-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
74 lines (66 loc) · 2.89 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import torch.nn as nn
import torch
class EncoderRNN(nn.Module):
def __init__(self, device, num_hidden, num_layers):
super(EncoderRNN, self).__init__()
self.num_hidden = num_hidden
self.encoder1 = nn.GRUCell(8, self.num_hidden)
self.device = device
self.num_layers = num_layers
if num_layers > 1:
self.encoder2 = nn.GRUCell(8, self.num_hidden)
if num_layers > 2:
self.encoder3 = nn.GRUCell(8, self.num_hidden)
def forward(self, input, val=False):
context = torch.zeros(input.size(0), self.num_hidden, dtype=torch.float).to(self.device)
for i in range(input.size()[-1]):
inp = input[:, :, i]
context = self.encoder1(inp, context)
if self.num_layers > 1:
context = self.encoder2(inp, context)
if self.num_layers > 2:
context = self.encoder3(inp, context)
return context
class DecoderRNN(nn.Module):
def __init__(self, device, num_hidden, dropout_p, num_layers):
super(DecoderRNN, self).__init__()
self.num_hidden = num_hidden
self.num_layers = num_layers
self.decoder1 = nn.GRUCell(self.num_hidden, self.num_hidden)
self.out = nn.Linear(self.num_hidden, 4)
self.dropout_context = nn.Dropout(p=dropout_p)
self.dropout_dtp_features = nn.Dropout(p=dropout_p)
self.relu_context = nn.ReLU()
self.relu_dtp_features = nn.ReLU()
self.device = device
self.context_encoder = nn.Linear(self.num_hidden, int(self.num_hidden / 2))
self.dtp_encoder = nn.Linear(2048, int(self.num_hidden / 2))
if num_layers > 1:
self.decoder2 = nn.GRUCell(self.num_hidden, self.num_hidden)
if num_layers > 2:
self.decoder3 = nn.GRUCell(self.num_hidden, self.num_hidden)
def forward(self, context, dtp_features, val=False):
outputs = []
h_t = torch.zeros(context.size(0), self.num_hidden, dtype=torch.float).to(self.device)
# Fully connected
context = self.context_encoder(context)
encoded_dtp_features = self.dtp_encoder(dtp_features)
# Dropout
context = self.dropout_context(context)
encoded_dtp_features = self.dropout_dtp_features(encoded_dtp_features)
# Relu
context = self.relu_context(context)
encoded_dtp_features = self.relu_dtp_features(encoded_dtp_features)
context = torch.cat((context, encoded_dtp_features), 1)
# Decode
for i in range(60):
h_t = self.decoder1(context, h_t)
if self.num_layers > 1:
h_t = self.decoder2(context, h_t)
if self.num_layers > 2:
h_t = self.decoder3(context, h_t)
output = self.out(h_t)
outputs += [output]
outputs = torch.stack(outputs, 2)
outputs = outputs.view(-1, 240)
return outputs