-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathglmnetPredict.m
472 lines (437 loc) · 16.1 KB
/
glmnetPredict.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
function result = glmnetPredict(object, newx, s, type, exact, offset)
%--------------------------------------------------------------------------
% glmnetPredict.m: make predictions from a "glmnet" object.
%--------------------------------------------------------------------------
%
% DESCRIPTION:
% Similar to other predict methods, this functions predicts fitted
% values, logits, coefficients and more from a fitted "glmnet" object.
%
% USAGE:
% glmnetPredict(object, newx, s, type, exact, offset)
%
% Fewer input arguments(more often) are allowed in the call, but must
% come in the order listed above. To set default values on the way, use
% empty matrix [].
% For example, pred=glmnetPredict(fit,[],[],'coefficients').
%
% To make EXACT prediction, the input arguments originally passed to
% "glmnet" MUST be VARIABLES (instead of expressions, or fields
% extracted from some struct objects). Alternatively, users should
% manually revise the "call" field in "object" (expressions or variable
% names) to match the original call to glmnet in the parent environment.
%
% INPUT ARGUMENTS:
% object Fitted "glmnet" model object.
% s Value(s) of the penalty parameter lambda at which predictions
% are required. Default is the entire sequence used to create
% the model.
% newx Matrix of new values for x at which predictions are to be
% made. Must be a matrix; can be sparse. This argument is not
% used for type='coefficients' or type='nonzero'.
% type Type of prediction required. Type 'link' gives the linear
% predictors for 'binomial', 'multinomial', 'poisson' or 'cox'
% models; for 'gaussian' models it gives the fitted values.
% Type 'response' gives the fitted probabilities for 'binomial'
% or 'multinomial', fitted mean for 'poisson' and the fitted
% relative-risk for 'cox'; for 'gaussian' type 'response' is
% equivalent to type 'link'. Type 'coefficients' computes the
% coefficients at the requested values for s. Note that for
% 'binomial' models, results are returned only for the class
% corresponding to the second level of the factor response.
% Type 'class' applies only to 'binomial' or 'multinomial'
% models, and produces the class label corresponding to the
% maximum probability. Type 'nonzero' returns a matrix of
% logical values with each column for each value of s,
% indicating if the corresponding coefficient is nonzero or not.
% exact If exact=true, and predictions are to made at values of s not
% included in the original fit, these values of s are merged
% with object.lambda, and the model is refit before predictions
% are made. If exact=false (default), then the predict function
% uses linear interpolation to make predictions for values of s
% that do not coincide with those used in the fitting
% algorithm. Note that exact=true is fragile when used inside a
% nested sequence of function calls. glmnetPredict() needs to
% update the model, and expects the data used to create it in
% the parent environment.
% offset If an offset is used in the fit, then one must be supplied
% for making predictions (except for type='coefficients' or
% type='nonzero')
%
% DETAILS:
% The shape of the objects returned are different for "multinomial"
% objects. glmnetCoef(fit, ...) is equivalent to
% glmnetPredict(fit,[],[],'coefficients").
%
% LICENSE: GPL-2
%
% DATE: 30 Aug 2013
%
% AUTHORS:
% Algorithm was designed by Jerome Friedman, Trevor Hastie and Rob Tibshirani
% Fortran code was written by Jerome Friedman
% R wrapper (from which the MATLAB wrapper was adapted) was written by Trevor Hasite
% The original MATLAB wrapper was written by Hui Jiang (14 Jul 2009),
% and was updated and maintained by Junyang Qian (30 Aug 2013) [email protected],
% Department of Statistics, Stanford University, Stanford, California, USA.
%
% REFERENCES:
% Friedman, J., Hastie, T. and Tibshirani, R. (2008) Regularization Paths for Generalized Linear Models via Coordinate Descent,
% http://www.jstatsoft.org/v33/i01/
% Journal of Statistical Software, Vol. 33(1), 1-22 Feb 2010
%
% Simon, N., Friedman, J., Hastie, T., Tibshirani, R. (2011) Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent,
% http://www.jstatsoft.org/v39/i05/
% Journal of Statistical Software, Vol. 39(5) 1-13
%
% Tibshirani, Robert., Bien, J., Friedman, J.,Hastie, T.,Simon, N.,Taylor, J. and Tibshirani, Ryan. (2010) Strong Rules for Discarding Predictors in Lasso-type Problems,
% http://www-stat.stanford.edu/~tibs/ftp/strong.pdf
% Stanford Statistics Technical Report
%
% SEE ALSO:
% glmnet, glmnetPrint, glmnetCoef, and cvglmnet.
%
% EXAMPLES:
% x=randn(100,20);
% y=randn(100,1);
% g2=randsample(2,100,true);
% g4=randsample(4,100,true);
% fit1=glmnet(x,y);
% glmnetPredict(fit1,x(1:5,:),[0.01,0.005]') % make predictions
% glmnetPredict(fit1,[],[],'coefficients')
% fit2=glmnet(x,g2,'binomial');
% glmnetPredict(fit2, x(2:5,:),[], 'response')
% glmnetPredict(fit2, [], [], 'nonzero')
% fit3=glmnet(x,g4,'multinomial');
% glmnetPredict(fit3, x(1:3,:), 0.01, 'response')
%
% DEVELOPMENT:
% 14 Jul 2009: Original version of glmnet.m written.
% 30 Aug 2013: Updated glmnet.m with more options and more models
% (multi-response Gaussian, cox and Poisson models) supported.
% OLDER UPDATES:
% 20 Oct 2009: Fixed a bug in bionomial response, pointed out by Ramon
% Casanov from Wake Forest University.
% 26 Jan 2010: Fixed a bug in multinomial link and class, pointed out by
% Peter Rijnbeek from Erasmus University.
% 23 Jun 2010: Fixed a bug in multinomial with s, pointed out by
% Robert Jacobsen from Aalborg University.
if nargin < 2 || isempty(newx)
newx = [];
end
if nargin < 3
s = [];
end
if nargin < 4 || isempty(type)
type = 'link';
end
if nargin < 5 || isempty(exact)
exact = false;
end
if nargin < 6
offset = [];
end
typebase = {'link','response','coefficients','nonzero','class'};
typeind = find(strncmp(type,typebase,length(type)),1);
type = typebase{typeind};
if isempty(newx)
if ~strcmp(type, 'coefficients') && ~strcmp(type, 'nonzero')
error('You need to supply a value for ''newx''');
end
end
%exact case: need to execute statements back in the parent environment
if (exact && ~isempty(s))
which = ismember(s,object.lambda);
if ~all(which)
lambda = unique([object.lambda;reshape(s,length(s),1)]);
%-----create a new variable in the parent environment
vname = 'newlam';
expr = sprintf('any(strcmp(''%s'', who))',vname);
newname = vname;
i = 0;
while (evalin('caller',expr))
i = i + 1;
newname = [vname,num2str(i)];
expr = sprintf('any(strcmp(who,''%s''))',newname);
end
parlam = newname;
%-----
assignin('caller', parlam, lambda);
vname = 'temp_opt';
expr = sprintf('any(strcmp(''%s'', who))',vname);
newname = vname;
i = 0;
while (evalin('caller',expr))
i = i + 1;
newname = [vname,num2str(i)];
expr = sprintf('any(strcmp(who,''%s''))',newname);
end
paropt = newname;
if strcmp('[]',object.call{3})
famcall = object.call{3};
else
famcall = sprintf('''%s''',object.call{3});
end
if ~strcmp('[]', object.call{4})
evalin('caller', strcat(paropt,'=',object.call{4},';'));
evalin('caller', strcat(paropt,'.lambda = ',parlam,';'));
newcall = sprintf('glmnet(%s, %s, %s, %s)', ...
object.call{1}, object.call{2}, famcall, paropt);
object = evalin('caller', newcall);
else
evalin('caller', strcat(paropt,'.lambda = ',parlam,';'));
newcall = sprintf('glmnet(%s, %s, %s, %s)', ...
object.call{1}, object.call{2}, famcall, paropt);
object = evalin('caller', newcall);
end
evalin('caller', sprintf('clearvars %s %s;',parlam,paropt));
end
end
if strcmp(object.class,'elnet')
a0 = transpose(object.a0);
nbeta=[a0; object.beta];
if (~isempty(s))
lambda=object.lambda;
lamlist=lambda_interp(lambda,s);
nbeta=nbeta(:,lamlist.left).*repmat(lamlist.frac',size(nbeta,1),1) +nbeta(:,lamlist.right).*(1-repmat(lamlist.frac',size(nbeta,1),1));
end
if strcmp(type, 'coefficients')
result = nbeta;
return;
end
if strcmp(type, 'nonzero')
result = nonzeroCoef(nbeta(2:size(nbeta,1),:), true);
return;
end
result = [ones(size(newx,1),1), newx] * nbeta;
if (object.offset)
if isempty(offset)
error('No offset provided for prediction, yet used in fit of glmnet');
end
if (size(offset,2)==2)
offset = offset(:,2);
end
result = result + repmat(offset, 1, size(result, 2));
end
end
if strcmp(object.class,'fishnet')
a0 = transpose(object.a0);
nbeta=[a0; object.beta];
if (~isempty(s))
lambda=object.lambda;
lamlist=lambda_interp(lambda,s);
nbeta=nbeta(:,lamlist.left).*repmat(lamlist.frac',size(nbeta,1),1) +nbeta(:,lamlist.right).*(1-repmat(lamlist.frac',size(nbeta,1),1));
end
if strcmp(type, 'coefficients')
result = nbeta;
return;
end
if strcmp(type, 'nonzero')
result = nonzeroCoef(nbeta(2:size(nbeta,1),:), true);
return;
end
result = [ones(size(newx,1),1), newx] * nbeta;
if (object.offset)
if isempty(offset)
error('No offset provided for prediction, yet used in fit of glmnet');
end
if (size(offset,2) == 2)
offset = offset(:, 2);
end
result = result + repmat(offset, 1, size(result,2));
end
if strcmp(type, 'response')
result = exp(result);
end
end
if strcmp(object.class, 'lognet')
a0 = object.a0;
nbeta=[a0; object.beta];
if (~isempty(s))
lambda=object.lambda;
lamlist=lambda_interp(lambda,s);
nbeta=nbeta(:,lamlist.left).*repmat(lamlist.frac',size(nbeta,1),1) +nbeta(:,lamlist.right).*(1-repmat(lamlist.frac',size(nbeta,1),1));
end
if strcmp(type, 'coefficients')
result = nbeta;
return;
end
if strcmp(type, 'nonzero')
result = nonzeroCoef(nbeta(2:size(nbeta,1),:), true);
return;
end
result = [ones(size(newx,1),1), newx] * nbeta;
if (object.offset)
if isempty(offset)
error('No offset provided for prediction, yet used in fit of glmnet');
end
if (size(offset,2)==2)
offset = offset(:,2);
end
result = result + repmat(offset, 1, size(result, 2));
end
switch type
case 'response'
pp = exp(-result);
result = 1./ (1+pp);
case 'class'
result = (result > 0) * 2 + (result <= 0) * 1;
result = object.label(result);
end
end
if strcmp(object.class, 'multnet') || strcmp(object.class,'mrelnet')
if strcmp(object.class,'mrelnet')
if strcmp(type, 'response')
type = 'link';
end
object.grouped = true;
end
a0=object.a0;
nbeta=object.beta;
nclass=size(a0,1);
nlambda=length(s);
if (~isempty(s))
lambda=object.lambda;
lamlist=lambda_interp(lambda,s);
for i=1:nclass
kbeta=[a0(i,:); nbeta{i}];
kbeta=kbeta(:,lamlist.left).*repmat(lamlist.frac',size(kbeta,1),1)+kbeta(:,lamlist.right).*(1-repmat(lamlist.frac',size(kbeta,1),1));
nbeta{i}=kbeta;
end
else
for i=1:nclass
nbeta{i} = [a0(i,:);nbeta{i}];
end
nlambda = length(object.lambda);
end
if strcmp(type, 'coefficients')
result = nbeta;
return;
end
if strcmp(type, 'nonzero')
if (object.grouped)
result{1} = nonzeroCoef(nbeta{1}(2:size(nbeta{1},1),:),true);
else
for i=1:nclass
result{i}=nonzeroCoef(nbeta{i}(2:size(nbeta{i},1),:),true);
end
end
return;
end
npred=size(newx,1);
dp = zeros(nclass,nlambda,npred);
for i=1:nclass
fitk = [ones(size(newx,1),1), newx] * nbeta{i};
dp(i,:,:)=dp(i,:,:)+reshape(transpose(fitk),1,nlambda,npred);
end
if (object.offset)
if (isempty(offset))
error('No offset provided for prediction, yet used in fit of glmnet');
end
if (size(offset,2) ~= nclass)
error('Offset should be dimension%dx%d',npred,nclass)
end
toff = transpose(offset);
for i = 1:nlambda
dp(:,i,:) = dp(:,i,:) + toff;
end
end
switch type
case 'response'
pp = exp(dp);
psum = sum(pp,1);
result = permute(pp./repmat(psum,nclass,1),[3,1,2]);
case 'link'
result=permute(dp,[3,1,2]);
case 'class'
dp=permute(dp,[3,1,2]);
result = [];
for i=1:size(dp,3)
result = [result, object.label(softmax(dp(:,:,i)))];
end
end
end
if strcmp(object.class,'coxnet')
nbeta = object.beta;
if (~isempty(s))
lambda=object.lambda;
lamlist=lambda_interp(lambda,s);
nbeta=nbeta(:,lamlist.left).*repmat(lamlist.frac',size(nbeta,1),1) +nbeta(:,lamlist.right).*(1-repmat(lamlist.frac',size(nbeta,1),1));
end
if strcmp(type, 'coefficients')
result = nbeta;
return;
end
if strcmp(type, 'nonzero')
result = nonzeroCoef(nbeta, true);
return;
end
result = newx * nbeta;
if (object.offset)
if isempty(offset)
error('No offset provided for prediction, yet used in fit of glmnet');
end
result = result + repmat(offset, 1, size(result, 2));
end
if strcmp(type, 'response')
result = exp(result);
end
end
%-------------------------------------------------------------
% End private function glmnetPredict
%-------------------------------------------------------------
function result = lambda_interp(lambda,s)
% lambda is the index sequence that is produced by the model
% s is the new vector at which evaluations are required.
% the value is a vector of left and right indices, and a vector of fractions.
% the new values are interpolated bewteen the two using the fraction
% Note: lambda decreases. you take:
% sfrac*left+(1-sfrac*right)
if length(lambda)==1 % degenerate case of only one lambda
nums=length(s);
left=ones(nums,1);
right=left;
sfrac=ones(nums,1);
else
s(s > max(lambda)) = max(lambda);
s(s < min(lambda)) = min(lambda);
k=length(lambda);
sfrac =(lambda(1)-s)/(lambda(1) - lambda(k));
lambda = (lambda(1) - lambda)/(lambda(1) - lambda(k));
coord = interp1(lambda, 1:length(lambda), sfrac);
left = floor(coord);
right = ceil(coord);
sfrac=(sfrac-lambda(right))./(lambda(left) - lambda(right));
sfrac(left==right)=1;
end
result.left = left;
result.right = right;
result.frac = sfrac;
%-------------------------------------------------------------
% End private function lambda_interp
%-------------------------------------------------------------
function result = softmax(x, gap)
if nargin < 2
gap = false;
end
d = size(x);
maxdist = x(:, 1);
pclass = repmat(1, d(1), 1);
for i =2:d(2)
l = x(:, i) > maxdist;
pclass(l) = i;
maxdist(l) = x(l, i);
end
if gap
x = abs(maxdist - x);
x(1:d(1), pclass) = x * repmat(1, d(2));
gaps = pmin(x);
end
if gap
result = {pclass, gaps};
else
result = pclass;
end
%-------------------------------------------------------------
% End private function softmax
%-------------------------------------------------------------