125, 126], "parent": 92, "clariti": [92, 118, 119], "purif": [92, 97, 117, 118, 119, 120, 127, 128], "constrain": [92, 96], "decreas": [92, 96, 103, 115, 116, 118, 119, 125, 126, 127, 128, 129, 130], "impos": [92, 118, 119, 123, 124], "gaminet": 92, "prune": [92, 97, 118, 119, 125, 126], "trivial": [92, 94, 97], "retrain": 92, "simultan": 92, "fine": [92, 118, 119], "tune": [92, 96, 108, 118, 119], "activ": [92, 94, 97, 118, 119, 123, 124], "saturdai": 92, "sundai": 92, "mondai": 92, "fridai": 92, "aggreg": [92, 93, 97, 117, 118, 119, 120, 127, 128], "literatur": 93, "reader": 93, "consult": 93, "mccullagh1989": 93, "w_1": 93, "x_1": 93, "w_2": 93, "x_2": 93, "w_d": 93, "x_d": 93, "analyz": [93, 99, 102], "ident": [93, 94, 99, 102, 125, 126], "logit": 93, "l2": [93, 121, 122, 126, 127, 128, 129, 130], "l1_regularz": [93, 121, 122], "penal": [93, 94, 118, 119], "l2_regularz": [93, 121, 122], "shrink": [93, 94], "toward": [93, 94], "spars": [93, 109, 110, 112, 125, 126], "shrunk": 93, "variant": [93, 96], "linear_model": 93, "linearregress": 93, "constrainst": 93, "ridg": [93, 122], "elasticnet": [93, 122], "elast": 93, "logisticregress": 93, "adapt": [93, 96], "issu": [93, 118, 119, 123, 124], "associ": [93, 125], "opposit": [93, 110], "temperatur": [93, 97], "humid": 93, "convert": [93, 110, 112, 125, 126], "dummi": 93, "season_4": 93, "overparameter": 93, "fourth": 93, "nonlinear": [93, 94], "print": 93, "screen": [93, 118, 119], "export": 93, "w_j": 93, "stem": 93, "absorb": 93, "unstabl": [93, 94], "turn": [93, 96, 118, 119], "mccullagh": 93, "john": 93, "nelder": 93, "1989": 93, "chapman": 93, "hall": 93, "edit": 93, "rectifi": 94, "remark": 94, "appeal": 94, "excel": 94, "intrins": 94, "neuron": 94, "chi": 94, "mbox": 94, "eta": [94, 96, 97, 127, 128, 129, 130], "sigmoid": [94, 118, 119], "despit": 94, "said": 94, "equiv": 94, "n_l": 94, "exhibit": 94, "simplifi": [94, 96], "tild": 94, "oper": [94, 95], "tupl": [94, 108, 111, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130], "poor": 94, "1e": [94, 108, 113, 114, 118, 119, 123, 124], "descent": 94, "unpen": 94, "float": [94, 108, 109, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "critic": [94, 102], "unnecessarili": 94, "long": [94, 117, 120, 125, 126], "wherea": 94, "5153": 94, "105570": 94, "584421": 94, "735054": 94, "static": 94, "wide": [94, 99], "roughli": 94, "vice": 94, "versa": 94, "impli": 94, "upon": [94, 99, 104], "eleg": 94, "diagon": [94, 99], "decomposit": [94, 96], "uniformli": [94, 118, 119], "sin": 94, "epsilon": 94, "n_featur": [94, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130], "influenti": 95, "render": 95, "decisiontreeregressor": 95, "often": 95, "suffer": 95, "rule": [95, 111, 115, 116], "criterion": [95, 125, 126], "branch": [95, 115, 116, 125, 126], "restrict": 96, "stump": 96, "deriv": [96, 118, 119], "stage": [96, 113, 114, 118, 119, 123, 124], "optbin": [96, 106, 127, 128], "woe": 96, "refit": [96, 127, 128], "firstli": 96, "arrang": 96, "taken": 96, "inherit": [96, 97], "tree_method": [96, 97, 105, 127, 128, 129, 130], "reg_lambda": [96, 97, 127, 128, 129, 130], "reg_alpha": [96, 97, 127, 128, 129, 130], "feature_nam": [96, 105, 108, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "correctli": [96, 99, 113, 115, 118, 123, 125, 127, 129], "max_n_bin": 96, "strike": 96, "difficulti": 96, "fit_method": 96, "iv": 96, "accompani": 96, "trend": 96, "plateau": 96, "geograph": 96, "amplifi": 96, "lontitud": 96, "restructur": 97, "proce": 97, "superior": 97, "enforc": [97, 117, 120], "feel": 97, "celsiu": 97, "50": [97, 104, 111, 113, 114, 123, 124], "comfort": 97, "outdoor": 97, "cooler": 97, "hotter": 97, "peopl": 97, "willing": 97, "ride": 97, "bicycl": 97, "0606": 97, "summat": 97, "plu": [97, 99], "sklearn_metr": 99, "y_": [99, 102, 117, 118, 119, 120, 127, 128], "character": 99, "ideal": [99, 102], "band": 99, "residual_plot": 99, "And": [99, 100, 118, 119], "appar": 99, "notabl": [99, 103], "heterogen": 99, "reason": [99, 105], "evenli": 99, "noteworthi": 99, "_predict": 99, "variat": [99, 104], "imbalanc": 99, "alon": 99, "whose": 99, "incorrect": [99, 104, 105], "guess": [99, 112], "harmon": 99, "2tp": 99, "fp": [99, 100], "fn": [99, 100], "resembl": 99, "scatterplot": 99, "lowess": 99, "thorough": 99, "mislabel": 99, "tpr": 99, "fpr": 99, "tradeoff": 99, "irrelev": 99, "imparti": 100, "were": 100, "ethnic": 100, "sexual": 100, "orient": 100, "disabl": [100, 108], "advers": [100, 108], "tp_": 100, "fn_": 100, "tp": 100, "smd": [100, 108], "outcome_x": 100, "fp_": 100, "bucket": [100, 108], "span": 100, "dictionari": [100, 115, 116, 117, 120, 125, 126], "accuracy_scor": 100, "f1_score": 100, "dash": 100, "ax": 100, "fail": 101, "unseen": [101, 102], "cost": [101, 118, 119, 125, 126], "previous": [101, 105], "warn": [101, 105, 125, 126], "messag": [101, 105, 106], "biksshar": 101, "017079": 101, "015575": 101, "001504": 101, "285": 101, "005226": 101, "004305": 101, "000921": 101, "1743": 101, "006050": 101, "005585": 101, "000465": 101, "7am": 101, "9am": 101, "0171": 101, "0156": 101, "seen": 101, "pure": [101, 125, 126], "2am": 101, "55": [101, 103], "326087": 101, "369565": 101, "98480": 101, "036693": 101, "029954": 101, "006739": 101, "282609": 101, "013106": 101, "011935": 101, "001172": 101, "000000": [101, 105], "065217": 101, "55305": 101, "831": 101, "001208": 101, "000855": 101, "000353": 101, "trustworthi": 102, "field": 102, "healthcar": 102, "financ": 102, "safeti": 102, "crqr": 102, "exchang": 102, "epsilon_": 102, "s_": 102, "confid": 102, "gbdt": 102, "88705": 102, "232974": 102, "88": [102, 105], "233": 102, "2563": 102, "wise": [102, 112], "conclud": 102, "matur": 102, "isoton": 102, "maintain": 103, "unexpect": [103, 104], "situat": 103, "likelihood": 103, "bad": [103, 108], "mostli": 103, "akin": 103, "steadili": 103, "declin": 103, "unsupervis": [103, 105, 111, 112], "necessarili": [103, 112], "lowest": 103, "thought": 103, "recalcul": 103, "moder": 103, "encount": 104, "noisi": 104, "drift": 104, "aris": [104, 105], "alter": 104, "underli": [104, 125, 126], "showcas": 104, "leverag": 104, "lambda": [104, 123, 124], "var": 104, "sai": [104, 105], "86": 104, "invers": [104, 125], "ten": 104, "encapsul": 104, "look": [104, 108, 125, 126], "wors": [104, 114, 116, 119, 124, 126, 128, 130], "poorli": 104, "underperform": 105, "inadequ": 105, "inappropri": 105, "insuffici": 105, "filter": 105, "merg": 105, "min_samples_leaf": [105, 111, 113, 114, 115, 116, 125, 126], "n_estimaor": 105, "hist": [105, 127, 128, 129, 130], "granular": 105, "723": 105, "boolean": [105, 115, 116], "annot": 105, "695652": 105, "689587": 105, "006065": 105, "test_metr": 105, "train_metr": 105, "No": [105, 106, 123, 124], "250000": 105, "691099": 105, "678750": 105, "012349": 105, "111111": 105, "222222": 105, "727612": 105, "717573": 105, "010039": 105, "375000": 105, "625000": 105, "720497": 105, "717134": 105, "003362": 105, "333333": 105, "555556": 105, "612536": 105, "614685": 105, "002150": 105, "750000": 105, "621951": 105, "003049": 105, "o": 106, "py37": 106, "py38": 106, "py39": 106, "py310": 106, "win": 106, "linux": 106, "maco": 106, "environ": 106, "pip": 106, "ipywidget": 106, "joblib": 106, "ipython": 106, "seaborn": 106, "xlrd": 106, "torch": [106, 118, 119], "natsort": 106, "psutil": 106, "dill": 106, "ortool": 106, "momentchi2": 106, "match": 106, "possbl": 106, "upgrad": 106, "reinstal": 106, "try": 106, "conda": 106, "forg": 106, "runtimeerror": 106, "traceback": 106, "compil": 106, "0x10": 106, "0xf": 106, "restart": 106, "runtim": 106, "guidelin": 107, "str": [108, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "bool": [108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "css": 108, "ingest": 108, "union": 108, "pass": [108, 112, 117, 120, 125, 126], "trime": 108, "preview": 108, "unicod": 108, "wheter": 108, "arrai": [108, 109, 110, 112, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130], "n_samples_train": 108, "n_samples_test": 108, "dict": [108, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "99": 108, "forward": 108, "backward": 108, "use": 108, "earli": [108, 113, 114, 115, 116, 118, 119, 123, 124], "fbedk": 108, "get_data": 108, "ndarrai": [108, 109, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130], "n_sampl": [108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130], "workfolw": 108, "Not": [108, 110, 112], "get_feature_nam": 108, "get_feature_typ": 108, "get_model": 108, "modelpipelin": 108, "get_model_config": 108, "get_raw_data": 108, "datatupl": 108, "train_sample_weight": 108, "test_sample_weight": 108, "target_nam": 108, "get_target_nam": 108, "normalize_strategi": 108, "encode_strategi": 108, "excluded_featur": 108, "minmax": 108, "unit_norm": 108, "one_hot": 108, "xndarrai": 108, "param": [108, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "regressor": [108, 114, 116, 119, 120, 122, 124, 126, 128, 130], "insid": 108, "whther": 108, "testdataresult": [108, 117, 118, 119, 120, 125, 126, 127, 128], "diagnos": 108, "repeatit": 108, "substract": 108, "metric_threshold": 108, "favorable_class": 108, "thresholding_bin": 108, "by_weight": 108, "binar": 108, "segement": 108, "rsmd": 108, "categorical_feature_nam": 108, "savedmodel": 108, "save": [108, 118, 119, 133], "self": [108, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "get_all_supported_model": 108, "model_tun": 108, "iqr_scal": [109, 110, 111, 112], "clustering_method": 109, "clustering_threshold": 109, "use_weight": 109, "gmm": 109, "base_estimator_": 109, "is_fitted_": [109, 111, 118, 119, 123, 124, 127, 128, 129, 130], "cluster_centers_": 109, "cluster_sizes_": 109, "small_cluster_labels_": 109, "large_cluster_labels_": 109, "decision_funct": [109, 110, 111, 112, 113, 114, 115, 117, 118, 123, 127, 129], "detector": [109, 112], "anomaly_scor": 109, "max_sampl": 110, "auto": [110, 112, 118, 119, 125, 126, 127, 128, 129, 130], "max_featur": [110, 125, 126], "bootstrap": 110, "n_job": [110, 113, 114, 118, 119], "verbos": [110, 118, 119, 123, 124], "warm_start": [110, 118, 119], "estimators_samples_": 110, "drawn": 110, "n_features_": [110, 125, 126], "deprec": [110, 125, 126], "n_left": 110, "dtype": [110, 125, 126], "float32": [110, 125, 126], "csr_matrix": [110, 125, 126], "abnorm": 110, "inlier": 110, "dynam": 110, "bag": [110, 113, 114], "footprint": 110, "store": 110, "csc_matrix": [110, 125, 126], "convent": [110, 112], "fit_predict": 110, "get_param": [110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "subobject": [110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "map": [110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "n_features_in_": [110, 111, 115, 116, 118, 119, 123, 124, 125, 126, 127, 128, 129, 130], "is_inli": 110, "score_sampl": 110, "set_param": [110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "nest": [110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "__": [110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "n_compon": [111, 112], "d_reduction_method": [111, 112], "max_leav": [111, 113, 114], "min_dist": 111, "distance_measur": 111, "reconsterr": 111, "distance_measure_param": 111, "splite": [111, 115, 116], "deafult": 111, "64": 111, "callabl": 111, "n_samples1": 111, "n_samples2": 111, "tree_": [111, 125, 126], "node_count_": 111, "totoal": [111, 127, 128, 129, 130], "leaf_idx_list_": 111, "calculate_spca": 111, "dist": 111, "decision_path": [111, 125, 126], "path_al": 111, "node_count": [111, 125, 126], "get_rul": 111, "node_id": 111, "defulat": 111, "whihc": 111, "inequ": 111, "plot_tre": 111, "draw_depth": 111, "inf": 111, "start_node_id": 111, "predict_leaf_id": 111, "n_selected_compon": 112, "cumulative_vari": 112, "score_typ": 112, "copi": 112, "whiten": 112, "svd_solver": 112, "tol": 112, "iterated_pow": 112, "basd": 112, "kept": 112, "mle": 112, "minka": 112, "arpack": 112, "overwritten": 112, "yield": 112, "fit_transform": 112, "components_": 112, "singular": 112, "uncorrel": 112, "signal": 112, "downstream": 112, "wire": 112, "solver": [112, 117, 120], "polici": 112, "500x500": 112, "smallest": [112, 113, 114], "exact": [112, 127, 128, 129, 130], "svd": 112, "afterward": 112, "lapack": 112, "linalg": 112, "postprocess": 112, "strictli": 112, "halko": 112, "et": 112, "toler": [112, 113, 114, 118, 119], "sparser": 112, "auto_exampl": 112, "plot_scaling_import": 112, "max_interaction_bin": [113, 114], "outer_bag": [113, 114], "inner_bag": [113, 114], "validation_s": [113, 114], "early_stopping_round": [113, 114], "early_stopping_toler": [113, 114], "0001": [113, 114, 118, 119], "max_round": [113, 114], "quantile_human": [113, 114], "inner": [113, 114], "dictat": [113, 114], "delta": [113, 114], "job": [113, 114], "cpu": [113, 114, 118, 119, 123, 124], "arg": [113, 114, 117, 120, 121, 127, 128], "model_unwrapp": [113, 114, 123, 124, 129, 130], "placehold": [113, 114], "unp": [113, 114, 123, 124, 129, 130], "ebmexplain": [113, 114], "multi": [113, 115, 118, 123, 124, 125, 127, 129], "harsh": [113, 115, 118, 123, 125, 127, 129], "n_output": [113, 114, 115, 116, 118, 119, 123, 124, 125, 126, 127, 128, 129, 130], "wrt": [113, 114, 115, 116, 118, 119, 123, 124, 125, 126, 127, 128, 129, 130], "y_true": [114, 116, 119, 124, 126, 128, 130], "y_pred": [114, 116, 119, 124, 126, 128, 130], "arbitrarili": [114, 116, 119, 124, 126, 128, 130], "disregard": [114, 116, 119, 124, 126, 128, 130], "precomput": [114, 116, 119, 124, 126, 128, 130], "n_samples_fit": [114, 116, 119, 124, 126, 128, 130], "multioutput": [114, 116, 119, 124, 125, 126, 128, 130], "uniform_averag": [114, 116, 119, 124, 126, 128, 130], "r2_score": [114, 116, 119, 124, 126, 128, 130], "multioutputregressor": [114, 116, 119, 124, 126, 128, 130], "splitter": [115, 116, 125, 126], "min_impurity_decreas": [115, 116, 125, 126], "concis": [115, 116], "csinva": [115, 116], "induc": [115, 116, 125, 126], "impur": [115, 116, 125, 126], "feature_names_": [115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "feature_types_": [115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "intercept_": [115, 116, 127, 128], "trees_": [115, 116], "n_tree_": [115, 116], "n_iter_": [115, 116], "iteract": [115, 116], "early_stop_": [115, 116], "tree_importance_": [115, 116], "explain_tre": [115, 116], "get_tree_diag": [115, 116, 125, 126], "get_tree_heatmap": [115, 116], "global_explain": [115, 116, 117, 118, 119, 120], "global_interpret": [115, 116, 117, 118, 119, 120, 125, 126, 127, 128], "interpret_local_tre": [115, 116, 125, 126], "local_explain": [115, 116], "plot_feature_importance_heatmap": [115, 116], "plot_local_tre": [115, 116, 125, 126], "plot_tree_diag": [115, 116, 125, 126], "get_binary_matrix": [115, 116], "get_binary_represent": [115, 116], "get_depth": [115, 116, 125, 126], "get_depths_interact": [115, 116], "pred": [115, 116, 118, 119, 123, 124, 127, 128, 129, 130], "pred_proba": [115, 118, 123, 127, 129], "proba": [115, 118, 125, 127, 129], "update_tree_import": [115, 116], "stronger": [117, 120], "get_interaction_effect": [117, 118, 119, 120, 127, 128], "interpret_effect": [117, 118, 119, 120, 127, 128], "interpret_ei": [117, 118, 119, 120, 127, 128], "interpret_local_ei": [117, 118, 119, 120, 127, 128], "plot_ei": [117, 118, 119, 120, 127, 128], "plot_interaction_effect": [117, 118, 119, 120, 127, 128], "plot_local_ei": [117, 118, 119, 120, 127, 128], "plot_main_effect": [117, 118, 119, 120, 127, 128], "get_main_effect": [117, 118, 119, 120, 127, 128], "truncate_dict": [117, 120, 125, 126], "interpret_fi": [117, 118, 119, 120, 127, 128], "interpret_local_fi": [117, 118, 119, 120, 127, 128], "local_feature_explain": [117, 118, 119, 120, 127, 128], "plot_fi": [117, 118, 119, 120, 127, 128], "interpret_result": [117, 118, 119, 120, 125, 126, 127, 128], "max_show": [117, 118, 119, 120, 127, 128], "return_fig": [117, 118, 119, 120, 125, 126, 127, 128], "plot_local_fi": [117, 118, 119, 120, 127, 128], "interact_num": [118, 119], "subnet_size_main_effect": [118, 119], "subnet_size_interact": [118, 119], "activation_func": [118, 119], "max_epoch": [118, 119, 123, 124], "early_stop_thr": [118, 119], "batch_siz": [118, 119, 123, 124], "batch_size_infer": [118, 119, 123, 124], "max_iter_per_epoch": [118, 119], "val_ratio": [118, 119, 123, 124], "gam_sample_s": [118, 119], "mlp_sample_s": [118, 119], "reg_clar": [118, 119], "loss_threshold": [118, 119], "reg_mono": [118, 119], "mono_sample_s": [118, 119], "include_interaction_list": [118, 119], "boundary_clip": [118, 119], "devic": [118, 119, 123, 124], "tanh": [118, 119], "epoch": [118, 119, 123, 124], "batch": [118, 119, 123, 124], "init": [118, 119], "clip": [118, 119], "reshuffl": [118, 119], "ratiom": [118, 119], "rough": [118, 119], "tensor": [118, 119], "teacher": [118, 119], "sub": [118, 119], "achiv": [118, 119], "spacec": [118, 119], "feature_name1": [118, 119], "feature_name2": [118, 119], "core": [118, 119], "hardwar": [118, 119], "net_": [118, 119, 123, 124], "data_dict_density_": [118, 119], "err_train_main_effect_training_": [118, 119], "err_val_main_effect_training_": [118, 119], "err_train_interaction_training_": [118, 119], "err_val_interaction_training_": [118, 119], "err_train_tuning_": [118, 119], "err_val_tuning_": [118, 119], "interaction_list_": [118, 119], "active_main_effect_index_": [118, 119], "active_interaction_index_": [118, 119], "main_effect_val_loss_": [118, 119], "interaction_val_loss_": [118, 119], "time_cost_": [118, 119], "clarity_": [118, 119], "monotonicity_": [118, 119], "n_interactions_": [118, 119], "dummy_values_": [118, 119], "cfeature_num_": [118, 119], "nfeature_num_": [118, 119], "cfeature_names_": [118, 119], "nfeature_names_": [118, 119], "cfeature_index_list_": [118, 119], "nfeature_index_list_": [118, 119], "num_classes_list_": [118, 119], "mu_list_": [118, 119], "std_list_": [118, 119], "min_value_": [118, 119, 127, 128], "max_value_": [118, 119, 127, 128], "mono_increasing_list_index_": [118, 119], "mono_decreasing_list_index_": [118, 119], "include_interaction_list_index_": [118, 119], "training_generator_": [118, 119], "fasttensordataload": [118, 119], "validation_generator_": [118, 119], "warm_init_main_effect_data_": [118, 119], "warm": [118, 119], "warm_init_interaction_data_": [118, 119], "main_effect_norm_": [118, 119], "interaction_norm_": [118, 119], "feature_importance_": [118, 119, 127, 128, 129, 130], "data_dict_global_": [118, 119], "certify_mono": [118, 119], "certifi": [118, 119], "satisfi": [118, 119], "mono_statu": [118, 119], "main_effect": [118, 119], "softmax": [118, 123, 124, 129], "fine_tune_select": [118, 119], "main_effect_list": [118, 119], "interaction_list": [118, 119], "lr": [118, 119], "unselect": [118, 119], "norm": [118, 119], "get_aggregate_output": [118, 119], "get_clarity_loss": [118, 119], "clarity_loss": [118, 119], "get_effect_import": [118, 119], "get_feature_import": [118, 119], "get_global_effects_": [118, 119], "main_grid_s": [118, 119], "interact_grid_s": [118, 119], "grid": [118, 119], "get_interaction_raw_output": [118, 119], "n_interact": [118, 119], "get_main_effect_raw_output": [118, 119], "get_mono_loss": [118, 119], "mono_loss": [118, 119], "folder": [118, 119], "disk": [118, 119], "local_effect_explain": [118, 119], "partial_deriv": [118, 119], "plote": [118, 119], "update_effect_import": [118, 119], "update_feature_import": [118, 119, 127, 128], "kwarg": 121, "regularz": [121, 122], "fit_intercept": 122, "ordinari": 122, "dropout_prob": [123, 124], "n_epoch_no_chang": [123, 124], "iht": [123, 124], "phase_epoch": [123, 124], "perceptron": [123, 124], "dropout": [123, 124], "doesn": [123, 124], "early_stop": [123, 124], "cuda": [123, 124], "statit": [123, 124], "coefs_": [123, 124], "len": [123, 124], "ith": [123, 124], "intercepts_": [123, 124], "no_improved_count_": [123, 124], "train_epoch_loss_": [123, 124], "valid_epoch_loss_": [123, 124], "get_raw_output": [123, 124], "unwrapperclassifi": 123, "funciton": [123, 124], "unwrapperregressor": 124, "min_samples_split": [125, 126], "min_weight_fraction_leaf": [125, 126], "max_leaf_nod": [125, 126], "ccp_alpha": [125, 126], "docstr": [125, 126], "gini": [125, 126], "entropi": 125, "log_loss": 125, "shannon": 125, "fraction": [125, 126, 127, 128], "ceil": [125, 126], "log2": [125, 126], "randomst": [125, 126], "determinist": [125, 126], "behaviour": [125, 126], "n_t": [125, 126], "n_t_r": [125, 126], "right_impur": [125, 126], "n_t_l": [125, 126], "left_impur": [125, 126], "class_weight": 125, "class_label": 125, "multilabel": 125, "n_class": 125, "bincount": 125, "subtre": [125, 126], "classes_": 125, "feature_importances_": [125, 126], "max_features_": [125, 126], "n_classes_": 125, "n_outputs_": [125, 126], "check_input": [125, 126], "bypass": [125, 126], "unless": [125, 126], "what": [125, 126], "x_leav": [125, 126], "datapoint": [125, 126], "possibli": [125, 126], "cost_complexity_pruning_path": [125, 126], "minimal_cost_complexity_prun": [125, 126], "ccp_path": [125, 126], "bunch": [125, 126], "n_node": [125, 126], "csr": [125, 126], "goe": [125, 126], "brought": [125, 126], "mislead": [125, 126], "cardin": [125, 126], "get_n_leav": [125, 126], "n_leav": [125, 126], "useless": [125, 126], "predict_log_proba": 125, "squared_error": 126, "friedman_ms": 126, "absolute_error": 126, "poisson": 126, "devianc": 126, "refit_method": [127, 128], "max_bin_s": [127, 128], "true_to_data": [127, 128], "xgboostclassifi": [127, 129], "approx": [127, 128, 129, 130], "gpu_hist": [127, 128, 129, 130], "split_info_": [127, 128, 129, 130], "n_splits_raw_": [127, 128, 129, 130], "n_splits_": [127, 128, 129, 130], "xgb_params_": [127, 128, 129, 130], "effects_": [127, 128], "get_binning_result": [127, 128], "get_global_effect": [127, 128], "global_visualize_dict": [127, 128], "interpret_iv": [127, 128], "include_intercept": [127, 128], "plot_iv": [127, 128], "plot_wo": [127, 128], "xgboostregressor": [128, 130], "xgbunwrapperclassifi": 129, "xgbunwrapperregressor": 130, "quick": 131, "troubleshoot": 131, "plan": 133}, "objects": {"piml": [[108, 0, 1, "", "Experiment"]], "piml.Experiment": [[108, 1, 1, "", "data_loader"], [108, 1, 1, "", "data_prepare"], [108, 1, 1, "", "data_quality_check"], [108, 1, 1, "", "data_summary"], [108, 1, 1, "", "eda"], [108, 1, 1, "", "feature_select"], [108, 1, 1, "", "get_data"], [108, 1, 1, "", "get_feature_names"], [108, 1, 1, "", "get_feature_types"], [108, 1, 1, "", "get_model"], [108, 1, 1, "", "get_model_config"], [108, 1, 1, "", "get_raw_data"], [108, 1, 1, "", "get_target_name"], [108, 1, 1, "", "make_pipeline"], [108, 1, 1, "", "model_compare"], [108, 1, 1, "", "model_diagnose"], [108, 1, 1, "", "model_explain"], [108, 1, 1, "", "model_fairness"], [108, 1, 1, "", "model_fairness_compare"], [108, 1, 1, "", "model_fairness_solas"], [108, 1, 1, "", "model_interpret"], [108, 1, 1, "", "model_save"], [108, 1, 1, "", "model_train"], [108, 1, 1, "", "model_tune"], [108, 1, 1, "", "register"], [108, 1, 1, "", "twosample_test"]], "piml.data.outlier_detection": [[109, 0, 1, "", "CBLOF"], [110, 0, 1, "", "IsolationForest"], [111, 0, 1, "", "KMeansTree"], [112, 0, 1, "", "PCA"]], "piml.data.outlier_detection.CBLOF": [[109, 1, 1, "", "decision_function"]], "piml.data.outlier_detection.IsolationForest": [[110, 1, 1, "", "decision_function"], [110, 2, 1, "", "estimators_samples_"], [110, 1, 1, "", "fit"], [110, 1, 1, "", "fit_predict"], [110, 1, 1, "", "get_params"], [110, 2, 1, "", "n_features_"], [110, 1, 1, "", "predict"], [110, 1, 1, "", "score_samples"], [110, 1, 1, "", "set_params"]], "piml.data.outlier_detection.KMeansTree": [[111, 1, 1, "", "decision_path"], [111, 1, 1, "", "fit"], [111, 1, 1, "", "get_params"], [111, 1, 1, "", "get_rule"], [111, 1, 1, "", "plot_tree"], [111, 1, 1, "", "predict_leaf_id"], [111, 1, 1, "", "set_params"]], "piml.data.outlier_detection.PCA": [[112, 1, 1, "", "decision_function"], [112, 1, 1, "", "fit"]], "piml.models": [[113, 0, 1, "", "ExplainableBoostingClassifier"], [114, 0, 1, "", "ExplainableBoostingRegressor"], [115, 0, 1, "", "FIGSClassifier"], [116, 0, 1, "", "FIGSRegressor"], [117, 0, 1, "", "GAMClassifier"], [118, 0, 1, "", "GAMINetClassifier"], [119, 0, 1, "", "GAMINetRegressor"], [120, 0, 1, "", "GAMRegressor"], [121, 0, 1, "", "GLMClassifier"], [122, 0, 1, "", "GLMRegressor"], [123, 0, 1, "", "ReluDNNClassifier"], [124, 0, 1, "", "ReluDNNRegressor"], [125, 0, 1, "", "TreeClassifier"], [126, 0, 1, "", "TreeRegressor"], [127, 0, 1, "", "XGB1Classifier"], [128, 0, 1, "", "XGB1Regressor"], [129, 0, 1, "", "XGB2Classifier"], [130, 0, 1, "", "XGB2Regressor"]], "piml.models.ExplainableBoostingClassifier": [[113, 1, 1, "", "decision_function"], [113, 1, 1, "", "fit"], [113, 1, 1, "", "get_params"], [113, 1, 1, "", "model_unwrapper"], [113, 1, 1, "", "predict"], [113, 1, 1, "", "predict_proba"], [113, 1, 1, "", "score"], [113, 1, 1, "", "set_params"]], "piml.models.ExplainableBoostingRegressor": [[114, 1, 1, "", "decision_function"], [114, 1, 1, "", "fit"], [114, 1, 1, "", "get_params"], [114, 1, 1, "", "model_unwrapper"], [114, 1, 1, "", "predict"], [114, 1, 1, "", "score"], [114, 1, 1, "", "set_params"]], "piml.models.FIGSClassifier": [[115, 1, 1, "", "decision_function"], [115, 1, 1, "", "fit"], [115, 1, 1, "", "get_binary_matrix"], [115, 1, 1, "", "get_binary_representation"], [115, 1, 1, "", "get_depths"], [115, 1, 1, "", "get_depths_interactions"], [115, 1, 1, "", "get_params"], [115, 1, 1, "", "predict"], [115, 1, 1, "", "predict_proba"], [115, 1, 1, "", "score"], [115, 1, 1, "", "set_params"], [115, 1, 1, "", "update_tree_importance"]], "piml.models.FIGSRegressor": [[116, 1, 1, "", "fit"], [116, 1, 1, "", "get_binary_matrix"], [116, 1, 1, "", "get_binary_representation"], [116, 1, 1, "", "get_depths"], [116, 1, 1, "", "get_depths_interactions"], [116, 1, 1, "", "get_params"], [116, 1, 1, "", "predict"], [116, 1, 1, "", "score"], [116, 1, 1, "", "set_params"], [116, 1, 1, "", "update_tree_importance"]], "piml.models.GAMClassifier": [[117, 1, 1, "", "fit"], [117, 1, 1, "", "get_main_effect"], [117, 1, 1, "", "get_params"], [117, 1, 1, "", "global_interpret"], [117, 1, 1, "", "interpret_fi"], [117, 1, 1, "", "interpret_local_fi"], [117, 1, 1, "", "local_feature_explain"], [117, 1, 1, "", "plot_fi"], [117, 1, 1, "", "plot_local_fi"], [117, 1, 1, "", "set_params"]], "piml.models.GAMINetClassifier": [[118, 1, 1, "", "certify_mono"], [118, 1, 1, "", "decision_function"], [118, 1, 1, "", "fine_tune_selected"], [118, 1, 1, "", "fit"], [118, 1, 1, "", "get_aggregate_output"], [118, 1, 1, "", "get_clarity_loss"], [118, 1, 1, "", "get_effect_importance"], [118, 1, 1, "", "get_feature_importance"], [118, 1, 1, "", "get_global_effects_"], [118, 1, 1, "", "get_interaction_raw_output"], [118, 1, 1, "", "get_main_effect"], [118, 1, 1, "", "get_main_effect_raw_output"], [118, 1, 1, "", "get_mono_loss"], [118, 1, 1, "", "get_params"], [118, 1, 1, "", "interpret_fi"], [118, 1, 1, "", "interpret_local_fi"], [118, 1, 1, "", "load"], [118, 1, 1, "", "local_effect_explain"], [118, 1, 1, "", "local_feature_explain"], [118, 1, 1, "", "partial_derivatives"], [118, 1, 1, "", "plot_fi"], [118, 1, 1, "", "plot_local_fi"], [118, 1, 1, "", "predict"], [118, 1, 1, "", "predict_proba"], [118, 1, 1, "", "save"], [118, 1, 1, "", "score"], [118, 1, 1, "", "set_params"], [118, 1, 1, "", "update_effect_importance"], [118, 1, 1, "", "update_feature_importance"]], "piml.models.GAMINetRegressor": [[119, 1, 1, "", "certify_mono"], [119, 1, 1, "", "fine_tune_selected"], [119, 1, 1, "", "fit"], [119, 1, 1, "", "get_aggregate_output"], [119, 1, 1, "", "get_clarity_loss"], [119, 1, 1, "", "get_effect_importance"], [119, 1, 1, "", "get_feature_importance"], [119, 1, 1, "", "get_global_effects_"], [119, 1, 1, "", "get_interaction_raw_output"], [119, 1, 1, "", "get_main_effect"], [119, 1, 1, "", "get_main_effect_raw_output"], [119, 1, 1, "", "get_mono_loss"], [119, 1, 1, "", "get_params"], [119, 1, 1, "", "interpret_fi"], [119, 1, 1, "", "interpret_local_fi"], [119, 1, 1, "", "load"], [119, 1, 1, "", "local_effect_explain"], [119, 1, 1, "", "local_feature_explain"], [119, 1, 1, "", "partial_derivatives"], [119, 1, 1, "", "plot_fi"], [119, 1, 1, "", "plot_local_fi"], [119, 1, 1, "", "predict"], [119, 1, 1, "", "save"], [119, 1, 1, "", "score"], [119, 1, 1, "", "set_params"], [119, 1, 1, "", "update_effect_importance"], [119, 1, 1, "", "update_feature_importance"]], "piml.models.GAMRegressor": [[120, 1, 1, "", "fit"], [120, 1, 1, "", "get_main_effect"], [120, 1, 1, "", "get_params"], [120, 1, 1, "", "global_interpret"], [120, 1, 1, "", "interpret_fi"], [120, 1, 1, "", "interpret_local_fi"], [120, 1, 1, "", "local_feature_explain"], [120, 1, 1, "", "plot_fi"], [120, 1, 1, "", "plot_local_fi"], [120, 1, 1, "", "set_params"]], "piml.models.GLMClassifier": [[121, 1, 1, "", "get_params"], [121, 1, 1, "", "set_params"]], "piml.models.GLMRegressor": [[122, 1, 1, "", "get_params"], [122, 1, 1, "", "set_params"]], "piml.models.ReluDNNClassifier": [[123, 1, 1, "", "decision_function"], [123, 1, 1, "", "fit"], [123, 1, 1, "", "get_params"], [123, 1, 1, "", "get_raw_output"], [123, 1, 1, "", "model_unwrapper"], [123, 1, 1, "", "predict"], [123, 1, 1, "", "predict_proba"], [123, 1, 1, "", "score"], [123, 1, 1, "", "set_params"]], "piml.models.ReluDNNRegressor": [[124, 1, 1, "", "fit"], [124, 1, 1, "", "get_params"], [124, 1, 1, "", "get_raw_output"], [124, 1, 1, "", "model_unwrapper"], [124, 1, 1, "", "predict"], [124, 1, 1, "", "score"], [124, 1, 1, "", "set_params"]], "piml.models.TreeClassifier": [[125, 1, 1, "", "apply"], [125, 1, 1, "", "cost_complexity_pruning_path"], [125, 1, 1, "", "decision_path"], [125, 2, 1, "", "feature_importances_"], [125, 1, 1, "", "fit"], [125, 1, 1, "", "get_depth"], [125, 1, 1, "", "get_n_leaves"], [125, 1, 1, "", "get_params"], [125, 1, 1, "", "get_tree_diag"], [125, 1, 1, "", "global_interpret"], [125, 1, 1, "", "interpret_local_tree"], [125, 2, 1, "", "n_features_"], [125, 1, 1, "", "plot_local_tree"], [125, 1, 1, "", "plot_tree_diag"], [125, 1, 1, "", "predict"], [125, 1, 1, "", "predict_log_proba"], [125, 1, 1, "", "predict_proba"], [125, 1, 1, "", "score"], [125, 1, 1, "", "set_params"]], "piml.models.TreeRegressor": [[126, 1, 1, "", "apply"], [126, 1, 1, "", "cost_complexity_pruning_path"], [126, 1, 1, "", "decision_path"], [126, 2, 1, "", "feature_importances_"], [126, 1, 1, "", "fit"], [126, 1, 1, "", "get_depth"], [126, 1, 1, "", "get_n_leaves"], [126, 1, 1, "", "get_params"], [126, 1, 1, "", "get_tree_diag"], [126, 1, 1, "", "global_interpret"], [126, 1, 1, "", "interpret_local_tree"], [126, 2, 1, "", "n_features_"], [126, 1, 1, "", "plot_local_tree"], [126, 1, 1, "", "plot_tree_diag"], [126, 1, 1, "", "predict"], [126, 1, 1, "", "score"], [126, 1, 1, "", "set_params"]], "piml.models.XGB1Classifier": [[127, 1, 1, "", "decision_function"], [127, 1, 1, "", "fit"], [127, 1, 1, "", "get_main_effect"], [127, 1, 1, "", "get_params"], [127, 1, 1, "", "interpret_fi"], [127, 1, 1, "", "interpret_iv"], [127, 1, 1, "", "interpret_local_fi"], [127, 1, 1, "", "local_feature_explain"], [127, 1, 1, "", "plot_fi"], [127, 1, 1, "", "plot_iv"], [127, 1, 1, "", "plot_local_fi"], [127, 1, 1, "", "plot_woe"], [127, 1, 1, "", "predict"], [127, 1, 1, "", "predict_proba"], [127, 1, 1, "", "score"], [127, 1, 1, "", "set_params"], [127, 1, 1, "", "update_feature_importance"]], "piml.models.XGB1Regressor": [[128, 1, 1, "", "fit"], [128, 1, 1, "", "get_main_effect"], [128, 1, 1, "", "get_params"], [128, 1, 1, "", "interpret_fi"], [128, 1, 1, "", "interpret_iv"], [128, 1, 1, "", "interpret_local_fi"], [128, 1, 1, "", "local_feature_explain"], [128, 1, 1, "", "plot_fi"], [128, 1, 1, "", "plot_iv"], [128, 1, 1, "", "plot_local_fi"], [128, 1, 1, "", "plot_woe"], [128, 1, 1, "", "predict"], [128, 1, 1, "", "score"], [128, 1, 1, "", "set_params"], [128, 1, 1, "", "update_feature_importance"]], "piml.models.XGB2Classifier": [[129, 1, 1, "", "decision_function"], [129, 1, 1, "", "fit"], [129, 1, 1, "", "get_params"], [129, 1, 1, "", "model_unwrapper"], [129, 1, 1, "", "predict"], [129, 1, 1, "", "predict_proba"], [129, 1, 1, "", "score"], [129, 1, 1, "", "set_params"]], "piml.models.XGB2Regressor": [[130, 1, 1, "", "fit"], [130, 1, 1, "", "get_params"], [130, 1, 1, "", "model_unwrapper"], [130, 1, 1, "", "predict"], [130, 1, 1, "", "score"], [130, 1, 1, "", "set_params"]]}, "objtypes": {"0": "py:class", "1": "py:method", "2": "py:property"}, "objnames": {"0": ["py", "class", "Python class"], "1": ["py", "method", "Python method"], "2": ["py", "property", "Python property"]}, "titleterms": {"data": [0, 1, 2, 3, 5, 6, 18, 62, 63, 64, 65, 66, 71, 73, 74, 75, 76, 86, 102, 107, 109, 110, 111, 112], "pipelin": [0, 18, 71, 107], "load": [1, 2, 62, 63, 64, 65, 66, 73, 86, 106], "built": [1, 73], "dataset": [1, 73], "panda": [2, 73], "datafram": [2, 73], "summari": [3, 76, 84, 94], "eda": 4, "prepar": [5, 62, 63, 64, 65, 66, 74], "qualiti": [6, 75], "check": 6, "featur": [7, 11, 76, 77, 83, 84, 89, 90, 91, 92, 93, 94, 96, 97, 104], "select": [7, 77], "two": [8, 78, 79, 82, 101, 105], "sampl": [8, 68, 70, 74, 78, 104], "test": [8, 18, 39, 52, 62, 63, 64, 65, 66, 74, 77, 78, 104, 107], "comput": [9, 17, 38, 53, 58], "time": [9, 17, 38, 53, 58], "post": [10, 18, 85, 107], "hoc": [10, 18, 85, 107], "explain": [10, 18, 62, 63, 66, 85, 89, 107], "permut": [11, 83], "import": [11, 77, 83, 84, 89, 90, 91, 92, 93, 94, 96, 97, 106], "partial": [12, 82], "depend": [12, 82, 84, 106], "plot": [12, 72, 78, 82, 84, 89, 91, 92, 94, 96, 97, 99, 101, 105], "individu": [13, 80], "condit": [13, 77, 80], "expect": [13, 80], "accumul": [14, 79], "local": [14, 15, 75, 79, 81, 85, 89, 90, 91, 92, 93, 94, 95, 96, 97], "effect": [14, 79, 89, 91, 92, 96, 97], "interpret": [15, 18, 19, 62, 63, 66, 81, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 107], "model": [15, 18, 19, 54, 55, 56, 62, 63, 64, 65, 66, 67, 81, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 107, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "agnost": [15, 81], "explan": [15, 16, 81, 84], "shaplei": [16, 84], "addit": [16, 84, 91], "exampl": [18, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 108], "outcom": [18, 39, 62, 63, 66, 107], "comparison": [18, 54, 55, 56, 57, 62, 63, 65, 66, 67, 68, 69, 70, 75, 78, 103], "glm": [20, 21], "logist": 20, "regress": [20, 21, 23, 25, 27, 29, 31, 33, 35, 37, 41, 43, 45, 47, 49, 51, 56, 70, 93, 99, 102], "taiwan": [20, 26, 30, 32, 34, 36, 68, 89, 90, 92, 93, 94, 95, 97, 99, 101, 102, 103, 104, 105], "credit": [20, 26, 30, 32, 34, 36, 68, 89, 90, 92, 93, 94, 95, 97, 99, 101, 102, 103, 104, 105], "linear": [21, 93, 94], "bike": [21, 31, 33, 35, 79, 80, 81, 82, 83, 84, 93], "share": [21, 31, 33, 35, 79, 80, 81, 82, 83, 84, 93], "gam": [22, 23], "classif": [22, 24, 26, 28, 30, 32, 34, 36, 40, 42, 44, 46, 48, 50, 55, 68, 99, 102], "cocircl": [22, 28, 91, 96], "california": [23, 25, 27, 29, 91], "hous": [23, 25, 27, 29, 91], "tree": [24, 25, 90, 95], "taiwancredit": [24, 66], "fig": [26, 27], "xgb": [28, 29, 30, 31], "1": [28, 29, 64, 68, 70, 73, 79, 80, 81, 82, 83, 84, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 101, 102, 103, 104, 105], "2": [30, 31, 65, 73, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 101, 102, 103, 104, 105], "ebm": [32, 33], "gami": [34, 35, 92], "net": [34, 35, 92], "relu": [36, 37, 94], "dnn": [36, 37], "friedman": [37, 94], "accuraci": [40, 41, 68, 70, 99], "weakspot": [42, 43, 105], "overfit": [44, 45, 68, 70, 101], "reliabl": [46, 47, 68, 70, 102], "robust": [48, 49, 68, 70, 104], "resili": [50, 51, 68, 70, 103], "fair": [52, 57, 64, 65, 69, 100], "xgb2": 52, "tabl": [59, 94, 99, 102], "Of": 59, "content": 59, "frequent": 60, "ask": 60, "question": 60, "case": 61, "studi": [61, 64, 65], "bikeshar": [62, 70, 89, 92, 96, 97, 99, 101, 102, 104, 105], "train": [62, 63, 64, 65, 66, 74, 86, 89, 90, 91, 92, 93, 94, 95, 96, 97], "intepret": [62, 63, 66], "diagnost": [62, 63, 66, 87, 98], "benchmark": [62, 63, 66], "californiah": [63, 90, 95, 103], "simul": [64, 65], "ml": [64, 65], "": [64, 65], "descript": 65, "score": [68, 70, 75, 102], "auc": 68, "f1": 68, "bandwidth": [68, 70, 102], "diagram": [68, 90, 102], "perform": [68, 70, 103], "worst": [68, 70, 104], "metric": [69, 78, 100], "segment": [69, 100], "mean": 70, "squar": 70, "error": 70, "absolut": 70, "r": 70, "coverag": [70, 102], "exploratori": 72, "analysi": [72, 75], "univari": 72, "bivari": 72, "multivari": 72, "extern": 73, "from": 73, "basic": 74, "set": 74, "split": 74, "random": [74, 77], "outer": 74, "base": [74, 75], "kmean": 74, "manual": 74, "isol": 75, "forest": 75, "cluster": 75, "outlier": [75, 107], "factor": 75, "cblof": [75, 109], "princip": 75, "compon": 75, "kmeanstre": [75, 111], "distribut": 75, "margin": [75, 78, 102, 103], "differ": 75, "method": [75, 107], "refer": [75, 77, 80, 83, 84, 87, 93, 107], "statist": 76, "numer": [76, 104], "categor": [76, 104], "manipul": 76, "remov": 76, "chang": 76, "type": 76, "correl": 77, "distanc": [77, 78, 102, 103], "us": [77, 108], "independ": 77, "rcit": 77, "forward": 77, "backward": 77, "earli": 77, "drop": 77, "fbedk": 77, "usag": [78, 79, 80, 81, 82, 83, 84, 101, 103, 104, 105], "densiti": [78, 103], "al": 79, "algorithm": [79, 80, 81, 82, 83, 84, 101, 103, 104, 105], "detail": [79, 80, 81, 82, 83, 84, 101, 103, 104, 105], "One": [79, 82, 101, 105], "wai": [79, 82, 101, 105], "ic": 80, "lime": 81, "pdp": 82, "pfi": 83, "shap": 84, "exact": 84, "solut": 84, "kernelshap": 84, "specif": 84, "The": 84, "waterfal": 84, "global": [85, 89, 90, 91, 92, 93, 94, 95, 96, 97], "black": 86, "box": 86, "regist": 86, "save": 86, "fit": 86, "arbitrari": 86, "introduct": 87, "toolbox": 87, "design": 87, "suit": [87, 98], "futur": 87, "plan": 87, "boost": 89, "machin": 89, "main": [89, 91, 92, 96, 97], "interact": [89, 92, 97], "contribut": [89, 92, 94, 97], "fast": 90, "greedi": 90, "sum": 90, "heatmap": 90, "gener": [91, 93], "coeffici": 93, "origin": 93, "scale": 93, "option": 93, "center": 93, "neural": 94, "network": 94, "formul": 94, "llm": 94, "parallel": 94, "coordin": 94, "violin": 94, "profil": 94, "pairwis": 94, "decis": 95, "xgboost": [96, 97], "depth": [96, 97], "weight": 96, "evid": 96, "inform": 96, "valu": 96, "task": [99, 102], "residu": 99, "binari": [99, 102], "bin": 100, "threshold": 100, "un": 102, "classifi": 102, "calibr": 102, "brier": 102, "histogram": 103, "perturb": 104, "For": 104, "variabl": 104, "whole": 104, "instal": 106, "quick": 106, "troubleshoot": 106, "could": 106, "find": 106, "version": 106, "satisfi": 106, "requir": 106, "piml": [106, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "cannot": 106, "uninstal": 106, "llvmlite": 106, "librari": 106, "libxgboost": 106, "so": 106, "colab": 106, "api": 107, "experi": [107, 108], "class": 107, "function": 107, "detect": 107, "outlier_detect": [109, 110, 111, 112], "isolationforest": 110, "pca": 112, "explainableboostingclassifi": 113, "explainableboostingregressor": 114, "figsclassifi": 115, "figsregressor": 116, "gamclassifi": 117, "gaminetclassifi": 118, "gaminetregressor": 119, "gamregressor": 120, "glmclassifi": 121, "glmregressor": 122, "reludnnclassifi": 123, "reludnnregressor": 124, "treeclassifi": 125, "treeregressor": 126, "xgb1classifi": 127, "xgb1regressor": 128, "xgb2classifi": 129, "xgb2regressor": 130, "welcom": 131, "scikit": 131, "learn": 131, "user": 133, "guid": 133}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 8, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.intersphinx": 1, "sphinx": 57}, "alltitles": {"Data Pipeline": [[0, "data-pipeline"], [18, "data-pipeline"], [71, "data-pipeline"], [107, "data-pipeline"]], "Data Load (Built-in Dataset)": [[1, "data-load-built-in-dataset"]], "Data Load (Pandas DataFrame)": [[2, "data-load-pandas-dataframe"]], "Data Summary": [[3, "data-summary"], [76, "data-summary"]], "EDA": [[4, "eda"]], "Data Preparation": [[5, "data-preparation"], [74, "data-preparation"]], "Data Quality Check": [[6, "data-quality-check"]], "Feature Selection": [[7, "feature-selection"], [77, "feature-selection"]], "Two Sample Test": [[8, "two-sample-test"], [78, "two-sample-test"]], "Computation times": [[9, "computation-times"], [17, "computation-times"], [38, "computation-times"], [53, "computation-times"], [58, "computation-times"]], "Post hoc Explainability": [[10, "post-hoc-explainability"], [18, "post-hoc-explainability"]], "Permutation Feature Importance": [[11, "permutation-feature-importance"]], "Partial Dependence Plot": [[12, "partial-dependence-plot"]], "Individual Conditional Expectation": [[13, "individual-conditional-expectation"]], "Accumulated Local Effects": [[14, "accumulated-local-effects"]], "Local Interpretable Model-Agnostic Explanation": [[15, "local-interpretable-model-agnostic-explanation"]], "SHapley Additive exPlanations": [[16, "shapley-additive-explanations"]], "Examples": [[18, "examples"], [68, "examples"], [69, "examples"], [70, "examples"], [72, "examples"], [73, "examples"], [74, "examples"], [75, "examples"], [76, "examples"], [77, "examples"], [78, "examples"], [79, "examples"], [80, "examples"], [81, "examples"], [82, "examples"], [84, "examples"], [89, "examples"], [90, "examples"], [92, "examples"], [93, "examples"], [94, "examples"], [95, "examples"], [96, "examples"], [97, "examples"], [99, "examples"], [100, "examples"], [101, "examples"], [102, "examples"], [103, "examples"], [104, "examples"], [105, "examples"]], "Interpretable Models": [[18, "interpretable-models"], [19, "interpretable-models"], [87, "interpretable-models"], [88, "interpretable-models"], [107, "interpretable-models"]], "Outcome Testing": [[18, "outcome-testing"], [39, "outcome-testing"], [107, "outcome-testing"]], "Model Comparison": [[18, "model-comparison"], [54, "model-comparison"], [67, "model-comparison"]], "GLM Logistic Regression (Taiwan Credit)": [[20, "glm-logistic-regression-taiwan-credit"]], "GLM Linear Regression (Bike Sharing)": [[21, "glm-linear-regression-bike-sharing"]], "GAM Classification (CoCircles)": [[22, "gam-classification-cocircles"]], "GAM Regression (California Housing)": [[23, "gam-regression-california-housing"]], "Tree Classification (TaiwanCredit)": [[24, "tree-classification-taiwancredit"]], "Tree Regression (California Housing)": [[25, "tree-regression-california-housing"]], "FIGS Classification (Taiwan Credit)": [[26, "figs-classification-taiwan-credit"]], "FIGS Regression (California Housing)": [[27, "figs-regression-california-housing"]], "XGB-1 Classification (CoCircles)": [[28, "xgb-1-classification-cocircles"]], "XGB-1 Regression (California Housing)": [[29, "xgb-1-regression-california-housing"]], "XGB-2 Classification (Taiwan Credit)": [[30, "xgb-2-classification-taiwan-credit"]], "XGB-2 Regression (Bike Sharing)": [[31, "xgb-2-regression-bike-sharing"]], "EBM Classification (Taiwan Credit)": [[32, "ebm-classification-taiwan-credit"]], "EBM Regression (Bike Sharing)": [[33, "ebm-regression-bike-sharing"]], "GAMI-Net Classification (Taiwan Credit)": [[34, "gami-net-classification-taiwan-credit"]], "GAMI-Net Regression (Bike Sharing)": [[35, "gami-net-regression-bike-sharing"]], "ReLU DNN Classification (Taiwan Credit)": [[36, "relu-dnn-classification-taiwan-credit"]], "ReLU DNN Regression (Friedman)": [[37, "relu-dnn-regression-friedman"]], "Accuracy: Classification": [[40, "accuracy-classification"]], "Accuracy: Regression": [[41, "accuracy-regression"]], "WeakSpot: Classification": [[42, "weakspot-classification"]], "WeakSpot: Regression": [[43, "weakspot-regression"]], "Overfit: Classification": [[44, "overfit-classification"]], "Overfit: Regression": [[45, "overfit-regression"]], "Reliability: Classification": [[46, "reliability-classification"]], "Reliability: Regression": [[47, "reliability-regression"]], "Robustness: Classification": [[48, "robustness-classification"]], "Robustness: Regression": [[49, "robustness-regression"]], "Resilience: Classification": [[50, "resilience-classification"]], "Resilience - Regression": [[51, "resilience-regression"]], "Fairness Test: XGB2": [[52, "fairness-test-xgb2"]], "Model Comparison: Classification": [[55, "model-comparison-classification"]], "Model Comparison: Regression": [[56, "model-comparison-regression"]], "Fairness Comparison": [[57, "fairness-comparison"], [69, "fairness-comparison"]], "Table Of Contents": [[59, "table-of-contents"]], "Frequently Asked Questions": [[60, "frequently-asked-questions"]], "Case Studies": [[61, "case-studies"]], "BikeSharing Data": [[62, "BikeSharing-Data"]], "Load and Prepare Data": [[62, "Load-and-Prepare-Data"], [63, "Load-and-Prepare-Data"], [64, "Load-and-Prepare-Data"], [66, "Load-and-Prepare-Data"]], "Train Intepretable Models": [[62, "Train-Intepretable-Models"], [63, "Train-Intepretable-Models"], [66, "Train-Intepretable-Models"]], "Interpretability and Explainability": [[62, "Interpretability-and-Explainability"], [63, "Interpretability-and-Explainability"], [66, "Interpretability-and-Explainability"]], "Model Diagnostics and Outcome Testing": [[62, "Model-Diagnostics-and-Outcome-Testing"], [63, "Model-Diagnostics-and-Outcome-Testing"], [66, "Model-Diagnostics-and-Outcome-Testing"]], "Model Comparison and Benchmarking": [[62, "Model-Comparison-and-Benchmarking"], [63, "Model-Comparison-and-Benchmarking"], [66, "Model-Comparison-and-Benchmarking"]], "CaliforniaHousing Data": [[63, "CaliforniaHousing-Data"]], "Fairness Simulation Study 1": [[64, "Fairness-Simulation-Study-1"]], "Train ML Model(s)": [[64, "Train-ML-Model(s)"], [65, "Train-ML-Model(s)"]], "Fairness Testing": [[64, "Fairness-Testing"], [65, "Fairness-Testing"]], "Fairness Simulation Study 2": [[65, "Fairness-Simulation-Study-2"]], "Data Description": [[65, "Data-Description"]], "Load and Prepare data": [[65, "Load-and-Prepare-data"]], "Fairness Testing Comparison": [[65, "Fairness-Testing-Comparison"]], "TaiwanCredit Data": [[66, "TaiwanCredit-Data"]], "Comparison for Classification": [[68, "comparison-for-classification"]], "Accuracy Comparison": [[68, "accuracy-comparison"], [70, "accuracy-comparison"]], "Accuracy Score": [[68, "accuracy-score"]], "AUC Score": [[68, "auc-score"]], "F1 Score": [[68, "f1-score"]], "Overfit Comparison": [[68, "overfit-comparison"], [70, "overfit-comparison"]], "Reliability Comparison": [[68, "reliability-comparison"], [70, "reliability-comparison"]], "Bandwidth Comparison": [[68, "bandwidth-comparison"], [70, "bandwidth-comparison"]], "Reliability Diagram Comparison": [[68, "reliability-diagram-comparison"]], "Robustness Comparison": [[68, "robustness-comparison"], [70, "robustness-comparison"]], "Robustness Performance": [[68, "robustness-performance"], [70, "robustness-performance"]], "Robustness Performance on Worst Samples": [[68, "robustness-performance-on-worst-samples"], [70, "robustness-performance-on-worst-samples"]], "Resilience Comparison": [[68, "resilience-comparison"], [70, "resilience-comparison"]], "Resilience Performance": [[68, "resilience-performance"], [70, "resilience-performance"], [103, "resilience-performance"]], "Resilience Performance on Worst Samples": [[68, "resilience-performance-on-worst-samples"], [70, "resilience-performance-on-worst-samples"]], "Examples 1: Taiwan Credit": [[68, null]], "Fairness Metrics": [[69, "fairness-metrics"], [100, "fairness-metrics"]], "Segmented": [[69, "segmented"]], "Example": [[69, null], [72, null], [74, null], [75, null], [76, null], [77, null], [78, null], [83, "example"], [91, "example"], [100, null]], "Comparison for Regression": [[70, "comparison-for-regression"]], "Mean Squared Error": [[70, "mean-squared-error"]], "Mean Absolute Error": [[70, "mean-absolute-error"]], "R-squared Score": [[70, "r-squared-score"]], "Coverage Comparison": [[70, "coverage-comparison"]], "Example 1: BikeSharing": [[70, null], [89, null], [92, null], [96, null], [97, null], [99, null], [101, null], [102, null], [104, null], [105, null]], "Exploratory Analysis": [[72, "exploratory-analysis"]], "Univariate Plots": [[72, "univariate-plots"]], "Bivariate Plots": [[72, "bivariate-plots"]], "Multivariate Plots": [[72, "multivariate-plots"]], "Data Load": [[73, "data-load"]], "Built-in Dataset": [[73, "built-in-dataset"]], "External Dataset": [[73, "external-dataset"]], "Example 1: Load built-in datasets": [[73, null]], "Example 2: Load data from pandas DataFrame": [[73, null]], "Basic Settings": [[74, "basic-settings"]], "Train-test Splits": [[74, "train-test-splits"]], "Random Split": [[74, "random-split"]], "Outer-sample-based Split": [[74, "outer-sample-based-split"]], "KMeans-based Split": [[74, "kmeans-based-split"]], "Manual Split": [[74, "manual-split"]], "Data Quality": [[75, "data-quality"]], "Isolation Forest": [[75, "isolation-forest"]], "Cluster-Based Local Outlier Factor (CBLOF)": [[75, "cluster-based-local-outlier-factor-cblof"]], "Principal Component Analysis": [[75, "principal-component-analysis"]], "KmeansTree": [[75, "kmeanstree"]], "Analysis and Comparison": [[75, "analysis-and-comparison"]], "Outlier Score distribution": [[75, "outlier-score-distribution"]], "Marginal Distribution of Outliers": [[75, "marginal-distribution-of-outliers"]], "Comparison of Different Methods": [[75, "comparison-of-different-methods"]], "References": [[75, null], [77, null], [80, null], [83, null], [84, null], [87, null], [93, null]], "Summary Statistics": [[76, "summary-statistics"]], "Numerical Features": [[76, "numerical-features"]], "Categorical Features": [[76, "categorical-features"]], "Feature Manipulation": [[76, "feature-manipulation"]], "Remove Features": [[76, "remove-features"]], "Change Feature Types": [[76, "change-feature-types"]], "Correlations": [[77, "correlations"]], "Distance Correlation": [[77, "distance-correlation"]], "Use of Feature Importance": [[77, "use-of-feature-importance"]], "Randomized Conditional Independence Test": [[77, "randomized-conditional-independence-test"]], "RCIT Test": [[77, "rcit-test"]], "Forward-Backward selection with Early Dropping (FBEDk):": [[77, "forward-backward-selection-with-early-dropping-fbedk"]], "Distance Metrics": [[78, "distance-metrics"]], "Usage": [[78, "usage"], [79, "usage"], [80, "usage"], [81, "usage"], [82, "usage"], [83, "usage"], [84, "usage"], [101, "usage"], [103, "usage"], [104, "usage"], [105, "usage"]], "Distance Metric Plot": [[78, "distance-metric-plot"]], "Marginal Density Comparison": [[78, "marginal-density-comparison"], [103, "marginal-density-comparison"]], "ALE (Accumulated Local Effects)": [[79, "ale-accumulated-local-effects"]], "Algorithm Details": [[79, "algorithm-details"], [80, "algorithm-details"], [81, "algorithm-details"], [82, "algorithm-details"], [83, "algorithm-details"], [84, "algorithm-details"], [101, "algorithm-details"], [103, "algorithm-details"], [104, "algorithm-details"], [105, "algorithm-details"]], "One-way ALE": [[79, "one-way-ale"]], "Two-way ALE": [[79, "two-way-ale"]], "Example 1: Bike Sharing": [[79, null], [80, null], [81, null], [82, null], [83, null], [84, null], [93, null]], "ICE (Individual Conditional Expectation)": [[80, "ice-individual-conditional-expectation"]], "LIME (Local Interpretable Model-Agnostic Explanation)": [[81, "lime-local-interpretable-model-agnostic-explanation"]], "PDP (Partial Dependence Plot)": [[82, "pdp-partial-dependence-plot"]], "One-way PDPs": [[82, "one-way-pdps"]], "Two-way PDPs": [[82, "two-way-pdps"]], "PFI (Permutation Feature Importance)": [[83, "pfi-permutation-feature-importance"]], "SHAP (SHapley Additive exPlanations)": [[84, "shap-shapley-additive-explanations"]], "Exact Solution": [[84, "exact-solution"]], "KernelSHAP": [[84, "kernelshap"]], "Algorithms for specific models": [[84, "algorithms-for-specific-models"]], "The Waterfall plot": [[84, "the-waterfall-plot"]], "SHAP Feature importance": [[84, "shap-feature-importance"]], "SHAP Summary plot": [[84, "shap-summary-plot"]], "SHAP Dependence Plot": [[84, "shap-dependence-plot"]], "Post-hoc Explainability": [[85, "post-hoc-explainability"], [107, "post-hoc-explainability"]], "Global Explainability": [[85, "global-explainability"]], "Local Explainability": [[85, "local-explainability"]], "Black-box Models": [[86, "black-box-models"]], "Train and Register Models": [[86, "train-and-register-models"]], "Save Fitted Models": [[86, "save-fitted-models"]], "Load and Register Fitted Models": [[86, "load-and-register-fitted-models"]], "Register Arbitrary Models and Data": [[86, "register-arbitrary-models-and-data"]], "Introduction": [[87, "introduction"], [87, "id1"]], "Toolbox Design": [[87, "toolbox-design"]], "Diagnostic Suite": [[87, "diagnostic-suite"], [98, "diagnostic-suite"]], "Future Plan": [[87, "future-plan"]], "Explainable Boosting Machines": [[89, "explainable-boosting-machines"]], "Model Training": [[89, "model-training"], [90, "model-training"], [91, "model-training"], [92, "model-training"], [93, "model-training"], [94, "model-training"], [95, "model-training"], [96, "model-training"], [97, "model-training"]], "Global Interpretation": [[89, "global-interpretation"], [90, "global-interpretation"], [91, "global-interpretation"], [92, "global-interpretation"], [93, "global-interpretation"], [94, "global-interpretation"], [95, "global-interpretation"], [96, "global-interpretation"], [97, "global-interpretation"]], "Main Effect Plot": [[89, "main-effect-plot"], [91, "main-effect-plot"], [92, "main-effect-plot"], [96, "main-effect-plot"], [97, "main-effect-plot"]], "Interaction Plot": [[89, "interaction-plot"], [92, "interaction-plot"], [97, "interaction-plot"]], "Effect Importance": [[89, "effect-importance"], [92, "effect-importance"], [97, "effect-importance"]], "Feature Importance": [[89, "feature-importance"], [91, "feature-importance"], [92, "feature-importance"], [93, "feature-importance"], [96, "feature-importance"], [97, "feature-importance"]], "Local Interpretation": [[89, "local-interpretation"], [90, "local-interpretation"], [91, "local-interpretation"], [92, "local-interpretation"], [93, "local-interpretation"], [94, "local-interpretation"], [95, "local-interpretation"], [96, "local-interpretation"], [97, "local-interpretation"]], "Local Effect Contribution": [[89, "local-effect-contribution"], [92, "local-effect-contribution"], [97, "local-effect-contribution"]], "Local Feature Contribution": [[89, "local-feature-contribution"], [92, "local-feature-contribution"], [97, "local-feature-contribution"]], "Examples 2: Taiwan Credit": [[89, null], [90, null], [92, null], [94, null], [95, null], [97, null], [99, null], [101, null], [102, null], [103, null], [104, null], [105, null]], "Fast Interpretable Greedy-tree Sums": [[90, "fast-interpretable-greedy-tree-sums"]], "Feature Importance Heatmap": [[90, "feature-importance-heatmap"]], "Tree Diagram": [[90, "tree-diagram"]], "Example 1: CaliforniaHousing": [[90, null], [95, null], [103, null]], "Generalized Additive Model": [[91, "generalized-additive-model"]], "Example 1: California Housing": [[91, null]], "Example 2: CoCircles": [[91, null], [96, null]], "GAMI-Net": [[92, "gami-net"]], "Generalized Linear Models": [[93, "generalized-linear-models"]], "Regression Coefficients": [[93, "regression-coefficients"]], "Original Scale Option": [[93, "original-scale-option"]], "Centered Option": [[93, "centered-option"]], "Example 2: Taiwan Credit": [[93, null]], "ReLU Neural Network": [[94, "relu-neural-network"]], "Model Formulation": [[94, "model-formulation"]], "Local Linear Models": [[94, "local-linear-models"]], "LLM Summary Table": [[94, "llm-summary-table"]], "Parallel Coordinate Plot": [[94, "parallel-coordinate-plot"]], "LLM Violin Plot": [[94, "llm-violin-plot"]], "Feature Importance Plot": [[94, "feature-importance-plot"]], "LLM profile plot": [[94, "llm-profile-plot"]], "LLM pairwise plot": [[94, "llm-pairwise-plot"]], "Local Feature Contribution plot": [[94, "local-feature-contribution-plot"]], "Example 1: Friedman": [[94, null]], "Decision Tree": [[95, "decision-tree"]], "XGBoost Depth 1": [[96, "xgboost-depth-1"]], "Weight of Evidence Plot": [[96, "weight-of-evidence-plot"]], "Information Value Plot": [[96, "information-value-plot"]], "XGBoost Depth 2": [[97, "xgboost-depth-2"]], "Accuracy": [[99, "accuracy"]], "Regression Tasks": [[99, "regression-tasks"]], "Accuracy Table": [[99, "accuracy-table"], [99, "id1"]], "Residual Plot": [[99, "residual-plot"], [99, "id2"]], "Binary Classification": [[99, "binary-classification"]], "Accuracy Plot": [[99, "accuracy-plot"]], "Fairness": [[100, "fairness"]], "Fairness Segmented": [[100, "fairness-segmented"]], "Fairness Binning": [[100, "fairness-binning"]], "Fairness Thresholding": [[100, "fairness-thresholding"]], "Overfit": [[101, "overfit"]], "One-way Overfit Plot": [[101, "one-way-overfit-plot"]], "Two-way Overfit Plot": [[101, "two-way-overfit-plot"]], "Reliability": [[102, "reliability"]], "Reliability for Regression Tasks": [[102, "reliability-for-regression-tasks"]], "Coverage and Bandwidth Table": [[102, "coverage-and-bandwidth-table"]], "Distance of Reliable and Un-reliable Data": [[102, "distance-of-reliable-and-un-reliable-data"], [102, "id1"]], "Marginal Bandwidth": [[102, "marginal-bandwidth"], [102, "id2"]], "Reliability for Binary Classification": [[102, "reliability-for-binary-classification"]], "Classifier Calibration": [[102, "classifier-calibration"]], "Reliability Diagram": [[102, "reliability-diagram"]], "Brier Score Table": [[102, "brier-score-table"]], "Resilience": [[103, "resilience"]], "Resilience Distance": [[103, "resilience-distance"]], "Marginal Histogram Comparison": [[103, "marginal-histogram-comparison"]], "Robustness": [[104, "robustness"]], "Perturbation For Numerical Features": [[104, "perturbation-for-numerical-features"]], "Perturbation for Categorical Variable": [[104, "perturbation-for-categorical-variable"]], "Robustness on the whole test sample": [[104, "robustness-on-the-whole-test-sample"]], "Robustness on worst test samples": [[104, "robustness-on-worst-test-samples"]], "WeakSpot": [[105, "weakspot"]], "One-way WeakSpot Plot": [[105, "one-way-weakspot-plot"]], "Two-way WeakSpot Plot": [[105, "two-way-weakspot-plot"]], "Installation": [[106, "installation"]], "Quick Install": [[106, "quick-install"]], "Dependencies": [[106, "dependencies"]], "Troubleshooting": [[106, "troubleshooting"]], "Could not find a version that satisfies the requirement PiML": [[106, "could-not-find-a-version-that-satisfies-the-requirement-piml"]], "Cannot uninstall \u201cllvmlite\u201d.": [[106, "cannot-uninstall-llvmlite"]], "Library \u201clibxgboost.so\u201d not loaded": [[106, "library-libxgboost-so-not-loaded"]], "Cannot import PiML on Colab": [[106, "cannot-import-piml-on-colab"]], "API Reference": [[107, "api-reference"]], "Experiment Class": [[107, "experiment-class"]], "Functions": [[107, "functions"], [107, "id1"]], "Outlier Detection Methods": [[107, "outlier-detection-methods"]], "Model Classes": [[107, "model-classes"]], "piml.Experiment": [[108, "piml-experiment"]], "Examples using piml.Experiment": [[108, "examples-using-piml-experiment"]], "piml.data.outlier_detection.CBLOF": [[109, "piml-data-outlier-detection-cblof"]], "piml.data.outlier_detection.IsolationForest": [[110, "piml-data-outlier-detection-isolationforest"]], "piml.data.outlier_detection.KMeansTree": [[111, "piml-data-outlier-detection-kmeanstree"]], "piml.data.outlier_detection.PCA": [[112, "piml-data-outlier-detection-pca"]], "piml.models.ExplainableBoostingClassifier": [[113, "piml-models-explainableboostingclassifier"]], "piml.models.ExplainableBoostingRegressor": [[114, "piml-models-explainableboostingregressor"]], "piml.models.FIGSClassifier": [[115, "piml-models-figsclassifier"]], "piml.models.FIGSRegressor": [[116, "piml-models-figsregressor"]], "piml.models.GAMClassifier": [[117, "piml-models-gamclassifier"]], "piml.models.GAMINetClassifier": [[118, "piml-models-gaminetclassifier"]], "piml.models.GAMINetRegressor": [[119, "piml-models-gaminetregressor"]], "piml.models.GAMRegressor": [[120, "piml-models-gamregressor"]], "piml.models.GLMClassifier": [[121, "piml-models-glmclassifier"]], "piml.models.GLMRegressor": [[122, "piml-models-glmregressor"]], "piml.models.ReluDNNClassifier": [[123, "piml-models-reludnnclassifier"]], "piml.models.ReluDNNRegressor": [[124, "piml-models-reludnnregressor"]], "piml.models.TreeClassifier": [[125, "piml-models-treeclassifier"]], "piml.models.TreeRegressor": [[126, "piml-models-treeregressor"]], "piml.models.XGB1Classifier": [[127, "piml-models-xgb1classifier"]], "piml.models.XGB1Regressor": [[128, "piml-models-xgb1regressor"]], "piml.models.XGB2Classifier": [[129, "piml-models-xgb2classifier"]], "piml.models.XGB2Regressor": [[130, "piml-models-xgb2regressor"]], "Welcome to scikit-learn": [[131, "welcome-to-scikit-learn"]], "User Guide": [[133, "user-guide"]]}, "indexentries": {"experiment (class in piml)": [[108, "piml.Experiment"]], "data_loader() (piml.experiment method)": [[108, "piml.Experiment.data_loader"]], "data_prepare() (piml.experiment method)": [[108, "piml.Experiment.data_prepare"]], "data_quality_check() (piml.experiment method)": [[108, "piml.Experiment.data_quality_check"]], "data_summary() (piml.experiment method)": [[108, "piml.Experiment.data_summary"]], "eda() (piml.experiment method)": [[108, "piml.Experiment.eda"]], "feature_select() (piml.experiment method)": [[108, "piml.Experiment.feature_select"]], "get_data() (piml.experiment method)": [[108, "piml.Experiment.get_data"]], "get_feature_names() (piml.experiment method)": [[108, "piml.Experiment.get_feature_names"]], "get_feature_types() (piml.experiment method)": [[108, "piml.Experiment.get_feature_types"]], "get_model() (piml.experiment method)": [[108, "piml.Experiment.get_model"]], "get_model_config() (piml.experiment method)": [[108, "piml.Experiment.get_model_config"]], "get_raw_data() (piml.experiment method)": [[108, "piml.Experiment.get_raw_data"]], "get_target_name() (piml.experiment method)": [[108, "piml.Experiment.get_target_name"]], "make_pipeline() (piml.experiment method)": [[108, "piml.Experiment.make_pipeline"]], "model_compare() (piml.experiment method)": [[108, "piml.Experiment.model_compare"]], "model_diagnose() (piml.experiment method)": [[108, "piml.Experiment.model_diagnose"]], "model_explain() (piml.experiment method)": [[108, "piml.Experiment.model_explain"]], "model_fairness() (piml.experiment method)": [[108, "piml.Experiment.model_fairness"]], "model_fairness_compare() (piml.experiment method)": [[108, "piml.Experiment.model_fairness_compare"]], "model_fairness_solas() (piml.experiment method)": [[108, "piml.Experiment.model_fairness_solas"]], "model_interpret() (piml.experiment method)": [[108, "piml.Experiment.model_interpret"]], "model_save() (piml.experiment method)": [[108, "piml.Experiment.model_save"]], "model_train() (piml.experiment method)": [[108, "piml.Experiment.model_train"]], "model_tune() (piml.experiment method)": [[108, "piml.Experiment.model_tune"]], "register() (piml.experiment method)": [[108, "piml.Experiment.register"]], "twosample_test() (piml.experiment method)": [[108, "piml.Experiment.twosample_test"]], "cblof (class in piml.data.outlier_detection)": [[109, "piml.data.outlier_detection.CBLOF"]], "decision_function() (piml.data.outlier_detection.cblof method)": [[109, "piml.data.outlier_detection.CBLOF.decision_function"]], "isolationforest (class in piml.data.outlier_detection)": [[110, "piml.data.outlier_detection.IsolationForest"]], "decision_function() (piml.data.outlier_detection.isolationforest method)": [[110, "piml.data.outlier_detection.IsolationForest.decision_function"]], "estimators_samples_ (piml.data.outlier_detection.isolationforest property)": [[110, "piml.data.outlier_detection.IsolationForest.estimators_samples_"]], "fit() (piml.data.outlier_detection.isolationforest method)": [[110, "piml.data.outlier_detection.IsolationForest.fit"]], "fit_predict() (piml.data.outlier_detection.isolationforest method)": [[110, "piml.data.outlier_detection.IsolationForest.fit_predict"]], "get_params() (piml.data.outlier_detection.isolationforest method)": [[110, "piml.data.outlier_detection.IsolationForest.get_params"]], "n_features_ (piml.data.outlier_detection.isolationforest property)": [[110, "piml.data.outlier_detection.IsolationForest.n_features_"]], "predict() (piml.data.outlier_detection.isolationforest method)": [[110, "piml.data.outlier_detection.IsolationForest.predict"]], "score_samples() (piml.data.outlier_detection.isolationforest method)": [[110, "piml.data.outlier_detection.IsolationForest.score_samples"]], "set_params() (piml.data.outlier_detection.isolationforest method)": [[110, "piml.data.outlier_detection.IsolationForest.set_params"]], "kmeanstree (class in piml.data.outlier_detection)": [[111, "piml.data.outlier_detection.KMeansTree"]], "decision_path() (piml.data.outlier_detection.kmeanstree method)": [[111, "piml.data.outlier_detection.KMeansTree.decision_path"]], "fit() (piml.data.outlier_detection.kmeanstree method)": [[111, "piml.data.outlier_detection.KMeansTree.fit"]], "get_params() (piml.data.outlier_detection.kmeanstree method)": [[111, "piml.data.outlier_detection.KMeansTree.get_params"]], "get_rule() (piml.data.outlier_detection.kmeanstree method)": [[111, "piml.data.outlier_detection.KMeansTree.get_rule"]], "plot_tree() (piml.data.outlier_detection.kmeanstree method)": [[111, "piml.data.outlier_detection.KMeansTree.plot_tree"]], "predict_leaf_id() (piml.data.outlier_detection.kmeanstree method)": [[111, "piml.data.outlier_detection.KMeansTree.predict_leaf_id"]], "set_params() (piml.data.outlier_detection.kmeanstree method)": [[111, "piml.data.outlier_detection.KMeansTree.set_params"]], "pca (class in piml.data.outlier_detection)": [[112, "piml.data.outlier_detection.PCA"]], "decision_function() (piml.data.outlier_detection.pca method)": [[112, "piml.data.outlier_detection.PCA.decision_function"]], "fit() (piml.data.outlier_detection.pca method)": [[112, "piml.data.outlier_detection.PCA.fit"]], "explainableboostingclassifier (class in piml.models)": [[113, "piml.models.ExplainableBoostingClassifier"]], "decision_function() (piml.models.explainableboostingclassifier method)": [[113, "piml.models.ExplainableBoostingClassifier.decision_function"]], "fit() (piml.models.explainableboostingclassifier method)": [[113, "piml.models.ExplainableBoostingClassifier.fit"]], "get_params() (piml.models.explainableboostingclassifier method)": [[113, "piml.models.ExplainableBoostingClassifier.get_params"]], "model_unwrapper() (piml.models.explainableboostingclassifier method)": [[113, "piml.models.ExplainableBoostingClassifier.model_unwrapper"]], "predict() (piml.models.explainableboostingclassifier method)": [[113, "piml.models.ExplainableBoostingClassifier.predict"]], "predict_proba() (piml.models.explainableboostingclassifier method)": [[113, "piml.models.ExplainableBoostingClassifier.predict_proba"]], "score() (piml.models.explainableboostingclassifier method)": [[113, "piml.models.ExplainableBoostingClassifier.score"]], "set_params() (piml.models.explainableboostingclassifier method)": [[113, "piml.models.ExplainableBoostingClassifier.set_params"]], "explainableboostingregressor (class in piml.models)": [[114, "piml.models.ExplainableBoostingRegressor"]], "decision_function() (piml.models.explainableboostingregressor method)": [[114, "piml.models.ExplainableBoostingRegressor.decision_function"]], "fit() (piml.models.explainableboostingregressor method)": [[114, "piml.models.ExplainableBoostingRegressor.fit"]], "get_params() (piml.models.explainableboostingregressor method)": [[114, "piml.models.ExplainableBoostingRegressor.get_params"]], "model_unwrapper() (piml.models.explainableboostingregressor method)": [[114, "piml.models.ExplainableBoostingRegressor.model_unwrapper"]], "predict() (piml.models.explainableboostingregressor method)": [[114, "piml.models.ExplainableBoostingRegressor.predict"]], "score() (piml.models.explainableboostingregressor method)": [[114, "piml.models.ExplainableBoostingRegressor.score"]], "set_params() (piml.models.explainableboostingregressor method)": [[114, "piml.models.ExplainableBoostingRegressor.set_params"]], "figsclassifier (class in piml.models)": [[115, "piml.models.FIGSClassifier"]], "decision_function() (piml.models.figsclassifier method)": [[115, "piml.models.FIGSClassifier.decision_function"]], "fit() (piml.models.figsclassifier method)": [[115, "piml.models.FIGSClassifier.fit"]], "get_binary_matrix() (piml.models.figsclassifier method)": [[115, "piml.models.FIGSClassifier.get_binary_matrix"]], "get_binary_representation() (piml.models.figsclassifier method)": [[115, "piml.models.FIGSClassifier.get_binary_representation"]], "get_depths() (piml.models.figsclassifier method)": [[115, "piml.models.FIGSClassifier.get_depths"]], "get_depths_interactions() (piml.models.figsclassifier method)": [[115, "piml.models.FIGSClassifier.get_depths_interactions"]], "get_params() (piml.models.figsclassifier method)": [[115, "piml.models.FIGSClassifier.get_params"]], "predict() (piml.models.figsclassifier method)": [[115, "piml.models.FIGSClassifier.predict"]], "predict_proba() (piml.models.figsclassifier method)": [[115, "piml.models.FIGSClassifier.predict_proba"]], "score() (piml.models.figsclassifier method)": [[115, "piml.models.FIGSClassifier.score"]], "set_params() (piml.models.figsclassifier method)": [[115, "piml.models.FIGSClassifier.set_params"]], "update_tree_importance() (piml.models.figsclassifier method)": [[115, "piml.models.FIGSClassifier.update_tree_importance"]], "figsregressor (class in piml.models)": [[116, "piml.models.FIGSRegressor"]], "fit() (piml.models.figsregressor method)": [[116, "piml.models.FIGSRegressor.fit"]], "get_binary_matrix() (piml.models.figsregressor method)": [[116, "piml.models.FIGSRegressor.get_binary_matrix"]], "get_binary_representation() (piml.models.figsregressor method)": [[116, "piml.models.FIGSRegressor.get_binary_representation"]], "get_depths() (piml.models.figsregressor method)": [[116, "piml.models.FIGSRegressor.get_depths"]], "get_depths_interactions() (piml.models.figsregressor method)": [[116, "piml.models.FIGSRegressor.get_depths_interactions"]], "get_params() (piml.models.figsregressor method)": [[116, "piml.models.FIGSRegressor.get_params"]], "predict() (piml.models.figsregressor method)": [[116, "piml.models.FIGSRegressor.predict"]], "score() (piml.models.figsregressor method)": [[116, "piml.models.FIGSRegressor.score"]], "set_params() (piml.models.figsregressor method)": [[116, "piml.models.FIGSRegressor.set_params"]], "update_tree_importance() (piml.models.figsregressor method)": [[116, "piml.models.FIGSRegressor.update_tree_importance"]], "gamclassifier (class in piml.models)": [[117, "piml.models.GAMClassifier"]], "fit() (piml.models.gamclassifier method)": [[117, "piml.models.GAMClassifier.fit"]], "get_main_effect() (piml.models.gamclassifier method)": [[117, "piml.models.GAMClassifier.get_main_effect"]], "get_params() (piml.models.gamclassifier method)": [[117, "piml.models.GAMClassifier.get_params"]], "global_interpret() (piml.models.gamclassifier method)": [[117, "piml.models.GAMClassifier.global_interpret"]], "interpret_fi() (piml.models.gamclassifier method)": [[117, "piml.models.GAMClassifier.interpret_fi"]], "interpret_local_fi() (piml.models.gamclassifier method)": [[117, "piml.models.GAMClassifier.interpret_local_fi"]], "local_feature_explain() (piml.models.gamclassifier method)": [[117, "piml.models.GAMClassifier.local_feature_explain"]], "plot_fi() (piml.models.gamclassifier method)": [[117, "piml.models.GAMClassifier.plot_fi"]], "plot_local_fi() (piml.models.gamclassifier method)": [[117, "piml.models.GAMClassifier.plot_local_fi"]], "set_params() (piml.models.gamclassifier method)": [[117, "piml.models.GAMClassifier.set_params"]], "gaminetclassifier (class in piml.models)": [[118, "piml.models.GAMINetClassifier"]], "certify_mono() (piml.models.gaminetclassifier method)": [[118, "piml.models.GAMINetClassifier.certify_mono"]], "decision_function() (piml.models.gaminetclassifier method)": [[118, "piml.models.GAMINetClassifier.decision_function"]], "fine_tune_selected() (piml.models.gaminetclassifier method)": [[118, "piml.models.GAMINetClassifier.fine_tune_selected"]], "fit() (piml.models.gaminetclassifier method)": [[118, "piml.models.GAMINetClassifier.fit"]], "get_aggregate_output() (piml.models.gaminetclassifier method)": [[118, "piml.models.GAMINetClassifier.get_aggregate_output"]], "get_clarity_loss() (piml.models.gaminetclassifier method)": [[118, "piml.models.GAMINetClassifier.get_clarity_loss"]], "get_effect_importance() (piml.models.gaminetclassifier method)": [[118, "piml.models.GAMINetClassifier.get_effect_importance"]], "get_feature_importance() (piml.models.gaminetclassifier method)": [[118, "piml.models.GAMINetClassifier.get_feature_importance"]], "get_global_effects_() (piml.models.gaminetclassifier method)": [[118, "piml.models.GAMINetClassifier.get_global_effects_"]], "get_interaction_raw_output() (piml.models.gaminetclassifier method)": [[118, "piml.models.GAMINetClassifier.get_interaction_raw_output"]], "get_main_effect() (piml.models.gaminetclassifier method)": [[118, "piml.models.GAMINetClassifier.get_main_effect"]], "get_main_effect_raw_output() (piml.models.gaminetclassifier method)": [[118, "piml.models.GAMINetClassifier.get_main_effect_raw_output"]], "get_mono_loss() (piml.models.gaminetclassifier method)": [[118, "piml.models.GAMINetClassifier.get_mono_loss"]], "get_params() (piml.models.gaminetclassifier method)": [[118, "piml.models.GAMINetClassifier.get_params"]], "interpret_fi() (piml.models.gaminetclassifier method)": [[118, "piml.models.GAMINetClassifier.interpret_fi"]], "interpret_local_fi() (piml.models.gaminetclassifier method)": [[118, "piml.models.GAMINetClassifier.interpret_local_fi"]], "load() (piml.models.gaminetclassifier method)": [[118, "piml.models.GAMINetClassifier.load"]], "local_effect_explain() (piml.models.gaminetclassifier method)": [[118, "piml.models.GAMINetClassifier.local_effect_explain"]], "local_feature_explain() (piml.models.gaminetclassifier method)": [[118, "piml.models.GAMINetClassifier.local_feature_explain"]], "partial_derivatives() (piml.models.gaminetclassifier method)": [[118, "piml.models.GAMINetClassifier.partial_derivatives"]], "plot_fi() (piml.models.gaminetclassifier method)": [[118, "piml.models.GAMINetClassifier.plot_fi"]], "plot_local_fi() (piml.models.gaminetclassifier method)": [[118, "piml.models.GAMINetClassifier.plot_local_fi"]], "predict() (piml.models.gaminetclassifier method)": [[118, "piml.models.GAMINetClassifier.predict"]], "predict_proba() (piml.models.gaminetclassifier method)": [[118, "piml.models.GAMINetClassifier.predict_proba"]], "save() (piml.models.gaminetclassifier method)": [[118, "piml.models.GAMINetClassifier.save"]], "score() (piml.models.gaminetclassifier method)": [[118, "piml.models.GAMINetClassifier.score"]], "set_params() (piml.models.gaminetclassifier method)": [[118, "piml.models.GAMINetClassifier.set_params"]], "update_effect_importance() (piml.models.gaminetclassifier method)": [[118, "piml.models.GAMINetClassifier.update_effect_importance"]], "update_feature_importance() (piml.models.gaminetclassifier method)": [[118, "piml.models.GAMINetClassifier.update_feature_importance"]], "gaminetregressor (class in piml.models)": [[119, "piml.models.GAMINetRegressor"]], "certify_mono() (piml.models.gaminetregressor method)": [[119, "piml.models.GAMINetRegressor.certify_mono"]], "fine_tune_selected() (piml.models.gaminetregressor method)": [[119, "piml.models.GAMINetRegressor.fine_tune_selected"]], "fit() (piml.models.gaminetregressor method)": [[119, "piml.models.GAMINetRegressor.fit"]], "get_aggregate_output() (piml.models.gaminetregressor method)": [[119, "piml.models.GAMINetRegressor.get_aggregate_output"]], "get_clarity_loss() (piml.models.gaminetregressor method)": [[119, "piml.models.GAMINetRegressor.get_clarity_loss"]], "get_effect_importance() (piml.models.gaminetregressor method)": [[119, "piml.models.GAMINetRegressor.get_effect_importance"]], "get_feature_importance() (piml.models.gaminetregressor method)": [[119, "piml.models.GAMINetRegressor.get_feature_importance"]], "get_global_effects_() (piml.models.gaminetregressor method)": [[119, "piml.models.GAMINetRegressor.get_global_effects_"]], "get_interaction_raw_output() (piml.models.gaminetregressor method)": [[119, "piml.models.GAMINetRegressor.get_interaction_raw_output"]], "get_main_effect() (piml.models.gaminetregressor method)": [[119, "piml.models.GAMINetRegressor.get_main_effect"]], "get_main_effect_raw_output() (piml.models.gaminetregressor method)": [[119, "piml.models.GAMINetRegressor.get_main_effect_raw_output"]], "get_mono_loss() (piml.models.gaminetregressor method)": [[119, "piml.models.GAMINetRegressor.get_mono_loss"]], "get_params() (piml.models.gaminetregressor method)": [[119, "piml.models.GAMINetRegressor.get_params"]], "interpret_fi() (piml.models.gaminetregressor method)": [[119, "piml.models.GAMINetRegressor.interpret_fi"]], "interpret_local_fi() (piml.models.gaminetregressor method)": [[119, "piml.models.GAMINetRegressor.interpret_local_fi"]], "load() (piml.models.gaminetregressor method)": [[119, "piml.models.GAMINetRegressor.load"]], "local_effect_explain() (piml.models.gaminetregressor method)": [[119, "piml.models.GAMINetRegressor.local_effect_explain"]], "local_feature_explain() (piml.models.gaminetregressor method)": [[119, "piml.models.GAMINetRegressor.local_feature_explain"]], "partial_derivatives() (piml.models.gaminetregressor method)": [[119, "piml.models.GAMINetRegressor.partial_derivatives"]], "plot_fi() (piml.models.gaminetregressor method)": [[119, "piml.models.GAMINetRegressor.plot_fi"]], "plot_local_fi() (piml.models.gaminetregressor method)": [[119, "piml.models.GAMINetRegressor.plot_local_fi"]], "predict() (piml.models.gaminetregressor method)": [[119, "piml.models.GAMINetRegressor.predict"]], "save() (piml.models.gaminetregressor method)": [[119, "piml.models.GAMINetRegressor.save"]], "score() (piml.models.gaminetregressor method)": [[119, "piml.models.GAMINetRegressor.score"]], "set_params() (piml.models.gaminetregressor method)": [[119, "piml.models.GAMINetRegressor.set_params"]], "update_effect_importance() (piml.models.gaminetregressor method)": [[119, "piml.models.GAMINetRegressor.update_effect_importance"]], "update_feature_importance() (piml.models.gaminetregressor method)": [[119, "piml.models.GAMINetRegressor.update_feature_importance"]], "gamregressor (class in piml.models)": [[120, "piml.models.GAMRegressor"]], "fit() (piml.models.gamregressor method)": [[120, "piml.models.GAMRegressor.fit"]], "get_main_effect() (piml.models.gamregressor method)": [[120, "piml.models.GAMRegressor.get_main_effect"]], "get_params() (piml.models.gamregressor method)": [[120, "piml.models.GAMRegressor.get_params"]], "global_interpret() (piml.models.gamregressor method)": [[120, "piml.models.GAMRegressor.global_interpret"]], "interpret_fi() (piml.models.gamregressor method)": [[120, "piml.models.GAMRegressor.interpret_fi"]], "interpret_local_fi() (piml.models.gamregressor method)": [[120, "piml.models.GAMRegressor.interpret_local_fi"]], "local_feature_explain() (piml.models.gamregressor method)": [[120, "piml.models.GAMRegressor.local_feature_explain"]], "plot_fi() (piml.models.gamregressor method)": [[120, "piml.models.GAMRegressor.plot_fi"]], "plot_local_fi() (piml.models.gamregressor method)": [[120, "piml.models.GAMRegressor.plot_local_fi"]], "set_params() (piml.models.gamregressor method)": [[120, "piml.models.GAMRegressor.set_params"]], "glmclassifier (class in piml.models)": [[121, "piml.models.GLMClassifier"]], "get_params() (piml.models.glmclassifier method)": [[121, "piml.models.GLMClassifier.get_params"]], "set_params() (piml.models.glmclassifier method)": [[121, "piml.models.GLMClassifier.set_params"]], "glmregressor (class in piml.models)": [[122, "piml.models.GLMRegressor"]], "get_params() (piml.models.glmregressor method)": [[122, "piml.models.GLMRegressor.get_params"]], "set_params() (piml.models.glmregressor method)": [[122, "piml.models.GLMRegressor.set_params"]], "reludnnclassifier (class in piml.models)": [[123, "piml.models.ReluDNNClassifier"]], "decision_function() (piml.models.reludnnclassifier method)": [[123, "piml.models.ReluDNNClassifier.decision_function"]], "fit() (piml.models.reludnnclassifier method)": [[123, "piml.models.ReluDNNClassifier.fit"]], "get_params() (piml.models.reludnnclassifier method)": [[123, "piml.models.ReluDNNClassifier.get_params"]], "get_raw_output() (piml.models.reludnnclassifier method)": [[123, "piml.models.ReluDNNClassifier.get_raw_output"]], "model_unwrapper() (piml.models.reludnnclassifier method)": [[123, "piml.models.ReluDNNClassifier.model_unwrapper"]], "predict() (piml.models.reludnnclassifier method)": [[123, "piml.models.ReluDNNClassifier.predict"]], "predict_proba() (piml.models.reludnnclassifier method)": [[123, "piml.models.ReluDNNClassifier.predict_proba"]], "score() (piml.models.reludnnclassifier method)": [[123, "piml.models.ReluDNNClassifier.score"]], "set_params() (piml.models.reludnnclassifier method)": [[123, "piml.models.ReluDNNClassifier.set_params"]], "reludnnregressor (class in piml.models)": [[124, "piml.models.ReluDNNRegressor"]], "fit() (piml.models.reludnnregressor method)": [[124, "piml.models.ReluDNNRegressor.fit"]], "get_params() (piml.models.reludnnregressor method)": [[124, "piml.models.ReluDNNRegressor.get_params"]], "get_raw_output() (piml.models.reludnnregressor method)": [[124, "piml.models.ReluDNNRegressor.get_raw_output"]], "model_unwrapper() (piml.models.reludnnregressor method)": [[124, "piml.models.ReluDNNRegressor.model_unwrapper"]], "predict() (piml.models.reludnnregressor method)": [[124, "piml.models.ReluDNNRegressor.predict"]], "score() (piml.models.reludnnregressor method)": [[124, "piml.models.ReluDNNRegressor.score"]], "set_params() (piml.models.reludnnregressor method)": [[124, "piml.models.ReluDNNRegressor.set_params"]], "treeclassifier (class in piml.models)": [[125, "piml.models.TreeClassifier"]], "apply() (piml.models.treeclassifier method)": [[125, "piml.models.TreeClassifier.apply"]], "cost_complexity_pruning_path() (piml.models.treeclassifier method)": [[125, "piml.models.TreeClassifier.cost_complexity_pruning_path"]], "decision_path() (piml.models.treeclassifier method)": [[125, "piml.models.TreeClassifier.decision_path"]], "feature_importances_ (piml.models.treeclassifier property)": [[125, "piml.models.TreeClassifier.feature_importances_"]], "fit() (piml.models.treeclassifier method)": [[125, "piml.models.TreeClassifier.fit"]], "get_depth() (piml.models.treeclassifier method)": [[125, "piml.models.TreeClassifier.get_depth"]], "get_n_leaves() (piml.models.treeclassifier method)": [[125, "piml.models.TreeClassifier.get_n_leaves"]], "get_params() (piml.models.treeclassifier method)": [[125, "piml.models.TreeClassifier.get_params"]], "get_tree_diag() (piml.models.treeclassifier method)": [[125, "piml.models.TreeClassifier.get_tree_diag"]], "global_interpret() (piml.models.treeclassifier method)": [[125, "piml.models.TreeClassifier.global_interpret"]], "interpret_local_tree() (piml.models.treeclassifier method)": [[125, "piml.models.TreeClassifier.interpret_local_tree"]], "n_features_ (piml.models.treeclassifier property)": [[125, "piml.models.TreeClassifier.n_features_"]], "plot_local_tree() (piml.models.treeclassifier method)": [[125, "piml.models.TreeClassifier.plot_local_tree"]], "plot_tree_diag() (piml.models.treeclassifier method)": [[125, "piml.models.TreeClassifier.plot_tree_diag"]], "predict() (piml.models.treeclassifier method)": [[125, "piml.models.TreeClassifier.predict"]], "predict_log_proba() (piml.models.treeclassifier method)": [[125, "piml.models.TreeClassifier.predict_log_proba"]], "predict_proba() (piml.models.treeclassifier method)": [[125, "piml.models.TreeClassifier.predict_proba"]], "score() (piml.models.treeclassifier method)": [[125, "piml.models.TreeClassifier.score"]], "set_params() (piml.models.treeclassifier method)": [[125, "piml.models.TreeClassifier.set_params"]], "treeregressor (class in piml.models)": [[126, "piml.models.TreeRegressor"]], "apply() (piml.models.treeregressor method)": [[126, "piml.models.TreeRegressor.apply"]], "cost_complexity_pruning_path() (piml.models.treeregressor method)": [[126, "piml.models.TreeRegressor.cost_complexity_pruning_path"]], "decision_path() (piml.models.treeregressor method)": [[126, "piml.models.TreeRegressor.decision_path"]], "feature_importances_ (piml.models.treeregressor property)": [[126, "piml.models.TreeRegressor.feature_importances_"]], "fit() (piml.models.treeregressor method)": [[126, "piml.models.TreeRegressor.fit"]], "get_depth() (piml.models.treeregressor method)": [[126, "piml.models.TreeRegressor.get_depth"]], "get_n_leaves() (piml.models.treeregressor method)": [[126, "piml.models.TreeRegressor.get_n_leaves"]], "get_params() (piml.models.treeregressor method)": [[126, "piml.models.TreeRegressor.get_params"]], "get_tree_diag() (piml.models.treeregressor method)": [[126, "piml.models.TreeRegressor.get_tree_diag"]], "global_interpret() (piml.models.treeregressor method)": [[126, "piml.models.TreeRegressor.global_interpret"]], "interpret_local_tree() (piml.models.treeregressor method)": [[126, "piml.models.TreeRegressor.interpret_local_tree"]], "n_features_ (piml.models.treeregressor property)": [[126, "piml.models.TreeRegressor.n_features_"]], "plot_local_tree() (piml.models.treeregressor method)": [[126, "piml.models.TreeRegressor.plot_local_tree"]], "plot_tree_diag() (piml.models.treeregressor method)": [[126, "piml.models.TreeRegressor.plot_tree_diag"]], "predict() (piml.models.treeregressor method)": [[126, "piml.models.TreeRegressor.predict"]], "score() (piml.models.treeregressor method)": [[126, "piml.models.TreeRegressor.score"]], "set_params() (piml.models.treeregressor method)": [[126, "piml.models.TreeRegressor.set_params"]], "xgb1classifier (class in piml.models)": [[127, "piml.models.XGB1Classifier"]], "decision_function() (piml.models.xgb1classifier method)": [[127, "piml.models.XGB1Classifier.decision_function"]], "fit() (piml.models.xgb1classifier method)": [[127, "piml.models.XGB1Classifier.fit"]], "get_main_effect() (piml.models.xgb1classifier method)": [[127, "piml.models.XGB1Classifier.get_main_effect"]], "get_params() (piml.models.xgb1classifier method)": [[127, "piml.models.XGB1Classifier.get_params"]], "interpret_fi() (piml.models.xgb1classifier method)": [[127, "piml.models.XGB1Classifier.interpret_fi"]], "interpret_iv() (piml.models.xgb1classifier method)": [[127, "piml.models.XGB1Classifier.interpret_iv"]], "interpret_local_fi() (piml.models.xgb1classifier method)": [[127, "piml.models.XGB1Classifier.interpret_local_fi"]], "local_feature_explain() (piml.models.xgb1classifier method)": [[127, "piml.models.XGB1Classifier.local_feature_explain"]], "plot_fi() (piml.models.xgb1classifier method)": [[127, "piml.models.XGB1Classifier.plot_fi"]], "plot_iv() (piml.models.xgb1classifier method)": [[127, "piml.models.XGB1Classifier.plot_iv"]], "plot_local_fi() (piml.models.xgb1classifier method)": [[127, "piml.models.XGB1Classifier.plot_local_fi"]], "plot_woe() (piml.models.xgb1classifier method)": [[127, "piml.models.XGB1Classifier.plot_woe"]], "predict() (piml.models.xgb1classifier method)": [[127, "piml.models.XGB1Classifier.predict"]], "predict_proba() (piml.models.xgb1classifier method)": [[127, "piml.models.XGB1Classifier.predict_proba"]], "score() (piml.models.xgb1classifier method)": [[127, "piml.models.XGB1Classifier.score"]], "set_params() (piml.models.xgb1classifier method)": [[127, "piml.models.XGB1Classifier.set_params"]], "update_feature_importance() (piml.models.xgb1classifier method)": [[127, "piml.models.XGB1Classifier.update_feature_importance"]], "xgb1regressor (class in piml.models)": [[128, "piml.models.XGB1Regressor"]], "fit() (piml.models.xgb1regressor method)": [[128, "piml.models.XGB1Regressor.fit"]], "get_main_effect() (piml.models.xgb1regressor method)": [[128, "piml.models.XGB1Regressor.get_main_effect"]], "get_params() (piml.models.xgb1regressor method)": [[128, "piml.models.XGB1Regressor.get_params"]], "interpret_fi() (piml.models.xgb1regressor method)": [[128, "piml.models.XGB1Regressor.interpret_fi"]], "interpret_iv() (piml.models.xgb1regressor method)": [[128, "piml.models.XGB1Regressor.interpret_iv"]], "interpret_local_fi() (piml.models.xgb1regressor method)": [[128, "piml.models.XGB1Regressor.interpret_local_fi"]], "local_feature_explain() (piml.models.xgb1regressor method)": [[128, "piml.models.XGB1Regressor.local_feature_explain"]], "plot_fi() (piml.models.xgb1regressor method)": [[128, "piml.models.XGB1Regressor.plot_fi"]], "plot_iv() (piml.models.xgb1regressor method)": [[128, "piml.models.XGB1Regressor.plot_iv"]], "plot_local_fi() (piml.models.xgb1regressor method)": [[128, "piml.models.XGB1Regressor.plot_local_fi"]], "plot_woe() (piml.models.xgb1regressor method)": [[128, "piml.models.XGB1Regressor.plot_woe"]], "predict() (piml.models.xgb1regressor method)": [[128, "piml.models.XGB1Regressor.predict"]], "score() (piml.models.xgb1regressor method)": [[128, "piml.models.XGB1Regressor.score"]], "set_params() (piml.models.xgb1regressor method)": [[128, "piml.models.XGB1Regressor.set_params"]], "update_feature_importance() (piml.models.xgb1regressor method)": [[128, "piml.models.XGB1Regressor.update_feature_importance"]], "xgb2classifier (class in piml.models)": [[129, "piml.models.XGB2Classifier"]], "decision_function() (piml.models.xgb2classifier method)": [[129, "piml.models.XGB2Classifier.decision_function"]], "fit() (piml.models.xgb2classifier method)": [[129, "piml.models.XGB2Classifier.fit"]], "get_params() (piml.models.xgb2classifier method)": [[129, "piml.models.XGB2Classifier.get_params"]], "model_unwrapper() (piml.models.xgb2classifier method)": [[129, "piml.models.XGB2Classifier.model_unwrapper"]], "predict() (piml.models.xgb2classifier method)": [[129, "piml.models.XGB2Classifier.predict"]], "predict_proba() (piml.models.xgb2classifier method)": [[129, "piml.models.XGB2Classifier.predict_proba"]], "score() (piml.models.xgb2classifier method)": [[129, "piml.models.XGB2Classifier.score"]], "set_params() (piml.models.xgb2classifier method)": [[129, "piml.models.XGB2Classifier.set_params"]], "xgb2regressor (class in piml.models)": [[130, "piml.models.XGB2Regressor"]], "fit() (piml.models.xgb2regressor method)": [[130, "piml.models.XGB2Regressor.fit"]], "get_params() (piml.models.xgb2regressor method)": [[130, "piml.models.XGB2Regressor.get_params"]], "model_unwrapper() (piml.models.xgb2regressor method)": [[130, "piml.models.XGB2Regressor.model_unwrapper"]], "predict() (piml.models.xgb2regressor method)": [[130, "piml.models.XGB2Regressor.predict"]], "score() (piml.models.xgb2regressor method)": [[130, "piml.models.XGB2Regressor.score"]], "set_params() (piml.models.xgb2regressor method)": [[130, "piml.models.XGB2Regressor.set_params"]]}}) \ No newline at end of file diff --git a/docs/_build/jupyter_execute/guides/comparison/compare_classification.ipynb b/docs/_build/jupyter_execute/guides/comparison/compare_classification.ipynb index 51a13efa..b6e9cbad 100644 --- a/docs/_build/jupyter_execute/guides/comparison/compare_classification.ipynb +++ b/docs/_build/jupyter_execute/guides/comparison/compare_classification.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": null, - "id": "93a38327", + "id": "38ca3588", "metadata": {}, "outputs": [], "source": [ @@ -13,7 +13,7 @@ { "cell_type": "code", "execution_count": null, - "id": "6ddc41c9", + "id": "62eefff2", "metadata": {}, "outputs": [], "source": [ @@ -23,7 +23,7 @@ { "cell_type": "code", "execution_count": null, - "id": "10650873", + "id": "34561e39", "metadata": {}, "outputs": [], "source": [ @@ -33,7 +33,7 @@ { "cell_type": "code", "execution_count": null, - "id": "3ef2de2b", + "id": "b44e6d14", "metadata": {}, "outputs": [], "source": [ @@ -45,7 +45,7 @@ { "cell_type": "code", "execution_count": null, - "id": "2971dff4", + "id": "2ab9d9b2", "metadata": {}, "outputs": [], "source": [ @@ -57,7 +57,7 @@ { "cell_type": "code", "execution_count": null, - "id": "4bbe51bc", + "id": "5d6c11cf", "metadata": {}, "outputs": [], "source": [ @@ -67,7 +67,7 @@ { "cell_type": "code", "execution_count": null, - "id": "41e11d73", + "id": "8badc322", "metadata": {}, "outputs": [], "source": [ @@ -78,7 +78,7 @@ { "cell_type": "code", "execution_count": null, - "id": "ce937ada", + "id": "37a24661", "metadata": {}, "outputs": [], "source": [ @@ -89,7 +89,7 @@ { "cell_type": "code", "execution_count": null, - "id": "81d263d9", + "id": "796ff18d", "metadata": {}, "outputs": [], "source": [ @@ -100,7 +100,7 @@ { "cell_type": "code", "execution_count": null, - "id": "97cf68e1", + "id": "cd34995e", "metadata": {}, "outputs": [], "source": [ @@ -111,7 +111,7 @@ { "cell_type": "code", "execution_count": null, - "id": "8a7308da", + "id": "3caea22d", "metadata": {}, "outputs": [], "source": [ diff --git a/docs/_build/jupyter_execute/guides/comparison/compare_fairness.ipynb b/docs/_build/jupyter_execute/guides/comparison/compare_fairness.ipynb index 2bfc636a..5ff09ca7 100644 --- a/docs/_build/jupyter_execute/guides/comparison/compare_fairness.ipynb +++ b/docs/_build/jupyter_execute/guides/comparison/compare_fairness.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": null, - "id": "d6fcfa29", + "id": "a9c7e826", "metadata": {}, "outputs": [], "source": [ @@ -17,7 +17,7 @@ { "cell_type": "code", "execution_count": null, - "id": "7df002f3", + "id": "54463a28", "metadata": {}, "outputs": [], "source": [ diff --git a/docs/_build/jupyter_execute/guides/comparison/compare_regression.ipynb b/docs/_build/jupyter_execute/guides/comparison/compare_regression.ipynb index 56f189e9..f411f44a 100644 --- a/docs/_build/jupyter_execute/guides/comparison/compare_regression.ipynb +++ b/docs/_build/jupyter_execute/guides/comparison/compare_regression.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": null, - "id": "2628d04e", + "id": "54345f4d", "metadata": {}, "outputs": [], "source": [ @@ -14,7 +14,7 @@ { "cell_type": "code", "execution_count": null, - "id": "379a3163", + "id": "93368e59", "metadata": {}, "outputs": [], "source": [ @@ -25,7 +25,7 @@ { "cell_type": "code", "execution_count": null, - "id": "aa0eb18e", + "id": "a968a108", "metadata": {}, "outputs": [], "source": [ @@ -36,7 +36,7 @@ { "cell_type": "code", "execution_count": null, - "id": "e98b6f04", + "id": "773975c1", "metadata": {}, "outputs": [], "source": [ @@ -48,7 +48,7 @@ { "cell_type": "code", "execution_count": null, - "id": "e0d115f4", + "id": "c7595ddc", "metadata": {}, "outputs": [], "source": [ @@ -60,7 +60,7 @@ { "cell_type": "code", "execution_count": null, - "id": "a00672a4", + "id": "19413830", "metadata": {}, "outputs": [], "source": [ @@ -71,7 +71,7 @@ { "cell_type": "code", "execution_count": null, - "id": "47db233b", + "id": "bd0a457b", "metadata": {}, "outputs": [], "source": [ @@ -82,7 +82,7 @@ { "cell_type": "code", "execution_count": null, - "id": "4dc17fa0", + "id": "39be8dbf", "metadata": {}, "outputs": [], "source": [ @@ -93,7 +93,7 @@ { "cell_type": "code", "execution_count": null, - "id": "e27f8bed", + "id": "fc20243c", "metadata": {}, "outputs": [], "source": [ @@ -104,7 +104,7 @@ { "cell_type": "code", "execution_count": null, - "id": "fc6aef06", + "id": "bf8dec5c", "metadata": {}, "outputs": [], "source": [ @@ -115,7 +115,7 @@ { "cell_type": "code", "execution_count": null, - "id": "1f680c85", + "id": "73fe966c", "metadata": {}, "outputs": [], "source": [ diff --git a/docs/_build/jupyter_execute/guides/data/data_eda.ipynb b/docs/_build/jupyter_execute/guides/data/data_eda.ipynb index 3a8bafbf..4bb612fd 100644 --- a/docs/_build/jupyter_execute/guides/data/data_eda.ipynb +++ b/docs/_build/jupyter_execute/guides/data/data_eda.ipynb @@ -3,71 +3,71 @@ { "cell_type": "code", "execution_count": null, - "id": "c1b7bde0", + "id": "d869d96f", "metadata": {}, "outputs": [], "source": [ - "exp.eda(show='univariate', uni_feature='cnt')" + "exp.eda(show='univariate', uni_feature='cnt', figsize=(5, 4))" ] }, { "cell_type": "code", "execution_count": null, - "id": "6683b1d1", + "id": "041da081", "metadata": {}, "outputs": [], "source": [ - "exp.eda(show='univariate', uni_feature='yr')" + "exp.eda(show='univariate', uni_feature='yr', figsize=(5, 4))" ] }, { "cell_type": "code", "execution_count": null, - "id": "bea6c4e7", + "id": "3308f0c8", "metadata": {}, "outputs": [], "source": [ - "exp.eda(show='bivariate', bi_features=['temp', 'cnt'])" + "exp.eda(show='bivariate', bi_features=['temp', 'cnt'], figsize=(5, 4))" ] }, { "cell_type": "code", "execution_count": null, - "id": "7022e036", + "id": "bf732c88", "metadata": {}, "outputs": [], "source": [ - "exp.eda(show='bivariate', bi_features=['hr', 'season'])" + "exp.eda(show='bivariate', bi_features=['hr', 'season'], figsize=(5, 4))" ] }, { "cell_type": "code", "execution_count": null, - "id": "e67ccd32", + "id": "20443336", "metadata": {}, "outputs": [], "source": [ - "exp.eda(show='bivariate', bi_features=['yr', 'season'])" + "exp.eda(show='bivariate', bi_features=['yr', 'season'], figsize=(5, 4))" ] }, { "cell_type": "code", "execution_count": null, - "id": "84658da4", + "id": "793ca3a8", "metadata": {}, "outputs": [], "source": [ - "exp.eda(show='multivariate', multi_type='correlation_heatmap')" + "exp.eda(show='multivariate', multi_type='correlation_heatmap', figsize=(6, 5))" ] }, { "cell_type": "code", "execution_count": null, - "id": "2124fe2c", + "id": "883ba029", "metadata": {}, "outputs": [], "source": [ - "exp.eda(show='multivariate', multi_type='correlation_graph')" + "exp.eda(show='multivariate', multi_type='correlation_graph', figsize=(6, 5))" ] } ], diff --git a/docs/_build/jupyter_execute/guides/data/data_eda.py b/docs/_build/jupyter_execute/guides/data/data_eda.py index f9f4152a..468e6b77 100644 --- a/docs/_build/jupyter_execute/guides/data/data_eda.py +++ b/docs/_build/jupyter_execute/guides/data/data_eda.py @@ -4,41 +4,41 @@ # In[ ]: -exp.eda(show='univariate', uni_feature='cnt') +exp.eda(show='univariate', uni_feature='cnt', figsize=(5, 4)) # In[ ]: -exp.eda(show='univariate', uni_feature='yr') +exp.eda(show='univariate', uni_feature='yr', figsize=(5, 4)) # In[ ]: -exp.eda(show='bivariate', bi_features=['temp', 'cnt']) +exp.eda(show='bivariate', bi_features=['temp', 'cnt'], figsize=(5, 4)) # In[ ]: -exp.eda(show='bivariate', bi_features=['hr', 'season']) +exp.eda(show='bivariate', bi_features=['hr', 'season'], figsize=(5, 4)) # In[ ]: -exp.eda(show='bivariate', bi_features=['yr', 'season']) +exp.eda(show='bivariate', bi_features=['yr', 'season'], figsize=(5, 4)) # In[ ]: -exp.eda(show='multivariate', multi_type='correlation_heatmap') +exp.eda(show='multivariate', multi_type='correlation_heatmap', figsize=(6, 5)) # In[ ]: -exp.eda(show='multivariate', multi_type='correlation_graph') +exp.eda(show='multivariate', multi_type='correlation_graph', figsize=(6, 5)) diff --git a/docs/_build/jupyter_execute/guides/data/data_load.ipynb b/docs/_build/jupyter_execute/guides/data/data_load.ipynb index 8df62b45..fc374c17 100644 --- a/docs/_build/jupyter_execute/guides/data/data_load.ipynb +++ b/docs/_build/jupyter_execute/guides/data/data_load.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": null, - "id": "0c704fde", + "id": "6c9af2d3", "metadata": {}, "outputs": [], "source": [ @@ -13,7 +13,7 @@ { "cell_type": "code", "execution_count": null, - "id": "43e5fa5d", + "id": "4c08e06b", "metadata": {}, "outputs": [], "source": [ diff --git a/docs/_build/jupyter_execute/guides/data/data_prepare.ipynb b/docs/_build/jupyter_execute/guides/data/data_prepare.ipynb index 4705f16a..4db711b1 100644 --- a/docs/_build/jupyter_execute/guides/data/data_prepare.ipynb +++ b/docs/_build/jupyter_execute/guides/data/data_prepare.ipynb @@ -2,25 +2,614 @@ "cells": [ { "cell_type": "code", - "execution_count": null, - "id": "9768770c", - "metadata": {}, + "execution_count": 1, + "id": "b0d169b6", + "metadata": { + "execution": { + "iopub.execute_input": "2023-05-18T09:45:31.121430Z", + "iopub.status.busy": "2023-05-18T09:45:31.121430Z", + "iopub.status.idle": "2023-05-18T09:45:34.346785Z", + "shell.execute_reply": "2023-05-18T09:45:34.346785Z" + } + }, "outputs": [], "source": [ - "custom_train_idx = np.arange(0,16000)\n", - "custom_test_idx = np.arange(16000, 17379)\n", - "exp.data_prepare(train_idx=custom_train_idx, test_idx=custom_test_idx)" + "import numpy as np\n", + "from piml import Experiment\n", + "\n", + "exp = Experiment()\n", + "exp.data_loader(data=\"BikeSharing\", silent=True)" ] }, { "cell_type": "code", - "execution_count": null, - "id": "6faacbe6", - "metadata": {}, - "outputs": [], + "execution_count": 2, + "id": "8502f549", + "metadata": { + "execution": { + "iopub.execute_input": "2023-05-18T09:45:34.346785Z", + "iopub.status.busy": "2023-05-18T09:45:34.346785Z", + "iopub.status.idle": "2023-05-18T09:45:36.137600Z", + "shell.execute_reply": "2023-05-18T09:45:36.137600Z" + } + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4d6dff46a56542cc8667bd027965033d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HTML(value='\\n \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    ConfigValue
    0Excluded columns[]
    1Target variablecnt
    2Sample weightNone
    3Task typeRegression
    4Split methodRandom
    5Test ratio0.2
    6Random state0
    7Train test energy distance0.000586
    \n", + "" + ], + "text/plain": [ + " Config Value\n", + "0 Excluded columns []\n", + "1 Target variable cnt\n", + "2 Sample weight None\n", + "3 Task type Regression\n", + "4 Split method Random\n", + "5 Test ratio 0.2\n", + "6 Random state 0\n", + "7 Train test energy distance 0.000586" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "exp.data_prepare(target='cnt', task_type='regression', sample_weight=None)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "b9942fde", + "metadata": { + "execution": { + "iopub.execute_input": "2023-05-18T09:45:36.137600Z", + "iopub.status.busy": "2023-05-18T09:45:36.137600Z", + "iopub.status.idle": "2023-05-18T09:45:37.866199Z", + "shell.execute_reply": "2023-05-18T09:45:37.865461Z" + } + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5fbfe0e3cb5d4ce49ab555aba6d3c370", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HTML(value='\\n \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    ConfigValue
    0Excluded columns[]
    1Target variablecnt
    2Sample weightNone
    3Task typeRegression
    4Split methodRandom
    5Test ratio0.2
    6Random state0
    7Train test energy distance0.000586
    \n", + "" + ], + "text/plain": [ + " Config Value\n", + "0 Excluded columns []\n", + "1 Target variable cnt\n", + "2 Sample weight None\n", + "3 Task type Regression\n", + "4 Split method Random\n", + "5 Test ratio 0.2\n", + "6 Random state 0\n", + "7 Train test energy distance 0.000586" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "exp.data_prepare(target='cnt', task_type='regression', sample_weight=None,\n", + " split_method='random', test_ratio=0.2, random_state=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "cbbb7fbd", + "metadata": { + "execution": { + "iopub.execute_input": "2023-05-18T09:45:37.866199Z", + "iopub.status.busy": "2023-05-18T09:45:37.866199Z", + "iopub.status.idle": "2023-05-18T09:45:39.500202Z", + "shell.execute_reply": "2023-05-18T09:45:39.500202Z" + } + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7368b12cfc144868815db48747ea622f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HTML(value='\\n \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    ConfigValue
    0Excluded columns[]
    1Target variablecnt
    2Sample weightNone
    3Task typeRegression
    4Split methodOuter-Sample
    5Test ratio0.2
    6Random state0
    7Train test energy distance0.167242
    \n", + "" + ], + "text/plain": [ + " Config Value\n", + "0 Excluded columns []\n", + "1 Target variable cnt\n", + "2 Sample weight None\n", + "3 Task type Regression\n", + "4 Split method Outer-Sample\n", + "5 Test ratio 0.2\n", + "6 Random state 0\n", + "7 Train test energy distance 0.167242" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "exp.data_prepare(target='cnt', task_type='regression', sample_weight=None,\n", + " split_method='outer-sample', test_ratio=0.2, random_state=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "9364f816", + "metadata": { + "execution": { + "iopub.execute_input": "2023-05-18T09:45:39.500202Z", + "iopub.status.busy": "2023-05-18T09:45:39.500202Z", + "iopub.status.idle": "2023-05-18T09:45:42.203005Z", + "shell.execute_reply": "2023-05-18T09:45:42.203005Z" + } + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7714722ac067439d94bc7c3d13e08505", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HTML(value='\\n \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    ConfigValue
    0Excluded columns[]
    1Target variablecnt
    2Sample weightNone
    3Task typeRegression
    4Split methodKmeans
    5Test ratio0.421888
    6Random state0
    7Train test energy distance0.178697
    \n", + "" + ], + "text/plain": [ + " Config Value\n", + "0 Excluded columns []\n", + "1 Target variable cnt\n", + "2 Sample weight None\n", + "3 Task type Regression\n", + "4 Split method Kmeans\n", + "5 Test ratio 0.421888\n", + "6 Random state 0\n", + "7 Train test energy distance 0.178697" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ - "exp.data_prepare(target='cnt', task_type='Regression', sample_weight=None,\n", - " split_method='random', test_ratio=0.2, random_state=0)" + "exp.data_prepare(target='cnt', task_type='regression', sample_weight=None,\n", + " split_method='kmeans', test_ratio=[0.0, 1.0, 0.0], random_state=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "ac2c25ec", + "metadata": { + "execution": { + "iopub.execute_input": "2023-05-18T09:45:42.203005Z", + "iopub.status.busy": "2023-05-18T09:45:42.203005Z", + "iopub.status.idle": "2023-05-18T09:45:43.570824Z", + "shell.execute_reply": "2023-05-18T09:45:43.570824Z" + } + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f7a00c608c76409797e9c2bc246d6c76", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HTML(value='\\n \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    ConfigValue
    0Excluded columns[]
    1Target variablecnt
    2Sample weightNone
    3Task typeRegression
    4Split methodManual
    5Test ratio0.079349
    6Random state0
    7Train test energy distance0.542053
    \n", + "" + ], + "text/plain": [ + " Config Value\n", + "0 Excluded columns []\n", + "1 Target variable cnt\n", + "2 Sample weight None\n", + "3 Task type Regression\n", + "4 Split method Manual\n", + "5 Test ratio 0.079349\n", + "6 Random state 0\n", + "7 Train test energy distance 0.542053" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "custom_train_idx = np.arange(0, 16000)\n", + "custom_test_idx = np.arange(16000, 17379)\n", + "exp.data_prepare(target='cnt', task_type='regression', sample_weight=None,\n", + " train_idx=custom_train_idx, test_idx=custom_test_idx)" ] } ], @@ -41,6 +630,557 @@ "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.12" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "state": { + "4d6dff46a56542cc8667bd027965033d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bb8583f876084eaabf0ac906da32ffe5", + "placeholder": "​", + "style": "IPY_MODEL_e9e21e70e8fa4d71a4722078c4e031b4", + "tabbable": null, + "tooltip": null, + "value": "\n \n " + } + }, + "5fbfe0e3cb5d4ce49ab555aba6d3c370": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c060e65683744e4680b2b073d3b00f52", + "placeholder": "​", + "style": "IPY_MODEL_d4d7410846594797aac45ea5cfc94f8b", + "tabbable": null, + "tooltip": null, + "value": "\n \n " + } + }, + "7368b12cfc144868815db48747ea622f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a13454f0365c47bba88cee013e122af8", + "placeholder": "​", + "style": "IPY_MODEL_9085dbb49e5340508f8855d1040831e1", + "tabbable": null, + "tooltip": null, + "value": "\n \n " + } + }, + "7714722ac067439d94bc7c3d13e08505": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_87435bd66b88440fa6142f0c13381be7", + "placeholder": "​", + "style": "IPY_MODEL_af9580ab945a427f91b0a9e7f9f1ceb3", + "tabbable": null, + "tooltip": null, + "value": "\n \n " + } + }, + "87435bd66b88440fa6142f0c13381be7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8e888557f02b4181a638000f360165e4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9085dbb49e5340508f8855d1040831e1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a13454f0365c47bba88cee013e122af8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "af9580ab945a427f91b0a9e7f9f1ceb3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bb8583f876084eaabf0ac906da32ffe5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c060e65683744e4680b2b073d3b00f52": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d4d7410846594797aac45ea5cfc94f8b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d66ee5eea5c34b0bab47f0dbf8c4c8ae": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_8e888557f02b4181a638000f360165e4", + "msg_id": "", + "outputs": [], + "tabbable": null, + "tooltip": null + } + }, + "e9e21e70e8fa4d71a4722078c4e031b4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ef737ab42f0247409ebdea97d37658cc": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f62e032b6a8847c1b614ff82c845f987": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f7a00c608c76409797e9c2bc246d6c76": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ef737ab42f0247409ebdea97d37658cc", + "placeholder": "​", + "style": "IPY_MODEL_f62e032b6a8847c1b614ff82c845f987", + "tabbable": null, + "tooltip": null, + "value": "\n \n " + } + } + }, + "version_major": 2, + "version_minor": 0 + } } }, "nbformat": 4, diff --git a/docs/_build/jupyter_execute/guides/data/data_prepare.py b/docs/_build/jupyter_execute/guides/data/data_prepare.py index e57c8ade..158c4b45 100644 --- a/docs/_build/jupyter_execute/guides/data/data_prepare.py +++ b/docs/_build/jupyter_execute/guides/data/data_prepare.py @@ -1,17 +1,48 @@ #!/usr/bin/env python # coding: utf-8 -# In[ ]: +# In[1]: -custom_train_idx = np.arange(0,16000) -custom_test_idx = np.arange(16000, 17379) -exp.data_prepare(train_idx=custom_train_idx, test_idx=custom_test_idx) +import numpy as np +from piml import Experiment + +exp = Experiment() +exp.data_loader(data="BikeSharing", silent=True) + + +# In[2]: + + +exp.data_prepare(target='cnt', task_type='regression', sample_weight=None) + + +# In[3]: + + +exp.data_prepare(target='cnt', task_type='regression', sample_weight=None, + split_method='random', test_ratio=0.2, random_state=0) -# In[ ]: +# In[4]: -exp.data_prepare(target='cnt', task_type='Regression', sample_weight=None, - split_method='random', test_ratio=0.2, random_state=0) +exp.data_prepare(target='cnt', task_type='regression', sample_weight=None, + split_method='outer-sample', test_ratio=0.2, random_state=0) + + +# In[5]: + + +exp.data_prepare(target='cnt', task_type='regression', sample_weight=None, + split_method='kmeans', test_ratio=[0.0, 1.0, 0.0], random_state=0) + + +# In[6]: + + +custom_train_idx = np.arange(0, 16000) +custom_test_idx = np.arange(16000, 17379) +exp.data_prepare(target='cnt', task_type='regression', sample_weight=None, + train_idx=custom_train_idx, test_idx=custom_test_idx) diff --git a/docs/_build/jupyter_execute/guides/data/data_quality.ipynb b/docs/_build/jupyter_execute/guides/data/data_quality.ipynb index 3c057fd9..33a56a28 100644 --- a/docs/_build/jupyter_execute/guides/data/data_quality.ipynb +++ b/docs/_build/jupyter_execute/guides/data/data_quality.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": null, - "id": "9e0f0a52", + "id": "67c3efef", "metadata": {}, "outputs": [], "source": [ @@ -14,7 +14,7 @@ { "cell_type": "code", "execution_count": null, - "id": "42f890f4", + "id": "b41339c4", "metadata": {}, "outputs": [], "source": [ @@ -25,7 +25,7 @@ { "cell_type": "code", "execution_count": null, - "id": "81c736a5", + "id": "d453db09", "metadata": {}, "outputs": [], "source": [ diff --git a/docs/_build/jupyter_execute/guides/data/data_summary.ipynb b/docs/_build/jupyter_execute/guides/data/data_summary.ipynb index 71462e15..9b420f08 100644 --- a/docs/_build/jupyter_execute/guides/data/data_summary.ipynb +++ b/docs/_build/jupyter_execute/guides/data/data_summary.ipynb @@ -2,12 +2,202 @@ "cells": [ { "cell_type": "code", - "execution_count": null, - "id": "d100f2f8", - "metadata": {}, + "execution_count": 1, + "id": "275516b7", + "metadata": { + "execution": { + "iopub.execute_input": "2023-05-18T09:45:48.998665Z", + "iopub.status.busy": "2023-05-18T09:45:48.998665Z", + "iopub.status.idle": "2023-05-18T09:45:52.118293Z", + "shell.execute_reply": "2023-05-18T09:45:52.118293Z" + } + }, "outputs": [], "source": [ - "exp.data_summary(feature_type={},feature_exclude=[])" + "from piml import Experiment\n", + "\n", + "exp = Experiment()\n", + "exp.data_loader(data=\"BikeSharing\", silent=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "e1679b38", + "metadata": { + "execution": { + "iopub.execute_input": "2023-05-18T09:45:52.118293Z", + "iopub.status.busy": "2023-05-18T09:45:52.118293Z", + "iopub.status.idle": "2023-05-18T09:45:52.228366Z", + "shell.execute_reply": "2023-05-18T09:45:52.228366Z" + } + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "464d3ead19114351a1f039e027837f96", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HTML(value='\\n \n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
    namen_missingmeanstdminq1medianq3max
    1hr0.011.5467526.9144050.06.000012.000018.000023.0000
    2weekday0.03.0036832.0057710.01.00003.00005.00006.0000
    4atemp0.00.4757750.1718500.00.33330.48480.62121.0000
    5hum0.00.6272290.1929300.00.48000.63000.78001.0000
    6windspeed0.00.1900980.1223400.00.10450.19400.25370.8507
    7cnt0.0189.463088181.3875991.040.0000142.0000281.0000977.0000
    \n", + "text/plain": " name n_missing mean std min q1 median \\\n1 hr 0.0 11.546752 6.914405 0.0 6.0000 12.0000 \n2 weekday 0.0 3.003683 2.005771 0.0 1.0000 3.0000 \n4 atemp 0.0 0.475775 0.171850 0.0 0.3333 0.4848 \n5 hum 0.0 0.627229 0.192930 0.0 0.4800 0.6300 \n6 windspeed 0.0 0.190098 0.122340 0.0 0.1045 0.1940 \n7 cnt 0.0 189.463088 181.387599 1.0 40.0000 142.0000 \n\n q3 max \n1 18.0000 23.0000 \n2 5.0000 6.0000 \n4 0.6212 1.0000 \n5 0.7800 1.0000 \n6 0.2537 0.8507 \n7 281.0000 977.0000 " + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "tabbable": null, + "tooltip": null + } + }, + "16c63bde931642f9b51c3725d4661a03": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "20e77bb6bd64433fb47939eb438d7182": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fd14b72607b14174aef323fb21b5b2fd", + "placeholder": "​", + "style": "IPY_MODEL_db13bb4ebbe44c5dacb362aadb614cdb", + "tabbable": null, + "tooltip": null, + "value": "Data Shape:(17379, 13)" + } + }, + "30b6ad30148d405283d2dc42973d652c": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_16c63bde931642f9b51c3725d4661a03", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
    \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
    namen_missingn_uniquetop1top2top3n_others
    0season043.0 : 44962.0 : 44091.0 : 42424232
    1yr021.0 : 87340.0 : 864500
    2holiday020.0 : 168791.0 : 50000
    3weekday076.0 : 25120.0 : 25025.0 : 24879878
    4workingday021.0 : 118650.0 : 551400
    5weathersit041.0 : 114132.0 : 45443.0 : 14193
    \n
    ", + "text/plain": " name n_missing n_unique top1 top2 top3 \\\n0 season 0 4 3.0 : 4496 2.0 : 4409 1.0 : 4242 \n1 yr 0 2 1.0 : 8734 0.0 : 8645 0 \n2 holiday 0 2 0.0 : 16879 1.0 : 500 0 \n3 weekday 0 7 6.0 : 2512 0.0 : 2502 5.0 : 2487 \n4 workingday 0 2 1.0 : 11865 0.0 : 5514 0 \n5 weathersit 0 4 1.0 : 11413 2.0 : 4544 3.0 : 1419 \n\n n_others \n0 4232 \n1 0 \n2 0 \n3 9878 \n4 0 \n5 3 " + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "tabbable": null, + "tooltip": null + } + }, + "359d99da3c6b40fc924a9429779b27f6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "399fe546a7db441d91ee8f4cc02d1ba9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "39d1fa549fa142838978324d3ebec5d4": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_d76813e4bc2443f286557ec6e6f67bd9", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
    \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
    namen_missingmeanstdminq1medianq3max
    0mnth0.06.5377753.4387761.004.00007.000010.000012.0000
    1hr0.011.5467526.9144050.006.000012.000018.000023.0000
    2weekday0.03.0036832.0057710.001.00003.00005.00006.0000
    3temp0.00.4969870.1925560.020.34000.50000.66001.0000
    4atemp0.00.4757750.1718500.000.33330.48480.62121.0000
    5hum0.00.6272290.1929300.000.48000.63000.78001.0000
    6windspeed0.00.1900980.1223400.000.10450.19400.25370.8507
    7cnt0.0189.463088181.3875991.0040.0000142.0000281.0000977.0000
    \n
    ", + "text/plain": " name n_missing mean std min q1 median \\\n0 mnth 0.0 6.537775 3.438776 1.00 4.0000 7.0000 \n1 hr 0.0 11.546752 6.914405 0.00 6.0000 12.0000 \n2 weekday 0.0 3.003683 2.005771 0.00 1.0000 3.0000 \n3 temp 0.0 0.496987 0.192556 0.02 0.3400 0.5000 \n4 atemp 0.0 0.475775 0.171850 0.00 0.3333 0.4848 \n5 hum 0.0 0.627229 0.192930 0.00 0.4800 0.6300 \n6 windspeed 0.0 0.190098 0.122340 0.00 0.1045 0.1940 \n7 cnt 0.0 189.463088 181.387599 1.00 40.0000 142.0000 \n\n q3 max \n0 10.0000 12.0000 \n1 18.0000 23.0000 \n2 5.0000 6.0000 \n3 0.6600 1.0000 \n4 0.6212 1.0000 \n5 0.7800 1.0000 \n6 0.2537 0.8507 \n7 281.0000 977.0000 " + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "tabbable": null, + "tooltip": null + } + }, + "464d3ead19114351a1f039e027837f96": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5f81df759bd74924ba2eeb0cc22bb14e", + "placeholder": "​", + "style": "IPY_MODEL_f3ce5b13b9ee4dc69861cab3f6381cb2", + "tabbable": null, + "tooltip": null, + "value": "\n \n " + } + }, + "47e965dfa6434819a8ac69fe61526e6f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "TabModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "TabModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "TabView", + "box_style": "", + "children": [ + "IPY_MODEL_39d1fa549fa142838978324d3ebec5d4", + "IPY_MODEL_6c56837ae45440428d511d3223787f60" + ], + "layout": "IPY_MODEL_95ab84cdf0ef4ff5a7247fb8d5f23c91", + "selected_index": 0, + "tabbable": null, + "titles": [ + "Numerical Attributes", + "Categorical Attributes" + ], + "tooltip": null + } + }, + "4be620f02d064305829c205d598a4b91": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": "350px", + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "58de998298314ee0bac72d7f18276da0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5f81df759bd74924ba2eeb0cc22bb14e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6c56837ae45440428d511d3223787f60": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_359d99da3c6b40fc924a9429779b27f6", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
    \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
    namen_missingn_uniquetop1top2top3n_others
    0season043.0 : 44962.0 : 44091.0 : 42424232
    1yr021.0 : 87340.0 : 864500
    2holiday020.0 : 168791.0 : 50000
    3workingday021.0 : 118650.0 : 551400
    4weathersit041.0 : 114132.0 : 45443.0 : 14193
    \n
    ", + "text/plain": " name n_missing n_unique top1 top2 top3 \\\n0 season 0 4 3.0 : 4496 2.0 : 4409 1.0 : 4242 \n1 yr 0 2 1.0 : 8734 0.0 : 8645 0 \n2 holiday 0 2 0.0 : 16879 1.0 : 500 0 \n3 workingday 0 2 1.0 : 11865 0.0 : 5514 0 \n4 weathersit 0 4 1.0 : 11413 2.0 : 4544 3.0 : 1419 \n\n n_others \n0 4232 \n1 0 \n2 0 \n3 0 \n4 3 " + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "tabbable": null, + "tooltip": null + } + }, + "73f786da8f4648a89aa8f33ee159180a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_399fe546a7db441d91ee8f4cc02d1ba9", + "placeholder": "​", + "style": "IPY_MODEL_79437b23608844d1b766031dfae76d9f", + "tabbable": null, + "tooltip": null, + "value": "\n \n " + } + }, + "79437b23608844d1b766031dfae76d9f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7ac8be324ec74f068dcc9d31742de8ce": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_f809e581233245bb87649107f1b619ba", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
    \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
    namen_missingmeanstdminq1medianq3max
    0mnth0.06.5377753.4387761.004.00007.000010.000012.0000
    1hr0.011.5467526.9144050.006.000012.000018.000023.0000
    2temp0.00.4969870.1925560.020.34000.50000.66001.0000
    3atemp0.00.4757750.1718500.000.33330.48480.62121.0000
    4hum0.00.6272290.1929300.000.48000.63000.78001.0000
    5windspeed0.00.1900980.1223400.000.10450.19400.25370.8507
    6cnt0.0189.463088181.3875991.0040.0000142.0000281.0000977.0000
    \n
    ", + "text/plain": " name n_missing mean std min q1 median \\\n0 mnth 0.0 6.537775 3.438776 1.00 4.0000 7.0000 \n1 hr 0.0 11.546752 6.914405 0.00 6.0000 12.0000 \n2 temp 0.0 0.496987 0.192556 0.02 0.3400 0.5000 \n3 atemp 0.0 0.475775 0.171850 0.00 0.3333 0.4848 \n4 hum 0.0 0.627229 0.192930 0.00 0.4800 0.6300 \n5 windspeed 0.0 0.190098 0.122340 0.00 0.1045 0.1940 \n6 cnt 0.0 189.463088 181.387599 1.00 40.0000 142.0000 \n\n q3 max \n0 10.0000 12.0000 \n1 18.0000 23.0000 \n2 0.6600 1.0000 \n3 0.6212 1.0000 \n4 0.7800 1.0000 \n5 0.2537 0.8507 \n6 281.0000 977.0000 " + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "tabbable": null, + "tooltip": null + } + }, + "7c743b54fd15480c854c6459f6ea35b9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8010ed33cf8442f0b24c77f0d77e59bb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": "350px", + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "865ccef5a3904785aa619ae1db2eae37": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8892d1d2204d455aa36cedcad2bcc0c3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cb33969d91e54441b0230348d22b4157", + "placeholder": "​", + "style": "IPY_MODEL_ade53e45a61943c499380cd3743c64e3", + "tabbable": null, + "tooltip": null, + "value": "Data Shape:(17379, 13)" + } + }, + "88a23ded080c46c5b16cf93f9143ef56": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8fc9a6c9f55e40ac8d6e646b129b3808": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "TabModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "TabModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "TabView", + "box_style": "", + "children": [ + "IPY_MODEL_7ac8be324ec74f068dcc9d31742de8ce", + "IPY_MODEL_30b6ad30148d405283d2dc42973d652c" + ], + "layout": "IPY_MODEL_8010ed33cf8442f0b24c77f0d77e59bb", + "selected_index": 0, + "tabbable": null, + "titles": [ + "Numerical Attributes", + "Categorical Attributes" + ], + "tooltip": null + } + }, + "95ab84cdf0ef4ff5a7247fb8d5f23c91": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": "350px", + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ade53e45a61943c499380cd3743c64e3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b611e9f3f9464d3f9caf545ad2b9a43e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7c743b54fd15480c854c6459f6ea35b9", + "placeholder": "​", + "style": "IPY_MODEL_0002d7b5030849b29566d5a8374c0cb5", + "tabbable": null, + "tooltip": null, + "value": "\n \n " + } + }, + "b674a191fb5742e5bbfa5a35a7d84774": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c5ce047c71824920887edd3cd6a910ce": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "TabModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "TabModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "TabView", + "box_style": "", + "children": [ + "IPY_MODEL_15d1188217bf44a4bb246ff737209952", + "IPY_MODEL_e268e8b21a9a43caa4c06ade962752ec" + ], + "layout": "IPY_MODEL_4be620f02d064305829c205d598a4b91", + "selected_index": 0, + "tabbable": null, + "titles": [ + "Numerical Attributes", + "Categorical Attributes" + ], + "tooltip": null + } + }, + "cb33969d91e54441b0230348d22b4157": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d76813e4bc2443f286557ec6e6f67bd9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d77fd18c29be4d09b613b370be250051": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_865ccef5a3904785aa619ae1db2eae37", + "placeholder": "​", + "style": "IPY_MODEL_dedf6cb4f8ec4526ab7298972c7f0a82", + "tabbable": null, + "tooltip": null, + "value": "Data Shape:(17379, 13)" + } + }, + "db13bb4ebbe44c5dacb362aadb614cdb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "dedf6cb4f8ec4526ab7298972c7f0a82": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e268e8b21a9a43caa4c06ade962752ec": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_b674a191fb5742e5bbfa5a35a7d84774", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
    \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
    namen_missingn_uniquetop1top2top3n_others
    0season043.0 : 44962.0 : 44091.0 : 42424232
    2holiday020.0 : 168791.0 : 50000
    3workingday021.0 : 118650.0 : 551400
    4weathersit041.0 : 114132.0 : 45443.0 : 14193
    \n
    ", + "text/plain": " name n_missing n_unique top1 top2 top3 \\\n0 season 0 4 3.0 : 4496 2.0 : 4409 1.0 : 4242 \n2 holiday 0 2 0.0 : 16879 1.0 : 500 0 \n3 workingday 0 2 1.0 : 11865 0.0 : 5514 0 \n4 weathersit 0 4 1.0 : 11413 2.0 : 4544 3.0 : 1419 \n\n n_others \n0 4232 \n2 0 \n3 0 \n4 3 " + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "tabbable": null, + "tooltip": null + } + }, + "f3ce5b13b9ee4dc69861cab3f6381cb2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f54e5e559a9d4d9195f4a030813c83f8": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_58de998298314ee0bac72d7f18276da0", + "msg_id": "", + "outputs": [], + "tabbable": null, + "tooltip": null + } + }, + "f809e581233245bb87649107f1b619ba": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fd14b72607b14174aef323fb21b5b2fd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + } + }, + "version_major": 2, + "version_minor": 0 + } } }, "nbformat": 4, diff --git a/docs/_build/jupyter_execute/guides/data/data_summary.py b/docs/_build/jupyter_execute/guides/data/data_summary.py index b9b530eb..2c0a144e 100644 --- a/docs/_build/jupyter_execute/guides/data/data_summary.py +++ b/docs/_build/jupyter_execute/guides/data/data_summary.py @@ -1,8 +1,29 @@ #!/usr/bin/env python # coding: utf-8 -# In[ ]: +# In[1]: -exp.data_summary(feature_type={},feature_exclude=[]) +from piml import Experiment + +exp = Experiment() +exp.data_loader(data="BikeSharing", silent=True) + + +# In[2]: + + +exp.data_summary(feature_exclude=[], feature_type={}) + + +# In[3]: + + +exp.data_summary(feature_exclude=["yr", "mnth", "temp"]) + + +# In[4]: + + +exp.data_summary(feature_type={"weekday": "categorical"}) diff --git a/docs/_build/jupyter_execute/guides/data/feature_select.ipynb b/docs/_build/jupyter_execute/guides/data/feature_select.ipynb index d32f9d20..1f04012d 100644 --- a/docs/_build/jupyter_execute/guides/data/feature_select.ipynb +++ b/docs/_build/jupyter_execute/guides/data/feature_select.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": null, - "id": "d1c18b83", + "id": "094ad7e2", "metadata": {}, "outputs": [], "source": [ @@ -13,7 +13,7 @@ { "cell_type": "code", "execution_count": null, - "id": "7b04f600", + "id": "8355c7e7", "metadata": {}, "outputs": [], "source": [ @@ -23,7 +23,7 @@ { "cell_type": "code", "execution_count": null, - "id": "b206adfa", + "id": "032f3ac5", "metadata": {}, "outputs": [], "source": [ @@ -33,7 +33,7 @@ { "cell_type": "code", "execution_count": null, - "id": "20936108", + "id": "f4423d09", "metadata": {}, "outputs": [], "source": [ @@ -43,7 +43,7 @@ { "cell_type": "code", "execution_count": null, - "id": "ea6f3653", + "id": "efbed167", "metadata": {}, "outputs": [], "source": [ @@ -53,7 +53,7 @@ { "cell_type": "code", "execution_count": null, - "id": "c4a04262", + "id": "915d7ae1", "metadata": {}, "outputs": [], "source": [ diff --git a/docs/_build/jupyter_execute/guides/data/twosample_test.ipynb b/docs/_build/jupyter_execute/guides/data/twosample_test.ipynb index d0e99643..d77bb56e 100644 --- a/docs/_build/jupyter_execute/guides/data/twosample_test.ipynb +++ b/docs/_build/jupyter_execute/guides/data/twosample_test.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": null, - "id": "2e496b05", + "id": "abc4e42a", "metadata": {}, "outputs": [], "source": [ @@ -13,7 +13,7 @@ { "cell_type": "code", "execution_count": null, - "id": "17470bf0", + "id": "6c8e05b0", "metadata": {}, "outputs": [], "source": [ diff --git a/docs/_build/jupyter_execute/guides/explain/PDP.ipynb b/docs/_build/jupyter_execute/guides/explain/PDP.ipynb index 087137eb..cc0925f9 100644 --- a/docs/_build/jupyter_execute/guides/explain/PDP.ipynb +++ b/docs/_build/jupyter_execute/guides/explain/PDP.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": null, - "id": "d21d9904", + "id": "c075f714", "metadata": {}, "outputs": [], "source": [ @@ -14,7 +14,7 @@ { "cell_type": "code", "execution_count": null, - "id": "263f8d84", + "id": "7ad6a18f", "metadata": {}, "outputs": [], "source": [ @@ -25,7 +25,7 @@ { "cell_type": "code", "execution_count": null, - "id": "88dcc5d7", + "id": "c75cbdb3", "metadata": {}, "outputs": [], "source": [ diff --git a/docs/_build/jupyter_execute/guides/explain/ale.ipynb b/docs/_build/jupyter_execute/guides/explain/ale.ipynb index 050cf30f..d58451e2 100644 --- a/docs/_build/jupyter_execute/guides/explain/ale.ipynb +++ b/docs/_build/jupyter_execute/guides/explain/ale.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": null, - "id": "03cad665", + "id": "36c2dbb2", "metadata": {}, "outputs": [], "source": [ @@ -14,7 +14,7 @@ { "cell_type": "code", "execution_count": null, - "id": "3e7a3e11", + "id": "2751327a", "metadata": {}, "outputs": [], "source": [ @@ -25,7 +25,7 @@ { "cell_type": "code", "execution_count": null, - "id": "5e96eaee", + "id": "98fa7bab", "metadata": {}, "outputs": [], "source": [ @@ -36,7 +36,7 @@ { "cell_type": "code", "execution_count": null, - "id": "ad2d0054", + "id": "2d543603", "metadata": {}, "outputs": [], "source": [ diff --git a/docs/_build/jupyter_execute/guides/explain/ice.ipynb b/docs/_build/jupyter_execute/guides/explain/ice.ipynb index 07ab667f..0c9e820a 100644 --- a/docs/_build/jupyter_execute/guides/explain/ice.ipynb +++ b/docs/_build/jupyter_execute/guides/explain/ice.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": null, - "id": "c6f10263", + "id": "1ff85b1c", "metadata": {}, "outputs": [], "source": [ diff --git a/docs/_build/jupyter_execute/guides/explain/lime.ipynb b/docs/_build/jupyter_execute/guides/explain/lime.ipynb index 5c03db68..ade55c98 100644 --- a/docs/_build/jupyter_execute/guides/explain/lime.ipynb +++ b/docs/_build/jupyter_execute/guides/explain/lime.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": null, - "id": "d66a11ba", + "id": "ce4b88ff", "metadata": {}, "outputs": [], "source": [ @@ -14,7 +14,7 @@ { "cell_type": "code", "execution_count": null, - "id": "17b5d7c4", + "id": "d7c24686", "metadata": {}, "outputs": [], "source": [ diff --git a/docs/_build/jupyter_execute/guides/explain/pfi.ipynb b/docs/_build/jupyter_execute/guides/explain/pfi.ipynb index 986d0a17..f2d3f76c 100644 --- a/docs/_build/jupyter_execute/guides/explain/pfi.ipynb +++ b/docs/_build/jupyter_execute/guides/explain/pfi.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": null, - "id": "3c2aac0f", + "id": "a71af280", "metadata": {}, "outputs": [], "source": [ diff --git a/docs/_build/jupyter_execute/guides/explain/shap.ipynb b/docs/_build/jupyter_execute/guides/explain/shap.ipynb index 318e8f2a..e5c61b12 100644 --- a/docs/_build/jupyter_execute/guides/explain/shap.ipynb +++ b/docs/_build/jupyter_execute/guides/explain/shap.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": null, - "id": "876898a9", + "id": "f9325f57", "metadata": {}, "outputs": [], "source": [ @@ -13,7 +13,7 @@ { "cell_type": "code", "execution_count": null, - "id": "c75dddac", + "id": "5944247c", "metadata": {}, "outputs": [], "source": [ @@ -23,7 +23,7 @@ { "cell_type": "code", "execution_count": null, - "id": "b53936cb", + "id": "4a796c5f", "metadata": {}, "outputs": [], "source": [ @@ -33,7 +33,7 @@ { "cell_type": "code", "execution_count": null, - "id": "af264d9b", + "id": "693a8d06", "metadata": {}, "outputs": [], "source": [ diff --git a/docs/_build/jupyter_execute/guides/extmodels.ipynb b/docs/_build/jupyter_execute/guides/extmodels.ipynb index 3bec9ed5..45be9216 100644 --- a/docs/_build/jupyter_execute/guides/extmodels.ipynb +++ b/docs/_build/jupyter_execute/guides/extmodels.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": null, - "id": "0dea14bf", + "id": "680aa0c6", "metadata": {}, "outputs": [], "source": [ @@ -16,7 +16,7 @@ { "cell_type": "code", "execution_count": null, - "id": "8d5946f7", + "id": "4c5d209a", "metadata": {}, "outputs": [], "source": [ @@ -28,7 +28,7 @@ { "cell_type": "code", "execution_count": null, - "id": "df4b636d", + "id": "99ea627c", "metadata": {}, "outputs": [], "source": [ @@ -38,7 +38,7 @@ { "cell_type": "code", "execution_count": null, - "id": "4fa6cc66", + "id": "a5355f65", "metadata": {}, "outputs": [], "source": [ @@ -49,7 +49,7 @@ { "cell_type": "code", "execution_count": null, - "id": "4e2f811a", + "id": "d94084ae", "metadata": {}, "outputs": [], "source": [ diff --git a/docs/_build/jupyter_execute/guides/models/ebm.ipynb b/docs/_build/jupyter_execute/guides/models/ebm.ipynb index 179529ae..ef2fe3e6 100644 --- a/docs/_build/jupyter_execute/guides/models/ebm.ipynb +++ b/docs/_build/jupyter_execute/guides/models/ebm.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": null, - "id": "afc55ff1", + "id": "58af4e08", "metadata": {}, "outputs": [], "source": [ @@ -14,7 +14,7 @@ { "cell_type": "code", "execution_count": null, - "id": "980774eb", + "id": "387a164e", "metadata": {}, "outputs": [], "source": [ @@ -25,7 +25,7 @@ { "cell_type": "code", "execution_count": null, - "id": "63f37861", + "id": "4c2a77a0", "metadata": {}, "outputs": [], "source": [ @@ -36,7 +36,7 @@ { "cell_type": "code", "execution_count": null, - "id": "de2e4105", + "id": "645aaaa1", "metadata": {}, "outputs": [], "source": [ @@ -46,7 +46,7 @@ { "cell_type": "code", "execution_count": null, - "id": "d47d1f8f", + "id": "fc816d56", "metadata": {}, "outputs": [], "source": [ @@ -56,7 +56,7 @@ { "cell_type": "code", "execution_count": null, - "id": "f156958c", + "id": "ab3ff216", "metadata": {}, "outputs": [], "source": [ @@ -66,7 +66,7 @@ { "cell_type": "code", "execution_count": null, - "id": "6f4a778b", + "id": "3c0f4ef8", "metadata": {}, "outputs": [], "source": [ diff --git a/docs/_build/jupyter_execute/guides/models/figs.ipynb b/docs/_build/jupyter_execute/guides/models/figs.ipynb index 32a2e797..675c27ce 100644 --- a/docs/_build/jupyter_execute/guides/models/figs.ipynb +++ b/docs/_build/jupyter_execute/guides/models/figs.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": null, - "id": "26613e7f", + "id": "024b6fe3", "metadata": {}, "outputs": [], "source": [ @@ -14,7 +14,7 @@ { "cell_type": "code", "execution_count": null, - "id": "c64b3245", + "id": "f4877c55", "metadata": {}, "outputs": [], "source": [ @@ -24,7 +24,7 @@ { "cell_type": "code", "execution_count": null, - "id": "0c788405", + "id": "bcf81534", "metadata": {}, "outputs": [], "source": [ @@ -35,7 +35,7 @@ { "cell_type": "code", "execution_count": null, - "id": "3309b202", + "id": "a5aeb1ee", "metadata": {}, "outputs": [], "source": [ @@ -46,7 +46,7 @@ { "cell_type": "code", "execution_count": null, - "id": "b7aba38a", + "id": "1ea8b7a0", "metadata": {}, "outputs": [], "source": [ @@ -57,7 +57,7 @@ { "cell_type": "code", "execution_count": null, - "id": "66270fe5", + "id": "f4bac4f3", "metadata": {}, "outputs": [], "source": [ diff --git a/docs/_build/jupyter_execute/guides/models/gam.ipynb b/docs/_build/jupyter_execute/guides/models/gam.ipynb index 5b16a06f..ec9ca553 100644 --- a/docs/_build/jupyter_execute/guides/models/gam.ipynb +++ b/docs/_build/jupyter_execute/guides/models/gam.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": null, - "id": "3a8c41aa", + "id": "d0c2a977", "metadata": {}, "outputs": [], "source": [ @@ -14,7 +14,7 @@ { "cell_type": "code", "execution_count": null, - "id": "c2a2a12e", + "id": "9c650178", "metadata": {}, "outputs": [], "source": [ @@ -25,7 +25,7 @@ { "cell_type": "code", "execution_count": null, - "id": "567ac96c", + "id": "762dfab6", "metadata": {}, "outputs": [], "source": [ @@ -35,7 +35,7 @@ { "cell_type": "code", "execution_count": null, - "id": "cee5d216", + "id": "d2382634", "metadata": {}, "outputs": [], "source": [ diff --git a/docs/_build/jupyter_execute/guides/models/gaminet.ipynb b/docs/_build/jupyter_execute/guides/models/gaminet.ipynb index bacd9296..34ca39c8 100644 --- a/docs/_build/jupyter_execute/guides/models/gaminet.ipynb +++ b/docs/_build/jupyter_execute/guides/models/gaminet.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": null, - "id": "519c96ae", + "id": "c9e6e9aa", "metadata": {}, "outputs": [], "source": [ @@ -14,7 +14,7 @@ { "cell_type": "code", "execution_count": null, - "id": "8cc3c989", + "id": "d285c4fb", "metadata": {}, "outputs": [], "source": [ @@ -25,7 +25,7 @@ { "cell_type": "code", "execution_count": null, - "id": "deef1646", + "id": "353ee503", "metadata": {}, "outputs": [], "source": [ @@ -36,7 +36,7 @@ { "cell_type": "code", "execution_count": null, - "id": "dfd809a6", + "id": "bc33720f", "metadata": {}, "outputs": [], "source": [ @@ -46,7 +46,7 @@ { "cell_type": "code", "execution_count": null, - "id": "83131155", + "id": "12a9169a", "metadata": {}, "outputs": [], "source": [ @@ -56,7 +56,7 @@ { "cell_type": "code", "execution_count": null, - "id": "1c664fc7", + "id": "1b82eecf", "metadata": {}, "outputs": [], "source": [ @@ -66,7 +66,7 @@ { "cell_type": "code", "execution_count": null, - "id": "c564236d", + "id": "2b314b05", "metadata": {}, "outputs": [], "source": [ diff --git a/docs/_build/jupyter_execute/guides/models/glm.ipynb b/docs/_build/jupyter_execute/guides/models/glm.ipynb index cc3a68d7..97518fce 100644 --- a/docs/_build/jupyter_execute/guides/models/glm.ipynb +++ b/docs/_build/jupyter_execute/guides/models/glm.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": null, - "id": "e49c7645", + "id": "5dde7181", "metadata": {}, "outputs": [], "source": [ @@ -14,7 +14,7 @@ { "cell_type": "code", "execution_count": null, - "id": "9634e695", + "id": "80a99080", "metadata": {}, "outputs": [], "source": [ @@ -24,7 +24,7 @@ { "cell_type": "code", "execution_count": null, - "id": "3eda131e", + "id": "f6bd20a8", "metadata": {}, "outputs": [], "source": [ @@ -34,7 +34,7 @@ { "cell_type": "code", "execution_count": null, - "id": "26f8687a", + "id": "ce00b4ee", "metadata": {}, "outputs": [], "source": [ @@ -44,7 +44,7 @@ { "cell_type": "code", "execution_count": null, - "id": "aba8cf0c", + "id": "1ea0be65", "metadata": {}, "outputs": [], "source": [ @@ -54,7 +54,7 @@ { "cell_type": "code", "execution_count": null, - "id": "edfbd893", + "id": "473480ff", "metadata": {}, "outputs": [], "source": [ @@ -64,7 +64,7 @@ { "cell_type": "code", "execution_count": null, - "id": "fe7c8029", + "id": "67431660", "metadata": {}, "outputs": [], "source": [ @@ -74,7 +74,7 @@ { "cell_type": "code", "execution_count": null, - "id": "30c661fe", + "id": "2d35ba9c", "metadata": {}, "outputs": [], "source": [ @@ -84,7 +84,7 @@ { "cell_type": "code", "execution_count": null, - "id": "bc5198e0", + "id": "c1750b59", "metadata": {}, "outputs": [], "source": [ diff --git a/docs/_build/jupyter_execute/guides/models/reludnn.ipynb b/docs/_build/jupyter_execute/guides/models/reludnn.ipynb index ecf553bc..67e0320e 100644 --- a/docs/_build/jupyter_execute/guides/models/reludnn.ipynb +++ b/docs/_build/jupyter_execute/guides/models/reludnn.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": null, - "id": "f1a3d220", + "id": "0c28964f", "metadata": {}, "outputs": [], "source": [ @@ -15,7 +15,7 @@ { "cell_type": "code", "execution_count": null, - "id": "e3130919", + "id": "0c55c46b", "metadata": {}, "outputs": [], "source": [ @@ -25,7 +25,7 @@ { "cell_type": "code", "execution_count": null, - "id": "6f3fc26c", + "id": "288494c3", "metadata": {}, "outputs": [], "source": [ @@ -35,7 +35,7 @@ { "cell_type": "code", "execution_count": null, - "id": "dc4e645e", + "id": "5e6a3593", "metadata": {}, "outputs": [], "source": [ @@ -45,7 +45,7 @@ { "cell_type": "code", "execution_count": null, - "id": "5997e7f9", + "id": "0f3f3b7a", "metadata": {}, "outputs": [], "source": [ @@ -55,7 +55,7 @@ { "cell_type": "code", "execution_count": null, - "id": "78353c3c", + "id": "bc16b2c8", "metadata": {}, "outputs": [], "source": [ @@ -65,7 +65,7 @@ { "cell_type": "code", "execution_count": null, - "id": "188f2582", + "id": "39b62600", "metadata": {}, "outputs": [], "source": [ @@ -75,7 +75,7 @@ { "cell_type": "code", "execution_count": null, - "id": "aed37fff", + "id": "e2546b81", "metadata": {}, "outputs": [], "source": [ @@ -85,7 +85,7 @@ { "cell_type": "code", "execution_count": null, - "id": "9753d45f", + "id": "a1bd0abc", "metadata": {}, "outputs": [], "source": [ diff --git a/docs/_build/jupyter_execute/guides/models/tree.ipynb b/docs/_build/jupyter_execute/guides/models/tree.ipynb index 813cbcdb..bc691cab 100644 --- a/docs/_build/jupyter_execute/guides/models/tree.ipynb +++ b/docs/_build/jupyter_execute/guides/models/tree.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": null, - "id": "362108b2", + "id": "2e71f106", "metadata": {}, "outputs": [], "source": [ @@ -14,7 +14,7 @@ { "cell_type": "code", "execution_count": null, - "id": "5c2a4093", + "id": "2d145329", "metadata": {}, "outputs": [], "source": [ @@ -25,7 +25,7 @@ { "cell_type": "code", "execution_count": null, - "id": "33c1db67", + "id": "2496a163", "metadata": {}, "outputs": [], "source": [ diff --git a/docs/_build/jupyter_execute/guides/models/xgb1.ipynb b/docs/_build/jupyter_execute/guides/models/xgb1.ipynb index 6d9e9fce..e48b4ce4 100644 --- a/docs/_build/jupyter_execute/guides/models/xgb1.ipynb +++ b/docs/_build/jupyter_execute/guides/models/xgb1.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": null, - "id": "6c5bc6d4", + "id": "72966977", "metadata": {}, "outputs": [], "source": [ @@ -14,7 +14,7 @@ { "cell_type": "code", "execution_count": null, - "id": "ad2e5940", + "id": "0750cbba", "metadata": {}, "outputs": [], "source": [ @@ -25,7 +25,7 @@ { "cell_type": "code", "execution_count": null, - "id": "353e7efa", + "id": "0f0721b7", "metadata": {}, "outputs": [], "source": [ @@ -35,7 +35,7 @@ { "cell_type": "code", "execution_count": null, - "id": "d1accc4b", + "id": "1a520251", "metadata": {}, "outputs": [], "source": [ @@ -46,7 +46,7 @@ { "cell_type": "code", "execution_count": null, - "id": "b9e6d0c3", + "id": "1bde30f0", "metadata": {}, "outputs": [], "source": [ @@ -56,7 +56,7 @@ { "cell_type": "code", "execution_count": null, - "id": "cbc79c26", + "id": "a4ca3c60", "metadata": {}, "outputs": [], "source": [ diff --git a/docs/_build/jupyter_execute/guides/models/xgb2.ipynb b/docs/_build/jupyter_execute/guides/models/xgb2.ipynb index 57fd27bd..2e6e4240 100644 --- a/docs/_build/jupyter_execute/guides/models/xgb2.ipynb +++ b/docs/_build/jupyter_execute/guides/models/xgb2.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": null, - "id": "3e4988cf", + "id": "af67f11b", "metadata": {}, "outputs": [], "source": [ @@ -14,7 +14,7 @@ { "cell_type": "code", "execution_count": null, - "id": "2e7b3cde", + "id": "6c436d1c", "metadata": {}, "outputs": [], "source": [ @@ -25,7 +25,7 @@ { "cell_type": "code", "execution_count": null, - "id": "f0d63488", + "id": "2131e64c", "metadata": {}, "outputs": [], "source": [ @@ -36,7 +36,7 @@ { "cell_type": "code", "execution_count": null, - "id": "46cd352b", + "id": "2bfa3fe6", "metadata": {}, "outputs": [], "source": [ @@ -46,7 +46,7 @@ { "cell_type": "code", "execution_count": null, - "id": "4f35ee2d", + "id": "f3d97340", "metadata": {}, "outputs": [], "source": [ @@ -56,7 +56,7 @@ { "cell_type": "code", "execution_count": null, - "id": "b733ef36", + "id": "e32f6daf", "metadata": {}, "outputs": [], "source": [ @@ -66,7 +66,7 @@ { "cell_type": "code", "execution_count": null, - "id": "5734278e", + "id": "696fbe80", "metadata": {}, "outputs": [], "source": [ diff --git a/docs/_build/jupyter_execute/guides/testing/accuracy.ipynb b/docs/_build/jupyter_execute/guides/testing/accuracy.ipynb index 1093763e..fd20983a 100644 --- a/docs/_build/jupyter_execute/guides/testing/accuracy.ipynb +++ b/docs/_build/jupyter_execute/guides/testing/accuracy.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": null, - "id": "0aa87ccd", + "id": "a3ebbfdc", "metadata": {}, "outputs": [], "source": [ @@ -13,7 +13,7 @@ { "cell_type": "code", "execution_count": null, - "id": "26e947da", + "id": "33d40315", "metadata": {}, "outputs": [], "source": [ @@ -24,7 +24,7 @@ { "cell_type": "code", "execution_count": null, - "id": "292fc6da", + "id": "09036187", "metadata": {}, "outputs": [], "source": [ @@ -35,7 +35,7 @@ { "cell_type": "code", "execution_count": null, - "id": "a8dae2af", + "id": "51cfd397", "metadata": {}, "outputs": [], "source": [ @@ -46,7 +46,7 @@ { "cell_type": "code", "execution_count": null, - "id": "4aabb9d9", + "id": "23a611b5", "metadata": {}, "outputs": [], "source": [ @@ -57,7 +57,7 @@ { "cell_type": "code", "execution_count": null, - "id": "a796be3d", + "id": "fab75a34", "metadata": {}, "outputs": [], "source": [ @@ -67,7 +67,7 @@ { "cell_type": "code", "execution_count": null, - "id": "9b91e261", + "id": "d7b6fcf7", "metadata": {}, "outputs": [], "source": [ @@ -78,7 +78,7 @@ { "cell_type": "code", "execution_count": null, - "id": "6ce21031", + "id": "38d30fd8", "metadata": {}, "outputs": [], "source": [ diff --git a/docs/_build/jupyter_execute/guides/testing/fairness.ipynb b/docs/_build/jupyter_execute/guides/testing/fairness.ipynb index 9d39d7bb..3ed0d192 100644 --- a/docs/_build/jupyter_execute/guides/testing/fairness.ipynb +++ b/docs/_build/jupyter_execute/guides/testing/fairness.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": null, - "id": "0a38ef00", + "id": "95f05dc9", "metadata": {}, "outputs": [], "source": [ @@ -14,7 +14,7 @@ { "cell_type": "code", "execution_count": null, - "id": "4d209e5a", + "id": "b7036562", "metadata": {}, "outputs": [], "source": [ @@ -26,7 +26,7 @@ { "cell_type": "code", "execution_count": null, - "id": "7b03f101", + "id": "ea4385f8", "metadata": {}, "outputs": [], "source": [ @@ -41,7 +41,7 @@ { "cell_type": "code", "execution_count": null, - "id": "165cd8bf", + "id": "15f8baed", "metadata": {}, "outputs": [], "source": [ diff --git a/docs/_build/jupyter_execute/guides/testing/overfit.ipynb b/docs/_build/jupyter_execute/guides/testing/overfit.ipynb index 98ad0fa9..19f93f66 100644 --- a/docs/_build/jupyter_execute/guides/testing/overfit.ipynb +++ b/docs/_build/jupyter_execute/guides/testing/overfit.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": null, - "id": "b23d45e6", + "id": "63fe1f32", "metadata": {}, "outputs": [], "source": [ @@ -15,7 +15,7 @@ { "cell_type": "code", "execution_count": null, - "id": "7b57ea39", + "id": "e5518637", "metadata": {}, "outputs": [], "source": [ @@ -25,7 +25,7 @@ { "cell_type": "code", "execution_count": null, - "id": "95a973b6", + "id": "43e41d19", "metadata": {}, "outputs": [], "source": [ @@ -37,7 +37,7 @@ { "cell_type": "code", "execution_count": null, - "id": "0330530e", + "id": "af9943e2", "metadata": {}, "outputs": [], "source": [ diff --git a/docs/_build/jupyter_execute/guides/testing/reliability.ipynb b/docs/_build/jupyter_execute/guides/testing/reliability.ipynb index 23e3a42d..3117c7b2 100644 --- a/docs/_build/jupyter_execute/guides/testing/reliability.ipynb +++ b/docs/_build/jupyter_execute/guides/testing/reliability.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": null, - "id": "8c7cdad3", + "id": "fdf0b8ef", "metadata": {}, "outputs": [], "source": [ @@ -13,7 +13,7 @@ { "cell_type": "code", "execution_count": null, - "id": "f94e3b57", + "id": "8e887f93", "metadata": {}, "outputs": [], "source": [ @@ -24,7 +24,7 @@ { "cell_type": "code", "execution_count": null, - "id": "9ba1fb60", + "id": "d7d88e63", "metadata": {}, "outputs": [], "source": [ @@ -36,7 +36,7 @@ { "cell_type": "code", "execution_count": null, - "id": "681ec7ae", + "id": "b78b4226", "metadata": {}, "outputs": [], "source": [ @@ -47,7 +47,7 @@ { "cell_type": "code", "execution_count": null, - "id": "f9bdc3c8", + "id": "70eb372e", "metadata": {}, "outputs": [], "source": [ @@ -58,7 +58,7 @@ { "cell_type": "code", "execution_count": null, - "id": "a216c453", + "id": "f39b464b", "metadata": {}, "outputs": [], "source": [ @@ -68,7 +68,7 @@ { "cell_type": "code", "execution_count": null, - "id": "ee7d9eeb", + "id": "e6398585", "metadata": {}, "outputs": [], "source": [ @@ -78,7 +78,7 @@ { "cell_type": "code", "execution_count": null, - "id": "583e70cf", + "id": "d424663a", "metadata": {}, "outputs": [], "source": [ diff --git a/docs/_build/jupyter_execute/guides/testing/resilience.ipynb b/docs/_build/jupyter_execute/guides/testing/resilience.ipynb index 19a7c90c..373fced3 100644 --- a/docs/_build/jupyter_execute/guides/testing/resilience.ipynb +++ b/docs/_build/jupyter_execute/guides/testing/resilience.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": null, - "id": "51358ef8", + "id": "1777e53b", "metadata": {}, "outputs": [], "source": [ @@ -14,7 +14,7 @@ { "cell_type": "code", "execution_count": null, - "id": "009c151d", + "id": "81c162e5", "metadata": {}, "outputs": [], "source": [ @@ -25,7 +25,7 @@ { "cell_type": "code", "execution_count": null, - "id": "4f27d89c", + "id": "06ff40a0", "metadata": {}, "outputs": [], "source": [ @@ -36,7 +36,7 @@ { "cell_type": "code", "execution_count": null, - "id": "c9e462fe", + "id": "288c7510", "metadata": {}, "outputs": [], "source": [ @@ -47,7 +47,7 @@ { "cell_type": "code", "execution_count": null, - "id": "71a51c7a", + "id": "6995cf67", "metadata": {}, "outputs": [], "source": [ @@ -58,7 +58,7 @@ { "cell_type": "code", "execution_count": null, - "id": "70dff7be", + "id": "bf6888e9", "metadata": {}, "outputs": [], "source": [ @@ -69,7 +69,7 @@ { "cell_type": "code", "execution_count": null, - "id": "8c7b875b", + "id": "1a114555", "metadata": {}, "outputs": [], "source": [ @@ -80,7 +80,7 @@ { "cell_type": "code", "execution_count": null, - "id": "986b67c5", + "id": "2803d086", "metadata": {}, "outputs": [], "source": [ @@ -91,7 +91,7 @@ { "cell_type": "code", "execution_count": null, - "id": "95c28432", + "id": "c7704594", "metadata": {}, "outputs": [], "source": [ diff --git a/docs/_build/jupyter_execute/guides/testing/robustness.ipynb b/docs/_build/jupyter_execute/guides/testing/robustness.ipynb index 6a28caea..7a6a58a1 100644 --- a/docs/_build/jupyter_execute/guides/testing/robustness.ipynb +++ b/docs/_build/jupyter_execute/guides/testing/robustness.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": null, - "id": "183e30a7", + "id": "ade451a5", "metadata": {}, "outputs": [], "source": [ @@ -14,7 +14,7 @@ { "cell_type": "code", "execution_count": null, - "id": "f8bfdc3b", + "id": "a1a48e5d", "metadata": {}, "outputs": [], "source": [ @@ -25,7 +25,7 @@ { "cell_type": "code", "execution_count": null, - "id": "44c5dadf", + "id": "8807cd91", "metadata": {}, "outputs": [], "source": [ diff --git a/docs/_build/jupyter_execute/guides/testing/weakspot.ipynb b/docs/_build/jupyter_execute/guides/testing/weakspot.ipynb index 6bec998a..4c94a52e 100644 --- a/docs/_build/jupyter_execute/guides/testing/weakspot.ipynb +++ b/docs/_build/jupyter_execute/guides/testing/weakspot.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": null, - "id": "6f591b5e", + "id": "57082442", "metadata": {}, "outputs": [], "source": [ @@ -15,7 +15,7 @@ { "cell_type": "code", "execution_count": null, - "id": "b07aac39", + "id": "a95e6ad7", "metadata": {}, "outputs": [], "source": [ @@ -25,7 +25,7 @@ { "cell_type": "code", "execution_count": null, - "id": "9f6fccf9", + "id": "37d55024", "metadata": {}, "outputs": [], "source": [ @@ -37,7 +37,7 @@ { "cell_type": "code", "execution_count": null, - "id": "2c23f889", + "id": "685f476d", "metadata": {}, "outputs": [], "source": [