forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimizer.py
137 lines (114 loc) · 5.04 KB
/
optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Optimizer from addons and learning rate scheduler."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
K = tf.keras.backend
class LearningRateSchedule(tf.keras.optimizers.schedules.LearningRateSchedule):
"""Learning rate schedule."""
def __init__(self, initial_learning_rate, hidden_size, warmup_steps):
"""Initialize configuration of the learning rate schedule.
Args:
initial_learning_rate: A float, the initial learning rate.
hidden_size: An integer, the model dimension in the hidden layers.
warmup_steps: An integer, the number of steps required for linear warmup.
"""
super(LearningRateSchedule, self).__init__()
self.initial_learning_rate = initial_learning_rate
self.hidden_size = hidden_size
self.warmup_steps = tf.cast(warmup_steps, tf.float32)
def __call__(self, global_step):
"""Calculate learning rate with linear warmup and rsqrt decay.
Args:
global_step: An integer, the current global step used for learning rate
calculation.
Returns:
A float, the learning rate needs to be used for current global step.
"""
with tf.name_scope('learning_rate_schedule'):
global_step = tf.cast(global_step, tf.float32)
learning_rate = self.initial_learning_rate
learning_rate *= (self.hidden_size**-0.5)
# Apply linear warmup
learning_rate *= tf.minimum(1.0, global_step / self.warmup_steps)
# Apply rsqrt decay
learning_rate /= tf.sqrt(tf.maximum(global_step, self.warmup_steps))
return learning_rate
def get_config(self):
"""Get the configuration of the learning rate schedule."""
return {
'initial_learning_rate': self.initial_learning_rate,
'hidden_size': self.hidden_size,
'warmup_steps': self.warmup_steps,
}
class LearningRateFn(object):
"""Creates learning rate function."""
def __init__(self, learning_rate, hidden_size, warmup_steps):
self.learning_rate = learning_rate
self.hidden_size = hidden_size
self.warmup_steps = float(warmup_steps)
def __call__(self, global_step):
"""Calculate learning rate with linear warmup and rsqrt decay."""
step = float(global_step)
learning_rate = self.learning_rate
learning_rate *= (self.hidden_size ** -0.5)
# Apply linear warmup
learning_rate *= np.minimum(1.0, step / self.warmup_steps)
# Apply rsqrt decay
learning_rate /= np.sqrt(np.maximum(step, self.warmup_steps))
return learning_rate
class LearningRateScheduler(tf.keras.callbacks.Callback):
"""Keras callback to schedule learning rate.
TODO(tianlin): Refactor this scheduler and LearningRateBatchScheduler in
official/resnet/keras/keras_common.py.
"""
def __init__(self, schedule, init_steps=None, verbose=False):
super(LearningRateScheduler, self).__init__()
self.schedule = schedule
self.verbose = verbose
if init_steps is None:
init_steps = 0.0
self.steps = float(init_steps) # Total steps during training.
def on_epoch_begin(self, epoch, logs=None):
if not hasattr(self.model.optimizer, 'lr'):
raise ValueError('Optimizer must have a "lr" attribute.')
if not hasattr(self.model.optimizer, 'iterations'):
raise ValueError('Optimizer must have a "iterations" attribute.')
def on_train_batch_begin(self, batch, logs=None):
"""Adjusts learning rate for each train batch."""
if self.verbose > 0:
iterations = K.get_value(self.model.optimizer.iterations)
print('Original iteration %d' % iterations)
self.steps += 1.0
try: # new API
lr = float(K.get_value(self.model.optimizer.lr))
lr = self.schedule(self.steps, lr)
except TypeError: # Support for old API for backward compatibility
lr = self.schedule(self.steps)
if not isinstance(lr, (float, np.float32, np.float64)):
raise ValueError('The output of the "schedule" function '
'should be float.')
K.set_value(self.model.optimizer.lr, lr)
K.set_value(self.model.optimizer.iterations, self.steps)
if self.verbose > 0:
print('Batch %05d Step %05d: LearningRateScheduler setting learning '
'rate to %s.' % (batch + 1, self.steps, lr))
def on_epoch_end(self, epoch, logs=None):
logs = logs or {}
logs['lr'] = K.get_value(self.model.optimizer.lr)
logs['steps'] = self.steps