forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbeam_search_v1_test.py
101 lines (83 loc) · 3.29 KB
/
beam_search_v1_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Test beam search helper methods."""
import tensorflow.compat.v1 as tf
from official.nlp.transformer import beam_search_v1 as beam_search
class BeamSearchHelperTests(tf.test.TestCase):
def setUp(self):
super(BeamSearchHelperTests, self).setUp()
tf.compat.v1.disable_eager_execution()
def test_expand_to_beam_size(self):
x = tf.ones([7, 4, 2, 5])
x = beam_search._expand_to_beam_size(x, 3)
with self.session() as sess:
shape = sess.run(tf.shape(x))
self.assertAllEqual([7, 3, 4, 2, 5], shape)
def test_shape_list(self):
y = tf.compat.v1.placeholder(dtype=tf.int32, shape=[])
x = tf.ones([7, y, 2, 5])
shape = beam_search._shape_list(x)
self.assertIsInstance(shape[0], int)
self.assertIsInstance(shape[1], tf.Tensor)
self.assertIsInstance(shape[2], int)
self.assertIsInstance(shape[3], int)
def test_get_shape_keep_last_dim(self):
y = tf.constant(4.0)
x = tf.ones([7, tf.cast(tf.sqrt(y), tf.int32), 2, 5])
shape = beam_search._get_shape_keep_last_dim(x)
self.assertAllEqual([None, None, None, 5],
shape.as_list())
def test_flatten_beam_dim(self):
x = tf.ones([7, 4, 2, 5])
x = beam_search._flatten_beam_dim(x)
with self.session() as sess:
shape = sess.run(tf.shape(x))
self.assertAllEqual([28, 2, 5], shape)
def test_unflatten_beam_dim(self):
x = tf.ones([28, 2, 5])
x = beam_search._unflatten_beam_dim(x, 7, 4)
with self.session() as sess:
shape = sess.run(tf.shape(x))
self.assertAllEqual([7, 4, 2, 5], shape)
def test_gather_beams(self):
x = tf.reshape(tf.range(24), [2, 3, 4])
# x looks like: [[[ 0 1 2 3]
# [ 4 5 6 7]
# [ 8 9 10 11]]
#
# [[12 13 14 15]
# [16 17 18 19]
# [20 21 22 23]]]
y = beam_search._gather_beams(x, [[1, 2], [0, 2]], 2, 2)
with self.session() as sess:
y = sess.run(y)
self.assertAllEqual([[[4, 5, 6, 7],
[8, 9, 10, 11]],
[[12, 13, 14, 15],
[20, 21, 22, 23]]],
y)
def test_gather_topk_beams(self):
x = tf.reshape(tf.range(24), [2, 3, 4])
x_scores = [[0, 1, 1], [1, 0, 1]]
y = beam_search._gather_topk_beams(x, x_scores, 2, 2)
with self.session() as sess:
y = sess.run(y)
self.assertAllEqual([[[4, 5, 6, 7],
[8, 9, 10, 11]],
[[12, 13, 14, 15],
[20, 21, 22, 23]]],
y)
if __name__ == "__main__":
tf.test.main()