forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
480 lines (441 loc) · 21 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Provides DeepLab model definition and helper functions.
DeepLab is a deep learning system for semantic image segmentation with
the following features:
(1) Atrous convolution to explicitly control the resolution at which
feature responses are computed within Deep Convolutional Neural Networks.
(2) Atrous spatial pyramid pooling (ASPP) to robustly segment objects at
multiple scales with filters at multiple sampling rates and effective
fields-of-views.
(3) ASPP module augmented with image-level feature and batch normalization.
(4) A simple yet effective decoder module to recover the object boundaries.
See the following papers for more details:
"Encoder-Decoder with Atrous Separable Convolution for Semantic Image
Segmentation"
Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, Hartwig Adam.
(https://arxiv.org/abs1802.02611)
"Rethinking Atrous Convolution for Semantic Image Segmentation,"
Liang-Chieh Chen, George Papandreou, Florian Schroff, Hartwig Adam
(https://arxiv.org/abs/1706.05587)
"DeepLab: Semantic Image Segmentation with Deep Convolutional Nets,
Atrous Convolution, and Fully Connected CRFs",
Liang-Chieh Chen*, George Papandreou*, Iasonas Kokkinos, Kevin Murphy,
Alan L Yuille (* equal contribution)
(https://arxiv.org/abs/1606.00915)
"Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected
CRFs"
Liang-Chieh Chen*, George Papandreou*, Iasonas Kokkinos, Kevin Murphy,
Alan L. Yuille (* equal contribution)
(https://arxiv.org/abs/1412.7062)
"""
import collections
import tensorflow as tf
from deeplab import model
from feelvos import common
from feelvos.utils import embedding_utils
from feelvos.utils import train_utils
slim = tf.contrib.slim
get_branch_logits = model.get_branch_logits
get_extra_layer_scopes = model.get_extra_layer_scopes
multi_scale_logits_v2 = model.multi_scale_logits
refine_by_decoder = model.refine_by_decoder
scale_dimension = model.scale_dimension
split_separable_conv2d = model.split_separable_conv2d
MERGED_LOGITS_SCOPE = model.MERGED_LOGITS_SCOPE
IMAGE_POOLING_SCOPE = model.IMAGE_POOLING_SCOPE
ASPP_SCOPE = model.ASPP_SCOPE
CONCAT_PROJECTION_SCOPE = model.CONCAT_PROJECTION_SCOPE
def predict_labels(images,
model_options,
image_pyramid=None,
reference_labels=None,
k_nearest_neighbors=1,
embedding_dimension=None,
use_softmax_feedback=False,
initial_softmax_feedback=None,
embedding_seg_feature_dimension=256,
embedding_seg_n_layers=4,
embedding_seg_kernel_size=7,
embedding_seg_atrous_rates=None,
also_return_softmax_probabilities=False,
num_frames_per_video=None,
normalize_nearest_neighbor_distances=False,
also_attend_to_previous_frame=False,
use_local_previous_frame_attention=False,
previous_frame_attention_window_size=9,
use_first_frame_matching=True,
also_return_embeddings=False,
ref_embeddings=None):
"""Predicts segmentation labels.
Args:
images: A tensor of size [batch, height, width, channels].
model_options: An InternalModelOptions instance to configure models.
image_pyramid: Input image scales for multi-scale feature extraction.
reference_labels: A tensor of size [batch, height, width, 1].
ground truth labels used to perform a nearest neighbor query
k_nearest_neighbors: Integer, the number of neighbors to use for nearest
neighbor queries.
embedding_dimension: Integer, the dimension used for the learned embedding.
use_softmax_feedback: Boolean, whether to give the softmax predictions of
the last frame as additional input to the segmentation head.
initial_softmax_feedback: Float32 tensor, or None. Can be used to
initialize the softmax predictions used for the feedback loop.
Typically only useful for inference. Only has an effect if
use_softmax_feedback is True.
embedding_seg_feature_dimension: Integer, the dimensionality used in the
segmentation head layers.
embedding_seg_n_layers: Integer, the number of layers in the segmentation
head.
embedding_seg_kernel_size: Integer, the kernel size used in the
segmentation head.
embedding_seg_atrous_rates: List of integers of length
embedding_seg_n_layers, the atrous rates to use for the segmentation head.
also_return_softmax_probabilities: Boolean, if true, additionally return
the softmax probabilities as second return value.
num_frames_per_video: Integer, the number of frames per video.
normalize_nearest_neighbor_distances: Boolean, whether to normalize the
nearest neighbor distances to [0,1] using sigmoid, scale and shift.
also_attend_to_previous_frame: Boolean, whether to also use nearest
neighbor attention with respect to the previous frame.
use_local_previous_frame_attention: Boolean, whether to restrict the
previous frame attention to a local search window.
Only has an effect, if also_attend_to_previous_frame is True.
previous_frame_attention_window_size: Integer, the window size used for
local previous frame attention, if use_local_previous_frame_attention
is True.
use_first_frame_matching: Boolean, whether to extract features by matching
to the reference frame. This should always be true except for ablation
experiments.
also_return_embeddings: Boolean, whether to return the embeddings as well.
ref_embeddings: Tuple of
(first_frame_embeddings, previous_frame_embeddings),
each of shape [batch, height, width, embedding_dimension], or None.
Returns:
A dictionary with keys specifying the output_type (e.g., semantic
prediction) and values storing Tensors representing predictions (argmax
over channels). Each prediction has size [batch, height, width].
If also_return_softmax_probabilities is True, the second return value are
the softmax probabilities.
If also_return_embeddings is True, it will also return an embeddings
tensor of shape [batch, height, width, embedding_dimension].
Raises:
ValueError: If classification_loss is not softmax, softmax_with_attention,
nor triplet.
"""
if (model_options.classification_loss == 'triplet' and
reference_labels is None):
raise ValueError('Need reference_labels for triplet loss')
if model_options.classification_loss == 'softmax_with_attention':
if embedding_dimension is None:
raise ValueError('Need embedding_dimension for softmax_with_attention '
'loss')
if reference_labels is None:
raise ValueError('Need reference_labels for softmax_with_attention loss')
res = (
multi_scale_logits_with_nearest_neighbor_matching(
images,
model_options=model_options,
image_pyramid=image_pyramid,
is_training=False,
reference_labels=reference_labels,
clone_batch_size=1,
num_frames_per_video=num_frames_per_video,
embedding_dimension=embedding_dimension,
max_neighbors_per_object=0,
k_nearest_neighbors=k_nearest_neighbors,
use_softmax_feedback=use_softmax_feedback,
initial_softmax_feedback=initial_softmax_feedback,
embedding_seg_feature_dimension=embedding_seg_feature_dimension,
embedding_seg_n_layers=embedding_seg_n_layers,
embedding_seg_kernel_size=embedding_seg_kernel_size,
embedding_seg_atrous_rates=embedding_seg_atrous_rates,
normalize_nearest_neighbor_distances=
normalize_nearest_neighbor_distances,
also_attend_to_previous_frame=also_attend_to_previous_frame,
use_local_previous_frame_attention=
use_local_previous_frame_attention,
previous_frame_attention_window_size=
previous_frame_attention_window_size,
use_first_frame_matching=use_first_frame_matching,
also_return_embeddings=also_return_embeddings,
ref_embeddings=ref_embeddings
))
if also_return_embeddings:
outputs_to_scales_to_logits, embeddings = res
else:
outputs_to_scales_to_logits = res
embeddings = None
else:
outputs_to_scales_to_logits = multi_scale_logits_v2(
images,
model_options=model_options,
image_pyramid=image_pyramid,
is_training=False,
fine_tune_batch_norm=False)
predictions = {}
for output in sorted(outputs_to_scales_to_logits):
scales_to_logits = outputs_to_scales_to_logits[output]
original_logits = scales_to_logits[MERGED_LOGITS_SCOPE]
if isinstance(original_logits, list):
assert len(original_logits) == 1
original_logits = original_logits[0]
logits = tf.image.resize_bilinear(original_logits, tf.shape(images)[1:3],
align_corners=True)
if model_options.classification_loss in ('softmax',
'softmax_with_attention'):
predictions[output] = tf.argmax(logits, 3)
elif model_options.classification_loss == 'triplet':
# to keep this fast, we do the nearest neighbor assignment on the
# resolution at which the embedding is extracted and scale the result up
# afterwards
embeddings = original_logits
reference_labels_logits_size = tf.squeeze(
tf.image.resize_nearest_neighbor(
reference_labels[tf.newaxis],
train_utils.resolve_shape(embeddings)[1:3],
align_corners=True), axis=0)
nn_labels = embedding_utils.assign_labels_by_nearest_neighbors(
embeddings[0], embeddings[1:], reference_labels_logits_size,
k_nearest_neighbors)
predictions[common.OUTPUT_TYPE] = tf.image.resize_nearest_neighbor(
nn_labels, tf.shape(images)[1:3], align_corners=True)
else:
raise ValueError(
'Only support softmax, triplet, or softmax_with_attention for '
'classification_loss.')
if also_return_embeddings:
assert also_return_softmax_probabilities
return predictions, tf.nn.softmax(original_logits, axis=-1), embeddings
elif also_return_softmax_probabilities:
return predictions, tf.nn.softmax(original_logits, axis=-1)
else:
return predictions
def multi_scale_logits_with_nearest_neighbor_matching(
images,
model_options,
image_pyramid,
clone_batch_size,
reference_labels,
num_frames_per_video,
embedding_dimension,
max_neighbors_per_object,
weight_decay=0.0001,
is_training=False,
fine_tune_batch_norm=False,
k_nearest_neighbors=1,
use_softmax_feedback=False,
initial_softmax_feedback=None,
embedding_seg_feature_dimension=256,
embedding_seg_n_layers=4,
embedding_seg_kernel_size=7,
embedding_seg_atrous_rates=None,
normalize_nearest_neighbor_distances=False,
also_attend_to_previous_frame=False,
damage_initial_previous_frame_mask=False,
use_local_previous_frame_attention=False,
previous_frame_attention_window_size=9,
use_first_frame_matching=True,
also_return_embeddings=False,
ref_embeddings=None):
"""Gets the logits for multi-scale inputs using nearest neighbor attention.
Adjusted version of multi_scale_logits_v2 to support nearest neighbor
attention and a variable number of classes for each element of the batch.
The returned logits are all downsampled (due to max-pooling layers)
for both training and evaluation.
Args:
images: A tensor of size [batch, height, width, channels].
model_options: A ModelOptions instance to configure models.
image_pyramid: Input image scales for multi-scale feature extraction.
clone_batch_size: Integer, the number of videos on a batch.
reference_labels: The segmentation labels of the reference frame on which
attention is applied.
num_frames_per_video: Integer, the number of frames per video.
embedding_dimension: Integer, the dimension of the embedding.
max_neighbors_per_object: Integer, the maximum number of candidates
for the nearest neighbor query per object after subsampling.
Can be 0 for no subsampling.
weight_decay: The weight decay for model variables.
is_training: Is training or not.
fine_tune_batch_norm: Fine-tune the batch norm parameters or not.
k_nearest_neighbors: Integer, the number of nearest neighbors to use.
use_softmax_feedback: Boolean, whether to give the softmax predictions of
the last frame as additional input to the segmentation head.
initial_softmax_feedback: List of Float32 tensors, or None.
Can be used to initialize the softmax predictions used for the feedback
loop. Only has an effect if use_softmax_feedback is True.
embedding_seg_feature_dimension: Integer, the dimensionality used in the
segmentation head layers.
embedding_seg_n_layers: Integer, the number of layers in the segmentation
head.
embedding_seg_kernel_size: Integer, the kernel size used in the
segmentation head.
embedding_seg_atrous_rates: List of integers of length
embedding_seg_n_layers, the atrous rates to use for the segmentation head.
normalize_nearest_neighbor_distances: Boolean, whether to normalize the
nearest neighbor distances to [0,1] using sigmoid, scale and shift.
also_attend_to_previous_frame: Boolean, whether to also use nearest
neighbor attention with respect to the previous frame.
damage_initial_previous_frame_mask: Boolean, whether to artificially damage
the initial previous frame mask. Only has an effect if
also_attend_to_previous_frame is True.
use_local_previous_frame_attention: Boolean, whether to restrict the
previous frame attention to a local search window.
Only has an effect, if also_attend_to_previous_frame is True.
previous_frame_attention_window_size: Integer, the window size used for
local previous frame attention, if use_local_previous_frame_attention
is True.
use_first_frame_matching: Boolean, whether to extract features by matching
to the reference frame. This should always be true except for ablation
experiments.
also_return_embeddings: Boolean, whether to return the embeddings as well.
ref_embeddings: Tuple of
(first_frame_embeddings, previous_frame_embeddings),
each of shape [batch, height, width, embedding_dimension], or None.
Returns:
outputs_to_scales_to_logits: A map of maps from output_type (e.g.,
semantic prediction) to a dictionary of multi-scale logits names to
logits. For each output_type, the dictionary has keys which
correspond to the scales and values which correspond to the logits.
For example, if `scales` equals [1.0, 1.5], then the keys would
include 'merged_logits', 'logits_1.00' and 'logits_1.50'.
If also_return_embeddings is True, it will also return an embeddings
tensor of shape [batch, height, width, embedding_dimension].
Raises:
ValueError: If model_options doesn't specify crop_size and its
add_image_level_feature = True, since add_image_level_feature requires
crop_size information.
"""
# Setup default values.
if not image_pyramid:
image_pyramid = [1.0]
crop_height = (
model_options.crop_size[0]
if model_options.crop_size else tf.shape(images)[1])
crop_width = (
model_options.crop_size[1]
if model_options.crop_size else tf.shape(images)[2])
# Compute the height, width for the output logits.
if model_options.decoder_output_stride:
logits_output_stride = min(model_options.decoder_output_stride)
else:
logits_output_stride = model_options.output_stride
logits_height = scale_dimension(
crop_height,
max(1.0, max(image_pyramid)) / logits_output_stride)
logits_width = scale_dimension(
crop_width,
max(1.0, max(image_pyramid)) / logits_output_stride)
# Compute the logits for each scale in the image pyramid.
outputs_to_scales_to_logits = {
k: {}
for k in model_options.outputs_to_num_classes
}
for image_scale in image_pyramid:
if image_scale != 1.0:
scaled_height = scale_dimension(crop_height, image_scale)
scaled_width = scale_dimension(crop_width, image_scale)
scaled_crop_size = [scaled_height, scaled_width]
scaled_images = tf.image.resize_bilinear(
images, scaled_crop_size, align_corners=True)
scaled_reference_labels = tf.image.resize_nearest_neighbor(
reference_labels, scaled_crop_size, align_corners=True
)
if model_options.crop_size is None:
scaled_crop_size = None
if model_options.crop_size:
scaled_images.set_shape([None, scaled_height, scaled_width, 3])
else:
scaled_crop_size = model_options.crop_size
scaled_images = images
scaled_reference_labels = reference_labels
updated_options = model_options._replace(crop_size=scaled_crop_size)
res = embedding_utils.get_logits_with_matching(
scaled_images,
updated_options,
weight_decay=weight_decay,
reuse=tf.AUTO_REUSE,
is_training=is_training,
fine_tune_batch_norm=fine_tune_batch_norm,
reference_labels=scaled_reference_labels,
batch_size=clone_batch_size,
num_frames_per_video=num_frames_per_video,
embedding_dimension=embedding_dimension,
max_neighbors_per_object=max_neighbors_per_object,
k_nearest_neighbors=k_nearest_neighbors,
use_softmax_feedback=use_softmax_feedback,
initial_softmax_feedback=initial_softmax_feedback,
embedding_seg_feature_dimension=embedding_seg_feature_dimension,
embedding_seg_n_layers=embedding_seg_n_layers,
embedding_seg_kernel_size=embedding_seg_kernel_size,
embedding_seg_atrous_rates=embedding_seg_atrous_rates,
normalize_nearest_neighbor_distances=
normalize_nearest_neighbor_distances,
also_attend_to_previous_frame=also_attend_to_previous_frame,
damage_initial_previous_frame_mask=damage_initial_previous_frame_mask,
use_local_previous_frame_attention=use_local_previous_frame_attention,
previous_frame_attention_window_size=
previous_frame_attention_window_size,
use_first_frame_matching=use_first_frame_matching,
also_return_embeddings=also_return_embeddings,
ref_embeddings=ref_embeddings
)
if also_return_embeddings:
outputs_to_logits, embeddings = res
else:
outputs_to_logits = res
embeddings = None
# Resize the logits to have the same dimension before merging.
for output in sorted(outputs_to_logits):
if isinstance(outputs_to_logits[output], collections.Sequence):
outputs_to_logits[output] = [tf.image.resize_bilinear(
x, [logits_height, logits_width], align_corners=True)
for x in outputs_to_logits[output]]
else:
outputs_to_logits[output] = tf.image.resize_bilinear(
outputs_to_logits[output], [logits_height, logits_width],
align_corners=True)
# Return when only one input scale.
if len(image_pyramid) == 1:
for output in sorted(model_options.outputs_to_num_classes):
outputs_to_scales_to_logits[output][
MERGED_LOGITS_SCOPE] = outputs_to_logits[output]
if also_return_embeddings:
return outputs_to_scales_to_logits, embeddings
else:
return outputs_to_scales_to_logits
# Save logits to the output map.
for output in sorted(model_options.outputs_to_num_classes):
outputs_to_scales_to_logits[output][
'logits_%.2f' % image_scale] = outputs_to_logits[output]
# Merge the logits from all the multi-scale inputs.
for output in sorted(model_options.outputs_to_num_classes):
# Concatenate the multi-scale logits for each output type.
all_logits = [
[tf.expand_dims(l, axis=4)]
for logits in outputs_to_scales_to_logits[output].values()
for l in logits
]
transposed = map(list, zip(*all_logits))
all_logits = [tf.concat(t, 4) for t in transposed]
merge_fn = (
tf.reduce_max
if model_options.merge_method == 'max' else tf.reduce_mean)
outputs_to_scales_to_logits[output][MERGED_LOGITS_SCOPE] = [merge_fn(
l, axis=4) for l in all_logits]
if also_return_embeddings:
return outputs_to_scales_to_logits, embeddings
else:
return outputs_to_scales_to_logits