forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_lib.py
189 lines (154 loc) · 6.35 KB
/
model_lib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# Copyright 2018 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Library with common functions for training and eval."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import six
import tensorflow as tf
from tensorflow.contrib.slim.nets import resnet_v2
def default_hparams():
"""Returns default hyperparameters."""
return tf.contrib.training.HParams(
# Batch size for training and evaluation.
batch_size=32,
eval_batch_size=50,
# General training parameters.
weight_decay=0.0001,
label_smoothing=0.1,
# Parameters of the adversarial training.
train_adv_method='clean', # adversarial training method
train_lp_weight=0.0, # Weight of adversarial logit pairing loss
# Parameters of the optimizer.
optimizer='rms', # possible values are: 'rms', 'momentum', 'adam'
momentum=0.9, # momentum
rmsprop_decay=0.9, # Decay term for RMSProp
rmsprop_epsilon=1.0, # Epsilon term for RMSProp
# Parameters of learning rate schedule.
lr_schedule='exp_decay', # Possible values: 'exp_decay', 'step', 'fixed'
learning_rate=0.045,
lr_decay_factor=0.94, # Learning exponential decay
lr_num_epochs_per_decay=2.0, # Number of epochs per lr decay
lr_list=[1.0 / 6, 2.0 / 6, 3.0 / 6,
4.0 / 6, 5.0 / 6, 1.0, 0.1, 0.01,
0.001, 0.0001],
lr_decay_epochs=[1, 2, 3, 4, 5, 30, 60, 80,
90])
def get_lr_schedule(hparams, examples_per_epoch, replicas_to_aggregate=1):
"""Returns TensorFlow op which compute learning rate.
Args:
hparams: hyper parameters.
examples_per_epoch: number of training examples per epoch.
replicas_to_aggregate: number of training replicas running in parallel.
Raises:
ValueError: if learning rate schedule specified in hparams is incorrect.
Returns:
learning_rate: tensor with learning rate.
steps_per_epoch: number of training steps per epoch.
"""
global_step = tf.train.get_or_create_global_step()
steps_per_epoch = float(examples_per_epoch) / float(hparams.batch_size)
if replicas_to_aggregate > 0:
steps_per_epoch /= replicas_to_aggregate
if hparams.lr_schedule == 'exp_decay':
decay_steps = long(steps_per_epoch * hparams.lr_num_epochs_per_decay)
learning_rate = tf.train.exponential_decay(
hparams.learning_rate,
global_step,
decay_steps,
hparams.lr_decay_factor,
staircase=True)
elif hparams.lr_schedule == 'step':
lr_decay_steps = [long(epoch * steps_per_epoch)
for epoch in hparams.lr_decay_epochs]
learning_rate = tf.train.piecewise_constant(
global_step, lr_decay_steps, hparams.lr_list)
elif hparams.lr_schedule == 'fixed':
learning_rate = hparams.learning_rate
else:
raise ValueError('Invalid value of lr_schedule: %s' % hparams.lr_schedule)
if replicas_to_aggregate > 0:
learning_rate *= replicas_to_aggregate
return learning_rate, steps_per_epoch
def get_optimizer(hparams, learning_rate):
"""Returns optimizer.
Args:
hparams: hyper parameters.
learning_rate: learning rate tensor.
Raises:
ValueError: if type of optimizer specified in hparams is incorrect.
Returns:
Instance of optimizer class.
"""
if hparams.optimizer == 'rms':
optimizer = tf.train.RMSPropOptimizer(learning_rate,
hparams.rmsprop_decay,
hparams.momentum,
hparams.rmsprop_epsilon)
elif hparams.optimizer == 'momentum':
optimizer = tf.train.MomentumOptimizer(learning_rate,
hparams.momentum)
elif hparams.optimizer == 'adam':
optimizer = tf.train.AdamOptimizer(learning_rate)
else:
raise ValueError('Invalid value of optimizer: %s' % hparams.optimizer)
return optimizer
RESNET_MODELS = {'resnet_v2_50': resnet_v2.resnet_v2_50}
def get_model(model_name, num_classes):
"""Returns function which creates model.
Args:
model_name: Name of the model.
num_classes: Number of classes.
Raises:
ValueError: If model_name is invalid.
Returns:
Function, which creates model when called.
"""
if model_name.startswith('resnet'):
def resnet_model(images, is_training, reuse=tf.AUTO_REUSE):
with tf.contrib.framework.arg_scope(resnet_v2.resnet_arg_scope()):
resnet_fn = RESNET_MODELS[model_name]
logits, _ = resnet_fn(images, num_classes, is_training=is_training,
reuse=reuse)
logits = tf.reshape(logits, [-1, num_classes])
return logits
return resnet_model
else:
raise ValueError('Invalid model: %s' % model_name)
def filter_trainable_variables(trainable_scopes):
"""Keep only trainable variables which are prefixed with given scopes.
Args:
trainable_scopes: either list of trainable scopes or string with comma
separated list of trainable scopes.
This function removes all variables which are not prefixed with given
trainable_scopes from collection of trainable variables.
Useful during network fine tuning, when you only need to train subset of
variables.
"""
if not trainable_scopes:
return
if isinstance(trainable_scopes, six.string_types):
trainable_scopes = [scope.strip() for scope in trainable_scopes.split(',')]
trainable_scopes = {scope for scope in trainable_scopes if scope}
if not trainable_scopes:
return
trainable_collection = tf.get_collection_ref(
tf.GraphKeys.TRAINABLE_VARIABLES)
non_trainable_vars = [
v for v in trainable_collection
if not any([v.op.name.startswith(s) for s in trainable_scopes])
]
for v in non_trainable_vars:
trainable_collection.remove(v)