-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmerge_components.m
169 lines (152 loc) · 6.37 KB
/
merge_components.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
function [A,C,nr,merged_ROIs,P,S] = merge_components(Y,A,b,C,f,P,S,options,merged_ROIs)
% merging of spatially overlapping components that have highly correlated tmeporal activity
% The correlation threshold for merging overlapping components is user specified in P.merge_thr (default value 0.85)
% Inputs:
% Y: raw data
% A: matrix of spatial components
% b: spatial background
% C: matrix of temporal components
% f: temporal background
% P: struct for neuron parameters
% S: deconvolved activity/spikes (optional)
% options: struct for algorithm parameters
% Outputs:
% A: matrix of new spatial components
% C: matrix of new temporal components
% nr: new number of components
% merged_ROIs: list of old components that were merged
% P: new parameter struct
% S: matrix of new deconvolved/activity spikes
% Written by:
% Eftychios A. Pnevmatikakis, Simons Foundation, 2015
defoptions = CNMFSetParms;
if nargin < 8; options = []; end
if ~isfield(options,'d1') || isempty(options.d1); d1 = input('What is the total number of rows? \n'); else d1 = options.d1; end % # of rows
if ~isfield(options,'d2') || isempty(options.d2); d2 = input('What is the total number of columns? \n'); else d2 = options.d2; end % # of columns
if ~isfield(options,'merge_thr') || isempty(options.merge_thr); thr = defoptions.merge_thr; else thr = options.merge_thr; end % merging threshold
if ~isfield(options,'max_merg'); mx = 50; else mx = options.max_merg; end % maximum merging operations
if ~isfield(options,'deconv_method') || isempty(options.deconv_method); options.deconv_method = defoptions.deconv_method; end
if ~isfield(options,'fast_merge') || isempty(options.fast_merge); options.fast_merge = defoptions.fast_merge; end % flag for using fast merging
nr = size(A,2);
%[d,T] = size(Y);
d = size(A,1);
T = size(C,2);
if nargin < 9
C_corr = corr(full(C(1:nr,:)'));
FF1 = triu(C_corr)>= thr; % find graph of strongly correlated temporal components
A_corr = triu(A(:,1:nr)'*A(:,1:nr));
A_corr(1:nr+1:nr^2) = 0;
FF2 = A_corr > 0; % find graph of overlapping spatial components
FF3 = and(FF1,FF2); % intersect the two graphs
[l,c] = graph_connected_comp(sparse(FF3+FF3')); % extract connected components
MC = [];
for i = 1:c
if length(find(l==i))>1
MC = [MC,(l==i)'];
end
end
cor = zeros(size(MC,2),1);
for i = 1:length(cor)
fm = find(MC(:,i));
for j1 = 1:length(fm)
for j2 = j1+1:length(fm)
cor(i) = cor(i) + C_corr(fm(j1),fm(j2));
end
end
end
[~,ind] = sort(cor,'descend');
nm = min(length(ind),mx); % number of merging operations
merged_ROIs = cell(nm,1);
for i = 1:nm
merged_ROIs{i} = find(MC(:,ind(i)));
end
else % merged_ROIs is provided, allowing for custom defining merged_ROIs.
nm = length(merged_ROIs);
end
A_merged = zeros(d,nm);
C_merged = zeros(nm,T);
S_merged = zeros(nm,T);
if strcmpi(options.deconv_method,'constrained_foopsi')
P_merged.gn = cell(nm,1);
P_merged.b = cell(nm,1);
P_merged.c1 = cell(nm,1);
P_merged.neuron_sn = cell(nm,1);
end
if ~options.fast_merge
Y_res = Y - A*C;
end
for i = 1:nm
% merged_ROIs{i} = find(MC(:,ind(i)));
nC = sqrt(sum(C(merged_ROIs{i},:).^2,2));
if options.fast_merge
aa = sum(A(:,merged_ROIs{i})*spdiags(nC,0,length(nC),length(nC)),2);
for iter = 1:10
cc = (aa'*A(:,merged_ROIs{i}))*C(merged_ROIs{i},:)/sum(aa.^2);
aa = A(:,merged_ROIs{i})*(C(merged_ROIs{i},:)*cc')/norm(cc)^2;
end
na = sqrt(sum(aa.^2)/max(sum(A(:,merged_ROIs{i}).^2)));
aa = aa/na;
%[cc,b_temp,c1_temp,g_temp,sn_temp,ss] = constrained_foopsi(cc);
cc = na*cc';
ss = cc;
else
A_merged(:,i) = sum(A(:,merged_ROIs{i})*spdiags(nC,0,length(nC),length(nC)),2);
Y_res = Y_res + A(:,merged_ROIs{i})*C(merged_ROIs{i},:);
ff = find(A_merged(:,i));
Pmr = P;
if isfield(Pmr,'unsaturatedPix');
px = intersect(Pmr.unsaturatedPix,ff);
Pmr.unsaturatedPix = zeros(length(px),1);
for pxi = 1:length(px)
Pmr.unsaturatedPix(pxi) = find(ff == px(pxi));
end
end
cc = update_temporal_components(Y_res(ff,:),A_merged(ff,i),b(ff,:),median(spdiags(nC,0,length(nC),length(nC))\C(merged_ROIs{i},:)),f,Pmr,options);
[aa,bb] = update_spatial_components(Y_res,cc,f,A_merged(:,i),P,options);
[cc,~,Ptemp,ss] = update_temporal_components(Y_res(ff,:),aa(ff),bb(ff,:),cc,f,Pmr,options);
end
A_merged(:,i) = aa;
C_merged(i,:) = cc;
S_merged(i,:) = ss;
if strcmpi(options.deconv_method,'constrained_foopsi') || strcmpi(options.deconv_method,'MCEM_foopsi')
if options.fast_merge
P_merged.gn{i} = 0; %g_temp; % do not perform deconvolution during merging
P_merged.b{i} = 0; %b_temp;
P_merged.c1{i} = 0; %c1_temp;
P_merged.neuron_sn{i} = 0; %sn_temp;
else
P_merged.gn{i} = Ptemp.gn{1};
P_merged.b{i} = Ptemp.b{1};
P_merged.c1{i} = Ptemp.c1{1};
P_merged.neuron_sn{i} = Ptemp.neuron_sn{1};
if i < nm
Y_res(ff,:) = Y_res(ff,:) - aa(ff)*cc;
end
end
end
end
neur_id = unique(cell2mat(merged_ROIs));
A = [A(:,1:nr),A_merged,A(:,nr+1:end)];
C = [C(1:nr,:);C_merged;C(nr+1:end,:)];
A(:,neur_id) = [];
C(neur_id,:) = [];
if nargin < 7
S = [];
if nargout == 6
warning('Merged spikes matrix is returned as empty because the original matrix was not provided.');
end
else
S = [S(1:nr,:);S_merged];
S(neur_id,:) = [];
end
if strcmpi(options.deconv_method,'constrained_foopsi') || strcmpi(options.deconv_method,'MCEM_foopsi')
P.b(neur_id) = [];
P.b(nr - length(neur_id) + (1:nm)) = P_merged.b;
P.gn(neur_id) = [];
P.gn(nr - length(neur_id) + (1:nm)) = P_merged.gn;
P.c1(neur_id) = [];
P.c1(nr - length(neur_id) + (1:nm)) = P_merged.c1;
P.neuron_sn(neur_id) = [];
P.neuron_sn(nr - length(neur_id) + (1:nm)) = P_merged.neuron_sn;
end
nr = nr - length(neur_id) + nm;